Advanced Econometrics

Prof. Bernd Fitzenberger, Ph.D.

Humboldt-University Berlin - Summer Semester 2019

- 0. Introductory Material
- 1. Review Linear Regression Model for Cross-Sectional Data
- 2. System Estimation, Linear Panel Data Models
- 3. Nonlinear Least Squares and Maximum Likelihood
- 4. Binary Response Models and Limited Dependent Variables
- 5. Linear Quantile Regression

0. Introductory Material

Section Outline

- 0. Introductory Material
 0.1 Matrix Algebra
 0.2 Statistics and Probability Theory
 0.3 Asymptotics
- 1. Review Linear Regression Model for Cross-Sectional Data
- 2. System Estimation, Linear Panel Data Models
- 3. Nonlinear Least Squares and Maximum Likelihood
- 4. Binary Response Models and Limited Dependent Variables
- 5. Linear Quantile Regression

0.1. Matrix Algebra Reference: Greene (2008) App. A

Matrix: Rectangular array of numbers

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1k} \\ \vdots & & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nk} \end{pmatrix} \qquad n \times k \text{ matrix}$$

Transpose:

$$A' = \begin{pmatrix} a_{11} & a_{21} & \cdots & a_{n1} \\ \vdots & \ddots & \vdots \\ a_{1k} & a_{2k} & \cdots & a_{nk} \end{pmatrix} \qquad k \times n \text{ matrix}$$
$$(A+B)' = A' + B'$$

Inner Product: for $a' = (a_1, \dots, a_n)$ and $b' = (b_1, \dots, b_n)$ $a'b = a_1b_1 + \ldots + a_nb_n = b'a$

Matrix Multiplication:

ith row of A kth column of B

Identity matrix for $n \in \mathbb{N}$:

$$I_n = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & 1 \end{pmatrix} \qquad I_n A = A$$

Rules for Matrix Multiplication:

$$(AB)C = A(BC)$$
$$A(B+C) = AB + AC$$
$$(AB)' = B'A'$$

Example: *n* data points for $1 \times k$ vector $x_i = (x_{1i}, \ldots, x_{ki})$ (WO convention)

$$X = \begin{pmatrix} x_{11} & \cdots & x_{k1} \\ \cdots & & \cdots \\ x_{1n} & \cdots & x_{kn} \end{pmatrix} \qquad \text{n rows} \doteq \text{observations}$$

Matrix product:

$$X'X = \begin{pmatrix} x_{11} \cdots x_{1n} \\ \cdots & \cdots \\ x_{k1} \cdots & x_{kn} \end{pmatrix} \cdot \begin{pmatrix} x_{11} \cdots & x_{k1} \\ \cdots & \cdots \\ x_{1n} \cdots & x_{kn} \end{pmatrix}$$
$$= \begin{pmatrix} \sum_{i=1}^{n} x_{1i}^2 \cdots \sum_{i=1}^{n} x_{1i} x_{ki} \\ \vdots & \ddots & \vdots \\ \sum_{i=1}^{n} x_{ki} x_{1i} \cdots & \sum_{i=1}^{n} x_{ki}^2 \end{pmatrix}$$
$$= \sum_{i=1}^{n} \begin{pmatrix} x_{1i} \\ \vdots \\ x_{ki} \end{pmatrix} (x_{1i}, \dots, x_{ki}) = \sum_{i=1}^{n} x'_i x_i \quad \leftarrow \text{ summation notation}$$

Let
$$j_n = \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}$$
 be a $n \times 1$ vector of ones, then $j_n j'_n = \begin{pmatrix} 1 & \cdots & 1 \\ \vdots & & \vdots \\ 1 & \cdots & 1 \end{pmatrix}$,
and $x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$ $n \times 1$ vector, then
 $\frac{1}{n} j_n j'_n x = \frac{1}{n} \begin{pmatrix} 1 & \cdots & 1 \\ \vdots & & \vdots \\ 1 & \cdots & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \frac{1}{n} \begin{pmatrix} \sum x_i \\ \vdots \\ \sum x_i \end{pmatrix} = \begin{pmatrix} \bar{x} \\ \vdots \\ \bar{x} \end{pmatrix} = j_n \bar{x}$

where $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$ sample average.

Deviations from sample average

$$x - j_n \bar{x} = \begin{pmatrix} x_1 - \bar{x} \\ \vdots \\ x_n - \bar{x} \end{pmatrix} = x - \frac{1}{n} j_n j'_n x = \begin{pmatrix} \underbrace{l_n}_{identity matrix} - \frac{1}{n} j_n j'_n \end{pmatrix} x = M^0 x$$

where $M^0 = I - \frac{1}{n} j_n j'_n$ is the matrix generating deviations from the mean (example of a projection matrix)

with

$$M^0 j_n = \left(I_n - \frac{1}{n}j_nj_n'\right) j_n = j_n - \frac{1}{n}j_nj_n' j_n = j_n - j_n = 0$$

since $\frac{1}{n}j_n'j_n = \frac{1}{n}n = 1$.

 M^0 is an example of a so called idempotent matrix, i.e. a square matrix M with $M^2 = M M = M$.

When *M* is symmetric, it follows that M'M = M.

Verify:

$$M^{0}M^{0} = \left(I - \frac{1}{n}j_{n}j_{n}'\right)\left(I - \frac{1}{n}j_{n}j_{n}'\right)$$
$$= I - \frac{1}{n}j_{n}j_{n}' - \frac{1}{n}j_{n}j_{n}' + \frac{1}{n^{2}}j_{n}\underbrace{j_{n}'j_{n}}_{n}j_{n}'$$
$$= I - \frac{1}{n}j_{n}j_{n}' = M^{0}$$

Sum of squared deviations:

$$\sum_{i=1}^{n} (x_i - \bar{x})^2 = (M^0 x)'(M^0 x) = x'M^{0'}M^0 x = x'M^0 x = \sum_{i=1}^{n} x_i (x_i - \bar{x})$$

Product of deviations of x_i and y_i :

$$\sum_{i=1}^{n} (x_i - \bar{x}) (y_i - \bar{y}) = (M^0 x)' (M^0 y) = x' M^{0'} M^0 y$$

= $x' M^0 y$
= $\sum x_i (y_i - \bar{y})$
= $\sum (x_i - \bar{x}) y_i$

Empirical Variance-Covariance-Matrix of x, y

$$Cov[(x,y)] = \begin{pmatrix} \frac{1}{n}\sum(x_i-\bar{x})^2 & \frac{1}{n}\sum(x_i-\bar{x})(y_i-\bar{y}) \\ \frac{1}{n}\sum(x_i-\bar{x})(y_i-\bar{y}) & \frac{1}{n}\sum(y_i-\bar{y})^2 \end{pmatrix}$$
$$= \frac{1}{n}\begin{pmatrix} x'M^0x & x'M^0y \\ y'M^0x & y'M^0y \end{pmatrix}$$
$$= \frac{1}{n}\begin{pmatrix} x'M^0 \\ y'M^0 \end{pmatrix}(M^0x \quad M^0y)$$
$$= \frac{1}{n}\begin{pmatrix} x' \\ y' \end{pmatrix} M^0(x \quad y)$$

Rank of a matrix A

- = maximum number of linearly independent columns
- = dimension of vector space spanned by column vectors
- = maximum number of linearly independent rows
- = dimension of vector space spanned by row vectors

A: $n \times k$ matrix \rightarrow rank $(A) \leq \min(n, k)$

Properties:

- i) rank $(AB) \leq \min(\text{rank}(A), \text{rank}(B))$
- ii) rank (A) = rank (A'A) = rank (AA')
 - Square $k \times k$ matrix A has full rank if rank(A) = k.
- $n \times k$ matrix A with $n \ge k$ has full column rank if rank(A) = k.
- $n \times k$ matrix A with $n \le k$ has full row rank if rank(A) = n.

