Advanced Econometrics

Prof. Bernd Fitzenberger, Ph.D.

Humboldt-University Berlin - Summer Semester 2019

Course Outline

0 . Introductory Material

1. Review Linear Regression Model for Cross-Sectional Data
2. System Estimation, Linear Panel Data Models
3. Nonlinear Least Squares and Maximum Likelihood
4. Binary Response Models and Limited Dependent Variables
5. Linear Quantile Regression

0. Introductory Material

Section Outline
0. Introductory Material
0.1 Matrix Algebra
0.2 Statistics and Probability Theory
0.3 Asymptotics

1. Review Linear Regression Model for Cross-Sectional Data
2. System Estimation, Linear Panel Data Models
3. Nonlinear Least Squares and Maximum Likelihood
4. Binary Response Models and Limited Dependent Variables
5. Linear Quantile Regression

0.1. Matrix Algebra

Reference: Greene (2008) App. A

Matrix: Rectangular array of numbers

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 k} \\
\vdots & & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n k}
\end{array}\right)
$$

$$
n \times k \text { matrix }
$$

Transpose:

$$
A^{\prime}=\left(\begin{array}{cccc}
a_{11} & a_{21} & \cdots & a_{n 1} \\
\vdots & & \ddots & \vdots \\
a_{1 k} & a_{2 k} & \cdots & a_{n k}
\end{array}\right) \quad k \times n \text { matrix }
$$

$$
(A+B)^{\prime}=A^{\prime}+B^{\prime}
$$

Inner Product:

for $a^{\prime}=\left(a_{1}, \ldots, a_{n}\right)$ and $b^{\prime}=\left(b_{1}, \ldots, b_{n}\right)$

$$
a^{\prime} b=a_{1} b_{1}+\ldots+a_{n} b_{n}=b^{\prime} a
$$

Matrix Multiplication:

$$
\underbrace{C}_{n \times m}=\underbrace{A}_{n \times k} \underbrace{B}_{k \times m} \Rightarrow \underbrace{a_{i} \cdot}_{\substack{ \\\text { ith row of } A}} \underbrace{b_{\cdot k}}_{\substack{k \\ \text { kth column of } B}}
$$

Identity matrix for $n \in \mathbb{N}$:

$$
I_{n}=\left(\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & 1
\end{array}\right) \quad I_{n} A=A
$$

Rules for Matrix Multiplication:

$$
\begin{aligned}
(A B) C & =A(B C) \\
A(B+C) & =A B+A C \\
(A B)^{\prime} & =B^{\prime} A^{\prime}
\end{aligned}
$$

Example: n data points for $1 \times k$ vector $x_{i}=\left(x_{1 i}, \ldots, x_{k i}\right) \quad$ (WO convention)

$$
X=\left(\begin{array}{ccc}
x_{11} & \cdots & x_{k 1} \\
\cdots & & \cdots \\
x_{1 n} & \cdots & x_{k n}
\end{array}\right) \quad n \text { rows } \hat{=} \text { observations }
$$

Matrix product:

$$
\begin{aligned}
X^{\prime} X & =\left(\begin{array}{ccc}
x_{11} & \cdots & x_{1 n} \\
\cdots & & \cdots \\
x_{k 1} & \cdots & x_{k n}
\end{array}\right) \cdot\left(\begin{array}{ccc}
x_{11} & \cdots & x_{k 1} \\
\cdots & & \cdots \\
x_{1 n} & \cdots & x_{k n}
\end{array}\right) \\
& =\left(\begin{array}{ccc}
\sum_{i=1}^{n} x_{1 i}^{2} & \cdots & \sum_{i=1}^{n} x_{1 i} x_{k i} \\
\vdots & \ddots & \vdots \\
\sum_{i=1}^{n} x_{k i} x_{1 i} & \cdots & \sum_{i=1}^{n} x_{k i}^{2}
\end{array}\right) \\
& =\sum_{i=1}^{n}\left(\begin{array}{c}
x_{1 i} \\
\vdots \\
x_{k i}
\end{array}\right)\left(x_{1 i}, \ldots, x_{k i}\right)=\sum_{i=1}^{n} x_{i}^{\prime} x_{i} \quad \leftarrow \text { summation notation }
\end{aligned}
$$

Let $j_{n}=\left(\begin{array}{c}1 \\ \vdots \\ 1\end{array}\right)$ be a $n \times 1$ vector of ones, then $j_{n} j_{n}^{\prime}=\left(\begin{array}{ccc}1 & \cdots & 1 \\ \vdots & & \vdots \\ 1 & \cdots & 1\end{array}\right)$,
and $x=\left(\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right) n \times 1$ vector, then

$$
\frac{1}{n} j_{n} j_{n}^{\prime} x=\frac{1}{n}\left(\begin{array}{ccc}
1 & \cdots & 1 \\
\vdots & & \vdots \\
1 & \cdots & 1
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right)=\frac{1}{n}\left(\begin{array}{c}
\sum x_{i} \\
\vdots \\
\sum x_{i}
\end{array}\right)=\left(\begin{array}{c}
\bar{x} \\
\vdots \\
\bar{x}
\end{array}\right)=j_{n} \bar{x}
$$

where $\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}$ sample average.

Deviations from sample average

$$
x-j_{n} \bar{x}=\left(\begin{array}{c}
x_{1}-\bar{x} \\
\vdots \\
x_{n}-\bar{x}
\end{array}\right)=x-\frac{1}{n} j_{n} j_{n}^{\prime} x=(\underbrace{I_{n}}_{\text {identity matrix }}-\frac{1}{n} j_{n} j_{n}^{\prime}) x=M^{0} x
$$

where $M^{0}=I-\frac{1}{n} j_{n} j_{n}^{\prime}$ is the matrix generating deviations from the mean (example of a projection matrix)
with

$$
M^{0} j_{n}=\left(I_{n}-\frac{1}{n} j_{n} j_{n}^{\prime}\right) j_{n}=j_{n}-\frac{1}{n} j_{n} j_{n}^{\prime} j_{n}=j_{n}-j_{n}=0
$$

since $\frac{1}{n} j_{n}^{\prime} j_{n}=\frac{1}{n} n=1$.
M^{0} is an example of a so called idempotent matrix, i.e. a square matrix M with $M^{2}=M M=M$.

When M is symmetric, it follows that $M^{\prime} M=M$.
Verify:

$$
\begin{aligned}
M^{0} M^{0} & =\left(I-\frac{1}{n} j_{n} j_{n}^{\prime}\right)\left(I-\frac{1}{n} j_{n} j_{n}^{\prime}\right) \\
& =I-\frac{1}{n} j_{n} j_{n}^{\prime}-\frac{1}{n} j_{n} j_{n}^{\prime}+\frac{1}{n^{2}} j_{n} \underbrace{j_{n}^{\prime} j_{n}}_{n} j_{n}^{\prime} \\
& =I-\frac{1}{n} j_{n} j_{n}^{\prime}=M^{0}
\end{aligned}
$$

Sum of squared deviations:

$$
\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}=\left(M^{0} x\right)^{\prime}\left(M^{0} x\right)=x^{\prime} M^{0^{\prime}} M^{0} x=x^{\prime} M^{0} x=\sum_{i=1}^{n} x_{i}\left(x_{i}-\bar{x}\right)
$$

Product of deviations of x_{i} and y_{i} :

$$
\begin{aligned}
\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right) & =\left(M^{0} x\right)^{\prime}\left(M^{0} y\right)=x^{\prime} M^{0^{\prime}} M^{0} y \\
& =x^{\prime} M^{0} y \\
& =\sum x_{i}\left(y_{i}-\bar{y}\right) \\
& =\sum\left(x_{i}-\bar{x}\right) y_{i}
\end{aligned}
$$

Empirical Variance-Covariance-Matrix of x, y

$$
\begin{aligned}
\operatorname{Cov}[(x, y)] & =\left(\begin{array}{cc}
\frac{1}{n} \sum\left(x_{i}-\bar{x}\right)^{2} & \frac{1}{n} \sum_{\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}^{\frac{1}{n} \sum^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)} \\
\frac{1}{n} \sum\left(y_{i}-\bar{y}\right)^{2}
\end{array}\right) \\
& =\frac{1}{n}\left(\begin{array}{ll}
x^{\prime} M^{0} x & x^{\prime} M^{0} y \\
y^{\prime} M^{0} x & y^{\prime} M^{0} y
\end{array}\right) \\
& =\frac{1}{n}\binom{x^{\prime} M^{0}}{y^{\prime} M^{0}}\left(\begin{array}{ll}
M^{0} x & M^{0} y
\end{array}\right) \\
& =\frac{1}{n}\binom{x^{\prime}}{y^{\prime}} M^{0}\left(\begin{array}{ll}
x & y
\end{array}\right)
\end{aligned}
$$

Rank of a matrix A

$=$ maximum number of linearly independent columns
$=$ dimension of vector space spanned by column vectors
$=$ maximum number of linearly independent rows
$=$ dimension of vector space spanned by row vectors

A: $n \times k$ matrix $\rightarrow \operatorname{rank}(A) \leq \min (n, k)$

Properties:

i) $\operatorname{rank}(A B) \leq \min (\operatorname{rank}(A), \operatorname{rank}(B))$
ii) $\operatorname{rank}(\mathrm{A})=\operatorname{rank}\left(A^{\prime} A\right)=\operatorname{rank}\left(A A^{\prime}\right)$

- Square $k \times k$ matrix A has full rank if $\operatorname{rank}(A)=k$.
- $n \times k$ matrix A with $n \geq k$ has full column rank if $\operatorname{rank}(A)=k$.
- $n \times k$ matrix A with $n \leq k$ has full row rank if $\operatorname{rank}(A)=n$.

