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0. Introductory Material 0.1 Matrix Algebra

0.1. Matrix Algebra
Reference: Greene (2008) App. A

Matrix: Rectangular array of numbers

A =

 a11 a12 · · · a1k
...

. . .
...

an1 an2 · · · ank

 n × k matrix

Transpose:

A′ =

 a11 a21 · · · an1
...

. . .
...

a1k a2k · · · ank

 k × n matrix

(A + B)′ = A′ + B′
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0. Introductory Material 0.1 Matrix Algebra

Inner Product:
for a′ = (a1, . . . , an) and b′ = (b1, . . . , bn)

a′b = a1b1 + . . .+ anbn = b′a

Matrix Multiplication:

C︸︷︷︸
n×m

= A︸︷︷︸
n×k

B︸︷︷︸
k×m

⇒ cik = ai·︸︷︷︸
↗

′ b·k︸︷︷︸
↖

ith row of A kth column of B

Identity matrix for n ∈ N:

In =


1 0 · · · 0

0
. . . . . .

...
...

. . . . . . 0
0 · · · 0 1

 InA = A
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0. Introductory Material 0.1 Matrix Algebra

Rules for Matrix Multiplication:

(AB)C = A(BC)
A(B + C) = AB + AC

(AB)′ = B′A′

Example: n data points for 1× k vector xi = (x1i , . . . , xki) (WO convention)

X =

 x11 · · · xk1
. . . . . .
x1n · · · xkn

 n rows =̂ observations
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0. Introductory Material 0.1 Matrix Algebra

Matrix product:

X ′X =

 x11 · · · x1n
. . . . . .
xk1 · · · xkn

 ·
 x11 · · · xk1

. . . . . .
x1n · · · xkn



=


∑n

i=1 x1i 2 · · ·
∑n

i=1 x1ixki
...

. . .
...∑n

i=1 xkix1i · · ·
∑n

i=1 xki 2



=
n∑

i=1

 x1i
...

xki

 (x1i , . . . , xki) =
n∑

i=1
x ′i xi ← summation notation
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0. Introductory Material 0.1 Matrix Algebra

Let jn =

 1
...
1

 be a n × 1 vector of ones, then jnj ′n =

 1 · · · 1
...

...
1 · · · 1

 ,

and x =

 x1
...

xn

 n × 1 vector, then

1
n jnj ′nx = 1

n

 1 · · · 1
...

...
1 · · · 1


 x1

...
xn

 = 1
n


∑

xi
...∑
xi

 =

 x̄
...
x̄

 = jnx̄

where x̄ = 1
n
∑n

i=1 xi sample average.
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0. Introductory Material 0.1 Matrix Algebra

Deviations from sample average

x − jnx̄ =

 x1 − x̄
...

xn − x̄

 = x − 1
n jnj ′nx =

 In︸︷︷︸
identity matrix

−1
n jnj ′n

 x = M0x

where M0 = I − 1
n jnj ′n is the matrix generating deviations from the mean

(example of a projection matrix)

with

M0jn =
(

In −
1
n jnj ′n

)
jn = jn −

1
n jnj ′njn = jn − jn = 0

since 1
n j ′njn = 1

nn = 1 .
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0. Introductory Material 0.1 Matrix Algebra

M0 is an example of a so called idempotent matrix, i.e. a square matrix M with
M2 = M M = M.

When M is symmetric, it follows that M ′M = M.

Verify:

M0M0 =
(

I − 1
n jnj ′n

)(
I − 1

n jnj ′n
)

= I − 1
n jnj ′n −

1
n jnj ′n + 1

n2 jn j ′njn︸︷︷︸
n

j ′n

= I − 1
n jnj ′n = M0
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0. Introductory Material 0.1 Matrix Algebra

Sum of squared deviations:

n∑
i=1

(xi − x̄)2 = (M0x)′(M0x) = x ′M0′M0x = x ′M0x =
n∑

i=1
xi (xi − x̄)

Product of deviations of xi and yi :

n∑
i=1

(xi − x̄) (yi − ȳ) = (M0x)′(M0y) = x ′M0′M0y

= x ′M0y
=

∑
xi(yi − ȳ)

=
∑

(xi − x̄) yi
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0. Introductory Material 0.1 Matrix Algebra

Empirical Variance-Covariance-Matrix of x , y

Cov [(x , y)] =
( 1

n
∑

(xi − x̄)2 1
n
∑

(xi − x̄)(yi − ȳ)
1
n
∑

(xi − x̄)(yi − ȳ) 1
n
∑

(yi − ȳ)2
)

= 1
n

(
x ′M0x x ′M0y
y ′M0x y ′M0y

)

= 1
n

(
x ′M0

y ′M0

)
(M0x M0y)

= 1
n

(
x ′
y ′
)

M0 (x y)
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0. Introductory Material 0.1 Matrix Algebra

Rank of a matrix A

= maximum number of linearly independent columns

= dimension of vector space spanned by column vectors

= maximum number of linearly independent rows

= dimension of vector space spanned by row vectors

A: n × k matrix → rank(A) ≤ min(n, k)
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0. Introductory Material 0.1 Matrix Algebra

Properties:

i) rank (AB) ≤ min (rank (A), rank(B))

ii) rank (A) = rank (A′A) = rank (AA′)

Square k × k matrix A has full rank if rank(A) = k.

n × k matrix A with n ≥ k has full column rank if rank(A) = k.

n × k matrix A with n ≤ k has full row rank if rank(A) = n.
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0. Introductory Material 0.1 Matrix Algebra

Inverse of a square matrix:

Let A be a k × k matrix

Inverse A−1 defined by AA−1 = I or equivalently A−1A = I

A−1 exists, i.e. A is invertible (or nonsingular) ⇔ A has full rank.

Example: Diagonal matrix

A :=


a1 0 · · · 0

0 a2
. . .

...
...

. . . . . . 0
0 · · · 0 ak

 = diag(a1, . . . , ak)⇒ A−1 =


1
a1 0 · · · 0

0 1
a2

. . .
...

