
Problem 1 (22 Points)

Consider the following linear regression model

yt = β1 + β2xt2 + et, et ∼ N(0, σ2
t ) independent for t = 1, ...,T, (1)

where xt2 is a non-stochastic regressor. LetΦ = diag[σ2
1, ..., σ

2
T] be a positive definite matrix.

1. (7 Points) Assume that Φ is known.

(a) Derive the covariance matrix of the OLS estimator b for β = (β1, β2)′ in model
(1).

(b) Propose an efficient estimator for β and derive its expectation.

(c) What does efficiency of an estimator mean?

2. (9 Points) The following data are available:

X′X =

[
50.000 5.410
5.410 43.315

]
, (X′X)−1 =

[
0.020 −0.003
−0.003 0.023

]
,

X′y =

[
19.690
46.213

]
, y′y = 1995.

Let Φ be unknown and proceed with the wrong assumption that Φ = σ2IT.

(a) Calculate the OLS estimate b of the vector of coefficients β = (β1, β2)′ .

(b) Estimate the variance of the error term. (Hint: ê′ê = y′y − b′X′y.)

(c) Estimate the covariance matrix of the OLS estimator b.

(d) Compute the test statistic for testing the null hypothesis

H : β2 = 0. (2)

Which critical value would you need at a 5% significance level?

3. (6 Points) In addition to the data above, let

X′Φ̂X =
T∑

t=1

ê2
t x(t)x′(t) =

[
1941.775 175.990
175.990 737.029

]

be given, where the êt’s are the OLS residuals from part 2 and Φ̂ = diag[ê2
1, ..., ê

2
T].

(a) Compute the White heteroscedasticity consistent covariance matrix estimator.

(b) For testing the null hypothesis (2) compute the test statistic based on the OLS
estimate of β2 and its White standard error. What can you conclude when
comparing your results with that of part 2(c)?
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Solution to problem 1 (22 Points)

1. (a) Note first that b − β = (X′X)−1X′e. Then

Cov(b) = E[(b − β)(b − β)′] = E[((X′X)−1X′e)((X′X)−1X′e)′]

= E[(X′X)−1X′ee′X(X′X)−1]

= (X′X)−1X′E[ee′]X(X′X)−1

= (X′X)−1X′ΦX(X′X)−1

(b) The GLS estimator is efficient, because the standard assumptions for the error
terms are violated and Φ is known. The OLS estimator won’t be efficient
anymore except for σ2

t ≡ σ
2
∀t.

β̂GLS = (X′Φ−1X)−1X′Φ−1y
E[y] = E[Xβ + e] = Xβ + E[e]︸︷︷︸

=0

= Xβ

=⇒ E[β̂GLS] = E[(X′Φ−1X)−1X′Φ−1y]

= (X′Φ−1X)−1X′Φ−1 E[y]︸︷︷︸
=Xβ

= (X′Φ−1X)−1X′Φ−1X︸                  ︷︷                  ︸
=I2

β

= β

=⇒ The GLS estimator is unbiased.

(c) An estimator θ̂ of θ is called efficient if it is BLUE (or, as here, BUE under the
normality assumption). I.e., the estimator is unbiased and Cov(θ̃) − Cov(θ̂) is
non-negative definite for any unbiased estimator θ̃ of θ.

2. (a)

b = (X′X)−1X′y

=

[
0.020 −0.003
−0.003 0.023

] [
19.690
46.213

]
=

[
0.020∗ 19.690− 0.003∗ 46.213
−0.003∗ 19.690+ 0.023∗ 46.213

]
≈

[
0.255
1.004

]
(b)

s2 =
ê′ê

T − K
=

y′y − b′X′y
T − K

=

1995− [0.255 1.004]
[

19.690
46.213

]
50− 2

≈
1943.581

48
≈ 40.491
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(c)

Ĉov(b) = s2(X′X)−1

= 40.491

[
0.020 −0.003
−0.003 0.023

]
≈

[
0.810 −0.121
−0.121 0.931

]
(d)

t =
b2

σ̂b2

=
1.004
√

0.931
≈ 1.041

Under H it holds t ∼ tT−K, so that an α-test rejects H if |t| > t1− α2
T−K. Therefore we

would need the 0.975-quantile of the t-distribution with 48 degrees of freedom.