Inverse of a square matrix:

Let A be a $k \times k$ matrix Inverse A^{-1} defined by $AA^{-1} = I$ or equivalently $A^{-1}A = I$ A^{-1} exists, i.e. A is invertible (or nonsingular) \Leftrightarrow A has full rank.

Example: Diagonal matrix

$$A := \begin{pmatrix} a_1 & 0 & \cdots & 0 \\ 0 & a_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & a_k \end{pmatrix} = \operatorname{diag}(a_1, \dots, a_k) \Rightarrow \quad A^{-1} = \begin{pmatrix} \frac{1}{a_1} & 0 & \cdots & 0 \\ 0 & \frac{1}{a_2} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \frac{1}{a_k} \end{pmatrix}$$

Inverse A^{-1} exists if all $a_j \neq 0$ for $j = 1, \ldots, k$.

Properties:

i)
$$(A^{-1})^{-1} = A$$

ii) $(A^{-1})' = (A')^{-1}$

iii) If A is symmetric, then A^{-1} is symmetric

iv)
$$(AB)^{-1} = B^{-1}A^{-1}$$

v) $A = \begin{pmatrix} A_{11} & 0 \\ 0 & A_{22} \end{pmatrix} \Leftrightarrow A^{-1} = \begin{pmatrix} A_{11}^{-1} & 0 \\ 0 & A_{22}^{-1} \end{pmatrix}$ block diagonal

vi) Nonsingular matrix $B \rightarrow rank(AB) = rank(A)$

Eigenvalues (Characteristic Roots) and Eigenvectors:

Eigenvalues λ (scalars) and nonzero eigenvectors c are the solution of $Ac = \lambda c$ for square $k \times k$ matrix A.

$$Ac = \lambda c \Leftrightarrow (A - \lambda I_n)c = 0$$

We are looking for the nontrivial solutions $c \neq 0$ which can be found by solving the characteristic equation involving the determinant

$$\det(A - \lambda I_n) = |A - \lambda I_n| = 0$$

for λ and then finding some $c \neq 0$ for which $Ac = \lambda c$ (note c is not unique!)

Properties:

D ·

- i) A has full rank $(A^{-1}$ exists) is equivalent to all eigenvalues are nonzero $(\lambda \neq 0)$
- ii) If A^{-1} exists, then its eigenvalues are the inverses of the eigenvalues of A

iii)
$$A = \begin{pmatrix} a_1 & 0 & \cdots & 0 \\ 0 & a_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & a_k \end{pmatrix}$$

Eigenvalues
$$\lambda_1 = a_1, \dots, \lambda_k = a_k$$

Eigenvectors $\begin{pmatrix} 1\\0\\0\\\dots \end{pmatrix}$, $\begin{pmatrix} 1\\1\\0\\\dots\\\dots \end{pmatrix}$,,

iv) $det(A) = |A| = \prod_{i=1}^{k} \lambda_i$

Definition:

- A is called positive definite, if all eigenvalues are strictly positive $(\lambda_j > 0)$
- A is called positive semidefinite, if all eigenvalues are nonnegative ($\lambda_j \ge 0$)
- A is called negative definite, if all eigenvalues are strictly negative ($\lambda_j < 0$)
- A is called negative semidefinite, if all eigenvalues are nonpositive ($\lambda_j \leq 0$)

Spectral decomposition of a symmetric matrix:

A $k \times k$ symmetric matrix A has k distinct orthogonal eigenvectors c_1, c_2, \ldots, c_k and k not necessarily distinct, real eigenvalues $\lambda_1, \ldots, \lambda_k$.

We have $Ac_j = \lambda_j c_j$ which is summarized in $AC = C\Lambda$ where $C = [c_1 \cdots c_k]$ eigenvectors as columns

and
$$\Lambda = \left(egin{array}{cccc} \lambda_1 & \cdots & 0 \ dots & \ddots & dots \ 0 & \cdots & \lambda_k \end{array}
ight)$$
 diagonal matrix with eigenvalues.

Orthogonality of eigenvectors: $c'_i c_j = 0$ for $i \neq j$ and normalization $c'_i c_i = 1$

$$CC' = C'C = I_n$$
 and $C' = C^{-1}$

This implies:

Diagonalization

$$C'AC = C'C\Lambda = \Lambda$$

 $A = CC'ACC' = C\Lambda C' = \sum_{j=1}^{k} \lambda_j c_j c'_j$

Prof. Bernd Fitzenberger, Ph.D.

Advanced Econometrics

The Generalized Inverse of a Matrix

• Case when A is not invertible because A is not a square matrix or A is not singular!

<u>Definition</u>: A generalized inverse of A is another matrix A^+ that satisfies

- 1. $AA^+A = A$
- 2. $A^+AA^+ = A^+$
- 3. A^+A is symmetric
- 4. AA^+ is symmetric

Note:

- A unique matrix that satisfies 1.-4. is called the Moore-Penrose inverse
- If A^{-1} exists, then $A^+ = A^{-1}$

<u>Two cases:</u> Case A (no square matrix k < n) and Case B (symmetric square matrix)

Case A: Let A be an $n \times k$ matrix with k < n and $rank(A) = r \le k$

1.) $r = k \Leftrightarrow A$ does have full column rank $\Leftrightarrow (A'A)^{-1}$ exists Moore-Penrose inverse is

$$A^+ = (A'A)^{-1}A'$$

Verify 1.-4 .:

- 1. $AA^+A = A(A'A)^{-1}A'A = A$
- 2. $A^+AA^+ = (A'A)^{-1}A'AA^+ = A^+$
- 3. $A^+A = (A'A)^{-1}A'A = I$ symmetric
- 4. $(A(A'A)^{-1}A')' = A''(A'A)^{-1}A' = A(A'A)^{-1}A'$ symmetric

2.) rank(A) = r < k

Use *r* nonzero characteristic roots of A'A and associated eigenvectors in matrix C_1 , then

 $A'A = C_1 \Lambda_1^{-1} C_1'$ spectral decompose

The Moore-Penrose inverse is

$$A^+ = C_1 \Lambda_1^{-1} C_1' A'$$

where $r \times r$ diagonal matrix $\Lambda_1 = diag(\lambda_1, \dots, \lambda)$ of nonzero eigenvalues.