...
. . . . . . 0

0 · · · 0 1
ak



Inverse A−1 exists if all aj 6= 0 for j = 1, . . . , k.
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0. Introductory Material 0.1 Matrix Algebra

Properties:

i) (A−1)−1 = A

ii) (A−1)′ = (A′)−1

iii) If A is symmetric, then A−1 is symmetric

iv) (AB)−1 = B−1A−1

v) A =
(

A11 0
0 A22

)
⇔ A−1 =

(
A11
−1 0
0 A22

−1

)
block diagonal

vi) Nonsingular matrix B → rank(AB) = rank(A)
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0. Introductory Material 0.1 Matrix Algebra

Eigenvalues (Characteristic Roots) and Eigenvectors:

Eigenvalues λ (scalars) and nonzero eigenvectors c are the solution of Ac = λc
for square k × k matrix A.

Ac = λc ⇔ (A− λIn)c = 0

We are looking for the nontrivial solutions c 6= 0 which can be found by solving
the characteristic equation involving the determinant

det(A− λIn) = |A− λIn| = 0

for λ and then finding some c 6= 0 for which Ac = λc (note c is not unique!)
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0. Introductory Material 0.1 Matrix Algebra

Properties:

i) A has full rank (A−1 exists) is equivalent to all eigenvalues are nonzero
(λ 6= 0)

ii) If A−1 exists, then its eigenvalues are the inverses of the eigenvalues of A

iii)

Diagonal matrix

A =


a1 0 · · · 0

0 a2
. . .

...
...

. . . . . . 0
0 · · · 0 ak


Eigenvalues λ1 = a1, . . . , λk = ak

Eigenvectors


1
0
0
. . .
0

 ,


0
1
0
. . .
0

 , . . . ,


0
0
. . .
0
1


iv) det(A) = |A| =

∏k
j=1 λj
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0. Introductory Material 0.1 Matrix Algebra

Definition:

A is called positive definite, if all eigenvalues are strictly positive (λj > 0)

A is called positive semidefinite, if all eigenvalues are nonnegative (λj ≥ 0)

A is called negative definite, if all eigenvalues are strictly negative (λj < 0)

A is called negative semidefinite, if all eigenvalues are nonpositive (λj ≤ 0)
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0. Introductory Material 0.1 Matrix Algebra

Spectral decomposition of a symmetric matrix:

A k × k symmetric matrix A has k distinct orthogonal eigenvectors c1, c2, . . . , ck
and k not necessarily distinct, real eigenvalues λ1, . . . , λk .

We have Acj = λjcj which is summarized in AC = CΛ where C = [c1 · · · ck ]
eigenvectors as columns

and Λ =

 λ1 · · · 0
...

. . .
...

0 · · · λk

 diagonal matrix with eigenvalues.

Orthogonality of eigenvectors: c ′i cj = 0 for i 6= j and normalization c ′i ci = 1

CC ′ = C ′C = In and C ′ = C−1

This implies:

Diagonalization C ′AC = C ′CΛ = Λ

Spectral Decomposition A = CC ′ACC ′ = CΛC ′ =
∑k

j=1 λj cjc ′j
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0. Introductory Material 0.1 Matrix Algebra

The Generalized Inverse of a Matrix

Case when A is not invertible because A is not a square matrix or A is not
singular!

Definition: A generalized inverse of A is another matrix A+ that satisfies

1. AA+A = A
2. A+AA+ = A+

3. A+A is symmetric
4. AA+ is symmetric

Note:

A unique matrix that satisfies 1.–4. is called the Moore-Penrose inverse

If A−1 exists, then A+ = A−1

Two cases: Case A (no square matrix k < n) and Case B (symmetric square
matrix)
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0. Introductory Material 0.1 Matrix Algebra

Case A: Let A be an n × k matrix with k < n and rank(A) = r ≤ k

1.) r = k ⇔ A does have full column rank ⇔ (A′A)−1 exists
Moore-Penrose inverse is

A+ = (A′A)−1A′

Verify 1.–4.:

1. AA+A = A(A′A)−1A′A = A
2. A+AA+ = (A′A)−1A′AA+ = A+

3. A+A = (A′A)−1A′A = I symmetric
4. (A(A′A)−1A′)′ = A′′(A′A)−1A′ = A(A′A)−1A′ symmetric

2.) rank(A) = r < k
Use r nonzero characteristic roots of A′A and associated eigenvectors in matrix
C1, then

A′A = C1Λ−11 C ′1 spectral decompose
The Moore-Penrose inverse is

A+ = C1Λ−11 C ′1A′

where r × r diagonal matrix Λ1 = diag(λ1, . . . , λ) of nonzero eigenvalues.
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0. Introductory Material 0.1 Matrix Algebra

Case B: If A is symmetric (n = k), then

A+ = C1Λ−11 C ′1

where Λ1 is a diagonal matrix containing the nonzero eigenvalues of A and C1 the
associated orthonormalized eigenvectors.
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0. Introductory Material 0.1 Matrix Algebra

Quadratic Form: x ′Ax

A positive definite ⇐⇒ x ′Ax > 0 for all x 6= 0

A positive semidefinite ⇐⇒ x ′Ax ≥ 0 for all x 6= 0

A negative definite ⇐⇒ x ′Ax < 0 for all x 6= 0

A negative semidefinite ⇐⇒ x ′Ax ≤ 0 for all x 6= 0
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0. Introductory Material 0.1 Matrix Algebra

Example:

x , y random variables with variance-covariance matrix

V =
(

Var(x) Cov(x , y)
Cov(x , y) Var(y)

)

V is always positive semidefinite.

If x and y are not perfectly correlated, then V is positive definite.

If x , y are jointly normally distributed
(

x
y

)
∼ N

[ (
µx
µy

)
,V

]
then quadratic form

(
x y

)
V−1

(
x
y

)
∼ χ22-distributed, if V has full

rank.

V−1: multivariate standardization.