3. (a)

C̃ov(b) = (X′X)−1X′Φ̂X(X′X)−1

=

[
0.020 −0.003
−0.003 0.023

] [
1941.775 175.990
175.990 737.029

] [
0.020 −0.003
−0.003 0.023

]
≈

[
0.762 −0.085
−0.085 0.383

]
(b)

t =
b2

σ̃b2

=
1.004
√

0.383
≈ 1.622

When we use the White standard error for b2 the t-statistic increases, and thus
H : β2 = 0 is more likely to be rejected.
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Problem 2 (23 Points)

Consider the following model with two equations

yt1 = β1xt1 + et1,

yt2 = β2xt2 + et2,

where xt1 = 1 for all t = 1, ...,T and xt2 is non-stochastic. For T = 50 observations the
following sample moments are given:

x′2x2 = 100, x′2y2 = 50, x′2y1 = 60, y′2y2 = 90, y′1y1 = 500, y′1y2 = 40,

50∑
t=1

xt2 = 100,
50∑

t=1

yt1 = 150,
50∑

t=1

yt2 = 50.

1. (2 Points) Compute the OLS estimates of β1 and β2.

2. (6 Points) Assume that the error terms have the following structure:

e =
(

e1

e2

)
∼ (0,Σ ⊗ IT) with Σ =

(
σ11 σ12

σ21 σ22

)
.

Estimate Σ using the OLS residuals (ê1, ê2) from part 1 and

σ̂i j =
ê′i ê j

T
for i, j = 1,2.

3. (8 Points) Compute the feasible GLS estimator for β1 and β2 under the assumption of
part 2:

• Let Σ̂−1 =

(
σ̂11 σ̂12

σ̂21 σ̂22

)
. Rewrite the formula for ˆ̂βG in terms of σ̂i j and the sample

moments.

• Calculate Σ̂−1.

• Give the estimates for β1 and β2.

4. (2 Points) What is the motivation behind using the feasible GLS estimator?

5. (5 Points) Show that the GLS estimator of β = (β1, β2)′ is equivalent to the OLS
estimator if Σ is a diagonal matrix.
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Solution to problem 2 (23 Points)

1.

b1 =

∑50
t=1 yt1

T
=

150
50
= 3

b2 = (x′2x2)−1x′2y2 = (100)−150= 0.5

2.

σ̂11 =
ê′1ê1

T
=

(y1 − x1b1)′(y1 − x1b1)
T

=
y′1y1 − b′1x′1y1

T

=
500− 3 ∗ 150

50
= 1

σ̂22 =
ê′2ê2

T
=

(y2 − x2b2)′(y2 − x2b2)
T

=
y′2y2 − b′2x′2y2

T

=
90− 0.5 ∗ 50

50
= 1.3

σ̂12 =
ê′1ê2

T
=

(y1 − x1b1)′(y2 − x2b2)
T

=
y′1y2 − y′1x2b2 − b′1x′1y2 + b′1x′1x2b2

T

=
40− 60∗ 0.5− 3 ∗ 50+ 3 ∗ 100∗ 0.5

50
=

10
50
= 0.2

σ̂21 =
ê′2ê1

T
=

ê′1ê2

T
= σ̂12 = 0.2

Σ̂ =

[
σ̂11 σ̂12

σ̂21 σ̂22

]
=

[
1 0.2

0.2 1.3

]
3.

ˆ̂βG =[X′(Σ̂−1
⊗ IT)X]−1X′(Σ̂−1

⊗ IT)y

=

( x1 0
0 x2

)′ ( σ̂11 σ̂12

σ̂21 σ̂22

)−1

⊗ IT

 ( x1 0
0 x2

)−1

[
x1 0
0 x2

]′ ( σ̂11 σ̂12

σ̂21 σ̂22

)−1

⊗ IT

 [ y1

y2

]
=

[[
x′1 0
0 x′2

] [
σ̂11IT σ̂12IT

σ̂21IT σ̂22IT

] [
x1 0
0 x2

]]−1

[
x′1 0
0 x′2

] [
σ̂11IT σ̂12IT

σ̂21IT σ̂22IT

] [
y1

y2

]
=

[
σ̂11x′1x1 σ̂12x′1x2

σ̂21x′2x1 σ̂22x′2x2

]−1 [
σ̂11x′1y1 + σ̂12x′1y2

σ̂21x′2y1 + σ̂22x′2y2

]

Σ̂−1 =

[
1 0.2

0.2 1.3

]−1

=
1

1 ∗ 1.3− (0.2)2

[
1.3 −0.2
−0.2 1

]
≈

[
1.032 −0.159
−0.159 0.794

]
ˆ̂βG =

[
1.032∗ 50 −0.159∗ 100
−0.159∗ 100 0.794∗ 100

]−1 [
1.032∗ 150− 0.159∗ 50
−0.159∗ 60+ 0.794∗ 50

]
≈

[
3.158
1.012

]
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4. GLS is preferable to OLS for general Cov(e) = Φ. But the GLS estimator depends on
Φ. Therefore, in case of an unknown Φ one should replace Φ in the GLS formula by
some estimator, which gives the feasible GLS estimator.