Inverse of a square matrix:
Let A be a $k \times k$ matrix
Inverse A^{-1} defined by $A A^{-1}=I$ or equivalently $A^{-1} A=I$
A^{-1} exists, i.e. A is invertible (or nonsingular) $\Leftrightarrow A$ has full rank.

Example: Diagonal matrix

$A:=\left(\begin{array}{cccc}a_{1} & 0 & \cdots & 0 \\ 0 & a_{2} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & a_{k}\end{array}\right)=\operatorname{diag}\left(a_{1}, \ldots, a_{k}\right) \Rightarrow A^{-1}=\left(\begin{array}{cccc}\frac{1}{a_{1}} & 0 & \cdots & 0 \\ 0 & \frac{1}{a_{2}} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \frac{1}{a_{k}}\end{array}\right)$

Inverse A^{-1} exists if all $a_{j} \neq 0$ for $j=1, \ldots, k$.

Properties:

i) $\left(A^{-1}\right)^{-1}=A$
ii) $\left(A^{-1}\right)^{\prime}=\left(A^{\prime}\right)^{-1}$
iii) If A is symmetric, then A^{-1} is symmetric
iv) $(A B)^{-1}=B^{-1} A^{-1}$
v) $A=\left(\begin{array}{cc}A_{11} & 0 \\ 0 & A_{22}\end{array}\right) \Leftrightarrow A^{-1}=\left(\begin{array}{cc}A_{11}^{-1} & 0 \\ 0 & A_{22}^{-1}\end{array}\right)$ block diagonal
vi) Nonsingular matrix $B \rightarrow \operatorname{rank}(A B)=\operatorname{rank}(A)$

Eigenvalues (Characteristic Roots) and Eigenvectors:
Eigenvalues λ (scalars) and nonzero eigenvectors c are the solution of $A c=\lambda c$ for square $k \times k$ matrix A.

$$
A c=\lambda c \Leftrightarrow\left(A-\lambda I_{n}\right) c=0
$$

We are looking for the nontrivial solutions $c \neq 0$ which can be found by solving the characteristic equation involving the determinant

$$
\operatorname{det}\left(A-\lambda I_{n}\right)=\left|A-\lambda I_{n}\right|=0
$$

for λ and then finding some $c \neq 0$ for which $A c=\lambda c$ (note c is not unique!)

Properties:

i) A has full rank (A^{-1} exists) is equivalent to all eigenvalues are nonzero $(\lambda \neq 0)$
ii) If A^{-1} exists, then its eigenvalues are the inverses of the eigenvalues of A Diagonal matrix
iii) $A=\left(\begin{array}{cccc}a_{1} & 0 & \cdots & 0 \\ 0 & a_{2} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & a_{k}\end{array}\right)$

Eigenvalues $\lambda_{1}=a_{1}, \ldots, \lambda_{k}=a_{k}$
Eigenvectors $\left(\begin{array}{c}1 \\ 0 \\ 0 \\ \cdots \\ 0\end{array}\right),\left(\begin{array}{c}0 \\ 1 \\ 0 \\ \cdots \\ 0\end{array}\right), \ldots,\left(\begin{array}{c}0 \\ 0 \\ \ldots \\ 0 \\ 1\end{array}\right)$
iv) $\operatorname{det}(A)=|A|=\prod_{j=1}^{k} \lambda_{j}$

Definition:

- \mathbf{A} is called positive definite, if all eigenvalues are strictly positive $\left(\lambda_{j}>0\right)$
- \boldsymbol{A} is called positive semidefinite, if all eigenvalues are nonnegative $\left(\lambda_{j} \geq 0\right)$
- A is called negative definite, if all eigenvalues are strictly negative $\left(\lambda_{j}<0\right)$
- A is called negative semidefinite, if all eigenvalues are nonpositive $\left(\lambda_{j} \leq 0\right)$

Spectral decomposition of a symmetric matrix:

A $k \times k$ symmetric matrix A has k distinct orthogonal eigenvectors $c_{1}, c_{2}, \ldots, c_{k}$ and k not necessarily distinct, real eigenvalues $\lambda_{1}, \ldots, \lambda_{k}$.

We have $A c_{j}=\lambda_{j} c_{j}$ which is summarized in $A C=C \wedge$ where $C=\left[c_{1} \cdots c_{k}\right]$ eigenvectors as columns
and $\Lambda=\left(\begin{array}{ccc}\lambda_{1} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_{k}\end{array}\right)$ diagonal matrix with eigenvalues.
Orthogonality of eigenvectors: $c_{i}^{\prime} c_{j}=0$ for $i \neq j$ and normalization $c_{i}^{\prime} c_{i}=1$

$$
C C^{\prime}=C^{\prime} C=I_{n} \quad \text { and } \quad C^{\prime}=C^{-1}
$$

This implies:
Diagonalization

$$
C^{\prime} A C=C^{\prime} C \Lambda=\Lambda
$$

Spectral Decomposition

$$
A=C C^{\prime} A C C^{\prime}=C \wedge C^{\prime}=\sum_{j=1}^{k} \lambda_{j} c_{j} c_{j}^{\prime}
$$

The Generalized Inverse of a Matrix

- Case when A is not invertible because A is not a square matrix or A is not singular!

Definition: A generalized inverse of A is another matrix A^{+}that satisfies

1. $A A^{+} A=A$
2. $A^{+} A A^{+}=A^{+}$
3. $A^{+} A$ is symmetric
4. $A A^{+}$is symmetric

Note:

- A unique matrix that satisfies $1 .-4$. is called the Moore-Penrose inverse
- If A^{-1} exists, then $A^{+}=A^{-1}$

Two cases: Case \mathbf{A} (no square matrix $k<n$) and Case \mathbf{B} (symmetric square matrix)

Case A: Let A be an $n \times k$ matrix with $k<n$ and $\operatorname{rank}(A)=r \leq k$
1.) $r=k \Leftrightarrow A$ does have full column rank $\Leftrightarrow\left(A^{\prime} A\right)^{-1}$ exists

Moore-Penrose inverse is

$$
A^{+}=\left(A^{\prime} A\right)^{-1} A^{\prime}
$$

Verify 1.-4.:

1. $A A^{+} A=A\left(A^{\prime} A\right)^{-1} A^{\prime} A=A$
2. $A^{+} A A^{+}=\left(A^{\prime} A\right)^{-1} A^{\prime} A A^{+}=A^{+}$
3. $A^{+} A=\left(A^{\prime} A\right)^{-1} A^{\prime} A=I$ symmetric
4. $\left(A\left(A^{\prime} A\right)^{-1} A^{\prime}\right)^{\prime}=A^{\prime \prime}\left(A^{\prime} A\right)^{-1} A^{\prime}=A\left(A^{\prime} A\right)^{-1} A^{\prime}$ symmetric
2.) $\operatorname{rank}(A)=r<k$

Use r nonzero characteristic roots of $A^{\prime} A$ and associated eigenvectors in matrix C_{1}, then

$$
A^{\prime} A=C_{1} \Lambda_{1}^{-1} C_{1}^{\prime} \quad \text { spectral decompose }
$$

The Moore-Penrose inverse is

$$
A^{+}=C_{1} \Lambda_{1}^{-1} C_{1}^{\prime} A^{\prime}
$$

where $r \times r$ diagonal matrix $\Lambda_{1}=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda\right)$ of nonzero eigenvalues.

Case B: If A is symmetric $(n=k)$, then

$$
A^{+}=C_{1} \Lambda_{1}^{-1} C_{1}^{\prime}
$$

where Λ_{1} is a diagonal matrix containing the nonzero eigenvalues of A and C_{1} the associated orthonormalized eigenvectors.

Quadratic Form: $x^{\prime} A x$

- A positive definite
- A positive semidefinite
- A negative definite
- A negative semidefinite
$\Longleftrightarrow x^{\prime} A x>0$ for all $x \neq 0$
$\Longleftrightarrow x^{\prime} A x \geq 0$ for all $x \neq 0$
$\Longleftrightarrow x^{\prime} A x<0$ for all $x \neq 0$
$\Longleftrightarrow x^{\prime} A x \leq 0$ for all $x \neq 0$

Example:

x, y random variables with variance-covariance matrix
$V=\left(\begin{array}{cc}\operatorname{Var}(x) & \operatorname{Cov}(x, y) \\ \operatorname{Cov}(x, y) & \operatorname{Var}(y)\end{array}\right)$

- V is always positive semidefinite.
- If x and y are not perfectly correlated, then V is positive definite.
- If x, y are jointly normally distributed $\binom{x}{y} \sim \mathrm{~N}\left[\binom{\mu_{x}}{\mu_{y}}, V\right]$
then quadratic form $\left(\begin{array}{ll}x & y\end{array}\right) V^{-1}\binom{x}{y} \sim \chi_{2}^{2}$-distributed, if V has full rank.
- V^{-1} : multivariate standardization.
- Since V is positive definite also V^{-1} is positive definite and therefore $\left(\begin{array}{ll}x & y\end{array}\right) V^{-1}\binom{x}{y}>0$ unless $\binom{x}{y}=0$.