Case B: If A is symmetric (n = k), then

$$A^+ = C_1 \Lambda_1^{-1} C_1'$$

where Λ_1 is a diagonal matrix containing the nonzero eigenvalues of A and C_1 the associated orthonormalized eigenvectors.

Quadratic Form: x'Ax

- A positive definite
- A positive semidefinite
- A negative definite
- A negative semidefinite

$$\iff x'Ax > 0 \text{ for all } x \neq 0$$
$$\iff x'Ax \ge 0 \text{ for all } x \neq 0$$
$$\iff x'Ax < 0 \text{ for all } x \neq 0$$
$$\iff x'Ax < 0 \text{ for all } x \neq 0$$

Example:

- V is always positive semidefinite.
- If x and y are not perfectly correlated, then V is positive definite.
- If x, y are jointly normally distributed $\begin{pmatrix} x \\ y \end{pmatrix} \sim N \begin{bmatrix} \begin{pmatrix} \mu_x \\ \mu_y \end{pmatrix}, V \end{bmatrix}$ then quadratic form $\begin{pmatrix} x & y \end{pmatrix} V^{-1} \begin{pmatrix} x \\ y \end{pmatrix} \sim \chi_2^2$ -distributed, if V has full rank.
- V^{-1} : multivariate standardization.
- Since V is positive definite also V^{-1} is positive definite and therefore $\begin{pmatrix} x & y \end{pmatrix} V^{-1} \begin{pmatrix} x \\ y \end{pmatrix} > 0$ unless $\begin{pmatrix} x \\ y \end{pmatrix} = 0.$

Trace of a matrix:

Square $k \times k$ matrix A

$$\mathsf{tr}(A) = \sum_{j=1}^k \mathsf{a}_{jj}$$

sum of diagonal elements

Properties:

- i) $\operatorname{tr}(cA) = c \cdot \operatorname{tr}(A)$ for scalar cii) $\operatorname{tr}(A') = \operatorname{tr}(A)$
- iii) tr(A+B) = tr(A) + tr(B)

iv) tr(AB) = tr(BA)

v) tr(A) = $\sum_{j=1}^{k} \lambda_j$ trace of matrix equals the sum of its eigenvalues

Kronecker Product:

For $n \times k$ matrix A, $l \times m$ matrix B

Properties:

i)
$$(A \otimes B)^{-1} = A^{-1} \otimes B^{-1}$$

ii) $(A \otimes B)' = A' \otimes B'$
iii) $tr(A \otimes B) = tr(A) \cdot tr(B)$
iv) $(A \otimes B)(C \otimes D) = AC \otimes BD$ if AC, BD is possible

Calculus and Matrix Algebra:

First and second order Taylor series approximation

- y scalar
- $x = (x_1, \dots, x_n)'$ $n \times 1$ vector
- y = f(x) twice differentiable

Gradient:

$$\nabla_{x} y := \underbrace{\frac{\partial y}{\partial x}}_{n \times 1} = \frac{\partial f(x)}{\partial x} = \begin{pmatrix} \frac{\partial y}{\partial x_{1}} \\ \vdots \\ \frac{\partial y}{\partial x_{n}} \end{pmatrix} = \begin{pmatrix} f_{1} \\ \vdots \\ f_{n} \end{pmatrix}$$

column vector as convention

Hessian:

$$H = \frac{\partial^2 y}{\partial x \partial x'} = \begin{bmatrix} \frac{\partial^2 y}{\partial x_1^2} & \frac{\partial^2 y}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 y}{\partial x_1 \partial x_n} \\ \frac{\partial^2 y}{\partial x_2 \partial x_1} & \frac{\partial^2 y}{\partial x_2^2} & \cdots & \frac{\partial^2 y}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 y}{\partial x_n \partial x_1} & \frac{\partial^2 y}{\partial x_2 \partial x_n} & \cdots & \frac{\partial^2 y}{\partial x_n^2} \end{bmatrix} = [f_{ij}]$$

First order Taylor series approximation in $x = (x_{10}, \ldots, x_{n0})$

$$y = f(x) \approx f(x_0) + \sum_{i=1}^n f_i(x_0)(x_i - x_{i0}) = f(x_0) + \left(\frac{\partial y}{\partial x}\Big|_{x_0}\right)'(x - x_0)$$

Second order approximation

$$y = f(x) \approx f(x_0) + \sum_{i=1}^n f_i(x_0)(x_i - x_{i0}) + \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n f_{ij}(x_0) \cdot (x_i - x_{i0}) \cdot (x_j - x_{j0})$$

= $f(x_0) + \underbrace{\left(\frac{\partial y}{\partial x}\Big|_{x_0}\right)'(x - x_0)}_{\text{inner product}} + \frac{1}{2} \underbrace{(x - x_0)'H(x_0)(x - x_0)}_{\text{quadratic form}}$

Differentiation of inner products and quadratic forms:

i)
$$y = a'x = \sum_{i=1}^{n} a_i x_i = x'a$$

$$\frac{\partial y}{\partial x} = \frac{\partial a'x}{\partial x} = \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} = a$$

ii)
$$z = \begin{pmatrix} z_1 \\ \vdots \\ z_n \end{pmatrix} = Ax = \begin{pmatrix} \sum_{i=1}^k a_{1i} x_i \\ \vdots \\ \sum_{i=1}^k a_{ni} x_i \end{pmatrix}$$

A $n \times k$ matrix, $x \ k \times 1$ vector, $z \ n \times 1$ vector

$$\frac{\partial z}{\partial x} = \left(\frac{\partial z_1}{\partial x}, \dots, \frac{\partial z_n}{\partial x}\right) = A' \quad \leftarrow \text{ columnwise gradients of } z_1, \dots, z_n$$

iii)
$$y = x'Ax = \sum_{i=1}^{n} \sum_{j=1}^{n} x_i x_j a_{ij}$$
 quadratic form
a) $\frac{\partial y}{\partial x} = (A + A')x$
If A is symmetric $(A = A')$, then $\frac{\partial y}{\partial x} = 2Ax$
b) $\frac{\partial y}{\partial A} = xx' = \begin{pmatrix} x_1^2 & \cdots & x_1 x_n \\ \vdots & \ddots & \vdots \\ x_1 x_n & \cdots & x_n^2 \end{pmatrix}$ outer product, $n \times n$ matrix

Expected values and variances:

Let

- *a* be a $k \times 1$ vector of constants
- A a $n \times k$ matrix of constants, and
- x a $k \times 1$ vector of random variables

then

$$E a'x = a'(Ex) = \sum_{i=1}^{k} a_i Ex_i$$
$$E Ax = A(Ex) = \begin{bmatrix} \sum_{i=1}^{k} a_{1i} Ex_i \\ \vdots \\ \sum_{i=1}^{k} a_{1i} Ex_i \end{bmatrix}$$
$$Var(a'x) = a'Var(x)a = \sum_{i=1}^{k} \sum_{j=1}^{k} a_i a_j Cov(x_i, x_j) \ge 0 \quad \leftarrow \text{ quadratic form}$$