5. If Σ is a diagonal matrix, then σ12 = σ21 = 0, i.e.

Σ =

[
σ11 0
0 σ22

]
β̂G = (X′(Σ−1

⊗ IT)X)−1X′(Σ−1
⊗ IT)y

=

[(
x′1 0
0 x′2

) ( 1
σ11

IT 0
0 1

σ22
IT

) (
x1 0
0 x2

)]−1 [
x′1 0
0 x′2

] [ 1
σ11

IT 0
0 1

σ22
IT

] [
y1

y2

]
=

[ 1
σ11

x′1x1 0
0 1

σ22
x′2x2

]−1 [ 1
σ11

x′1y1
1
σ22

x′2y2

]
=

[
( 1
σ11

x′1x1)−1 0
0 ( 1

σ22
x′2x2)−1

] [ 1
σ11

x′1y1
1
σ22

x′2y2

]
=

[
σ11(x′1x1)−1 1

σ11
x′1y1

σ22(x′2x2)−1 1
σ22

x′2y2

]
=

[
(x′1x1)−1x′1y1

(x′2x2)−1x′2y2

]
=

[ ∑50
t=1 yt1

T
(x′2x2)−1x′2y2

]
=

(
b1

b2

)
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Problem 3 (29 Points)

The following model is given:

y = Zβ + e, e ∼ N(0, σ2IT), (3)

where Z is a stochastic (T×K) matrix. Furthermore it holds, for T→∞, that
∑T

t=1E
[
z(t)z′(t)

]
T → A,

where A is a constant (K × K) matrix.

1. (12 Points) Assume that e and Z are stochastically independent. Show that then
plimT→∞

Z′e
T = 0:

• Write Z′e
T as a sum.

• Show that E
[
z(t)et

]
= 0.

• How does Cov
[
z(t)et

]
look like?

• Compute Cov
[
z(t)et, z(s)es

]
, s , t.

• Show that, for T→∞, E
[

Z′e
T

]
→ 0.

• Show that, for T→∞, Cov
[

Z′e
T

]
→ 0.

• Why can you conclude now that plimT→∞
Z′e
T = 0?

2. (15 Points) Consider now the following model:

yt = βyt−1 + et, et = νt + ρνt−1, t = 1, . . . ,T, (4)

|β| < 1, |ρ| < 1, νt ∼ N(0, σ2
ν) i.i.d.

In addition to this, y−1 and y0 are observable. From the assumptions above it follows
that for all t, E[yt] = 0, Var

[
yt
]
= σ2

y and E
[
νtyt−s

]
= 0 for s > 0.

(a) Write the matrix Z for model (4) in terms of the observations of which it is
composed. Write Z′e

T as a sum which depends on the regressor variable yt−1.

(b) Show that E
[
yt−1et

]
, 0, if ρ , 0. What do you conclude?

(c) Show that E
[
yt−2et

]
= 0 and in general E

[
yt−2yt−1

]
, 0.

(d) Give the elements of the instrument matrix X for model (4), if yt−2 will be used
as an instrument for yt−1. Represent X′Z

T and X′e
T as sums depending on the

instrumental variable yt−2.

(e) How would you proceed to show that plimT→∞
X′e
T = 0 and plimT→∞

X′Z
T , 0?

3. (2 Points) What is wrong with the following text? Explain shortly.

The instrumental variable estimator is a special case of the OLS estimator, and it is consistent
if the instruments are uncorrelated with the stochastic regressors of the model.
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Solution to problem 3 (29 Points)

1. •

Z′e
T

with Z =


z′(1)
...

z′(T)

 ⇒ Z′e = (z(1) . . . z(T))


e1
...

eT

 =
T∑

t=1

z(t)et

Z′e
T
=

1
T

T∑
t=1

z(t)et

• Note:
(∗)
= indicates that we use the fact that z(t) and es are independent ∀t , s.