Trace of a matrix:

Square $k \times k$ matrix A

$$
\operatorname{tr}(A)=\sum_{j=1}^{k} a_{j j} \quad \text { sum of diagonal elements }
$$

Properties:
i) $\operatorname{tr}(c A)=c \cdot \operatorname{tr}(A)$ for scalar c
ii) $\operatorname{tr}\left(A^{\prime}\right)=\operatorname{tr}(A)$
iii) $\operatorname{tr}(A+B)=\operatorname{tr}(A)+\operatorname{tr}(B)$
iv) $\operatorname{tr}(A B)=\operatorname{tr}(B A)$
v) $\operatorname{tr}(A)=\sum_{j=1}^{k} \lambda_{j}$ trace of matrix equals the sum of its eigenvalues

Kronecker Product:

For $n \times k$ matrix $A, I \times m$ matrix B

$$
\left.\begin{array}{l}
\quad \underbrace{A \otimes B}_{(n l) \times(k m)}=\left[\begin{array}{ccc}
a_{11} & \cdots & a_{1 k} \\
\vdots & \ddots & \vdots \\
a_{n 1} & \cdots & a_{n k}
\end{array}\right] \otimes B \\
=\underbrace{\left[\begin{array}{cccc}
a_{11} B & a_{12} B & \cdots & a_{1 k} B \\
a_{21} B & a_{22} B & \cdots & a_{2 k} B \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} B & a_{n 2} B & \cdots & a_{n k} B
\end{array}\right]}_{k \cdot m}\}
\end{array}\right\} n \cdot l \text { rows }
$$

Properties:
i) $(A \otimes B)^{-1}=A^{-1} \otimes B^{-1}$
ii) $(A \otimes B)^{\prime}=A^{\prime} \otimes B^{\prime}$
iii) $\operatorname{tr}(A \otimes B)=\operatorname{tr}(A) \cdot \operatorname{tr}(B)$
iv) $(A \otimes B)(C \otimes D)=A C \otimes B D$ if $A C, B D$ is possible

Calculus and Matrix Algebra:

First and second order Taylor series approximation

- y scalar
- $x=\left(x_{1}, \ldots, x_{n}\right)^{\prime} \quad n \times 1$ vector
- $y=f(x)$ twice differentiable

Gradient:

$\nabla_{x} y:=\underbrace{\frac{\partial y}{\partial x}}_{n \times 1}=\frac{\partial f(x)}{\partial x}=\left(\begin{array}{c}\frac{\partial y}{\partial x_{1}} \\ \vdots \\ \frac{\partial y}{\partial x_{n}}\end{array}\right)=\left(\begin{array}{c}f_{1} \\ \vdots \\ f_{n}\end{array}\right)$
Hessian:

$$
H=\frac{\partial^{2} y}{\partial x \partial x^{\prime}}=\left[\begin{array}{cccc}
\frac{\partial^{2} y}{\partial x_{1}^{2}} & \frac{\partial^{2} y}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} y}{\partial x_{1} \partial x_{n}} \\
\frac{\partial^{2} y}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} y}{\partial x_{2}^{2}} & \cdots & \frac{\partial^{2} y}{\partial x_{2} \partial x_{n}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^{2} y}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} y}{\partial x_{2} \partial x_{n}} & \cdots & \frac{\partial^{2} y}{\partial x_{n}^{2}}
\end{array}\right]=\left[f_{i j}\right]
$$

First order Taylor series approximation in $x=\left(x_{10}, \ldots, x_{n 0}\right)$

$$
y=f(x) \approx f\left(x_{0}\right)+\sum_{i=1}^{n} f_{i}\left(x_{0}\right)\left(x_{i}-x_{i 0}\right)=f\left(x_{0}\right)+\left(\left.\frac{\partial y}{\partial x}\right|_{x_{0}}\right)^{\prime}\left(x-x_{0}\right)
$$

Second order approximation

$$
\begin{aligned}
y=f(x) & \approx f\left(x_{0}\right)+\sum_{i=1}^{n} f_{i}\left(x_{0}\right)\left(x_{i}-x_{i 0}\right) \\
& =\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} f_{i j}\left(x_{0}\right) \cdot\left(x_{i}-x_{i 0}\right) \cdot\left(x_{j}-x_{j 0}\right) \\
& =\underbrace{\left(\left.\frac{\partial y}{\partial x}\right|_{x_{0}}\right)^{\prime}\left(x-x_{0}\right)}_{\text {inner product }}+\frac{1}{2} \underbrace{\left(x-x_{0}\right)^{\prime} H\left(x_{0}\right)\left(x-x_{0}\right)}_{\text {quadratic form }}
\end{aligned}
$$

Differentiation of inner products and quadratic forms:

i) $y=a^{\prime} x=\sum_{i=1}^{n} a_{i} x_{i}=x^{\prime} a$

$$
\frac{\partial y}{\partial x}=\frac{\partial a^{\prime} x}{\partial x}=\left(\begin{array}{c}
a_{1} \\
\vdots \\
a_{n}
\end{array}\right)=a
$$

ii) $z=\left(\begin{array}{c}z_{1} \\ \vdots \\ z_{n}\end{array}\right)=A x=\left(\begin{array}{c}\sum_{i=1}^{k} a_{1 i} x_{i} \\ \vdots \\ \sum_{i=1}^{k} a_{n i} x_{i}\end{array}\right)$
$A n \times k$ matrix, $x k \times 1$ vector, $z n \times 1$ vector

$$
\frac{\partial z}{\partial x}=\left(\frac{\partial z_{1}}{\partial x}, \ldots, \frac{\partial z_{n}}{\partial x}\right)=A^{\prime} \quad \leftarrow \text { columnwise gradients of } z_{1}, \ldots, z_{n}
$$

iii) $y=x^{\prime} A x=\sum_{i=1}^{n} \sum_{j=1}^{n} x_{i} x_{j} a_{i j} \quad$ quadratic form
a) $\frac{\partial y}{\partial x}=\left(A+A^{\prime}\right) x$

If A is symmetric $\left(A=A^{\prime}\right)$, then $\frac{\partial y}{\partial x}=2 A x$
b) $\frac{\partial y}{\partial A}=x x^{\prime}=\left(\begin{array}{ccc}x_{1}^{2} & \cdots & x_{1} x_{n} \\ \vdots & \ddots & \vdots \\ x_{1} x_{n} & \cdots & x_{n}^{2}\end{array}\right)$ outer product, $n \times n$ matrix

Expected values and variances:

Let

- a be a $k \times 1$ vector of constants
- A a $n \times k$ matrix of constants, and
- x a $k \times 1$ vector of random variables
then

$$
\begin{gathered}
E a^{\prime} x=a^{\prime}(E x)=\sum_{i=1}^{k} a_{i} E x_{i} \\
E A x=A(E x)=\left[\begin{array}{c}
\sum_{i=1}^{k} a_{1 i} E x_{i} \\
\sum_{i=1}^{k} a_{1 i} E x_{i}
\end{array}\right] \\
\operatorname{Var}\left(a^{\prime} x\right)=a^{\prime} \operatorname{Var}(x) a=\sum_{i=1}^{k} \sum_{j=1}^{k} a_{i} a_{j} \operatorname{Cov}\left(x_{i}, x_{j}\right) \geq 0 \quad \leftarrow \text { quadratic form } \\
\operatorname{Var}(x) \operatorname{must} \text { be positive semidefinite } \\
\operatorname{Var}(A x)=A \operatorname{Var}(x) A^{\prime}
\end{gathered}
$$

0.2 Statistics and Probability Theory

Reference: WO 2+3, Greene App. B-D

Random Variable (RV) x taking values x_{i}

Probability distribution: $f\left(x_{i}\right)=\operatorname{Prob}\left(x=x_{i}\right)$ for discrete $R V$
i) $0 \leq \operatorname{Prob}\left(x=x_{i}\right) \leq 1$
ii) $\sum_{x_{i}} f\left(x_{i}\right)=1$

Continuous $R V$: Density $f\left(x_{i}\right) \geq 0$
i) $\operatorname{Prob}(a \leq x \leq b)=\int_{a}^{b} f(t) d t$
ii) $\int_{-\infty}^{\infty} f(t) d t=1$

Cumulative Distribution Function CDF

$$
\operatorname{Prob}\left(x \leq x_{i}\right)=F\left(x_{i}\right)=\left\{\begin{aligned}
\Sigma_{t \leq x_{i}} f(t) & : \\
\text { discrete }^{x_{i}} f(t) d t & : \text { continuous }
\end{aligned}\right.
$$

For continuous case: $f\left(x_{i}\right)=\frac{d F\left(x_{i}\right)}{d x_{i}}$
$\underline{\text { Expected value (Mean): }}$

$$
\mu \equiv E x=\left\{\begin{array}{rll}
\sum_{x_{i}} x_{i} f\left(x_{i}\right) & : & \text { discrete } \\
\int_{-\infty}^{\infty} t f(t) d t & : & \text { continuous }
\end{array}\right.
$$

Variance:

$$
\begin{gathered}
\sigma^{2} \equiv \operatorname{Var}(x)=E[(x-\mu)]^{2} \\
\sigma^{2}=\left\{\begin{array}{ccc}
\sum_{x_{i}}\left(x_{i}-\mu\right)^{2} f\left(x_{i}\right) & : \text { discrete } \\
\int_{-\infty}^{\infty}(t-\mu)^{2} f(t) d t & : \text { continuous }
\end{array}\right.
\end{gathered}
$$

