Econometric Analysis of Financial Market Data

Exam Summer Term 2007, July 30th 2007

Prof. Dr. Nikolaus Hautsch

Institute of Statistics and Econometrics
Humboldt-Universität zu Berlin

You have to answer 2 out of 3 problems within 90 minutes (plus 10 minutes "reading time"). If you answer all questions, only the first 2 problems will be taken into account.

You may answer in English or in German. But please stick to one language.
Some problems contain several small sub-questions. Please give short but nevertheless precise answers.

Do your best to write legibly. Exams or parts of exams which cannot be read with reasonable effort will not be graded.

Good luck!

Problem 1: Testing for Asset Return Predictability

Table 1 shows the variance ratios and p -values of different variance ratio tests based on daily log returns, r_{t}.
a) Explain the fundamental idea of the variance ratio test.
b) Define the q-period \log return as $r_{t}(q):=r_{t}+r_{t-1}+\ldots+r_{t-q+1}$ and denote the k-order autocorrelation by ρ_{k}. Show the validity of the formula

$$
V R(q):=\frac{\mathrm{V}\left[r_{t}(q)\right]}{q \mathrm{~V}\left[r_{t}\right]}=1+2 \sum_{k=1}^{q-1}\left(1-\frac{k}{q}\right) \rho_{k}
$$

for $k=2$ and $k=4$.
c) Show that

$$
\frac{V R(2 q)}{V R(q)}=1+\rho_{1}^{(q)}
$$

where $\rho_{1}^{(q)}$ denotes the first-order autocorrelation for a q-period log return.
d) What can you learn from the results in Table 1 regarding the predictability of log returns measured over different time horizons?
e) Compute $V R(q)$ under the assumption of an $\operatorname{AR}(1)$ process for log returns, i.e.

$$
r_{t}=c+\phi r_{t-1}+\varepsilon_{t}
$$

where ε_{t} is a white noise error term.
f) Assume that the first $q-1$ autocorrelations $\rho_{1}, \ldots, \rho_{q-1}$ are non-zero. Does there exist a restriction on $\rho_{1}, \ldots, \rho_{q-1}$ for which the variance ratio $V R(q)$ is zero anyhow? If yes, write it down. What can we learn from this result regarding the power properties of the variance ratio test?
g) The p-values shown in Table 1 are computed based on estimators for $\mathrm{V}\left[\hat{\rho}_{k}\right]$ which are robust and non-robust against conditional heteroscedasticity, respectively. State the corresponding null hypotheses underlying both types of p-values. How can it be explained that the corresponding p-values differ?

Problem 2: Volatility and Risk

a) Table 2 gives the estimation results of the following model for \log returns r_{t} :

$$
\begin{align*}
r_{t} & =c+\delta \sigma_{t}^{2}+\phi r_{t-1}+\varepsilon_{t} \tag{1}\\
\varepsilon_{t} & =z_{t} \sigma_{t}, \quad z_{t} \sim \text { i.i.d. } N(0 ; 1), \tag{2}\\
\sigma_{t}^{2} & =\omega+\alpha \varepsilon_{t-1}^{2} . \tag{3}
\end{align*}
$$

How do we call such a model? Motivate the specification economically and interpret the parameter estimates.
b) Figures 1 and 2 give the autocorrelograms of \hat{z}_{t} and \hat{z}_{t}^{2}, respectively. Interpret the findings. What do the results imply for the goodness-offit of the model?
c) Table 3 shows the outcome of a test for ARCH effects. State the null hypothesis, explain the idea of the test and interpret the outcome.
d) Figures 3 and 4 show the descriptive statistics of $\hat{\varepsilon}_{t}$ and \hat{z}_{t}, respectively. Why does the kurtosis of $\hat{\varepsilon}_{t}$ exceed the kurtosis of \hat{z}_{t} ? Justify your answer analytically (but without explicitly computing $\mathrm{E}\left[\hat{\varepsilon}_{t}^{4}\right]$).
e) Your colleague claims to consistently estimate the parameters of a GARCH $(1,1)$ model of the form