Since V is positive definite also V−1 is positive definite and therefore(
x y

)
V−1

(
x
y

)
> 0 unless

(
x
y

)
= 0.
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0. Introductory Material 0.1 Matrix Algebra

Trace of a matrix:

Square k × k matrix A

tr(A) =
k∑

j=1
ajj sum of diagonal elements

Properties:

i) tr(cA) = c · tr(A) for scalar c

ii) tr(A′) = tr(A)

iii) tr(A + B) = tr(A) + tr(B)

iv) tr(AB) = tr(BA)

v) tr(A) =
∑k

j=1 λj trace of matrix equals the sum of its eigenvalues
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0. Introductory Material 0.1 Matrix Algebra

Kronecker Product:

For n × k matrix A, l ×m matrix B

A⊗ B︸ ︷︷ ︸
(nl)×(km) matrix

=

 a11 · · · a1k
...

. . .
...

an1 · · · ank

⊗ B

=


a11B a12B · · · a1kB
a21B a22B · · · a2kB
...

...
. . .

...
an1B an2B · · · ankB


︸ ︷︷ ︸

k·m columns

n · l rows

Properties:
i) (A⊗ B)−1 = A−1 ⊗ B−1

ii) (A⊗ B)′ = A′ ⊗ B′

iii) tr(A⊗ B) = tr(A) · tr(B)

iv) (A⊗ B)(C ⊗ D) = AC ⊗ BD if AC , BD is possible
Prof. Bernd Fitzenberger, Ph.D. Advanced Econometrics HU Berlin - Summer 2019 27 / 425



0. Introductory Material 0.1 Matrix Algebra

Calculus and Matrix Algebra:

First and second order Taylor series approximation
y scalar

x = (x1, . . . , xn)′ n × 1 vector

y = f (x) twice differentiable

Gradient:

∇xy := ∂y
∂x︸︷︷︸

n×1 vector

= ∂f (x)
∂x =


∂y
∂x1...
∂y
∂xn

 =

 f1
...
fn

 column vector as
convention

Hessian:

H = ∂2y
∂x∂x ′ =


∂2y
∂x21

∂2y
∂x1∂x2 · · · ∂2y

∂x1∂xn
∂2y
∂x2∂x1

∂2y
∂x22

· · · ∂2y
∂x2∂xn

...
...

. . .
...

∂2y
∂xn∂x1

∂2y
∂x2∂xn · · · ∂2y

∂x2n

 = [fij ]
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0. Introductory Material 0.1 Matrix Algebra

First order Taylor series approximation in x = (x10, . . . , xn0)

y = f (x) ≈ f (x0) +
n∑

i=1
fi(x0)(xi − xi0) = f (x0) +

(
∂y
∂x

∣∣∣∣
x0

)′
(x − x0)

Second order approximation

y = f (x) ≈ f (x0) +
n∑

i=1
fi(x0)(xi − xi0) + 1

2

n∑
i=1

n∑
j=1

fij(x0) · (xi − xi0) · (xj − xj0)

= f (x0) +
(
∂y
∂x

∣∣∣∣
x0

)′
(x − x0)︸ ︷︷ ︸

inner product

+ 1
2 (x − x0)′H(x0)(x − x0)︸ ︷︷ ︸

quadratic form
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0. Introductory Material 0.1 Matrix Algebra

Differentiation of inner products and quadratic forms:

i) y = a′x =
∑n

i=1 aixi = x ′a

∂y
∂x = ∂a′x

∂x =

 a1
...

an

 = a

ii) z =

 z1
...

zn

 = Ax =


∑k

i=1 a1i xi
...∑k

i=1 ani xi


A n × k matrix, x k × 1 vector, z n × 1 vector

∂z
∂x =

(
∂z1
∂x , . . . ,

∂zn
∂x

)
= A′ ← columnwise gradients of z1, . . . , zn
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0. Introductory Material 0.1 Matrix Algebra

iii) y = x ′Ax =
∑n

i=1
∑n

j=1 xixjaij quadratic form

a) ∂y
∂x = (A + A′)x
If A is symmetric (A = A′), then ∂y

∂x = 2Ax

b) ∂y
∂A = xx ′ =

 x2
1 · · · x1xn
...

. . .
...

x1xn · · · x2
n

 outer product, n × n matrix
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0. Introductory Material 0.1 Matrix Algebra

Expected values and variances:

Let
a be a k × 1 vector of constants

A a n × k matrix of constants, and

x a k × 1 vector of random variables
then

E a′x = a′(E x) =
k∑

i=1

ai Exi

E Ax = A(E x) =

 ∑k
i=1 a1i Exi
. . .∑k

i=1 a1i Exi


Var(a′x) = a′Var(x)a =

k∑
i=1

k∑
j=1

aiajCov(xi , xj) ≥ 0 ← quadratic form

Var(x) must be positive semidefinite

Var(Ax) = AVar(x)A′
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0. Introductory Material 0.2 Statistics and Probability Theory

0.2 Statistics and Probability Theory
Reference: WO 2+3, Greene App. B-D

Random Variable (RV) x taking values xi

Probability distribution: f (xi) = Prob(x = xi) for discrete RV

i) 0 ≤ Prob(x = xi) ≤ 1

ii)
∑

xi f (xi) = 1

Continuous RV : Density f (xi) ≥ 0

i) Prob(a ≤ x ≤ b) =
b∫
a

f (t)dt

ii)
∞∫
−∞

f (t)dt = 1
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0. Introductory Material 0.2 Statistics and Probability Theory

Cumulative Distribution Function CDF

Prob(x ≤ xi) = F (xi) =
{

Σt≤xi f (t) : discrete∫ xi
−∞ f (t)dt : continuous

For continuous case: f (xi) = dF (xi )
dxi

Expected value (Mean):

µ ≡ Ex =
{ ∑

xi xi f (xi) : discrete∫∞
−∞ tf (t)dt : continuous

Variance:
σ2 ≡ Var(x) = E [(x − µ)]2

σ2 =
{ ∑

xi (xi − µ)2f (xi) : discrete∫∞
−∞(t − µ)2f (t)dt : continuous

Standard deviation:
σ =
√
σ2 =

√
Var(x)
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0. Introductory Material 0.2 Statistics and Probability Theory

Chebychev‘s Inequality:

Prob(|x − µ| ≥ δ) ≤ σ2

δ2

Eg(x) =
{ ∑

xi g(xi)f (xi) : discrete∫∞
−∞ g(t)f (t)dt : continuous

In general: Eg(x) 6= g(E (x))