Standard deviation:

$$
\sigma=\sqrt{\sigma^{2}}=\sqrt{\operatorname{Var}(x)}
$$

Chebychev's Inequality:

$$
\begin{gathered}
\operatorname{Prob}(|x-\mu| \geq \delta) \leq \frac{\sigma^{2}}{\delta^{2}} \\
E g(x)=\left\{\begin{aligned}
& \sum_{x_{i}} g\left(x_{i}\right) f\left(x_{i}\right): \text { discrete } \\
& \int_{-\infty}^{\infty} g(t) f(t) d t: \\
& \text { continuous }
\end{aligned}\right.
\end{gathered}
$$

In general: $E g(x) \neq g(E(x))$

Jensen's inequality:

$$
\left.\begin{array}{lll}
E g(x) \leq g(E(x)) & \text { for } & g^{\prime \prime}(x)<0 \\
\text { concave }
\end{array}\right)
$$

$$
\text { E.g. } \quad E \log (x) \leq \log (E(x))
$$

Normal distribution

$$
x \sim N\left(\mu, \sigma^{2}\right) \text { with density } f\left(x_{i}\right)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{\left(x_{i}-\mu\right)^{2}}{2 \sigma^{2}}}
$$

$$
E x=\mu \quad \text { and } \quad \operatorname{Var}(x)=\sigma^{2}
$$

Standard Normal $z \sim N(0,1)$

$$
\begin{gathered}
\text { Define density : } \quad \phi\left(z_{i}\right)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{z_{i}^{2}}{2}} \\
\begin{array}{c}
F\left(z_{i}\right)=\Phi\left(z_{i}\right)=\int_{-\infty}^{z_{i}} \phi(t) d t \quad=\int_{-\infty}^{z_{i}} \frac{1}{\sqrt{2 \pi}} e^{-\frac{t^{2}}{2}} d t \\
F_{x}\left(x_{i}\right)=\operatorname{Prob}\left(x \leq x_{i}\right)=\operatorname{Prob}\left(\frac{x-\mu}{\sigma} \leq \frac{x_{i}-\mu}{\sigma}\right) \\
=\operatorname{Prob}\left(z \leq \frac{x_{i}-\mu}{\sigma}\right)=\Phi\left(\frac{x_{i}-\mu}{\sigma}\right)
\end{array}
\end{gathered}
$$

Skewness: $S \equiv E\left[(x-\mu)^{3}\right]=0 \quad$ for normal distribution
Kurtosis: $E\left[(x-\mu)^{4}\right]=3 \sigma^{4} \quad$ for normal distribution
Excess Kurtosis (relative to normal):

$$
\frac{E\left[(x-\mu)^{4}\right]}{\sigma^{4}}-3=0 \text { for normal distribution }
$$

Chi-squared- $\left(\chi^{2}\right), \mathbf{t}-$ and \mathbf{F}-distributions

$\underline{\chi^{2} \text {-distribution: } z_{1}, \ldots . ., z_{n} \quad \text { independent } \quad N(0,1), ~}$

$$
y=\sum_{j=1}^{n} z_{j}^{2} \sim \chi_{n}^{2} \text {-distributed with } n \text { degrees of freedom }
$$

F- Distribution:

- $y_{1} \sim \chi_{n_{1}}^{2}, y_{2} \sim \chi_{n_{2}}^{2}$
- y_{1} and y_{2} independent
$F\left(n_{1}, n_{2}\right)=\frac{y_{1} / n_{1}}{y_{2} / n_{2}} \quad \sim$ F-distributed with n_{1} degrees of freedom in numerator and n_{2} degrees of freedom in denominator

stylized shape of probability density function of χ_{n}^{2} or $F\left(n_{1}, n_{2}\right)$

t-distribution:

$t=\frac{z}{\sqrt{\frac{y}{n}}} \sim t_{n} \quad$ distributed (t-distribution with n degrees of freedom)

$$
z \sim N(0,1), y \sim \chi_{n}^{2}, \text { and } y, z \text { independent }
$$

Note: $t^{2} \sim F(1, n)$

Joint distribution: $\quad x, y \quad \mathrm{RV}$
$\operatorname{Prob}(a \leq x \leq b, c \leq y \leq d)=\left\{\begin{array}{rrll}\sum_{a \leq x_{i} \leq b} \sum_{c \leq y_{j} \leq d} & f\left(x_{i}, y_{j}\right) & : & \text { discrete } \\ \int_{a}^{b} \int_{c}^{d} f(t, s) & d s & d t & : \\ \text { continuous }\end{array}\right.$

Probability density function: $f(t, s) \geq 0$

$$
\begin{aligned}
\sum_{x_{i}} \sum_{y_{j}} f\left(x_{i}, y_{j}\right)=1 \quad \text { discrete } \\
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(t, s) d s d t=1 \quad \text { continuous }
\end{aligned}
$$

Distribution function:

$$
F\left(x_{i}, y_{j}\right)=\operatorname{Prob}\left(x \leq x_{i}, y \leq y_{j}\right)=\left\{\begin{aligned}
\sum_{x \leq x_{i}} \sum_{y \leq y_{j}} f\left(x_{i}, y_{i}\right) & : \text { discrete } \\
\int_{-\infty}^{x_{i}} \int_{-\infty}^{y_{j}} f(t, s) d s \quad d t & : \text { continuous }
\end{aligned}\right.
$$

Expected value of function of (x, y) :

$$
E g(x, y)=\left\{\begin{array}{rll}
\sum \sum g\left(x_{i}, y_{j}\right) f\left(x_{i}, y_{j}\right) & : \text { discrete } \\
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(t, s) f(t, s) d s d t & : \text { continuous }
\end{array}\right.
$$

Covariance between x and y :

$$
\sigma_{x y} \equiv \operatorname{Cov}(x, y)=E[(x-E x)(y-E y)]=E x y-(E x)(E y)
$$

x, y independent :

$$
f\left(x_{i}, y_{i}\right)=f\left(x_{i}\right) f\left(y_{i}\right) \underset{\underset{~}{*}}{\nRightarrow} \operatorname{Cov}(x, y)=0
$$

Correlation:

$$
r_{x y}=\frac{\operatorname{Cov}(x, y)}{\sqrt{\operatorname{Var}(x) \cdot \operatorname{Var}(y)}}=\frac{\sigma_{x y}}{\sigma_{x} \sigma_{y}}
$$

Rules:

$a, b, c, d=$ constants

$$
\begin{aligned}
E(a x+b y+c) & =a E x+b E y+c \\
\operatorname{Var}(a x+b y+c) & =a^{2} \operatorname{Var}(x)+b^{2} \operatorname{Var}(y)+2 a b \operatorname{Cov}(x, y) \\
\operatorname{Cov}(a x+b y, c x+d y) & =a c \operatorname{Var}(x)+b d \operatorname{Var}(y)+(a d+b c) \operatorname{Cov}(x, y)
\end{aligned}
$$

Conditional distribution:

$$
f\left(y=y_{j} \mid x=x_{i}\right) \equiv f\left(y_{j} \mid x_{i}\right)=\frac{f\left(x_{i}, y_{j}\right)}{f\left(x_{i}\right)}
$$

Conditional expectation:

$$
E\left(y \mid x=x_{i}\right)=\int_{-\infty}^{\infty} s f\left(\underset{\equiv f\left(s \mid x_{i}\right)}{\left.y=s \mid x_{i}\right) d s}\right.
$$

Conditional variance:

$$
\begin{aligned}
\operatorname{Var}\left(y \mid x=x_{i}\right) & =E\left[\left(y-E\left(y \mid x=x_{i}\right)\right)^{2} \mid x=x_{i}\right] \\
& =\int_{-\infty}^{\infty}\left(s-E\left(y \mid x=x_{i}\right)\right)^{2} f\left(s \mid x_{i}\right) d s
\end{aligned}
$$

0.3 Asymptotics

Motivation:

For many econometric problems, the analytical properties of the estimator can only be determined asymptotically.

Probability Limit and Consistency of an Estimator

Definition 1:

The probability limit θ of a sequence of random variables $\hat{\theta}_{N}$ results as the limit for N going to infinity such that the probability that the absolute difference between $\hat{\theta}_{N}$ and θ is less than some small positive ε goes to one. Mathematically this is expressed by

$$
\lim _{N \rightarrow \infty} P\left\{\left|\hat{\theta}_{N}-\theta\right|<\varepsilon\right\}=1 \quad \text { for every } \quad \varepsilon>0
$$

and abbreviated by $\underset{N \rightarrow \infty}{\operatorname{plim}} \hat{\theta}_{N}=\theta\left(\right.$ or $\left.\hat{\theta}_{N} \xrightarrow{P} \theta\right)$.