Var(x) must be positive semidefinite

Var(Ax) = A Var(x) A'

0.2 Statistics and Probability Theory Reference: WO 2+3, Greene App. B-D

Random Variable (RV) x taking values x_i

Probability distribution: $f(x_i) = Prob(x = x_i)$ for discrete RV

i)
$$0 \leq Prob(x = x_i) \leq 1$$

ii) $\sum_{x_i} f(x_i) = 1$

Continuous RV: Density $f(x_i) \ge 0$

i)
$$Prob(a \le x \le b) = \int_{a}^{b} f(t)dt$$

ii) $\int_{a}^{\infty} f(t)dt = 1$

 $-\infty$

Cumulative Distribution Function CDF

$$Prob(x \le x_i) = F(x_i) = \left\{ egin{array}{cc} \Sigma_{t \le x_i} f(t) & : & ext{discrete} \ \int_{-\infty}^{x_i} f(t) dt & : & ext{continuous} \end{array}
ight.$$

For continuous case: $f(x_i) = \frac{dF(x_i)}{dx_i}$

Expected value (Mean):

$$\mu \equiv Ex = \begin{cases} \sum_{x_i} x_i f(x_i) & : & \text{discrete} \\ \int_{-\infty}^{\infty} tf(t) dt & : & \text{continuous} \end{cases}$$

Variance:

$$\sigma^2 \equiv Var(x) = E[(x-\mu)]^2$$

$$\sigma^{2} = \begin{cases} \sum_{x_{i}} (x_{i} - \mu)^{2} f(x_{i}) & : \text{ discrete} \\ \int_{-\infty}^{\infty} (t - \mu)^{2} f(t) dt & : \text{ continuous} \end{cases}$$

Standard deviation:

$$\sigma = \sqrt{\sigma^2} = \sqrt{Var(x)}$$

Prof. Bernd Fitzenberger, Ph.D.

Advanced Econometrics

Chebychev's Inequality:

$$\mathsf{Prob}(|x-\mu| \geq \delta) \leq rac{\sigma^2}{\delta^2}$$

$$Eg(x) = \begin{cases} \sum_{x_i} g(x_i) f(x_i) & : \text{ discrete} \\ \int_{-\infty}^{\infty} g(t) f(t) dt & : \text{ continuous} \end{cases}$$

In general: $Eg(x) \neq g(E(x))$

Jensen's inequality:

$$egin{aligned} & Eg(x) \leq g(E(x)) & ext{for} & g''(x) < 0 \ & concave \end{aligned} \ & Eg(x) \geq g(E(x)) & ext{for} & g''(x) > 0 \ & convex \end{aligned}$$

E.g.
$$E \log(x) \le \log(E(x))$$

Normal distribution

$$x \sim N(\mu, \sigma^2)$$
 with density $f(x_i) = rac{1}{\sqrt{2\pi}\sigma} e^{-rac{(x_i-\mu)^2}{2\sigma^2}}$

$$Ex = \mu$$
 and $Var(x) = \sigma^2$

Standard Normal $z \sim N(0, 1)$

Define density:
$$\phi(z_i) = \frac{1}{\sqrt{2\pi}} e^{-\frac{z_i^2}{2}}$$

 $F(z_i) = \Phi(z_i) = \int_{-\infty}^{z_i} \phi(t) dt = \int_{-\infty}^{z_i} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt$

$$F_{x}(x_{i}) = \operatorname{Prob}(x \leq x_{i}) = \operatorname{Prob}\left(\frac{x - \mu}{\sigma} \leq \frac{x_{i} - \mu}{\sigma}\right)$$
$$= \operatorname{Prob}\left(z \leq \frac{x_{i} - \mu}{\sigma}\right) = \Phi\left(\frac{x_{i} - \mu}{\sigma}\right)$$

Prof. Bernd Fitzenberger, Ph.D.

Skewness:
$$S \equiv E[(x - \mu)^3] = 0$$
 for normal distribution

<u>Kurtosis</u>: $E[(x - \mu)^4] = 3\sigma^4$ for normal distribution

Excess Kurtosis (relative to normal):

$$\frac{E[(x-\mu)^4]}{\sigma^4} - 3 = 0 \quad \text{for normal distribution}$$

Chi-squared– (χ^2) , t– and F–distributions

 χ^2 -distribution: z_1, \ldots, z_n independent N(0, 1)

$$y = \sum_{j=1}^{n} z_j^2 \sim \chi_n^2$$
-distributed with *n* degrees of freedom

F- Distribution:

•
$$y_1 \sim \chi^2_{n_1}$$
, $y_2 \sim \chi^2_{n_2}$

• y_1 and y_2 independent

 $F(n_1, n_2) = \frac{y_1/n_1}{y_2/n_2}$ ~ F-distributed with n_1 degrees of freedom in numerator and n_2 degrees of freedom in denominator

stylized shape of probability density function of χ_n^2 or $F(n_1, n_2)$

t-distribution: $t = \frac{z}{\sqrt{\frac{y}{2}}} \sim t_n$ distributed (t-distribution with n degrees of freedom) $z \sim N(0,1)$, $y \sim \chi_p^2$, and y, z independent $t_n \sim f_n(z_i) \rightarrow \phi(z_i) \text{ for } n \rightarrow \infty$ t_{z_i} Note: $t^2 \sim F(1, n)$

Prof. Bernd Fitzenberger, Ph.D.

Joint distribution: x, y RV

$$Prob(a \le x \le b, c \le y \le d) = \begin{cases} \sum_{a \le x_i \le b} \sum_{c \le y_j \le d} f(x_i, y_j) & : \text{ discrete} \\ \int_a^b \int_c^d f(t, s) & ds & dt & : \text{ continuous} \end{cases}$$

Probability density function: $f(t, s) \ge 0$

$$\sum_{x_i} \sum_{y_j} f(x_i, y_j) = 1$$
 discrete $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(t, s) \, ds \, dt = 1$ continuous

Distribution function:

$$F(x_i, y_j) = Prob(x \le x_i, y \le y_j) = \begin{cases} \sum_{x \le x_i} \sum_{y \le y_j} f(x_i, y_i) & : & \text{discrete} \\ \int_{-\infty}^{x_i} \int_{-\infty}^{y_j} f(t, s) ds & dt & : & \text{continuous} \end{cases}$$

Expected value of function of (x, y):

$$E g(x,y) = \begin{cases} \sum \sum g(x_i, y_j) f(x_i, y_j) &: \text{ discrete} \\ \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(t, s) f(t, s) \, ds \, dt &: \text{ continuous} \end{cases}$$