Jensen‘s inequality:

Eg(x) ≤ g(E (x)) for g ′′(x) < 0
concave

Eg(x) ≥ g(E (x)) for g ′′(x) > 0
convex

E.g. E log(x) ≤ log(E (x))
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0. Introductory Material 0.2 Statistics and Probability Theory

Normal distribution

x ∼ N(µ, σ2) with density f (xi) = 1√
2πσ

e−
(xi−µ)2

2σ2

Ex = µ and Var(x) = σ2

Standard Normal z ∼ N(0, 1)

Define density : φ(zi) = 1√
2π

e−
z2i
2

F (zi) = Φ(zi) =
∫ zi

−∞
φ(t)dt =

∫ zi

−∞

1√
2π

e− t2
2 dt

Fx (xi) = Prob(x ≤ xi) = Prob
(

x − µ
σ
≤ xi − µ

σ

)
= Prob

(
z ≤ xi − µ

σ

)
= Φ

(
xi − µ
σ

)
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0. Introductory Material 0.2 Statistics and Probability Theory

Skewness: S ≡ E [(x − µ)3] = 0 for normal distribution

Kurtosis: E [(x − µ)4] = 3σ4 for normal distribution

Excess Kurtosis (relative to normal):

E [(x − µ)4]
σ4

− 3 = 0 for normal distribution
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0. Introductory Material 0.2 Statistics and Probability Theory

Chi-squared– (χ2) , t– and F–distributions

χ2–distribution: z1, ....., zn independent N(0, 1)

y =
n∑

j=1
z2j ∼ χ2n–distributed with n degrees of freedom
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0. Introductory Material 0.2 Statistics and Probability Theory

F- Distribution:

y1 ∼ χ2n1 , y2 ∼ χ2n2
y1 and y2 independent

F (n1, n2) = y1/n1
y2/n2 ∼ F–distributed with n1 degrees of freedom in numerator and

n2 degrees of freedom in denominator

-

6

stylized shape of probability density function of χ2n or F (n1, n2)
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0. Introductory Material 0.2 Statistics and Probability Theory

t–distribution:

t = z√ y
n
∼ tn distributed (t-distribution with n degrees of freedom)

z ∼ N(0, 1) , y ∼ χ2n , and y , z independent

-

6

tn ∼ fn(zi) → φ(zi) for n→∞

tzi
Note: t2 ∼ F (1, n)
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0. Introductory Material 0.2 Statistics and Probability Theory

Joint distribution: x , y RV

Prob(a ≤ x ≤ b, c ≤ y ≤ d) =
{ ∑

a≤xi≤b
∑

c≤yj≤d f (xi , yj) : discrete∫ b
a
∫ d
c f (t, s) ds dt : continuous

Probability density function: f (t, s) ≥ 0∑
xi

∑
yj

f (xi , yj) = 1 discrete

∫ ∞
−∞

∫ ∞
−∞

f (t, s) ds dt = 1 continuous

Distribution function:

F (xi , yj) = Prob(x ≤ xi , y ≤ yj) =
{ ∑

x≤xi
∑

y≤yj f (xi , yi) : discrete∫ xi
−∞

∫ yj
−∞ f (t, s)ds dt : continuous
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Expected value of function of (x , y):

E g(x , y) =
{ ∑∑

g(xi , yj)f (xi , yj) : discrete∫∞
−∞

∫∞
−∞ g(t, s)f (t, s) ds dt : continuous

Covariance between x and y :

σxy ≡ Cov(x , y) = E [(x − Ex)(y − Ey)] = E xy − (Ex)(Ey)

x , y independent :

f (xi , yi) = f (xi)f (yi)
⇒
:

Cov(x , y) = 0

Correlation:
rxy = Cov(x , y)√

Var(x) · Var(y)
= σxy
σxσy
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Rules:

a, b, c, d = constants

E (ax + by + c) = a Ex + b Ey + c
Var(ax + by + c) = a2Var(x) + b2Var(y) + 2abCov(x , y)

Cov(ax + by , cx + dy) = acVar(x) + bdVar(y) + (ad + bc)Cov(x , y)
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Conditional distribution:

f (y = yj |x = xi) ≡ f (yj |xi) = f (xi , yj)
f (xi)

Conditional expectation:

E (y |x = xi) =
∫ ∞
−∞

sf (y = s|xi)
≡f (s|xi )

ds

Conditional variance:

Var(y |x = xi) = E [(y − E (y |x = xi))2|x = xi ]

=
∫ ∞
−∞

(s − E (y |x = xi))2 f (s|xi)ds
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0.3 Asymptotics

Motivation:

For many econometric problems, the analytical properties of the estimator can
only be determined asymptotically.
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Probability Limit and Consistency of an Estimator

Definition 1:

The probability limit θ of a sequence of random variables θ̂N results as the limit
for N going to infinity such that the probability that the absolute difference
between θ̂N and θ is less than some small positive ε goes to one. Mathematically
this is expressed by

lim
N→∞

P{|θ̂N − θ| < ε} = 1 for every ε > 0

and abbreviated by plim
N→∞

θ̂N = θ (or θ̂N P→ θ).

Definition 2:

An estimator θ̂N for the true parameter value θ is (weakly) consistent, if

plim
N→∞

θ̂N = θ .
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Remarks:

1. The sample mean ȲN of a sequence of random variables Yi with expected
value E (Yi) = µY is under very general conditions a consistent estimator of µY ,
d.h. plim ȲN = µY .

2. For two sequences of random variables θ̂1,N and θ̂2,N it follows:

plim (θ̂1,N + θ̂2,N) = plim θ̂1,N + plim θ̂2,N

plim (θ̂1,N · θ̂2,N) = plim θ̂1,N · plim θ̂2,N

plim
(
θ̂1,N

θ̂2,N

)
= plim θ̂1,N

plim θ̂2,N

Slutzky’s Theorem:
plim g

(
θ̂N

)
= g

(
plim θ̂N

)
at continuity points of g(.)