Definition 2:

An estimator $\hat{\theta}_{N}$ for the true parameter value θ is (weakly) consistent, if

$$
\operatorname{plim}_{N \rightarrow \infty} \hat{\theta}_{N}=\theta
$$

Remarks:

1. The sample mean \bar{Y}_{N} of a sequence of random variables Y_{i} with expected value $E\left(Y_{i}\right)=\mu_{Y}$ is under very general conditions a consistent estimator of μ_{Y}, d.h. $\operatorname{plim} \bar{Y}_{N}=\mu_{Y}$.
2. For two sequences of random variables $\hat{\theta}_{1, N}$ and $\hat{\theta}_{2, N}$ it follows:

$$
\begin{gathered}
\operatorname{plim}\left(\hat{\theta}_{1, N}+\hat{\theta}_{2, N}\right)=\operatorname{plim} \hat{\theta}_{1, N}+\operatorname{plim} \hat{\theta}_{2, N} \\
\operatorname{plim}\left(\hat{\theta}_{1, N} \cdot \hat{\theta}_{2, N}\right)=\operatorname{plim} \hat{\theta}_{1, N} \cdot \operatorname{plim} \hat{\theta}_{2, N} \\
\operatorname{plim}\left(\frac{\hat{\theta}_{1, N}}{\hat{\theta}_{2, N}}\right)=\frac{\operatorname{plim} \hat{\theta}_{1, N}}{\operatorname{plim} \hat{\theta}_{2, N}}
\end{gathered}
$$

Slutzky's Theorem:
plimg $\left(\hat{\theta}_{N}\right)=g\left(p \lim \hat{\theta}_{N}\right)$ at continuity points of $g($.

Convergence and Asymptotic Orders of Magnitude

Motivation:

For many semiparametric problems it is important to determine the speed of convergence, i.e. the asymptotic order of magnitude.

Definition 1 (Fixed Sequences):

The sequence $\left\{X_{N}\right\}$ of real numbers is said to be at most of order N^{k} and is denoted by

$$
X_{N}=O\left(N^{k}\right) \quad \text { if } \quad \lim _{N \rightarrow \infty} \frac{X_{N}}{N^{k}}=c
$$

for some constant c.

Definition 2 (Fixed Sequences):
The sequence $\left\{X_{N}\right\}$ of real numbers is said to be of smaller order than N^{k} and is denoted by

$$
X_{N}=o\left(N^{k}\right) \quad \text { if } \quad \lim _{N \rightarrow \infty} \frac{X_{N}}{N^{k}}=0
$$

Definition 3 (Stochastic Sequences):

The sequence of random variables $\left\{X_{N}\right\}$ is said to be at most of order N^{k} and is denoted by

$$
X_{N}=O_{p}\left(N^{k}\right)
$$

if for every $\varepsilon>0$ there exist numbers C and \tilde{N} such that

$$
P\left\{\frac{\left|X_{N}\right|}{N^{k}}>C\right\}<\varepsilon \quad \text { for all } \quad N>\tilde{N} .
$$

Definition 4 (Stochastic Sequences):
The sequence of random variables $\left\{X_{N}\right\}$ is said to be of smaller order than N^{k} and is denoted by

$$
X_{N}=o_{p}\left(N^{k}\right) \text { if } \operatorname{plim}_{N \rightarrow \infty} \frac{X_{N}}{N^{k}}=0
$$

Chebychev's Law of Large Numbers:
Let the random variables $\left\{X_{i}\right\}$ be uncorrelated with $E X_{i}=\mu_{i}$ and $\operatorname{Var}\left(X_{i}\right)=\sigma_{i}^{2}<\infty$ in a sample of size $N(i=1, \ldots, N)$. Then

$$
\bar{X}_{N}-\bar{\mu}_{N} \xrightarrow{P} 0
$$

if $\bar{\sigma}^{2} \rightarrow 0$, as N goes to infinity where $\bar{X}_{N}=\frac{1}{N} \sum_{i=1}^{N} X_{i}$ denotes the sample mean, $\bar{\mu}_{N}=\frac{1}{N} \sum_{i=1}^{N} \mu_{i}$ and $\bar{\sigma}^{2}=\frac{1}{N^{2}} \sum_{i=1}^{N} \sigma_{i}^{2}=\frac{1}{N}\left(\frac{1}{N} \sum_{i=1}^{N} \sigma_{i}^{2}\right)$.

Alternative Representation:
Under the above assumptions it follows that $\left(\bar{X}_{N}-\bar{\mu}_{N}\right)=o_{p}(1)$
Special Case: If $\mu_{i}=\mu$ then $\quad \operatorname{plim} \bar{X}_{N}=\mu$.

Lindberg-Levy's Central Limit Theorem:

Let $\left\{X_{i}\right\}$ be a sequence of i.i.d. random variables such that $E X_{i}=\mu$ and $\operatorname{Var}\left(X_{i}\right)=\sigma^{2}<\infty$ in a sample of size $N(i=1, \ldots, N)$. Then

$$
\sqrt{N} \frac{\left(\bar{X}_{N}-\mu\right)}{\sigma} \xrightarrow{d} \mathcal{N}(0,1) \quad \text { (i.e. } \bar{X}_{N} \text { is } \sqrt{N}-\text { consistent). }
$$

Implication:
Under the above assumptions it follows that $\left(\bar{X}_{N}-\mu\right)=O_{p}\left(N^{-1 / 2}\right)$.

Liapounov's Central Limit Theorem:

Let $\left\{X_{N, i}\right\}$ be a sequence of independently distributed random variables with $E X_{N, i}=\mu_{N, i}$ and $\operatorname{Var}\left(X_{N, i}\right)=\sigma_{N, i}^{2}<\infty$ in a sample of size $N(i=1, \ldots, N)$.

Let $E\left|X_{N, i}\right|^{2+\delta}<\infty$ for some $\delta>0$. If $\lim _{N \rightarrow \infty} \sum_{i=1}^{N} \frac{E\left|X_{N, i}-\mu_{N, i}\right|^{2+\delta}}{\tilde{\sigma}_{N}^{2+\delta}}=0$, then $\frac{\sum_{i=1}^{N}\left(X_{N, i}-\mu_{N, i}\right)}{\tilde{\sigma}_{N}} \xrightarrow{d} \mathcal{N}(0,1)$ for $\quad \tilde{\sigma}_{N}^{2}=\sum_{i=1}^{N} \sigma_{N, i}^{2}$.

Implication:
Under the above assumptions it follows that $\frac{\sum_{i=1}^{N}\left(X_{N, i}-\mu_{N, i}\right)}{\tilde{\sigma}_{N}}=O_{p}(1)$

1. Review: Linear Regression Model for Cross-Sectional Data

Section Outline
0 . Introductory Material

1. Review Linear Regression Model for Cross-Sectional Data
1.1 Preliminaries: Conditional Expectations, Causal Analysis, Linear

Projections
1.2 OLS and Asymptotic Properties
1.3 Instrumental Variable Regression
2. System Estimation, Linear Panel Data Models
3. Nonlinear Least Squares and Maximum Likelihood
4. Binary Response Models and Limited Dependent Variables
5. Linear Quantile Regression

1.1 Preliminaries: Conditional Expectations, Causal Analysis, Linear Projections

- y explained/dependent/response variable
- $x=\left(x_{1}, \ldots ., x_{k}\right)$ explanatory / independent variables, regressors, control variables, covariates (x is observed)

Structural conditional expectation (CE): $E(y \mid w, c)$
Based on random sample of (y, w, c) we can estimate the effect of w on y holding c constant.

Complications arise when there is no random sample of (y, w, c)
\rightarrow measurement error
\rightarrow simultaneous determination of y, w, c
\rightarrow some variables we would like to control for (elements of c) cannot be observed
\Rightarrow CE of interest involves data for which the econometrician cannot collect data or requires an experiment that cannot be carried out.

Identification assumptions:
\rightarrow Can recover structural CE of interest

Definition CE:

y (random variable) explained variable, $x \equiv\left(x_{1}, x_{2}, \ldots, x_{k}\right) \quad(1 \times k)$-vector of explanatory variables, $E(|y|)<\infty$
then function $\mu: \mathbb{R}^{k} \rightarrow \mathbb{R}$
(CE) $E\left(y \mid x_{1}, x_{2}, \ldots, x_{k}\right)=\mu\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ or $E(y \mid x)=\mu(x)$
Distinguish
$E(y \mid x)$: random variable because x is a random variable from
$E\left(y \mid x=x_{0}\right)$: conditional expectation when x takes specific value x_{0}
\rightarrow Distinction most of the time not important
\rightarrow Use $E(y \mid x)$ as short hand notation

Parametric model for $E(y \mid x)$ where $\mu(x)$ depends on a finite set of unknown parameters

Examples:
(i) $E\left(y \mid x_{1}, x_{2}\right)=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}$
(ii) $E\left(y \mid x_{1}, x_{2}\right)=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{2}^{2}+\beta_{4} x_{1} x_{2}$
(iii) $E\left(y \mid x_{1}, x_{2}\right)=\exp \left[\beta_{0}+\beta_{1} \log \left(x_{1}\right)+\beta_{2} x_{2}\right]$ with $y \geq 0, x_{1}>0$
(i) is linear in parameters and explanatory variables
(ii) is linear in parameters and nonlinear in explanatory variables
(iii) is nonlinear in both

Partial Effect:

- Continuous x_{i}, and differentiable μ

$$
\Delta E(y \mid x)=\frac{\partial \mu}{\partial x_{j}} \Delta x_{j} \text { holding } x_{1}, \ldots, x_{j-1}, x_{j+1}, \ldots, x_{k} \text { fixed }
$$

$\hat{=}$ ceteris paribus effect for propertly specified population model

- Discrete $x_{j}: x_{j, 0} \rightarrow x_{j, 1}$

$$
\Delta E(y \mid x)=E\left(y \mid x_{1}, \ldots, x_{j-1}, x_{j, 1}, x_{j+1}, \ldots, x_{k}\right)-E\left(y \mid x_{1}, \ldots, x_{j-1}, x_{j, 0}, x_{j+1}, \ldots, x_{k}\right)
$$