Covariance between x and y:

$$\sigma_{xy} \equiv Cov(x, y) = E[(x - Ex)(y - Ey)] = Exy - (Ex)(Ey)$$

x, *y* independent :

$$f(x_i, y_i) = f(x_i)f(y_i) \stackrel{\Rightarrow}{\not=} Cov(x, y) = 0$$

Correlation:

$$r_{xy} = \frac{Cov(x, y)}{\sqrt{Var(x) \cdot Var(y)}} = \frac{\sigma_{xy}}{\sigma_x \sigma_y}$$

Rules:

a, b, c, d = constants

$$E(ax + by + c) = a Ex + b Ey + c$$

$$Var(ax + by + c) = a^{2}Var(x) + b^{2}Var(y) + 2abCov(x, y)$$

$$Cov(ax + by, cx + dy) = acVar(x) + bdVar(y) + (ad + bc)Cov(x, y)$$

Conditional distribution:

$$f(y = y_j | x = x_i) \equiv f(y_j | x_i) = \frac{f(x_i, y_j)}{f(x_i)}$$

Conditional expectation:

$$E(y|x = x_i) = \int_{-\infty}^{\infty} sf(y = s|x_i) ds$$
$$= f(s|x_i)$$

Conditional variance:

$$Var(y|x = x_i) = E[(y - E(y|x = x_i))^2|x = x_i] \\ = \int_{-\infty}^{\infty} (s - E(y|x = x_i))^2 f(s|x_i) ds$$

0.3 Asymptotics

Motivation:

For many econometric problems, the analytical properties of the estimator can only be determined asymptotically.

Probability Limit and Consistency of an Estimator

Definition 1:

The **probability limit** θ of a sequence of random variables $\hat{\theta}_N$ results as the limit for N going to infinity such that the probability that the absolute difference between $\hat{\theta}_N$ and θ is less than some small positive ε goes to one. Mathematically this is expressed by

$$\lim_{N o\infty} \ P\{|\hat{ heta}_N- heta|0$$

and abbreviated by $\underset{N \to \infty}{\text{plim}} \hat{\theta}_N = \theta \text{ (or } \hat{\theta}_N \xrightarrow{P} \theta \text{)}.$

Definition 2:

An estimator $\hat{\theta}_N$ for the true parameter value θ is (weakly) **consistent**, if

$$\mathop{plim}\limits_{\mathsf{N}
ightarrow\infty} \hat{ heta}_{\mathsf{N}} \,=\, heta \;.$$

Remarks:

1. The sample mean \overline{Y}_N of a sequence of random variables Y_i with expected value $E(Y_i) = \mu_Y$ is under very general conditions a consistent estimator of μ_Y , d.h. plim $\overline{Y}_N = \mu_Y$.

2. For two sequences of random variables $\hat{\theta}_{1,N}$ and $\hat{\theta}_{2,N}$ it follows:

$$plim(\hat{\theta}_{1,N} + \hat{\theta}_{2,N}) = plim\hat{\theta}_{1,N} + plim\hat{\theta}_{2,N}$$
$$plim(\hat{\theta}_{1,N} \cdot \hat{\theta}_{2,N}) = plim\hat{\theta}_{1,N} \cdot plim\hat{\theta}_{2,N}$$
$$plim\left(\frac{\hat{\theta}_{1,N}}{\hat{\theta}_{2,N}}\right) = \frac{plim\hat{\theta}_{1,N}}{plim\hat{\theta}_{2,N}}$$

 $\frac{\text{Slutzky's Theorem:}}{p \lim g\left(\hat{\theta}_{N}\right) = g\left(p \lim \hat{\theta}_{N}\right)} \text{ at continuity points of } g(.)$

Convergence and Asymptotic Orders of Magnitude

Motivation:

For many semiparametric problems it is important to determine the speed of convergence, i.e. the asymptotic order of magnitude.

<u>Definition 1</u> (Fixed Sequences):

The sequence $\{X_N\}$ of real numbers is said to be at most of order N^k and is denoted by

$$X_N = O(N^k)$$
 if $\lim_{N o \infty} rac{X_N}{N^k} = c$

for some constant c .

<u>Definition 2</u> (Fixed Sequences):

The sequence $\{X_N\}$ of real numbers is said to be of smaller order than N^k and is denoted by

$$X_N = o(N^k)$$
 if $\lim_{N o \infty} \; rac{X_N}{N^k} = 0$.

Definition 3 (Stochastic Sequences):

The sequence of random variables $\{X_N\}$ is said to be at most of order N^k and is denoted by

$$X_N = O_p(N^k)$$

if for every $\varepsilon > 0$ there exist numbers C and \tilde{N} such that

$$P\left\{ rac{|X_N|}{N^k} > C
ight\} < arepsilon \qquad ext{for all} \quad N > ilde{N}.$$

<u>Definition 4</u> (Stochastic Sequences):

The sequence of random variables $\{X_N\}$ is said to be of smaller order than N^k and is denoted by

$$X_N = o_p(N^k)$$
 if $plim_{N o \infty} rac{X_N}{N^k} = 0$

Chebychev's Law of Large Numbers:

Let the random variables $\{X_i\}$ be uncorrelated with $EX_i = \mu_i$ and $Var(X_i) = \sigma_i^2 < \infty$ in a sample of size N (i = 1, ..., N). Then

$$\bar{X}_N - \bar{\mu}_N \stackrel{P}{\rightarrow} 0$$

if $\bar{\sigma}^2 \to 0$, as N goes to infinity where $\bar{X}_N = \frac{1}{N} \sum_{i=1}^N X_i$ denotes the sample mean, $\bar{\mu}_N = \frac{1}{N} \sum_{i=1}^N \mu_i$ and $\bar{\sigma}^2 = \frac{1}{N^2} \sum_{i=1}^N \sigma_i^2 = \frac{1}{N} \left(\frac{1}{N} \sum_{i=1}^N \sigma_i^2 \right)$.

Alternative Representation:

Under the above assumptions it follows that $\left(ar{X}_{N} - ar{\mu}_{N}
ight) = o_{
ho}(1)$

Special Case: If $\mu_i = \mu$ then $plim\bar{X}_N = \mu$.

Lindberg-Levy's Central Limit Theorem:

Let $\{X_i\}$ be a sequence of i.i.d. random variables such that $EX_i = \mu$ and $Var(X_i) = \sigma^2 < \infty$ in a sample of size N (i = 1, ..., N). Then

$$\sqrt{N} \frac{(\bar{X}_N - \mu)}{\sigma} \stackrel{d}{\rightarrow} \mathcal{N}(0, 1)$$
 (i.e. \bar{X}_N is \sqrt{N} - consistent).

Implication:

Under the above assumptions it follows that $(\bar{X}_N - \mu) = O_p(N^{-1/2})$.

Liapounov's Central Limit Theorem:

Let $\{X_{N,i}\}$ be a sequence of independently distributed random variables with $EX_{N,i} = \mu_{N,i}$ and $Var(X_{N,i}) = \sigma_{N,i}^2 < \infty$ in a sample of size N (i = 1, ..., N).