Prof. Bernd Fitzenberger, Ph.D. Advanced Econometrics HU Berlin - Summer 2019 47 / 425



0. Introductory Material 0.3 Asymptotics

Convergence and Asymptotic Orders of Magnitude

Motivation:

For many semiparametric problems it is important to determine the speed of
convergence, i.e. the asymptotic order of magnitude.

Definition 1 (Fixed Sequences):

The sequence {XN} of real numbers is said to be at most of order Nk and is
denoted by

XN = O(Nk) if lim
N→∞

XN
Nk = c

for some constant c .

Definition 2 (Fixed Sequences):

The sequence {XN} of real numbers is said to be of smaller order than Nk and is
denoted by

XN = o(Nk) if lim
N→∞

XN
Nk = 0 .
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Definition 3 (Stochastic Sequences):

The sequence of random variables {XN} is said to be at most of order Nk and is
denoted by

XN = Op(Nk)

if for every ε > 0 there exist numbers C and Ñ such that

P
{
|XN |
Nk > C

}
< ε for all N > Ñ.

Definition 4 (Stochastic Sequences):

The sequence of random variables {XN} is said to be of smaller order than Nk

and is denoted by

XN = op(Nk) if plim
N→∞

XN
Nk = 0 .
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Chebychev’s Law of Large Numbers:

Let the random variables {Xi} be uncorrelated with EXi = µi and
Var(Xi) = σ2i <∞ in a sample of size N (i = 1, . . . ,N). Then

X̄N − µ̄N P→ 0

if σ̄2 → 0, as N goes to infinity where X̄N = 1
N
∑N

i=1 Xi denotes the sample mean,
µ̄N = 1

N
∑N

i=1 µi and σ̄2 = 1
N2

∑N
i=1 σ

2
i = 1

N

(
1
N
∑N

i=1 σ
2
i

)
.

Alternative Representation:
Under the above assumptions it follows that

(
X̄N − µ̄N

)
= op(1)

Special Case: If µi = µ then plimX̄N = µ .
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Lindberg–Levy’s Central Limit Theorem:

Let {Xi} be a sequence of i.i.d. random variables such that EXi = µ and
Var(Xi) = σ2 <∞ in a sample of size N (i = 1, . . . ,N). Then

√
N (X̄N − µ)

σ
d→ N (0, 1) (i.e. X̄N is

√
N − consistent).

Implication:
Under the above assumptions it follows that

(
X̄N − µ

)
= Op(N−1/2).
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Liapounov’s Central Limit Theorem:

Let {XN,i} be a sequence of independently distributed random variables with
EXN,i = µN,i and Var(XN,i) = σ2N,i <∞ in a sample of size N (i = 1, . . . ,N).

Let E |XN,i |2+δ <∞ for some δ > 0. If limN→∞
∑N

i=1
E |XN,i−µN,i |2+δ

σ̃2+δ
N

= 0 , then∑N
i=1

(XN,i−µN,i )
σ̃N

d→ N (0, 1) for σ̃2N =
∑N

i=1 σ
2
N,i .

Implication:

Under the above assumptions it follows that
∑N

i=1
(XN,i−µN,i )
σ̃N

= Op(1)
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1. Review: Linear Regression Model for Cross-Sectional
Data

Section Outline
0. Introductory Material

1. Review Linear Regression Model for Cross-Sectional Data
1.1 Preliminaries: Conditional Expectations, Causal Analysis, Linear
Projections
1.2 OLS and Asymptotic Properties
1.3 Instrumental Variable Regression

2. System Estimation, Linear Panel Data Models

3. Nonlinear Least Squares and Maximum Likelihood

4. Binary Response Models and Limited Dependent Variables

5. Linear Quantile Regression
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1.1 Preliminaries: Conditional Expectations, Causal
Analysis, Linear Projections

y explained/dependent/response variable

x = (x1, ...., xk) explanatory / independent variables, regressors, control
variables, covariates (x is observed)

Structural conditional expectation (CE): E (y |w , c)

Based on random sample of (y ,w , c) we can estimate the effect of w on y
holding c constant.

Prof. Bernd Fitzenberger, Ph.D. Advanced Econometrics HU Berlin - Summer 2019 54 / 425



1. Review Linear Regression Model for Cross-Sectional Data 1.1 Preliminaries: Conditional Expectations, Causal Analysis, Linear Projections

Complications arise when there is no random sample of (y ,w , c)

→ measurement error

→ simultaneous determination of y ,w , c

→ some variables we would like to control for (elements of c) cannot be
observed

⇒ CE of interest involves data for which the econometrician cannot collect data
or requires an experiment that cannot be carried out.

Identification assumptions:

→ Can recover structural CE of interest
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1. Review Linear Regression Model for Cross-Sectional Data 1.1 Preliminaries: Conditional Expectations, Causal Analysis, Linear Projections

Definition CE:

y (random variable) explained variable, x ≡ (x1, x2, ..., xk) (1× k)-vector of
explanatory variables, E (|y |) <∞

then function µ : Rk → R

(CE ) E (y |x1, x2, ..., xk) = µ(x1, x2, ..., xk) or E (y |x) = µ(x)

Distinguish

E (y |x): random variable because x is a random variable

from

E (y |x = x0): conditional expectation when x takes specific value x0

→ Distinction most of the time not important
→ Use E (y |x) as short hand notation
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1. Review Linear Regression Model for Cross-Sectional Data 1.1 Preliminaries: Conditional Expectations, Causal Analysis, Linear Projections

Parametric model for E (y |x) where µ(x) depends on a finite set of unknown
parameters

Examples:

(i) E (y |x1, x2) = β0 + β1x1 + β2x2

(ii) E (y |x1, x2) = β0 + β1x1 + β2x2 + β3x2
2 + β4x1x2

(iii) E (y |x1, x2) = exp[β0 + β1 log(x1) + β2x2] with y ≥ 0, x1 > 0

(i) is linear in parameters and explanatory variables

(ii) is linear in parameters and nonlinear in explanatory variables

(iii) is nonlinear in both
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1. Review Linear Regression Model for Cross-Sectional Data 1.1 Preliminaries: Conditional Expectations, Causal Analysis, Linear Projections

Partial Effect:

Continuous xi , and differentiable µ

∆E (y |x) = ∂µ

∂xj
∆xj holding x1, ..., xj−1, xj+1, ..., xk fixed

=̂ ceteris paribus effect for propertly specified population model

Discrete xj : xj,0 → xj,1

∆E (y |x) = E (y |x1, ..., xj−1, xj,1, xj+1, ..., xk)−E (y |x1, ..., xj−1, xj,0, xj+1, ..., xk)

Examples:

ad i) ∂E(y |x)
∂x1 = β1 = constant

ad ii) ∂E(y |x)
∂x1 = β1 + β4x2 , i.e. partial effect of x1 varies with x2

ad iii) ∂E(y |x)
∂x1 = exp[β0 + β1 log(x1) + β2x2]β1x1 → highly nonlinear
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1. Review Linear Regression Model for Cross-Sectional Data 1.1 Preliminaries: Conditional Expectations, Causal Analysis, Linear Projections

(Partial) Elasticity (only continuous case)

∂E (y |x)
∂xj

· xj
E (y |x) = ∂ log E (y |x)

∂ log xj

(Partial) Semielasticity:

∂E (y |x)
∂xj

· 1
E (y |x) = ∂ log E (y |x)

∂xj
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1. Review Linear Regression Model for Cross-Sectional Data 1.1 Preliminaries: Conditional Expectations, Causal Analysis, Linear Projections

Average Partial Effect (APE, ’integrate out distribution of x ’):

Ex {∆E (y |x)} = Ex

{
∂µ

∂xi
∆xj

}
Examples:

ad i) APE= β1

ad ii) APE= β1 + β4Ex2

ad iii) APE= E
{

exp[β0 + β1 log(x1) + β2x2]β1x1
}

APE’s in cases ii and iii can be estimated by sample averages of the expressions
evaluated at the sample estimates of the coefficients β̂
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Error form of models of conditional expectations

We can always write

(1) y = E (y |x) + u where u = y − E (y |x)

and it follows by definition:

(2) E (u|x) = 0

Implications:

(i) E (u) = 0

(ii) u is uncorrelated with any function of x1, ..., xk
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Implication (i) and (ii) follows from the law of iterated expectations

LIE : E (y |x) = E [E (y |w)|x ] if x = f (w)

i.e. {Information set incorporated in x} ⊆ {Information set incorporated in w}

i) E (y |x) = E [E (y |w)|x ]
→integrating out w wrt x :

∫
yf (y |x)dy =

∫
[
∫

yf (y |w , x)dy ]f (w |x)dw

ii) E (y |x) = E [E (y |x)|w ]
Knowing w implies knowing x
→ Routinely used in the course

’The smaller information set always dominates’
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Therefore
E (u) = Ex [E (u|x)] = Ex0 = 0

which gives implication (i) and

E (u|f (x)) = E [E (u|x)|f (x)] = E [0|f (x)] = 0

which gives implication (ii).
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Example:
y = β0 + β1x1 + β2x2 + u

with
E (u|x1, x2) = 0

implies:

E (u) = 0,Cov(x1, u) = 0,Cov(x2, u) = 0 and u is also uncorrelated with
x2
1 , x2

2 , x1x2, exp(x1) etc.

i.e. the functional form of E (y |x) is properly specified.

We have β2 = ∂E(y |x1,x2)
∂x2 because E (u|x1, x2) = 0, i.e. u is uncorrelated with any

function of x2. Thus β2 describes the mean impact of x2 on y .
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E (u|x1, x2) = 0 sometimes called mean independence

We have:

Independence ⇒ Mean Independence ⇒ Uncorrelatedness
: :

Mean independence defines a Conditional Expectation

Uncorrelatedness defines a Linear Projection

Prof. Bernd Fitzenberger, Ph.D. Advanced Econometrics HU Berlin - Summer 2019 65 / 425



1. Review Linear Regression Model for Cross-Sectional Data 1.1 Preliminaries: Conditional Expectations, Causal Analysis, Linear Projections

Different nested sets of conditioning variables

Important special case: w = (x , z)

E (y |x)︸ ︷︷ ︸
µ1(x)

= E [E (y |x , z)︸ ︷︷ ︸
µ2(x ,z)

|x ]

µ1︸︷︷︸
observed

= E [µ2(x , z︸︷︷︸
unobserved

)|x ]

Identification problem: Can we link the estimable µ1(x) to the structural µ2(x , z)
which is the causal relationship of interest?
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x , z︸︷︷︸
more information

versus x︸︷︷︸
less information

µ1(x , z) = E (y |x , z)
µ2(x) = E (y |x)

By LIE, we have (’integrating z out’)

µ2(x) = E (y |x) = E [E (y |x , z)|x ] = E [µ1(x , z)|x ]

→ allows to study effects of omitted regressors/unobserved components z on
the relationship between y and x .
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Example: Wage Equation
E (wage|educ, exper)

= β0 + β1educ + β2exper + β3exper2 + β4educ · exper

= E (wage|educ, exper , exper2, educ · exper)

by LIE, i.e. it is redundant to condition on exper2 and educ · exper .
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Conditional Variance

The conditional variance of y given x is defined as

Var(y |x) = E (u2|x) ≡ σ2(x) ≡ E [(y − E (y |x))2|x ]
= E (y2|x)− [E (y |x)]2

Note: σ2(x) is a random variable when x is viewed as a random vector.

Properties:
Var(a(x)y + b(x)|x) = [a(x)]2Var(y |x)

Decomposition of variance (corresponds to LIE)

Var(y) = E [Var(y |x)] + Var(E (y |x))
= E [σ2(x)]︸ ︷︷ ︸

average conditional variance

+ Var(µ(x))︸ ︷︷ ︸
variance of condtional expectation

where µ(x) = E (y |x).
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Extension (further conditioning variable z)

Var(y |x) = E [Var(y |x , z)|x ] + Var [E (y |x , z)|x ]

Consequently:
E [Var(y |x)] ≥ E [Var(y |x , z)]

→ further conditioning variables z reduce the average conditional variances.
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Linear Projections

Even though a structural CE (conditional expectation) E (y |x) is typically not a
linear function of x , it is possible to use the linear projection of y on the random
variables (x1, ..., xk) =: x

L(y |1, x1, ..., xk)︸ ︷︷ ︸
(including an intercept)

= L(y |1, x) = β0 + β1x1 + ...+ βkxk

= β0 + xβ

where β := [Var(x)]−1Cov(x , y)
β0 = E (y)− E (x)β = E (y)− β1E (x1)− ...− βkE (xk)
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Variance–Covariance matrix is the (k × k)-matrix

Var(x) =


Var(x1) . . . Cov(xk , x1)

Cov(x2, x1)
. . .