Examples:

ad i) $\frac{\partial E(y \mid x)}{\partial x_{1}}=\beta_{1}=$ constant
ad ii) $\frac{\partial E(y \mid x)}{\partial x_{1}}=\beta_{1}+\beta_{4} x_{2}$, i.e. partial effect of x_{1} varies with x_{2}
ad iii) $\frac{\partial E(y \mid x)}{\partial x_{1}}=\exp \left[\beta_{0}+\beta_{1} \log \left(x_{1}\right)+\beta_{2} x_{2}\right] \frac{\beta_{1}}{x_{1}} \rightarrow$ highly nonlinear
(Partial) Elasticity (only continuous case)

$$
\frac{\partial E(y \mid x)}{\partial x_{j}} \cdot \frac{x_{j}}{E(y \mid x)}=\frac{\partial \log E(y \mid x)}{\partial \log x_{j}}
$$

(Partial) Semielasticity:

$$
\frac{\partial E(y \mid x)}{\partial x_{j}} \cdot \frac{1}{E(y \mid x)}=\frac{\partial \log E(y \mid x)}{\partial x_{j}}
$$

Average Partial Effect (APE, 'integrate out distribution of x '):

$$
E_{x}\{\Delta E(y \mid x)\}=E_{x}\left\{\frac{\partial \mu}{\partial x_{i}} \Delta x_{j}\right\}
$$

Examples:

$$
\begin{aligned}
& \text { ad i) } \mathrm{APE}=\beta_{1} \\
& \text { ad ii) } \mathrm{APE}=\beta_{1}+\beta_{4} E x_{2} \\
& \text { ad iii) } \mathrm{APE}=E\left\{\exp \left[\beta_{0}+\beta_{1} \log \left(x_{1}\right)+\beta_{2} x_{2}\right] \frac{\beta_{1}}{x_{1}}\right\}
\end{aligned}
$$

APE's in cases ii and iii can be estimated by sample averages of the expressions evaluated at the sample estimates of the coefficients $\hat{\beta}$

Error form of models of conditional expectations

We can always write
(1) $y=E(y \mid x)+u$ where $u=y-E(y \mid x)$
and it follows by definition:
(2) $E(u \mid x)=0$

Implications:
(i) $E(u)=0$
(ii) u is uncorrelated with any function of x_{1}, \ldots, x_{k}

Implication (i) and (ii) follows from the law of iterated expectations

$$
\text { LIE : } E(y \mid x)=E[E(y \mid w) \mid x] \quad \text { if } x=f(w)
$$

i.e. $\quad\{$ Information set incorporated in $x\} \subseteq\{$ Information set incorporated in $w\}$
i) $E(y \mid x)=E[E(y \mid w) \mid x]$ \rightarrow integrating out w wrt $x: \int y f(y \mid x) d y=\int\left[\int y f(y \mid w, x) d y\right] f(w \mid x) d w$
ii) $E(y \mid x)=E[E(y \mid x) \mid w]$ Knowing w implies knowing x \rightarrow Routinely used in the course
'The smaller information set always dominates'

Therefore

$$
E(u)=E_{x}[E(u \mid x)]=E_{x} 0=0
$$

which gives implication (i) and

$$
E(u \mid f(x))=E[E(u \mid x) \mid f(x)]=E[0 \mid f(x)]=0
$$

which gives implication (ii).

Example:

$$
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+u
$$

with

$$
E\left(u \mid x_{1}, x_{2}\right)=0
$$

implies:
$E(u)=0, \operatorname{Cov}\left(x_{1}, u\right)=0, \operatorname{Cov}\left(x_{2}, u\right)=0$ and u is also uncorrelated with $x_{1}^{2}, x_{2}^{2}, x_{1} x_{2}, \exp \left(x_{1}\right)$ etc.
i.e. the functional form of $E(y \mid x)$ is properly specified.

We have $\beta_{2}=\frac{\partial E\left(y \mid x_{1}, x_{2}\right)}{\partial x_{2}}$ because $E\left(u \mid x_{1}, x_{2}\right)=0$, i.e. u is uncorrelated with any function of x_{2}. Thus β_{2} describes the mean impact of x_{2} on y.

$E\left(u \mid x_{1}, x_{2}\right)=0$ sometimes called mean independence

We have:
Independence \Rightarrow Mean Independence \Rightarrow Uncorrelatedness

Mean independence defines a Conditional Expectation
Uncorrelatedness defines a Linear Projection

Different nested sets of conditioning variables

Important special case: $w=(x, z)$
$\underbrace{E(y \mid x)}_{\mu_{1}(x)}=E[\underbrace{E(y \mid x, z)}_{\mu_{2}(x, z)} \mid x]$
$\underbrace{\mu_{1}}_{\text {observed }}=E[\mu_{2}(x, \underbrace{z}_{\text {unobserved }}) \mid x]$
Identification problem: Can we link the estimable $\mu_{1}(x)$ to the structural $\mu_{2}(x, z)$ which is the causal relationship of interest?
$\underbrace{X, z}_{\text {more information }}$ versus $\underbrace{X}_{\text {less information }}$

$$
\begin{aligned}
\mu_{1}(x, z) & =E(y \mid x, z) \\
\mu_{2}(x) & =E(y \mid x)
\end{aligned}
$$

By LIE, we have ('integrating z out')

$$
\mu_{2}(x)=E(y \mid x)=E[E(y \mid x, z) \mid x]=E\left[\mu_{1}(x, z) \mid x\right]
$$

\rightarrow allows to study effects of omitted regressors/unobserved components z on the relationship between y and x.

Example: Wage Equation

$$
\begin{gathered}
E(\text { wage } \mid \text { educ }, \text { exper }) \\
=\beta_{0}+\beta_{1} \text { educ }+\beta_{2} \text { exper }+\beta_{3} \text { exper }^{2}+\beta_{4} \text { educ } \cdot \text { exper } \\
=E\left(\text { wage } \mid \text { educ }, \text { exper }, \text { exper }^{2}, \text { educ } \cdot \text { exper }\right)
\end{gathered}
$$

by LIE, i.e. it is redundant to condition on exper ${ }^{2}$ and educ \cdot exper.

Conditional Variance

The conditional variance of y given x is defined as

$$
\begin{aligned}
\operatorname{Var}(y \mid x)=E\left(u^{2} \mid x\right) & \equiv \sigma^{2}(x) \equiv E\left[(y-E(y \mid x))^{2} \mid x\right] \\
& =E\left(y^{2} \mid x\right)-[E(y \mid x)]^{2}
\end{aligned}
$$

Note: $\sigma^{2}(x)$ is a random variable when x is viewed as a random vector.
Properties:

$$
\operatorname{Var}(a(x) y+b(x) \mid x)=[a(x)]^{2} \operatorname{Var}(y \mid x)
$$

Decomposition of variance (corresponds to LIE)

$$
\begin{aligned}
\operatorname{Var}(y) & =E[\operatorname{Var}(y \mid x)]+\operatorname{Var}(E(y \mid x)) \\
& =\underbrace{E\left[\sigma^{2}(x)\right]}_{\text {average conditional }}+\underbrace{\operatorname{Var}(\mu(x))}_{\text {variance }}
\end{aligned}
$$

where $\mu(x)=E(y \mid x)$.

Extension (further conditioning variable z)

$$
\operatorname{Var}(y \mid x)=E[\operatorname{Var}(y \mid x, z) \mid x]+\operatorname{Var}[E(y \mid x, z) \mid x]
$$

Consequently:

$$
E[\operatorname{Var}(y \mid x)] \geq E[\operatorname{Var}(y \mid x, z)]
$$

\rightarrow further conditioning variables z reduce the average conditional variances.

Linear Projections

Even though a structural CE (conditional expectation) $E(y \mid x)$ is typically not a linear function of x, it is possible to use the linear projection of y on the random variables $\left(x_{1}, \ldots, x_{k}\right)=: x$

$$
\begin{aligned}
& \begin{aligned}
\underbrace{L\left(y \mid 1, x_{1}, \ldots, x_{k}\right)}_{\text {(including an intercept) }}=L(y \mid 1, x) & =\beta_{0}+\beta_{1} x_{1}+\ldots+\beta_{k} x_{k} \\
& =\beta_{0}+x \beta
\end{aligned} \\
& \text { where } \beta:=[\operatorname{Var}(x)]^{-1} \operatorname{Cov}(x, y) \\
& \beta_{0}=E(y)-E(x) \beta=E(y)-\beta_{1} E\left(x_{1}\right)-\ldots-\beta_{k} E\left(x_{k}\right)
\end{aligned}
$$

Variance-Covariance matrix is the $(k \times k)$-matrix

$$
\operatorname{Var}(x)=\left(\begin{array}{ccc}
\operatorname{Var}\left(x_{1}\right) & \ldots & \operatorname{Cov}\left(x_{k}, x_{1}\right) \\
\operatorname{Cov}\left(x_{2}, x_{1}\right) & \ddots & \\
\vdots & & \\
\operatorname{Cov}\left(x_{k}, x_{1}\right) & \ldots & \operatorname{Var}\left(x_{k}\right)
\end{array}\right)=E\left[(x-E(x))(x-E(x))^{\prime}\right]
$$

Note:

$$
x-E(x)=\left(\begin{array}{c}
x_{1}-E\left(x_{1}\right) \\
\vdots \\
x_{k}-E\left(x_{k}\right)
\end{array}\right)
$$

and

$$
(x-E(x))^{\prime}=\left(x_{1}-E\left(x_{1}\right), \ldots, x_{k}-E\left(x_{k}\right)\right)
$$

$$
\operatorname{Cov}(x, y)=\left(\begin{array}{c}
\operatorname{Cov}\left(x_{1}, y\right) \\
\vdots \\
\operatorname{Cov}\left(x_{k}, y\right)
\end{array}\right) \quad(k \times 1) \text {-vector }
$$

Linear projection with a zero intercept

$$
\begin{aligned}
& L(y \mid x)=L\left(y \mid x_{1}, \ldots, x_{k}\right)=\gamma_{1} x_{1}+\ldots+\gamma_{k} x_{k}=x \gamma \\
& \text { where } \quad \gamma:=\left[E\left(x^{\prime} x\right)\right]^{-1} E\left(x^{\prime} y\right)
\end{aligned}
$$

The linear projection can be derived as the linear predictor minimizing the mean square prediction error (\equiv Best linear predictor or least squares linear predictor), i.e.

$$
\min _{b_{0}, b \in \mathbb{R}^{k}} E\left[\left(y-b_{0}-x b\right)^{2}\right]
$$

yields β and β_{0} as defined.