$$
\begin{aligned}
r_{t} & =c+\varepsilon_{t}, \\
\varepsilon_{t} & =z_{t} \sigma_{t}, \quad z_{t} \quad \text { i.i.d. with } \mathrm{E}\left[z_{t}\right]=0, \mathrm{~V}\left[z_{t}\right]=1, \\
\sigma_{t}^{2} & =\omega+\alpha \varepsilon_{t-1}^{2}+\beta \sigma_{t-1}^{2}
\end{aligned}
$$

by alternatively running the $\operatorname{ARMA}(1,1)$ regression

$$
r_{t}^{2}=\phi_{0}+\phi_{1} r_{t-1}^{2}+\phi_{2} \eta_{t-1}+\eta_{t}
$$

where η_{t} is assumed to have zero mean and to be serially uncorrelated.
(i) Prove that he is right if $c=0$. Illustrate how to identify the GARCH parameters ω, α and β from the ARMA parameters ϕ_{0}, ϕ_{1} and ϕ_{2}.
(ii) Does it also work if $c \neq 0$? Why or why not?
f) Table 4 shows the results of model (1)-(3) where $\delta=\phi=0$ and eq. (3) is replaced by

$$
\begin{equation*}
\sigma_{t}^{2}=\omega+\alpha \varepsilon_{t-1}^{2}+\gamma r_{t-1} \tag{4}
\end{equation*}
$$

(i) Which effect can be captured by this specification?
(ii) Interpret the estimate of γ.
(iii) What could be a possible problem induced by specification (4)?
(iv) Suggest an alternative (G)ARCH specification which is able to capture the same effect.

Problem 3: Present Value Relations

a) Assume that the following first-order Taylor approximation for \log returns, r_{t}, holds:

$$
\begin{equation*}
r_{t+1}=k+\rho p_{t+1}+(1-\rho) d_{t+1}-p_{t} \tag{5}
\end{equation*}
$$

where p_{t} denotes the log price, d_{t} denotes the \log dividend, $\rho:=1 /(1+$ $\exp (\overline{d-p}), \overline{d-p}$ is the average \log dividend-price ratio, and $k=$ $-\ln (\rho)-(1-\rho) \ln (1 / \rho-1)$.
Solve (5) for p_{t} forward and show that the asset's fundamental value (present value), under the assumption that the transversality condition holds, is given by

$$
\begin{equation*}
p_{t}=\frac{k}{1-\rho}\left[\sum_{j=0}^{\infty} \rho^{j}\left[(1-\rho) d_{t+1+j}-r_{t+1+j}\right]\right] . \tag{6}
\end{equation*}
$$

Interpret the resulting present value relation economically. Show that it also holds ex ante.
b) State the transversality condition and interpret it economically. What happens if the transversality condition does not hold?
c) Assume that conditional expectations follow an $\mathrm{AR}(1)$ process, i.e.,

$$
\begin{aligned}
\mathrm{E}_{t}\left[r_{t+1}\right] & =r+x_{t}, \\
x_{t} & =\phi x_{t-1}+\varepsilon_{t},
\end{aligned}
$$

where r is a constant and ε_{t} is a white noise error term. Moreover, assume that log dividends follow a random walk process, i.e.

$$
d_{t}=d_{t-1}+u_{t}
$$

where u_{t} follows a white noise error term which is independent from ε_{t}. Compute the present value relation (6) under these assumptions and show that the log dividend-price ratio is given by

$$
d_{t}-p_{t}=\frac{x_{t}}{1-\rho \phi}-\frac{k-r}{1-\rho} .
$$

d) Under which conditions is $d_{t}-p_{t}$ weakly stationary? What does this imply for the dynamic properties of \log prices and \log dividends?
e) Compute $\mathrm{V}\left[d_{t}-p_{t}\right]$ and interpret the resulting expression economically. What happens if ρ and ϕ are close to one?