Let
$$E|X_{N,i}|^{2+\delta} < \infty$$
 for some $\delta > 0$. If $\lim_{M \to \infty} \sum_{i=1}^{N} \frac{E|X_{N,i} - \mu_{N,i}|^{2+\delta}}{\tilde{\sigma}_N^{2+\delta}} = 0$, then
 $\frac{\sum_{i=1}^{N} (X_{N,i} - \mu_{N,i})}{\tilde{\sigma}_N} \xrightarrow{d} \mathcal{N}(0,1)$ for $\tilde{\sigma}_N^2 = \sum_{i=1}^{N} \sigma_{N,i}^2$.

Implication:

Under the above assumptions it follows that $\frac{\sum_{i=1}^{N}(X_{N,i}-\mu_{N,i})}{\tilde{\sigma}_{N}}=O_{p}(1)$

1. Review: Linear Regression Model for Cross-Sectional Data

Section Outline

0. Introductory Material

- Review Linear Regression Model for Cross-Sectional Data

 Preliminaries: Conditional Expectations, Causal Analysis, Linear
 Projections
 OLS and Asymptotic Properties
 - 1.3 Instrumental Variable Regression
- 2. System Estimation, Linear Panel Data Models
- 3. Nonlinear Least Squares and Maximum Likelihood
- 4. Binary Response Models and Limited Dependent Variables
- 5. Linear Quantile Regression

1.1 Preliminaries: Conditional Expectations, Causal Analysis, Linear Projections

- y explained/dependent/response variable
- $x = (x_1, ..., x_k)$ explanatory / independent variables, regressors, control variables, covariates (x is observed)

Structural conditional expectation (CE): E(y|w, c)

Based on random sample of (y, w, c) we can estimate the effect of w on y holding c constant.

Complications arise when there is no random sample of (y, w, c)

- \rightarrow measurement error
- \rightarrow simultaneous determination of y, w, c
- \rightarrow some variables we would like to control for (elements of *c*) cannot be observed

 \Rightarrow CE of interest involves data for which the econometrician cannot collect data or requires an experiment that cannot be carried out.

Identification assumptions:

 \rightarrow Can recover structural CE of interest

Definition CE:

y (random variable) explained variable, $x \equiv (x_1, x_2, ..., x_k)$ $(1 \times k)$ -vector of explanatory variables, $E(|y|) < \infty$

then function $\mu : \mathbb{R}^k \to \mathbb{R}$

(CE)
$$E(y|x_1, x_2, ..., x_k) = \mu(x_1, x_2, ..., x_k)$$
 or $E(y|x) = \mu(x)$

Distinguish

E(y|x): random variable because x is a random variable

from

 $E(y|x = x_0)$: conditional expectation when x takes specific value x_0

 \rightarrow Distinction most of the time not important

 \rightarrow Use E(y|x) as short hand notation

Parametric model for E(y|x) where $\mu(x)$ depends on a finite set of unknown parameters

Examples:

- (i) $E(y|x_1, x_2) = \beta_0 + \beta_1 x_1 + \beta_2 x_2$
- (ii) $E(y|x_1, x_2) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_2^2 + \beta_4 x_1 x_2$
- (iii) $E(y|x_1, x_2) = \exp[\beta_0 + \beta_1 \log(x_1) + \beta_2 x_2]$ with $y \ge 0, x_1 > 0$
 - (i) is linear in parameters and explanatory variables

(ii) is linear in parameters and nonlinear in explanatory variables(iii) is nonlinear in both

Partial Effect:

• Continuous x_i , and differentiable μ

$$\Delta E(y|x) = \frac{\partial \mu}{\partial x_j} \Delta x_j$$
 holding $x_1, ..., x_{j-1}, x_{j+1}, ..., x_k$ fixed

 $\widehat{=}$ ceteris paribus effect for propertly specified population model

• Discrete
$$x_j : x_{j,0} \rightarrow x_{j,1}$$

$$\Delta E(y|x) = E(y|x_1, ..., x_{j-1}, x_{j,1}, x_{j+1}, ..., x_k) - E(y|x_1, ..., x_{j-1}, x_{j,0}, x_{j+1}, ..., x_k)$$

Examples:

ad i) $\frac{\partial E(y|x)}{\partial x_1} = \beta_1 = \text{constant}$

ad ii) $\frac{\partial E(y|x)}{\partial x_1} = \beta_1 + \beta_4 x_2$, i.e. partial effect of x_1 varies with x_2

ad iii) $\frac{\partial E(y|x)}{\partial x_1} = exp[\beta_0 + \beta_1 \log(x_1) + \beta_2 x_2] \frac{\beta_1}{x_1} \rightarrow \text{highly nonlinear}$

(Partial) Elasticity (only continuous case)

$$\frac{\partial E(y|x)}{\partial x_j} \cdot \frac{x_j}{E(y|x)} = \frac{\partial \log E(y|x)}{\partial \log x_j}$$

(Partial) Semielasticity:

$$\frac{\partial E(y|x)}{\partial x_j} \cdot \frac{1}{E(y|x)} = \frac{\partial \log E(y|x)}{\partial x_j}$$

Average Partial Effect (APE, 'integrate out distribution of x'):

$$E_{x}\left\{\Delta E(y|x)\right\} = E_{x}\left\{\frac{\partial \mu}{\partial x_{i}}\Delta x_{j}\right\}$$

Examples:

ad i) APE=
$$\beta_1$$

ad ii) APE= $\beta_1 + \beta_4 E x_2$
ad iii) APE= $E \left\{ exp[\beta_0 + \beta_1 \log(x_1) + \beta_2 x_2] \frac{\beta_1}{x_1} \right\}$

APE's in cases ii and iii can be estimated by sample averages of the expressions evaluated at the sample estimates of the coefficients $\hat{\beta}$

Error form of models of conditional expectations

We can always write

(1) y = E(y|x) + u where u = y - E(y|x)

and it follows by definition:

(2) E(u|x) = 0

Implications:

(i) E(u) = 0

(ii) u is uncorrelated with any function of $x_1, ..., x_k$

Implication (i) and (ii) follows from the law of iterated expectations

$$\underline{\mathsf{LIE}}: E(y|x) = E[E(y|w)|x] \quad \text{if } x = f(w)$$

i.e. {Information set incorporated in x} \subseteq {Information set incorporated in w}

i)
$$E(y|x) = E[E(y|w)|x]$$

 \rightarrow integrating out w wrt x: $\int yf(y|x)dy = \int [\int yf(y|w,x)dy]f(w|x)dw$

ii) E(y|x) = E[E(y|x)|w]Knowing w implies knowing x \rightarrow Routinely used in the course

'The smaller information set always dominates'

Therefore

$$E(u) = E_x[E(u|x)] = E_x 0 = 0$$

which gives implication (i) and

$$E(u|f(x)) = E[E(u|x)|f(x)] = E[0|f(x)] = 0$$

which gives implication (ii).

Example:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + u$$

with

$$E(u|x_1,x_2)=0$$

implies:

E(u) = 0, $Cov(x_1, u) = 0$, $Cov(x_2, u) = 0$ and u is also uncorrelated with $x_1^2, x_2^2, x_1x_2, \exp(x_1)$ etc.

i.e. the functional form of E(y|x) is properly specified.

