Econometric Analysis of Financial Market Data

Exam Summer Semester, October 8th 2007

Prof. Dr. Nikolaus Hautsch Institute of Statistics and Econometrics Humboldt-Universität zu Berlin

You have to answer 2 out of 3 problems within 90 minutes (plus 10 minutes "reading time"). If you answer all questions, only the first 2 problems will be taken into account.

You may answer in English or in German. But please stick to one language.

Some problems contain several small sub-questions. Please give short but nevertheless precise answers.

Do your best to write legibly. Exams or parts of exams which cannot be read with reasonable effort will not be graded.

Good luck!

Problem 1: Properties of Asset Returns

a) Assume the following process for log returns r_t :

$$r_t = z_t (\omega + \alpha r_{t-1}^2)^{1/2}, \quad |\alpha| < 1, \quad t = 1, \dots, T,$$
 (1)

where z_t is i.i.d. with $E[z_t] = 0$ and $V[z_t] = 1$. How do we call such a process?

- b) Compute the unconditional mean and the unconditional variance of r_t .
- c) Show that the returns r_t are uncorrelated.

Hint: Use the law of iterated expectations.

- d) Compute $\operatorname{Corr}[r_t^2, r_{t-k}^2], \quad k > 0.$
- e) Show that the parameters ω and α can be estimated by OLS and give the corresponding estimators. Justify why your estimators are unbiased.
- f) Tables 1 and 2 show the autocorrelation functions of \hat{z}_t and \hat{z}_t^2 based on residuals $\hat{\varepsilon}_t$ arising from an estimation of (1).
 - (i) What can you conclude regarding the goodness-of-fit?
 - (ii) In which direction would you eventually extend your model?
- g) How could process (1) be modified such that it corresponds to a white noise process but not necessarily to a martingale difference sequence? Give an example.

Problem 2: Value-at-Risk

- a) Let V_t be the value of an asset position at time period t. Give the formal definition of the Value-at-Risk (VaR) with respect to a change in value of V_t from t to t + l for a long position and risk probability p, denoted by $VaR_t(p, l)$.
- b) Assume that the one-period log returns of the underlying asset, r_t , are normally distributed, i.e. $r_t \sim \text{i.i.d. } N(\mu_t, \sigma_t^2)$ and denote the cumulated *l*-period log return by $r_t[l] := \sum_{i=1}^l r_{t-l+i}$. Show that in this context the VaR defined as in a) is given by

$$VaR_t(p,l) = V_t\left(\exp(\Phi^{-1}(p)\sqrt{\mathcal{V}[r_{t+l}[l]|\mathcal{F}_t]} + \mathbb{E}[r_{t+l}[l]|\mathcal{F}_t]) - 1\right),$$

where $\Phi^{-1}(p)$ denotes the *p*-th quantile of the standard normal distribution and \mathcal{F}_t is the information set up to period *t*.

c) Table 3 gives the estimation results of a Gaussian AR(1)-GARCH(1,1) model for daily log returns r_t of the form

$$r_{t} = c + \phi r_{t-1} + \varepsilon_{t},$$

$$\varepsilon_{t} = z_{t}\sigma_{t}, \quad z_{t} \sim \text{ i.i.d. } N(0, 1),$$

$$\sigma_{t}^{2} = \omega + g(\varepsilon_{t-1}) + \beta \sigma_{t-1}^{2},$$

$$g(\varepsilon_{t}) = \alpha \varepsilon_{t}^{2} + \gamma \varepsilon_{t}^{2} \mathbb{1}_{\{\varepsilon_{t} < 0\}}.$$
(2)
(3)

How do we call the GARCH specification defined by (2) and (3) and what is the underlying economic motivation?

- d) Use the parameter estimates shown in Table 3 and compute the VaR for day t + 1 for a risk probability of p = 0.01 and a long position of 100,000 Euro assuming you are at the end of day t and
 - (i) $r_t = r_{t-1} = 0.01$ and $V[r_t | \mathcal{F}_{t-1}] = 0.3 \cdot 10^{-4}$,
 - (ii) $r_t = r_{t-1} = -0.01$ and $V[r_t | \mathcal{F}_{t-1}] = 0.3 \cdot 10^{-4}$.