Appendix

Table 1: Variance ratios $V R(q)$ for different aggregation levels q and corresponding p-values for daily log returns. Panel (2) reports p-values which are robust against conditional heteroscedasticity. Panel (3) reports p-values which are not robust against conditional heteroscedasticity.

q	(1)	(2)	(3)
	$\operatorname{VR}(\mathrm{q})$	p-value (robust)	p-value (non-robust)
2	1.083	0.021	0.000
4	1.091	0.033	0.001
8	1.102	0.034	0.002
16	1.121	0.028	0.001

Table 2:

	Coefficient	Std. Error	z-Statistic	Prob.					
DELTA	9.054311	4.736328	1.911673	0.0559					
C	-0.000619	0.000509	-1.217976	0.2232					
PHI	0.094731	0.017437	5.432768	0.0000					
Variance Equation									
OMEGA						$8.62 \mathrm{E}-05$	$2.71 \mathrm{E}-06$	31.78359	0.0000
ALPHA	0.328816	0.025638	12.82548	0.0000					
R-squared	-0.004992	Mean dependent var	0.000288						
Adjusted R-squared	-0.005357	S.D. dependent var	0.011285						
S.E. of regression	0.011315	Akaike info criterion	-6.241667						
Sum squared resid	1.409269	Schwarz criterion	-6.238350						
Log likelihood	34374.74	Durbin-Watson stat	2.089641						

Figure 1: Autocorrelogram of \hat{z}_{t}.

Autocorrelation

Figure 2: Autocorrelogram of \hat{z}_{t}^{2}.

Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob
1	1	$1-0.02$	-0.024	6.5735	0.010
-	\square	20.132	0.131	197.97	0.000
\square	\square	30.138	0.147	407.53	0.000
		40.169	0.167	723.88	0.000
R	-	50.159	0.149	1004.0	0.000
\square	1	60.112	0.080	1143.0	0.000
-	1	70.13	0.076	1336.5	0.000
E	1	80.119	0.056	1492.8	0.000
E	1	90.116	0.045	1641.4	0.000
\square	1	100.119	0.047	1796.4	0.000
	1	110.15	0.086	2049.1	0.000
\square	1	120.115	0.053	2194.9	0.000
R	1	130.114	0.039	2337.1	0.000
	1	$14 \quad 0.108$	0.026	2464.9	0.000
\square	1	150.142	0.059	2688.7	0.000
6	1	160.120	0.044	2847.8	0.000
-	1	$17 \quad 0.103$	0.021	2964.1	0.000
1	1	180.110	0.021	3097.1	0.000
-	-	190.089	-0.004	3184.2	0.000
\square	1	$20 \quad 0.125$	0.032	3356.9	0.000

Table 3: Test for ARCH effects.
ARCH Test:

F-statistic	99.88816	Probability	0.000000
Obs*R-squared	196.2688	Probability	0.000000

Test Equation:
Dependent Variable: STD_RESID^2
Method: Least Squares
Sample(adjusted): 511015
Included observations: 11011 after adjusting endpoints
White Heteroskedasticity-Consistent Standard Errors \& Covariance

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	0.890079	0.027575	32.27821	0.0000
STD_RESIDN(-1)	-0.021232	0.006651	-3.192156	0.0014
STD_RESIDN2(-2)	0.131293	0.019848	6.614778	0.0000
	0.017825	Mean dependent var	1.000159	
R-squared	0.017646	S.D. dependent var	2.318853	
Adjusted R-squared	2.298303	Akaike info criterion	4.502491	
S.E. of regression	58146.41	Schwarz criterion	4.504482	
Sum squared resid	-24785.47	F-statistic	99.88816	
Log likelihood	2.038465	Prob(F-statistic)	0.000000	
Durbin-Watson stat	2			

Figure 3: Descriptive statistics of $\hat{\varepsilon}_{t}$.

Figure 4: Descriptive statistics of \hat{z}_{t}.

Table 4:

	Coefficient	Std. Error	z-Statistic	Prob.
C	0.000312	$9.91 \mathrm{E}-05$	3.150268	0.0016
Variance Equation				
OMEGA	$8.83 E-05$	$2.74 \mathrm{E}-06$	32.26575	0.0000
ALPHA	0.319636	0.025883	12.34937	0.0000
GAMMA	-0.001315	0.000341	-3.859438	0.0001
R-squared	-0.000005	Mean dependent var	0.000288	
Adjusted R-squared	-0.000277	S.D. dependent var	0.011285	
S.E. of regression	0.011286	Akaike info criterion	-6.236052	
Sum squared resid	1.402276	Schwarz criterion	-6.233398	
Log likelihood	34342.82	Durbin-Watson stat	1.918515	