We have $\beta_2 = \frac{\partial E(y|x_1,x_2)}{\partial x_2}$ because $E(u|x_1,x_2) = 0$, i.e. *u* is uncorrelated with any function of x_2 . Thus β_2 describes the mean impact of x_2 on *y*.

 $E(u|x_1, x_2) = 0$ sometimes called mean independence

We have:

Mean independence defines a Conditional Expectation

Uncorrelatedness defines a Linear Projection

Different nested sets of conditioning variables

Important special case: w = (x, z)

$$\underbrace{E(y|x)}_{\substack{\mu_1(x)\\\mu_1}} = E[\underbrace{E(y|x,z)}_{\mu_2(x,z)}|x]$$

observed unobserved unobserved

Identification problem: Can we link the estimable $\mu_1(x)$ to the structural $\mu_2(x, z)$ which is the causal relationship of interest?

$$\mu_1(x,z) = E(y|x,z)$$

$$\mu_2(x) = E(y|x)$$

By LIE, we have ('integrating z out')

$$\mu_2(x) = E(y|x) = E[E(y|x,z)|x] = E[\mu_1(x,z)|x]$$

 \rightarrow allows to study effects of omitted regressors/unobserved components z on the relationship between y and x.

Example: Wage Equation

$$E(wage|educ, exper)$$

$$= \beta_0 + \beta_1 educ + \beta_2 exper + \beta_3 exper^2 + \beta_4 educ \cdot exper$$

$$= E(wage|educ, exper, exper^2, educ \cdot exper)$$

by LIE, i.e. it is redundant to condition on $exper^2$ and $educ \cdot exper.$

Conditional Variance

The conditional variance of y given x is defined as

$$Var(y|x) = E(u^{2}|x) \equiv \sigma^{2}(x) \equiv E[(y - E(y|x))^{2}|x]$$

= $E(y^{2}|x) - [E(y|x)]^{2}$

Note: $\sigma^2(x)$ is a random variable when x is viewed as a random vector.

Properties:

$$Var(a(x)y + b(x)|x) = [a(x)]^2 Var(y|x)$$

Decomposition of variance (corresponds to LIE)

$$Var(y) = E[Var(y|x)] + Var(E(y|x))$$

=
$$\underbrace{E[\sigma^{2}(x)]}_{\text{average conditional variance}} + \underbrace{Var(\mu(x))}_{\text{variance of conditional expectation}}$$

where $\mu(x) = E(y|x)$.

Extension (further conditioning variable z)

$$Var(y|x) = E[Var(y|x, z)|x] + Var[E(y|x, z)|x]$$

Consequently:

$$E[Var(y|x)] \ge E[Var(y|x,z)]$$

 \rightarrow further conditioning variables *z* reduce the average conditional variances.

Linear Projections

Even though a structural CE (conditional expectation) E(y|x) is typically not a linear function of x, it is possible to use the linear projection of y on the random variables $(x_1, ..., x_k) =: x$

$$\underbrace{L(y|1, x_1, \dots, x_k)}_{\text{including an intercept}} = L(y|1, x) = \beta_0 + \beta_1 x_1 + \dots + \beta_k x_k$$

$$= \beta_0 + x\beta$$

where
$$\beta := [Var(x)]^{-1}Cov(x, y)$$

 $\beta_0 = E(y) - E(x)\beta = E(y) - \beta_1 E(x_1) - ... - \beta_k E(x_k)$

Variance–Covariance matrix is the $(k \times k)$ -matrix

$$Var(x) = \begin{pmatrix} Var(x_1) & \dots & Cov(x_k, x_1) \\ Cov(x_2, x_1) & \ddots & \\ \vdots & & \\ Cov(x_k, x_1) & \dots & Var(x_k) \end{pmatrix} = E[(x - E(x))(x - E(x))']$$

Note:

$$x - E(x) = \begin{pmatrix} x_1 - E(x_1) \\ \vdots \\ x_k - E(x_k) \end{pmatrix}$$

and

$$(x - E(x))' = (x_1 - E(x_1), ..., x_k - E(x_k))$$

$$Cov(x,y) = \begin{pmatrix} Cov(x_1,y) \\ \vdots \\ Cov(x_k,y) \end{pmatrix}$$
 $(k \times 1)$ -vector

Prof. Bernd Fitzenberger, Ph.D.

Linear projection with a zero intercept

$$L(y|x) = L(y|x_1,...,x_k) = \gamma_1 x_1 + ... + \gamma_k x_k = x\gamma_1 x_1 + ... + \gamma_k x_k = x\gamma_k x_k = x\gamma_k + ... + \gamma_k + .$$

where
$$\gamma := [E(x'x)]^{-1}E(x'y)$$

The linear projection can be derived as the linear predictor minimizing the mean square prediction error (\equiv Best linear predictor or least squares linear predictor), i.e.

$$\min_{b_0,b\in\mathbb{R}^k} E[(y-b_0-xb)^2]$$

yields β and β_0 as defined.

Using the linear projection

$$L(y|x) = \beta_0 + \beta_1 x_1 + \dots + \beta_k x_k$$

define the error term u by

$$u := y - L(y|x)$$

or

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k + u$$

By definition of linear projections:

$$Eu = 0$$
 and $Cov(x_j, u) = 0$ $(j = 1, \dots, k)$

<u>Note</u>: This does not imply independence between x and u or mean independence E(u|x) = 0

Primary use of linear projections: Obtaining estimable equations involving the parameters of an underlying conditional expectation of interest. Appendix of WO Chapter 2 contains more results on conditional expectations etc. which will be useful later.

Prof. Bernd Fitzenberger, Ph.D.

1.2 Derivation of the OLS Estimator and its Asymptotic Properties

Population equation of interest:

$$y = x\beta + u$$

where: x is a
$$1 \times K$$
 vector
 $\beta = (\beta_1, \dots, \beta_K)'$ is a $K \times 1$ vector
 $x_1 \equiv 1$: with intercept

Sample of size N: $\{(x_i, y_i) : i = 1, ..., N\}$ i.i.d. random variables where x_i is $1 \times K$ and y_i is a scalar.

For each observation

$$y_i = x_i\beta + u_i$$

Consistency

Assumption OLS.1: E(x'u) = 0

Assumption OLS.2: rank(Ex'x) = K \rightarrow expected outer product matrix has full rank, i.e.

$$Ex'x = \begin{pmatrix} 1 & Ex_2 & \dots & Ex_K \\ Ex_2 & Ex_2^2 & \dots & Ex_2x_K \\ \vdots & \vdots & \ddots & \vdots \\ Ex_K & Ex_Kx_2 & \dots & Ex_K^2 \end{pmatrix}$$
 is invertible

Under OLS.1 and OLS.2, the parameter vector β is <u>identified</u>, which is equivalent to saying that β can be written in terms of population moments (and of course be solved for!)