Hint: The 0.01-quantile of the N(0, 1)-distribution is given by $\Phi^{-1}(0.01) = -2.3263$.

e) Now assume that the log returns follow the process

$$r_t = z_t \sigma_t, \quad z_t \sim \text{ i.i.d. } N(0, 1), \sigma_t^2 = \alpha \sigma_{t-1}^2 + (1 - \alpha) r_{t-1}^2, \quad 0 < \alpha < 1.$$

- (i) How do we call such a process?
- (ii) Compute the VaR for a period of l = 20 days for a risk probability p = 0.01 if $V[r_{t+1}|\mathcal{F}_t] = 0.3 \cdot 10^{-4}$.

Problem 3: Asset Pricing Models

- a) Tables 4 and 5 show the results of two capital asset pricing model (CAPM) regressions for portfolios built on stocks with small market capitalization (Table 4) and portfolios built on stocks with large market capitalization (Table 5).
 - (i) Write down the underlying CAPM regression equation.
 - (ii) How would you test the CAPM based on these regressions? What can you conclude from the estimation results regarding the validity of the CAPM?
 - (iii) Give a possible economic explanation why the CAPM does hold or does not hold.
- b) Give an economic interpretation of the R^2 's shown in Tables 4 and 5. Give a possible economic explanation why the numbers substantially differ.
- c) Tables 6 and 7 show the results of an unrestricted and a restricted estimation of a system of CAPM equations for 10 size portfolios. Suggest a simple (asymptotic) test for the joint significance of the intercept terms. Give the test statistic and its asymptotic distribution.
- d) You run T individual cross-sectional regressions (for t = 1, ..., T), each based on N portfolios built on market capitalization,

$$Z_{it} = \gamma_{0,t} + \gamma_{1,t}\beta_i + \varepsilon_{it}, \quad i = 1, \dots, N,$$

where Z_{it} denotes the excess return of portfolio *i* at *t*, $\hat{\beta}_i$ denotes the corresponding (pre-estimated) market beta, and ε_{it} is a white noise error term.

- (i) How would you test for the validity of the CAPM in this context?
- (ii) You find a strong and significantly positive relationship between Z_{it} and $\hat{\beta}_i$. What could be a possible effect driving this result and how could you test for it?
- e) How would you test whether not only systematic risk but also idiosyncratic risk is priced? Suggest an appropriate econometric specification.

Appendix

Table 1	: Autocorrel	logram	of	\hat{z}_t .
---------	--------------	--------	----	---------------

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
Autocorrelation	Partial Correlation	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	AC 0.356 0.174 0.090 0.033 0.014 0.003 0.002 -0.011 -0.004 -0.010 -0.010 -0.010 0.005 0.013 0.023	PAC 0.356 0.054 0.015 -0.013 -0.001 -0.002 -0.013 0.004 -0.009 -0.002 -0.006 -0.004 0.013 0.014 0.015	G-Stat 1517.6 1879.9 1978.2 1991.0 1993.2 1993.4 1993.4 1994.8 1994.9 1996.1 1997.0 1998.4 1999.6 1999.8 2001.8 2001.8	Prob 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
		16 17 18 19 20	0.023 0.010 0.000 0.008 0.009	0.015 -0.006 -0.007 0.010 0.005	2007.9 2009.1 2009.1 2010.0 2011.0	0.000 0.000 0.000 0.000 0.000

Table 2: Autocorrelogram of \hat{z}_t^2 .