Using the linear projection

$$
L(y \mid x)=\beta_{0}+\beta_{1} x_{1}+\ldots+\beta_{k} x_{k}
$$

define the error term u by

$$
u:=y-L(y \mid x)
$$

or

$$
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\ldots+\beta_{k} x_{k}+u
$$

By definition of linear projections:

$$
E u=0 \text { and } \operatorname{Cov}\left(x_{j}, u\right)=0 \quad(j=1, \ldots, k)
$$

Note: This does not imply independence between x and u or mean independence $E(u \mid x)=0$

Primary use of linear projections: Obtaining estimable equations involving the parameters of an underlying conditional expectation of interest. Appendix of WO Chapter 2 contains more results on conditional expectations etc. which will be useful later.

1.2 Derivation of the OLS Estimator and its Asymptotic Properties

Population equation of interest:

$$
y=x \beta+u
$$

where: x is a $1 \times K$ vector
$\beta=\left(\beta_{1}, \ldots, \beta_{K}\right)^{\prime}$ is a $K \times 1$ vector
$x_{1} \equiv 1$: with intercept
Sample of size $\mathrm{N}:\left\{\left(x_{i}, y_{i}\right): i=1, \ldots, N\right\}$
i.i.d. random variables where x_{i} is $1 \times K$ and y_{i} is a scalar.

For each observation

$$
y_{i}=x_{i} \beta+u_{i}
$$

Consistency

Assumption OLS.1: $\quad E\left(x^{\prime} u\right)=0$

Assumption OLS.2: $\quad \operatorname{rank}\left(E x^{\prime} x\right)=K$
\rightarrow expected outer product matrix has full rank, i.e.

$$
E x^{\prime} x=\left(\begin{array}{cccc}
1 & E x_{2} & \ldots & E x_{K} \\
E x_{2} & E x_{2}^{2} & \ldots & E x_{2} x_{K} \\
\vdots & \vdots & \ddots & \vdots \\
E x_{K} & E x_{K} x_{2} & \cdots & E x_{K}^{2}
\end{array}\right) \quad \text { is invertible }
$$

Under OLS. 1 and OLS.2, the parameter vector β is identified, which is equivalent to saying that β can be written in terms of population moments (and of course be solved for!)

To see this:

$$
\begin{aligned}
y & =x \beta+u \\
x^{\prime} y & =x^{\prime} x \beta+x^{\prime} u \\
E x^{\prime} y & =E x^{\prime} x \beta+\underbrace{E x^{\prime} u}_{=0} \quad \text { by OLS. } 1 \\
\beta & =\left(E x^{\prime} x\right)^{-1} E x^{\prime} y \quad \text { by OLS. } 2
\end{aligned}
$$

Because (x, y) is observed $\rightarrow \beta$ is identified.

Analogy principle:
Choose an estimator by turning the population relationship (based on the probability distribution for the data generating process) into its sample counterpart (based on the empirical distribution for the sample).

Here, the analogy principle implies the method-of-moments: Replace the population moments $E\left(x^{\prime} y\right)$ and $E\left(x^{\prime} x\right)$ (expected values) by their corresponding sample moments (averages).

$$
\begin{aligned}
& E\left(x^{\prime} y\right) \rightarrow \frac{1}{N} \sum_{i=1}^{N} x_{i}^{\prime} y_{i} \\
& E\left(x^{\prime} x\right) \rightarrow \frac{1}{N} \sum_{i=1}^{N} x_{i}^{\prime} x_{i}
\end{aligned}
$$

$$
\begin{aligned}
\widehat{\beta} & =\left(\frac{1}{N} \sum_{i=1}^{N} x_{i}^{\prime} x_{i}\right)^{-1}\left(\frac{1}{N} \sum_{i=1}^{N} x_{i}^{\prime} y_{i}\right) \quad \text { with } y_{i}=x_{i} \beta+u_{i} \\
& =\left(\frac{1}{N} \sum_{i=1}^{N} x_{i}^{\prime} x_{i}\right)^{-1}\left(\frac{1}{N} \sum_{i=1}^{N} x_{i}^{\prime}\left(x_{i} \beta+u_{i}\right)\right) \\
& =\left(\frac{1}{N} \sum_{i=1}^{N} x_{i}^{\prime} x_{i}\right)^{-1}\left(\frac{1}{N} \sum_{i=1}^{N} x_{i}^{\prime} x_{i}\right) \beta+\left(\frac{1}{N} \sum_{i=1}^{N} x_{i}^{\prime} x_{i}\right)^{-1}\left(\frac{1}{N} \sum_{i=1}^{N} x_{i}^{\prime} u_{i}\right) \\
& =\beta+\left(\frac{1}{N} \sum_{i=1}^{N} x_{i}^{\prime} x_{i}\right)^{-1}\left(\frac{1}{N} \sum_{i=1}^{N} x_{i}^{\prime} u_{i}\right)
\end{aligned}
$$

OLS Estimator in Matrix Notation

$$
\widehat{\beta}=\left(X^{\prime} X\right)^{-1} X^{\prime} Y
$$

where $X=\left(\begin{array}{c}X_{1} \\ \vdots \\ X_{N}\end{array}\right)=\left(\begin{array}{cccc}1 & x_{21} & \ldots & x_{K 1} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{2 N} & \ldots & x_{K N}\end{array}\right)$ and $Y=\left(\begin{array}{c}y_{1} \\ \vdots \\ y_{N}\end{array}\right)$
Under OLS.2: $X^{\prime} X$ is nonsingular with probability approaching one
and plim $\left[\left(\frac{1}{N} \sum_{i=1}^{N} x_{i}^{\prime} x_{i}\right)^{-1}\right]=A^{-1}$ where $A=E\left(x^{\prime} x\right)$
(Corollary 3.1 in WO Chapter 3)
Under OLS.1: plim $\left(\frac{1}{N} \sum_{i=1}^{N} x_{i}^{\prime} u_{i}\right)=E\left(x^{\prime} u\right)=0$
By Slutzky's theorem (WO Lemma 3.4): plim $\widehat{\beta}=\beta+A^{-1} \cdot 0=\beta$

WO Theorem 4.1:

Under assumptions OLS. 1 and OLS.2, the OLS estimator $\widehat{\beta}$ obtained from a random sample following the population model (5) is consistent for β.
\rightarrow Simplicity should not undermine usefulness.
\rightarrow Whenever estimable equation is of the form then consistency follows.

Under the assumption of theorem 4.1, $x \beta$ is the linear projection of y on x.
\rightarrow OLS estimates linear projection consistently (also in cases such as y being a binary variable) and conditional expectations that are linear in parameters.

If either OLS. 1 or OLS. 2 fail, β is not identified
\rightarrow typically because x and u are correlated.
OLS estimator not necessarily unbiased under OLS. 1 and OLS. 2 (Jensen's Inequality)

$$
\begin{aligned}
& E\left[\left(\frac{1}{N} \sum_{i=1}^{N} x_{i}^{\prime} x_{i}\right)^{-1}\left(\frac{1}{N} \sum_{i=1}^{N} x_{i}^{\prime} u_{i}\right)\right] \\
& \neq E\left[\frac{1}{N} \sum_{i=1}^{N} x_{i}^{\prime} x_{i}\right]^{-1} \underbrace{E\left[\frac{1}{N} \sum_{i=1}^{N} x_{i}^{\prime} u_{i}\right]}_{=0}
\end{aligned}
$$

$\rightarrow E(u \mid x)=0$ implies $E \hat{\beta}=\beta$ (unbiasedness) because of LIE.
We do not need to assume independence
$\rightarrow \operatorname{Var}(u \mid x)$ unrestricted.