...
Cov(xk , x1) . . . Var(xk)

 = E [(x − E (x))(x − E (x))′]

Note:

x − E (x) =

 x1 − E (x1)
...

xk − E (xk)


and

(x − E (x))′ = (x1 − E (x1), ..., xk − E (xk))

Cov(x , y) =

 Cov(x1, y)
...

Cov(xk , y)

 (k × 1)-vector
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Linear projection with a zero intercept

L(y |x) = L(y |x1, ..., xk) = γ1x1 + ...+ γkxk = xγ

where γ := [E (x ′x)]−1E (x ′y)

The linear projection can be derived as the linear predictor minimizing the mean
square prediction error (≡ Best linear predictor or least squares linear predictor),
i.e.

min
b0,b∈Rk

E [(y − b0 − xb)2]

yields β and β0 as defined.
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Using the linear projection

L(y |x) = β0 + β1x1 + ...+ βkxk

define the error term u by
u := y − L(y |x)

or
y = β0 + β1x1 + β2x2 + ...+ βkxk + u

By definition of linear projections:

Eu = 0 and Cov(xj , u) = 0 (j = 1, . . . , k)

Note: This does not imply independence between x and u or mean independence
E (u|x) = 0

Primary use of linear projections: Obtaining estimable equations involving the
parameters of an underlying conditional expectation of interest. Appendix of WO
Chapter 2 contains more results on conditional expectations etc. which will be
useful later.
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1.2 Derivation of the OLS Estimator and its Asymptotic
Properties

Population equation of interest:

y = xβ + u

where: x is a 1× K vector
β = (β1, . . . , βK )′ is a K × 1 vector
x1 ≡ 1: with intercept

Sample of size N: {(xi , yi) : i = 1, . . . ,N}
i.i.d. random variables where xi is 1× K and yi is a scalar.

For each observation
yi = xiβ + ui
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Consistency

Assumption OLS.1: E (x ′u) = 0

Assumption OLS.2: rank(Ex ′x) = K
→ expected outer product matrix has full rank, i.e.

Ex ′x =


1 Ex2 . . . ExK

Ex2 Ex2
2 . . . Ex2xK

...
...

. . .
...

ExK ExKx2 . . . Ex2
K

 is invertible

Under OLS.1 and OLS.2, the parameter vector β is identified, which is equivalent
to saying that β can be written in terms of population moments (and of course
be solved for!)
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To see this:

y = xβ + u
x ′y = x ′xβ + x ′u

Ex ′y = Ex ′xβ + Ex ′u︸︷︷︸
=0

by OLS.1

β = (Ex ′x)−1Ex ′y by OLS.2

Because (x , y) is observed → β is identified.
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Analogy principle:

Choose an estimator by turning the population relationship (based on the
probability distribution for the data generating process) into its sample
counterpart (based on the empirical distribution for the sample).

Here, the analogy principle implies the method-of-moments: Replace the
population moments E (x ′y) and E (x ′x) (expected values) by their corresponding
sample moments (averages).

E (x ′y)→ 1
N

N∑
i=1

x ′i yi

E (x ′x)→ 1
N

N∑
i=1

x ′i xi
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β̂ =
(

1
N

N∑
i=1

x ′i xi

)−1(
1
N

N∑
i=1

x ′i yi

)
with yi = xiβ + ui

=
(

1
N

N∑
i=1

x ′i xi

)−1(
1
N

N∑
i=1

x ′i (xiβ + ui)
)

=
(

1
N

N∑
i=1

x ′i xi

)−1(
1
N

N∑
i=1

x ′i xi

)
β +

(
1
N

N∑
i=1

x ′i xi

)−1(
1
N

N∑
i=1

x ′i ui

)

= β +
(

1
N

N∑
i=1

x ′i xi

)−1(
1
N

N∑
i=1

x ′i ui

)
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OLS Estimator in Matrix Notation

β̂ = (X ′X )−1X ′Y

where X =

X1
...

XN

 =

1 x21 . . . xK1
...

...
. . .

...
1 x2N . . . xKN

 and Y =

y1
...

yN


Under OLS.2: X ′X is nonsingular with probability approaching one

and plim

( 1
N

N∑
i=1

x ′i xi

)−1 = A−1 where A = E (x ′x)

(Corollary 3.1 in WO Chapter 3 )

Under OLS.1: plim
(

1
N

N∑
i=1

x ′i ui

)
= E (x ′u) = 0

By Slutzky’s theorem (WO Lemma 3.4): plim β̂ = β + A−1 · 0 = β
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WO Theorem 4.1:

Under assumptions OLS.1 and OLS.2, the OLS estimator β̂ obtained from a
random sample following the population model (5) is consistent for β.

→ Simplicity should not undermine usefulness.
→ Whenever estimable equation is of the form then consistency follows.

Under the assumption of theorem 4.1, xβ is the linear projection of y on x .

→ OLS estimates linear projection consistently (also in cases such as y being a
binary variable) . . . and conditional expectations that are linear in parameters.

Prof. Bernd Fitzenberger, Ph.D. Advanced Econometrics HU Berlin - Summer 2019 81 / 425



1. Review Linear Regression Model for Cross-Sectional Data 1.2 OLS and Asymptotic Properties

If either OLS.1 or OLS.2 fail, β is not identified
→ typically because x and u are correlated.

OLS estimator not necessarily unbiased under OLS.1 and OLS.2 (Jensen’s
Inequality)

E

( 1
N

N∑
i=1

x ′i xi

)−1(
1
N

N∑
i=1

x ′i ui

)
6= E

[
1
N

N∑
i=1

x ′i xi

]−1
E
[
1
N

N∑
i=1

x ′i ui

]
︸ ︷︷ ︸

=0

→ E (u|x) = 0 implies E β̂ = β (unbiasedness) because of LIE.