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
þ		1	-0.026	-0.026	7.9225	0.005
l la	0	2	0.092	0.092	109.86	0.000
þ		3	0.103	0.108	237.07	0.000
þ		4	0.116	0.116	399.37	0.000
þ		5	0.113	0.106	552.06	0.000
þ		6	0.116	0.100	714.31	0.000
þ	0	7	0.089	0.064	809.66	0.000
þ	0	8	0.115	0.079	969.84	0.000
þ	0	9	0.083	0.044	1052.1	0.000
þ	0	10	0.092	0.044	1153.3	0.000
p –	0	11	0.082	0.033	1234.1	0.000
p –	0	12	0.111	0.061	1382.7	0.000
p –	0	13	0.084	0.038	1467.8	0.000
p –	0	14	0.111	0.060	1615.6	0.000
p p	0	15	0.091	0.042	1714.1	0.000
p –	0	16	0.083	0.026	1796.0	0.000
p –	0	17	0.102	0.044	1920.9	0.000
p p	•	18	0.068	0.009	1977.1	0.000
p p		19	0.081	0.016	2056.3	0.000
Þ	l þ	20	0.094	0.031	2162.9	0.000

Table 3: AR-GARCH regression

Dependent Variable: LOG_RETURN Method: ML - ARCH (Marquardt) - Normal distribution Date: 09/27/07 Time: 16:29 Sample (adjusted): 3 11015 Included observations: 11013 after adjustments Convergence achieved after 13 iterations Presample variance: backcast (parameter = 0.7) GARCH = C(3) + C(4)*RESID(-1)*2 + C(5)*RESID(-1)*2*(RESID(-1)<0) + C(6)*GARCH(-1)

	Coefficient	Std. Error	z-Statistic	Prob.
C AR(1)	0.000214 0.093610	8.96E-05 0.010097	2.393084 9.271382	0.0167 0.0000
	Variance	Equation		
C RESID(-1)^2 RESID(-1)^2*(RESID(-1)<0) GARCH(-1)	1.46E-06 0.058909 0.059628 0.900416	1.49E-07 0.004144 0.005857 0.004126	9.811144 14.21566 10.17979 218.2090	0.0000 0.0000 0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	-0.001171 -0.001625 0.011294 1.403911 35649.81 2.098238	Mean depend S.D. depende Akaike info cri Schwarz criter Hannan-Quin	lent var nt var terion rion n criter.	0.000288 0.011285 -6.473043 -6.469062 -6.471702
Inverted AR Roots	.09			

 Table 4: CAPM regression for a portfolio of small stocks

Dependent Variable: Excess Returns Small Stocks Method: Least Squares

Sample: 1 930 Included observations: 930 Newey-West HAC Standard Errors & Covariance (lag truncation=6)

	Coefficient	Std. Error	t-Statistic	Prob.
C MARKET_Prem	3.098131 0.475236	0.390841 0.154032	7.926829 3.085315	0.0000 0.0021
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.082166 0.081177 8.744121 70954.55 -3335.207 83.07612 0.000000	Mean depend S.D. depende Akaike info cri Schwarz criter Hannan-Quin Durbin-Watso	ent var nt var terion rion n criter. n stat	3.403269 9.122213 7.176788 7.187187 7.180754 1.638298

 Table 5: CAPM regression for a portfolio of large stocks

Dependent Variable: Excess Returns Large Stocks Method: Least Squares

Sample: 1 930

Included observations: 930

Newey-West HAC Standard Errors & Covariance (lag truncation=6)

	Coefficient	Std. Error	t-Statistic	Prob.
C MARKET_Prem	-0.006653 0.931452	0.030813 0.008248	-0.215928 112.9335	0.8291 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.971986 0.971956 0.870541 703.2778 -1189.677 32198.13 0.000000	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watsc	lent var ent var iterion rion n criter. on stat	0.591409 5.198367 2.562745 2.573144 2.566711 1.898276

Table 6: Unrestricted estimation of a system of CAPM equations of 10 sizeportfolios.

