
Advanced Econometrics

Exam Summer Term 2009, September 29, 2009

Prof. Dr. Nikolaus Hautsch
Prof. Dr. Melanie Schienle
Institute for Statistics and Econometrics
Humboldt-Universität zu Berlin

You have to answer 2 out of 3 problems within 90 minutes (plus 10 minutes ”reading time”).
If you answer all questions, only the first 2 problems will be taken into account.

You may answer in English or in German. But please stick to one language.

You find necessary underlying results and formulas in the appendix.

Do your best to write legibly. Exams or parts of exams which cannot be read with reasonable
effort will not be graded.

Good luck!
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Problem 1: Bayesian Inference

a) Explain the major principle of Bayesian inference and discuss (briefly!) the main
differences to the frequentist approach. 3 P

b) Compute the kernel and the integrating constant of a N(�, �2) distribution. 2 P

c) Show that the gamma distribution G(�, �) is a conjugate prior distribution for the
Poisson distribution.

Hint: The corresponding p.d.f.’s are given in the Appendix. 4 P

d) Write the mean of the posterior distribution in (c) as a weighted average of the mean
of the prior distribution and the corresponding maximum likelihood estimator. 4 P

e) Assume a linear regression model y = X� + " with y being an (n × 1) vector, X an
(n × k) regressor matrix, � a (k × 1) parameter vector and " being an (n × 1) vector
of error terms with " ∼ N(0, �2). Assume flat priors for � and ln� of the form

�(�) ∝ c1, c1 > 0

�(ln�) ∝ c2, c2 > 0.

Show that

�(�∣�2, y) = Nk(�∣�̂, �2(X ′X)−1),

�(�2∣y) = IG(�2∣(n− k)/2, S2/2),

�̂ = (X ′X)−1X ′y,

Ŝ2 = (y −X�̂)′(y −X�̂).

5 P

f) Explain briefly the main idea of the Gibbs sampler. 2 P
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Problem 2: Nonparametric Estimation

Obtain an estimate F̂ (x) of the cumulative distribution function F (x) via integrating
the standard (Rosenblatt-Parzen) kernel density estimator of the density f(x). Thus

F̂ (x) =

∫ x

−∞
f̂(t) dt for any x ∈ ℝ .

Assume that f ′ is continuous at x and the corresponding standard kernel assumptions
hold, i.e.

∫
K(z) dz = 1, K symmetric and

∫
∣z∣2K(z) dz < ∞,

∫
zK(z)G(z) dz < ∞

where G(z) =
∫ z
−∞K(x) dx.

a) Derive the asymptotic bias expression

E(F̂ (x)) = F (x) + ℎ2
f

′
(x)

2

∫
z2K(z) dz + o(ℎ2) .

Please be clear and explicit about every step in your calculation.

Hint: Be careful with the boundaries when you interchange the order of integrations. 4 P

b) Assume that you know the asymptotic variance expression

V(F̂ (x)) =
1

n
F (x)(1− F (x))− 2

ℎ

n
f(x)

∫
zK(z)G(z) dz + o

(
ℎ

n

)
.

Which conditions on the bandwidth are necessary for F̂ (x) being a consistent estimator
of F (x)? 2 P

c) Use results in a) and b) to show consistency of F̂ under the bandwidth assumptions in
b). Please provide detailed reasoning. 4 P

d) What is the optimal order ℎopt for the choice of bandwidth according to MSE or IMSE
and what is the resulting asymptotic rate of MSE(ℎopt)? In contrast to density estima-
tion, we can obtain the optimal asymptotic rate of MSE by a wider range of admissible
bandwidths including ℎopt. Specify the admissible interval. If we use the ℎopt of F̂ also

for estimating the density function via f̂ , what can we expect for f̂ℎopt? 5 P

e) Explain why implementing the optimal theoretical choice of bandwidth according to
MSE causes problems in practice. Explain the idea of two different approaches for the
choice of bandwidth in practice. 5 P
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Problem 3: Non- and Semiparametric Estimation

Consider a nonparametric regression problem, where you have iid observations (Yi, Xi)
n
i=1 ∈

ℝ× ℝ and you want to estimate m in

Y = m(X) + � with E[�∣X] = 0

from your data. Assume that the standard kernel assumptions hold, i.e.
∫
K(z) dz = 1,

K symmetric and
∫
∣z∣2K(z) dz < ∞,

∫
K2(z) dz < ∞, m and the density f of the

regressor X are smooth C2(ℝ), and the required moment conditions are fulfilled.

a) True or false? Briefly justify your answer, by stating appropriate formulas and giving
the correct interpretation.

i) When we use a local linear type estimator m̂LL, we will underestimate the true
function in a small neighborhood around a local maximum, i.e. with high proba-
bility for large n it is E[m̂LL(x)∣X1, . . . , Xn] < m(x) for x in such an area. 2 P

ii) The bias of the local constant estimator is generally larger than the bias of the
local linear estimator while the variance is the same in both cases 2 P

iii) When using higher order kernels of order r and corresponding smoothness assump-
tions, for the optimal choice of bandwidth via MSE or IMSE it is ℎopt = O(n−1/�),
where � increases with r, but � can never be an even number. 2 P

iv) A small number of large outliers in the regressor variable will directly cause local
constant type estimators to be inconsistent. 2 P

b) Apart from Kernel smoothing there exist other nonparametric techniques to estimate
m. Name two of such methods and explain the basic idea and estimation steps of one of
them. Briefly indicate what plays the role of the smoothness parameter in this setting
and what restrictions on this parameter apply in order to obtain a consistent estimate.

5 P

c) Now assume the dimension d of regressors is large, d ≫ 1. Therefore consider now
estimating a semiparametric regression model of the form

Y = g(X ′1�1) +X ′2�2 + �.

using an iid sample (Yi, X1i, X2i)
n
i=1 ∈ ℝ×ℝd1 ×ℝd2 with d1 + d2 = d. Here g : ℝ→ ℝ

is a smooth function, � = (�1, �2) is a finite dimensional parameter with �1 ∈ Θ1 ⊂ ℝd1

and �2 ∈ Θ2 ⊂ ℝd2 , and E[�∣X] = 0.

i) In what sense is this a semiparametric model? Briefly explain the main advantages
and disadvantages of semiparametric models compared to fully nonparametric and
parametric ones. 2 P
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ii) Are g and � identified? If not, can they be identified under additional restrictions?
2 P

iii) Suggest a sensible estimation procedure for (the identfied features of) the unknown
parameter vector � that fits into the general framework of semiparametric, two-
step extremum estimators.

Hint: Note that the model is a mixture of a single index and a partial linear one,
thus combining standard approaches for these two classes might be a good idea. 3 P
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Appendix

(i) The p.d.f. of a Gamma distribution G(�, �) is given by

f(y;�, �) =
��

Γ(�)
y�−1e−�y, �, � > 0.

(ii) The probability mass function of a Poisson distribution is given by

p(y; �) =
e−��y

y!
, � > 0, y = 0, 1, . . .
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