Aside: Standard derivation of the OLS estimator $\hat{\beta}$ in matrix notation
Minimizing $\sum_{i=1}^{N} u_{i}^{2}=U^{\prime} U$ sum of squared residuals
$U^{\prime}=\left(u_{1}, \ldots, u_{N}\right)$
$U=Y-X \beta$
$\min _{\{\beta\}} U^{\prime} U=(Y-X \beta)^{\prime}(Y-X \beta)=Y^{\prime} Y-\beta^{\prime} X^{\prime} Y-Y^{\prime} X \beta+\beta^{\prime} X^{\prime} X \beta$
F.O.C.: $\frac{\partial U^{\prime} U}{\partial \beta}=-X^{\prime} Y-X^{\prime} Y+2 X^{\prime} X \widehat{\beta}=0$
$\Leftrightarrow \underbrace{X^{\prime} X \widehat{\beta}=X^{\prime} Y}_{\text {normal equations }} \Rightarrow \widehat{\beta}=\left(X^{\prime} X\right)^{-1} X^{\prime} Y$
$\Leftrightarrow X^{\prime}(Y-X \widehat{\beta})=X^{\prime} \widehat{U}=0$
$\Leftrightarrow \frac{1}{N} \sum_{i=1}^{N}\left(\begin{array}{c}x_{1 i} \\ \vdots \\ x_{K i}\end{array}\right) \widehat{u}_{i}=0$
Covariance between x_{i} and u_{i} is set to zero to calculate the OLS estimator $\widehat{\beta}$. $\widehat{=}$ another way to interpret $\widehat{\beta}$ as a method-of-moment estimator (\rightarrow analogy principle).

Asymptotic distribution of the OLS estimator
Rewrite

$$
\widehat{\beta}=\beta+\left(\frac{1}{N} \sum_{i=1}^{N} x_{i}^{\prime} x_{i}\right)^{-1}\left(\frac{1}{N} \sum_{i=1}^{N} x_{i}^{\prime} u_{i}\right)
$$

as

$$
\sqrt{N}(\widehat{\beta}-\beta)=\left(\frac{1}{N} \sum_{i=1}^{N} x_{i}^{\prime} x_{i}\right)^{-1}\left(\frac{1}{\sqrt{N}} \sum_{i=1}^{N} x_{i}^{\prime} u_{i}\right)
$$

We know $\left[\left(\frac{1}{N} \sum_{i=1}^{N} x_{i}^{\prime} x_{i}\right)^{-1}-A^{-1}\right]=O_{p}(1)$

Also $\left\{\left(x_{i}^{\prime} u_{i}\right): i=1,2 \ldots\right\}$ is i.i.d. sequence with $E x_{i}^{\prime} u_{i}=0$ and we assume each element has a finite variance. Then the central limit theorem implies:

$$
\frac{1}{\sqrt{N}} \sum_{i=1}^{N} x_{i}^{\prime} u_{i} \xrightarrow{d} N(0, B)
$$

where B is a $K \times K$ matrix: $B \equiv E\left(u^{2} x^{\prime} x\right)$
Recall: $x^{\prime} x$ is the outer product of the $K \times 1$ row vector x
This implies

$$
\sqrt{N}(\widehat{\beta}-\beta)=A^{-1}\left(\frac{1}{\sqrt{N}} \sum_{i=1}^{N} x_{i}^{\prime} u_{i}\right)+o_{p}(1)
$$

Under Heteroscedasticity: $\quad \sqrt{N}(\widehat{\beta}-\beta) \stackrel{a}{\sim} N\left(0, A^{-1} B A^{-1}\right)$

Under Heteroscedasticity: $\quad \sqrt{N}(\widehat{\beta}-\beta) \stackrel{a}{\sim} N\left(0, A^{-1} B A^{-1}\right)$
Under Homoskedasticity:
Assumption OLS.3: $E\left(u^{2} x^{\prime} x\right)=\sigma^{2} E x^{\prime} x$
where $\sigma^{2}=E u^{2}=\operatorname{Var}(u)$

WO Theorem 4.2 (Asymptotic Normality of OLS):

Under Assumptions OLS. 1 - OLS.3: $\sqrt{N}(\widehat{\beta}-\beta) \stackrel{a}{\sim} N\left(0, \sigma^{2} A^{-1}\right)$
Proof: Use $B=\sigma^{2} A \quad$ q.e.d.
Practical usage:
Treat $\widehat{\beta}$ as approximately jointly normal with expected value β and Variance-Covariance-Matrix (VCOV) $V=\frac{\sigma^{2}}{N}\left[E x^{\prime} x\right]^{-1}$.

V is estimated by

$$
\widehat{\operatorname{Avar}(\widehat{\beta})}=\frac{\widehat{\sigma}^{2}}{N}\left[\frac{1}{N} \sum_{i=1}^{N} x_{i}^{\prime} x_{i}\right]^{-1}=\widehat{\sigma}^{2}\left(X^{\prime} X\right)^{-1}
$$

and

$$
\widehat{\sigma}^{2} \equiv s^{2}=\frac{1}{N-K} \sum_{i=1}^{N} \widehat{u}_{i}^{2}
$$

Heteroscedasticity

Failure of assumption OLS.3: $E\left(u^{2} x^{\prime} x\right)=\sigma^{2} E\left(x^{\prime} x\right)$ has nothing to do with consistency of OLS estimator $\widehat{\beta}$ (WO theorem 4.1) and the proof of asymptotic normality is still valid but the final asymptotic variance is different.

Two options:
Option i): Weighted Least Squares to obtain a more efficient estimator Specify a model for $\operatorname{Var}(y \mid x)$ and 'estimate' this model (e.g. by regressing \hat{u}_{i}^{2} on a flexible function of x_{i} or other covariates). This model povides an estimate (prediction) of $\operatorname{Var}\left(u_{i} \mid x_{i}\right)=\operatorname{Var}\left(y_{i} \mid x_{i}\right)$.

Then, use Weighted Least Squares (WLS) as follows:
Divide y_{i} and every element of x_{i} (including unity for the intercept) by $\sqrt{\operatorname{Var}\left(y_{i} \mid x_{i}\right)}$ and apply OLS to the weighted data
$\underbrace{\frac{y_{i}}{\sqrt{\operatorname{Var}\left(y_{i} \mid x_{i}\right)}}}_{\tilde{y}_{i}}=\underbrace{\frac{1}{\sqrt{\operatorname{Var}\left(y_{i} \mid x_{i}\right)}} x_{i}}_{\tilde{x}_{i}} \beta+\underbrace{\frac{u_{i}}{\sqrt{\operatorname{Var}\left(y_{i} \mid x_{i}\right)}}}_{\tilde{u}_{i}}$
$\operatorname{Var}\left(\tilde{u}_{i} \mid x_{i}\right)=\frac{\operatorname{Var}\left(u_{i} \mid x_{i}\right)}{\operatorname{Var}\left(y_{i} \mid x_{i}\right)} \equiv 1$

Transformed Model:

$\tilde{y}_{i}=\tilde{x}_{i} \beta+\tilde{u}_{i}$ satisfies OLS.1-OLS. 3 (homoskedastic)
\Rightarrow Special case of Generalized Least Squares which we will cover later
\Rightarrow leads to a different estimator of β which hinges on a correct specification of
$\operatorname{Var}\left(y_{i} \mid x_{i}\right)$
\Rightarrow Efficiency gain possible with correct specification of $\operatorname{Var}\left(y_{i} \mid x_{i}\right)$

Option ii): Heteroscedasticity robust inference

Often we want to stick to the consistent estimator $\widehat{\beta}$
\rightarrow because no correct specification of $\operatorname{Var}\left(y_{i} \mid x_{i}\right)$ available
\rightarrow WLS generally inconsistent for linear projections (e.g. when OLS. 1 holds but $E(u \mid x) \neq 0)$

Appropriate asymptotic variance

Without OLS. 3 the asymptotic variance of $\widehat{\beta}$ is $\operatorname{Avar}(\widehat{\beta})=\frac{1}{N} A^{-1} B A^{-1}$
A^{-1} is consistently estimated by $\left(\frac{1}{N} \sum_{i=1}^{N} x_{i}^{\prime} x_{i}\right)^{-1}=\widehat{A}^{-1}$
B is consistently estimated by $\left(\frac{1}{N} \sum_{i=1}^{N} u_{i}^{2} x_{i}^{\prime} x_{i}\right)$
We replace the unobserved error terms u_{i} by the estimated residuals $\widehat{u}_{i}=y_{i}-x_{i} \widehat{\beta}$
$\widehat{B}=\frac{1}{N} \sum_{i=1}^{N} \widehat{u}_{i}^{2} x_{i}^{\prime} x_{i} \xrightarrow{p} B$

Heteroscedasticity-robust variance estimator
$\widehat{A v a r}(\widehat{\beta})=\frac{1}{N} \widehat{A}^{-1} \widehat{B} \widehat{A}^{-1}=\left(X^{\prime} X\right)^{-1}\left(\sum_{i=1}^{N} \widehat{u}_{i}^{2} x_{i}^{\prime} x_{i}\right)\left(X^{\prime} X\right)^{-1}$
often called White standard errors, White-Eicker standard error, or Huber standard errors.

Typically with degrees-of-freedom adjustment to improve finite sample properties.
$\widehat{\operatorname{Avar}}(\widehat{\beta})=\frac{1}{N-K} \widehat{A}^{-1} \widehat{B} \widehat{A}^{-1}=\left(X^{\prime} X\right)^{-1}\left(\frac{N}{N-K} \sum_{i=1}^{N} \widehat{u}_{i}^{2} x_{i}^{\prime} x_{i}\right)\left(X^{\prime} X\right)^{-1}$
t-statistics, χ^{2}-statistics (but not F-statistics based on comparison of sums of squared residuals in restricted and unrestricted model!) can be used in the usual way.