System: CAPM Estimation Method: Full Information Maximum Likelihood (Marquardt) Date: 09/27/07 Time: 16:50 Sample: 1 930 Included observations: 930 Total system (balanced) observations 9300 Convergence achieved after 1 iteration

	Coefficient	Std. Error	z-Statistic	Prob.
C(1)	3.098131	0.579502	5.346199	0.0000
C(2)	0.475236	0.048920	9.714632	0.0000
C(3)	0.128042	0.276156	0.463659	0.6429
C(4)	1.398775	0.036840	37.96843	0.0000
C(5)	0.134543	0.189170	0.711225	0.4769
C(6)	1.321413	0.026586	49.70317	0.0000
C(7)	0.127856	0.169375	0.754868	0.4503
C(8)	1.254357	0.022951	54.65373	0.0000
C(9)	0.118123	0.130767	0.903304	0.3664
C(10)	1.247444	0.020006	62.35462	0.0000
C(11)	0.085135	0.099777	0.853252	0.3935
C(12)	1.208187	0.015021	80.43448	0.0000
C(13)	0.103212	0.083923	1.229846	0.2188
C(14)	1.160204	0.012292	94.38416	0.0000
C(15)	0.070406	0.060756	1.158830	0.2465
C(16)	1.113346	0.009967	111.6999	0.0000
C(17)	0.047316	0.046323	1.021446	0.3070
C(18)	1.073763	0.006944	154.6231	0.0000
C(19)	-0.006653	0.033737	-0.197215	0.8437
C(20)	0.931452	0.006908	134.8401	0.0000
Log likelihood	-16807.43	Schwarz crite	erion	36.29201
Avg. log likelihood	-1.807251	Hannan-Qui	nn criter.	36.22768
Akaike info criterion	36.18802			
Determinant residual co	ovariance	2359.589		

Equation: ME1_P= C(1)+C(2)*MARKET_P Equation: ME2_P= C(3)+C(4)*MARKET_P Equation: ME3_P= C(5)+C(6)*MARKET_P Equation: ME4_P= C(7)+C(8)*MARKET_P Equation: ME5_P= C(9)+C(10)*MARKET_P Equation: ME6_P= C(11)+C(12)*MARKET_P Equation: ME7_P= C(13)+C(14)*MARKET_P Equation: ME8_P= C(15)+C(16)*MARKET_P Equation: ME9_P= C(17)+C(18)*MARKET_P Equation: ME10_P=C(19)+C(20)*MARKET_P

Table 7:	Restricted	estimation	of a	restricted	system	of	CAPM	equations
of 10 size	portfolios.							

Estimation Method: Full Information Maximum Likelihood (Marquardt) Date: 09/27/07 Time: 16:56 Sample: 1 930 Included observations: 930 Total system (balanced) observations 9300 Convergence achieved after 25 iterations

	Coefficient	Std. Error	z-Statistic	Prob.
C(1)	0.540115	0.051418	10.50442	0.0000
C(2)	1.401478	0.036028	38.90004	0.0000
C(3)	1.324246	0.025916	51.09745	0.0000
C(4)	1.257044	0.022309	56.34798	0.0000
C(5)	1.249928	0.019500	64.09969	0.0000
C(6)	1.209976	0.014675	82.45285	0.0000
C(7)	1.162371	0.012113	95.96391	0.0000
C(8)	1.114822	0.009621	115.8790	0.0000
C(9)	1.074755	0.006863	156.6058	0.0000
C(10)	0.931309	0.006785	137.2539	0.0000
Log likelihood	-16875.91	Schwarz crite	rion	36.36578
Avg. log likelihood	-1.814614	Hannan-Quir	nn criter.	36.33362
Akaike info criterion	36.31379			
Determinant residual c	ovariance	2733.984		
Equation: ME1_P= C(1) Equation: ME2_P= C(2))*MARKET_P)*MARKET_P			

Equation: ME2_P= C(2)*MARKET_P
Equation: ME3_P= C(3)*MARKET_P
Equation: ME4_P= C(4)*MARKET_P
Equation: ME5_P= C(5)*MARKET_P
Equation: ME6_P= C(6)*MARKET_P
Equation: ME7_P= C(7)*MARKET_P
Equation: ME8_P= C(8)*MARKET_P
Equation: ME9_P= C(9)*MARKET_P
Equation: ME10_P=C(10)*MARKET_P