We do not need to assume independence
→ Var(u|x) unrestricted.
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Aside: Standard derivation of the OLS estimator β̂ in matrix notation

Minimizing
N∑
i=1

u2
i = U ′U sum of squared residuals

U ′ = (u1, . . . , uN)
U = Y − Xβ

min
{β}

U ′U = (Y − Xβ)′(Y − Xβ) = Y ′Y − β′X ′Y − Y ′Xβ + β′X ′Xβ

F.O.C.: ∂U′U
∂β = −X ′Y − X ′Y + 2X ′X β̂ = 0

⇔ X ′X β̂ = X ′Y︸ ︷︷ ︸
normal equations

⇒ β̂ = (X ′X )−1X ′Y

⇔ X ′(Y − X β̂) = X ′Û = 0

⇔ 1
N

N∑
i=1

x1i
...

xKi

 ûi = 0

Covariance between xi and ui is set to zero to calculate the OLS estimator β̂. =̂
another way to interpret β̂ as a method-of-moment estimator (→ analogy principle).
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Asymptotic distribution of the OLS estimator

Rewrite

β̂ = β +
(

1
N

N∑
i=1

x ′i xi

)−1(
1
N

N∑
i=1

x ′i ui

)
as

√
N(β̂ − β) =

(
1
N

N∑
i=1

x ′i xi

)−1(
1√
N

N∑
i=1

x ′i ui

)

We know

( 1
N

N∑
i=1

x ′i xi

)−1
− A−1

 = Op(1)
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Also {(x ′i ui) : i = 1, 2 . . . } is i.i.d. sequence with Ex ′i ui = 0 and we assume each
element has a finite variance. Then the central limit theorem implies:

1√
N

N∑
i=1

x ′i ui
d→ N(0,B)

where B is a K × K matrix: B ≡ E (u2x ′x)

Recall: x ′x is the outer product of the K × 1 row vector x

This implies
√

N(β̂ − β) = A−1
(

1√
N

N∑
i=1

x ′i ui

)
+ op(1)

Under Heteroscedasticity:
√

N(β̂ − β) a∼ N(0,A−1BA−1)
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Under Heteroscedasticity:
√

N(β̂ − β) a∼ N(0,A−1BA−1)

Under Homoskedasticity:

Assumption OLS.3: E (u2x ′x) = σ2Ex ′x

where σ2 = Eu2 = Var(u)
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WO Theorem 4.2 (Asymptotic Normality of OLS):

Under Assumptions OLS.1 - OLS.3:
√

N(β̂ − β) a∼ N(0, σ2A−1)

Proof: Use B = σ2A q.e.d.

Practical usage:

Treat β̂ as approximately jointly normal with expected value β and
Variance-Covariance-Matrix (VCOV) V = σ2

N [Ex ′x ]−1.

V is estimated by

Âvar(β̂) = σ̂2

N

[
1
N

N∑
i=1

x ′i xi

]−1
= σ̂2 (X ′X )−1

and

σ̂2 ≡ s2 = 1
N − K

N∑
i=1

û2
i
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Heteroscedasticity

Failure of assumption OLS.3: E (u2x ′x) = σ2E (x ′x) has nothing to do with
consistency of OLS estimator β̂ (WO theorem 4.1) and the proof of asymptotic
normality is still valid but the final asymptotic variance is different.

Two options:

Option i): Weighted Least Squares to obtain a more efficient estimator

Specify a model for Var(y |x) and ’estimate’ this model (e.g. by regressing û2
i on

a flexible function of xi or other covariates). This model povides an estimate
(prediction) of Var(ui |xi) = Var(yi |xi).
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Then, use Weighted Least Squares (WLS) as follows:

Divide yi and every element of xi (including unity for the intercept) by√
Var(yi |xi) and apply OLS to the weighted data

yi√
Var(yi |xi)︸ ︷︷ ︸

ỹi

= 1√
Var(yi |xi)

xi︸ ︷︷ ︸
x̃i

β + ui√
Var(yi |xi)︸ ︷︷ ︸

ũi

Var(ũi |xi) = Var(ui |xi)
Var(yi |xi)

≡ 1

Transformed Model:

ỹi = x̃iβ + ũi satisfies OLS.1-OLS.3 (homoskedastic)
⇒ Special case of Generalized Least Squares which we will cover later
⇒ leads to a different estimator of β which hinges on a correct specification of
Var(yi |xi)
⇒ Efficiency gain possible with correct specification of Var(yi |xi)
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Option ii): Heteroscedasticity robust inference

Often we want to stick to the consistent estimator β̂
→ because no correct specification of Var(yi |xi) available
→ WLS generally inconsistent for linear projections (e.g. when OLS.1 holds but
E (u|x) 6= 0)
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Appropriate asymptotic variance

Without OLS.3 the asymptotic variance of β̂ is Avar(β̂) = 1
N A−1BA−1

A−1 is consistently estimated by
(

1
N

N∑
i=1

x ′i xi

)−1
= Â−1

B is consistently estimated by
(

1
N

N∑
i=1

u2
i x ′i xi

)

We replace the unobserved error terms ui by the estimated residuals ûi = yi − xi β̂

B̂ = 1
N

N∑
i=1

û2
i x ′i xi

p→ B
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Heteroscedasticity-robust variance estimator

Âvar(β̂) = 1
N Â−1B̂Â−1 = (X ′X )−1

( N∑
i=1

û2
i x ′i xi

)
(X ′X )−1

often called White standard errors, White-Eicker standard error, or Huber
standard errors.

Typically with degrees-of-freedom adjustment to improve finite sample properties.

Âvar(β̂) = 1
N − K Â−1B̂Â−1 = (X ′X )−1

(
N

N − K

N∑
i=1

û2
i x ′i xi

)
(X ′X )−1

t-statistics, χ2-statistics (but not F-statistics based on comparison of sums of
squared residuals in restricted and unrestricted model!) can be used in the usual
way.
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