E[z(t)et]
(∗)
= E[z(t)] E[et]︸︷︷︸

=0

= 0

•

Cov[z(t)et] = E[(z(t)et)(z(t)et)′] = E[e2
t z(t)z′(t)]

(∗)
= E[e2

t ]E[z(t)z′(t)]

= σ2E[z(t)z′(t)]

•

Cov[z(t)et, z(s)es] = E[(z(t)et)(z(s)es)′] = E[etesz(t)z′(s)]
(∗)
= E[etes]︸ ︷︷ ︸

=0

E[z(t)z′(s)] = 0, for t , s since E [etes] = 0

•

E
[Z′e

T

]
=

∑
E[z(t)et]

T
= 0 ∀T ⇒ E

[Z′e
T

]
= 0 for T→∞

•

Cov
[Z′e

T

]
= Cov

[∑
z(t)et

T

]
=

∑
Cov[z(t)et]

T2

(
Recall: Cov[z(t)et, z(s)es] = 0

)
=
σ2

T

∑
E[z(t)z′(t)]

T
−→ 0 · A = 0 for T→∞

• The above establishes mean square convergence which in turn implies conver-
gence in probability.

2. (a)

Z =


yo

y1
...

yT−1

 ⇒ z(t) = yt−1 and
Z′e
T
=

[y0 . . . yT−1]


e1
...

eT


T

=

∑T
t=1 yt−1et

T
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(b)

E[yt−1et] = E[yt−1(νt + ρνt−1)] = E[yt−1νt]︸    ︷︷    ︸
=0

+ρE[yt−1νt−1]

= ρE[(βyt−2 + et−1)νt−1] = ρβE[yt−2νt−1]︸      ︷︷      ︸
=0

+ρE[et−1νt−1]

= ρE[(νt−1 + ρνt−2)νt−1] = ρE[ν2
t−1]︸ ︷︷ ︸
=σ2
ν

+ρ2E[νt−2νt−1]︸      ︷︷      ︸
=0

= ρσ2
ν , 0 if ρ , 0

If Z′e
T convergences in probability, then the probability limit is likely to be dif-

ferent from zero (at least if Var(Z′e/T)→ 0 for T → ∞), so that Z is not weakly
exogenous.

(c)

E[yt−2et] = E[yt−2(νt + ρνt−1)] = E[yt−2νt]︸    ︷︷    ︸
=0

+ρE[yt−2νt−1]︸      ︷︷      ︸
=0

= 0

E[yt−2yt−1] = E[yt−2(βyt−2 + et−1)] = βE[y2
t−2] + E[yt−2et−1]

= βσ2
y + ρσ

2
ν , 0 in general

(d) Consider the model:
yt = βyt−2 + et t = 1, . . . ,T.

Thus:

X =


y−1

y0
...

yT−2

 .

X′Z
T
=

[y−1 y0 . . . yT−2]


y0
...

yT−1


T

=

∑T
t=1 yt−2yt−1

T

X′e
T
=

[y−1 y0 . . . yT−2]


e1
...

eT


T

=

∑T
t=1 yt−2et

T
(e) Find an appropriate law of large numbers (for serially correlated random

variables) such that its applications to the sequences yt−2yt−1 and yt−2et, re-

spectively, provide 1/T
∑T

t=1 yt−2yt−1
P
−→ βσ2

y + ρσ
2
ν (= E

[
yt−2yt−1

]
) , 0 and

1/T
∑T

t=1 yt−2et
P
−→ 0 (= E

[
yt−2et

]
).

3. LS is special case of the IVE (or the IVE in a particular model can be seen as special
case of the LS). For consistency, there is at least some correlation between regressors
and instruments necessary.
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Problem 4 (26 Points)

The following model is given:

y1 = γ1y2 + β11x1 + e1 (5)
y2 = γ2y1 + β22x2 + β32x3 + e2 (6)

where y1, y2 are endogenous and x1, x2, x3 are exogenous (T × 1) vectors.

1. (3 Points) Write the model in the form YΓ + XB + E = 0.

2. (8 Points) Check the identification of both equations using the order and the rank
conditions.

3. (6 Points) Assume that an estimation Π̂ of the reduced form parameters is known.
Use the relation Π̂Γ2 = −B2 (see the formulary) to estimate the structural parameters
γ2, β22, β32.

4. (7 Points) Show for equation (6) that δ̂2(2SLS) = δ̂2(ILS):

• Rewrite Ẑ2 in dependence on Y2 and X2.

• How many rows and columns does X′Z2 have? Hint: Think about the variables,
which appear in X, X2, Y2 and Z2.

• Assume that X′Z2 has full column rank. Starting with δ̂2(2SLS) show that δ̂2(2SLS) =

δ̂2(ILS), i.e. (Ẑ′2Ẑ2)−1Ẑ′2y2 = (X′Z2)−1X′y2.

5. (2 Points) How does the identifiability of the model change, when you assume for
economic reasons that β22 = β32?
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Solution to problem 4 (26 Points)

1.

0 = −y1 + γ1y2 + β11x1 + e1

0 = γ2y1 − y2 + β22x2 + β32x3 + e2

⇒

0 = [y1 y2]︸ ︷︷ ︸
=Y

[
−1 γ2

γ1 −1

]
︸       ︷︷       ︸

=Γ

+ [x1 x2 x3]︸      ︷︷      ︸
=X

 β11 0
0 β22

0 β32

︸       ︷︷       ︸
=B

+ [e1 e2]︸︷︷︸
=E

2. Let

∆ =

[
Γ
B

]
=


−1 γ2

γ1 −1
β11 0
0 β22

0 β32

 = [∆1∆2].

Equation (5):

R1∆1 = 0 with R1 =

[
0 0 0 1 0
0 0 0 0 1

]
⇒ rank(R1) = 2 >M − 1

R1∆ =

[
0 β22

0 β32

]
⇒ rank(R1∆) = 1 =M − 1

⇒ overidentified!

Equation (6):

R2∆2 = 0 with R2 =
[

0 0 1 0 0
]
⇒ rank(R2) = 1 =M − 1

R2∆ =
[
β11 0

]
⇒ rank(R2∆) = 1 =M − 1

⇒ exactly identified!

3.

Π̂Γ2 = −B2 π̂11 π̂12

π̂21 π̂22

π̂31 π̂32


[
γ̂2

−1

]
= −


0
β̂22

β̂32

 ⇔

 π̂11γ̂2 − π̂12

π̂21γ̂2 − π̂22

π̂31γ̂2 − π̂32

 =


0
−β̂22

−β̂32


⇔

γ̂2 =
π̂12

π̂11

π̂21γ̂2 = −β̂22+ π̂22

−π̂31γ̂2 + π̂32 = β̂32

⇔

π̂12

π̂11
= γ̂2

−π̂21
π̂12

π̂11
+ π̂22 = β̂22

π̂32− π̂31
π̂12

π̂11
= β̂32

4. •

Ẑ2 = [Ŷ2 X2] = [X(X′X)−1X′Y2 X(X′X)−1X′X2] = X(X′X)−1X′ [Y2 X2]︸    ︷︷    ︸
=Z2

Remark: X(X′X)−1X′ is a projection matrix and X(X′X)−1X′X2 = X2.
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•

X′Z2 is a (3× 3)–matrix, Y2 = [y1],
X = [x1 x2 x3], X2 = [x2 x3],
Z2 = [Y2 X2] = [y1 x2 x3]

•

δ̂2(2SLS) = (Ẑ′2Ẑ2)−1Ẑ′2y

= [Z′2X(X′X)−1 X′X(X′X)−1︸        ︷︷        ︸
=I3

X′Z2]−1Z′2X(X′X)−1X′y2

= [X′Z2]−1[(X′X)−1]−1[Z′2X]−1[Z′2X][X′X]−1X′y2

= [X′Z2]−1X′y2 = δ̂2(ILS)

Remark: As X′Z2 is a (3× 3)–matrix with rank(X′Z2) = 3, the inverse [X′Z2]−1

exists.

5.

β22 = β32⇒ ∆ =


−1 γ2

γ1 −1
β11 0
0 β22

0 β22


No changes to equation (5).

And equation (6):

R2∆2 = 0 with R2 =

[
0 0 1 0 0
0 0 0 1 −1

]
and rank(R2) = 2

rank(R2∆) = rank
[
β11 0
0 0

]
= 1

⇒ Now overidentified!
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Problem 5 (10 Points) Multiple Choice

For the following statements indicate whether they are True (T) or False (F). For each
true answer you will get 2 points, for each false answer you will lose 1 point and for
unanswered questions you will get 0 points. For the whole problem you will not get less
than zero points.

Statements

T F

[ ] [X] 1. In a linear regression model the sum of the OLS residuals (
∑T

t=1 êt) is always
zero.

[ ] [X] 2. The OLS residuals êt are uncorrelated, if this is the case for the errors et.

[X] [ ] 3. A break in the intercept of a linear regression model can be modelled by an
appropriately defined dummy variable.

[X] [ ] 4. If the regressor matrix X in the linear model y = Xβ + e is not a full rank,
then an unbiased estimator for β does not exist.

[ ] [X] 5. The Gauss-Newton method for estimating the parameters in a nonlinear
regression model is based on a second order Taylor series approximation
of the least squares criterion.
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