To see this:

$$y = x\beta + u$$

$$x'y = x'x\beta + x'u$$

$$Ex'y = Ex'x\beta + \underbrace{Ex'u}_{=0} \text{ by OLS.1}$$

$$\beta = (Ex'x)^{-1}Ex'y \text{ by OLS.2}$$

Because (x, y) is observed $\rightarrow \beta$ is identified.

Analogy principle:

Choose an estimator by turning the population relationship (based on the probability distribution for the data generating process) into its sample counterpart (based on the empirical distribution for the sample).

Here, the analogy principle implies the <u>method-of-moments</u>: Replace the population moments E(x'y) and E(x'x) (expected values) by their corresponding sample moments (averages).

$$E(x'y) \rightarrow \frac{1}{N} \sum_{i=1}^{N} x'_i y_i$$
$$E(x'x) \rightarrow \frac{1}{N} \sum_{i=1}^{N} x'_i x_i$$

$$\widehat{\beta} = \left(\frac{1}{N}\sum_{i=1}^{N} x_i' x_i\right)^{-1} \left(\frac{1}{N}\sum_{i=1}^{N} x_i' y_i\right) \quad \text{with } y_i = x_i \beta + u_i$$
$$= \left(\frac{1}{N}\sum_{i=1}^{N} x_i' x_i\right)^{-1} \left(\frac{1}{N}\sum_{i=1}^{N} x_i' (x_i \beta + u_i)\right)$$
$$= \left(\frac{1}{N}\sum_{i=1}^{N} x_i' x_i\right)^{-1} \left(\frac{1}{N}\sum_{i=1}^{N} x_i' x_i\right) \beta + \left(\frac{1}{N}\sum_{i=1}^{N} x_i' x_i\right)^{-1} \left(\frac{1}{N}\sum_{i=1}^{N} x_i' u_i\right)$$
$$= \beta + \left(\frac{1}{N}\sum_{i=1}^{N} x_i' x_i\right)^{-1} \left(\frac{1}{N}\sum_{i=1}^{N} x_i' u_i\right)$$

OLS Estimator in Matrix Notation

$$\widehat{\beta} = (X'X)^{-1}X'Y$$
where $X = \begin{pmatrix} X_1 \\ \vdots \\ X_N \end{pmatrix} = \begin{pmatrix} 1 & x_{21} & \dots & x_{K1} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{2N} & \dots & x_{KN} \end{pmatrix}$ and $Y = \begin{pmatrix} y_1 \\ \vdots \\ y_N \end{pmatrix}$

Under OLS.2: X'X is nonsingular with probability approaching one $\underline{\text{and } plim}\left[\left(\frac{1}{N}\sum_{i=1}^{N}x'_{i}x_{i}\right)^{-1}\right] = A^{-1} \text{ where } A = E(x'x)$ (Corollary 3.1 in WO Chapter 3) Under OLS.1: $plim\left(\frac{1}{N}\sum_{i=1}^{N}x'_{i}u_{i}\right) = E(x'u) = 0$

By **Slutzky's theorem** (WO Lemma 3.4): plim $\widehat{\beta} = \beta + A^{-1} \cdot \mathbf{0} = \beta$

WO Theorem 4.1:

Under assumptions OLS.1 and OLS.2, the OLS estimator $\hat{\beta}$ obtained from a random sample following the population model (5) is consistent for β .

- \rightarrow Simplicity should not undermine usefulness.
- \rightarrow Whenever estimable equation is of the form then consistency follows.

Under the assumption of theorem 4.1, $x\beta$ is the linear projection of y on x.

 \rightarrow OLS estimates linear projection consistently (also in cases such as y being a binary variable) ... and conditional expectations that are linear in parameters.

If either OLS.1 or OLS.2 fail, β is not identified \rightarrow typically because x and u are correlated.

OLS estimator not necessarily unbiased under OLS.1 and OLS.2 (Jensen's Inequality)

$$E\left[\left(\frac{1}{N}\sum_{i=1}^{N}x_{i}'x_{i}\right)^{-1}\left(\frac{1}{N}\sum_{i=1}^{N}x_{i}'u_{i}\right)\right]$$
$$\neq E\left[\frac{1}{N}\sum_{i=1}^{N}x_{i}'x_{i}\right]^{-1}\underbrace{E\left[\frac{1}{N}\sum_{i=1}^{N}x_{i}'u_{i}\right]}_{=0}$$

ightarrow E(u|x)=0 implies $E\hat{eta}=eta$ (unbiasedness) because of LIE.

We do not need to assume independence

 \rightarrow Var(u|x) unrestricted.

Aside: Standard derivation of the OLS estimator $\hat{\beta}$ in matrix notation

Minimizing
$$\sum_{i=1}^{N} u_i^2 = U'U$$
 sum of squared residuals $U' = (u_1, \dots, u_N)$
 $U = Y - X\beta$

$$\min_{\{\beta\}} U'U = (Y - X\beta)'(Y - X\beta) = Y'Y - \beta'X'Y - Y'X\beta + \beta'X'X\beta$$

F.O.C.:
$$\frac{\partial U'U}{\partial \beta} = -X'Y - X'Y + 2X'X\widehat{\beta} = 0$$

$$\Leftrightarrow \underbrace{X'X\widehat{\beta} = X'Y}_{\text{normal equations}} \Rightarrow \widehat{\beta} = (X'X)^{-1}X'Y$$

$$\Leftrightarrow X'(Y - X\widehat{\beta}) = X'\widehat{U} = 0$$
$$\Leftrightarrow \frac{1}{N} \sum_{i=1}^{N} \begin{pmatrix} x_{1i} \\ \vdots \\ x_{Ki} \end{pmatrix} \widehat{u}_i = 0$$

Covariance between x_i and u_i is set to zero to calculate the OLS estimator $\hat{\beta}$. $\hat{=}$ another way to interpret $\hat{\beta}$ as a method-of-moment estimator (\rightarrow analogy principle).

Asymptotic distribution of the OLS estimator

Rewrite

$$\widehat{\beta} = \beta + \left(\frac{1}{N}\sum_{i=1}^{N} x_i' x_i\right)^{-1} \left(\frac{1}{N}\sum_{i=1}^{N} x_i' u_i\right)$$

as

$$\sqrt{N}(\widehat{eta} - eta) = \left(\frac{1}{N}\sum_{i=1}^{N}x'_{i}x_{i}
ight)^{-1}\left(\frac{1}{\sqrt{N}}\sum_{i=1}^{N}x'_{i}u_{i}
ight)$$

We know $\left[\left(\frac{1}{N}\sum_{i=1}^N x_i'x_i\right)^{-1} - A^{-1}\right] = O_p(1)$

Also $\{(x'_i u_i) : i = 1, 2...\}$ is i.i.d. sequence with $Ex'_i u_i = 0$ and we assume each element has a finite variance. Then the central limit theorem implies:

$$\frac{1}{\sqrt{N}}\sum_{i=1}^{N}x_{i}^{\prime}u_{i}\overset{d}{\rightarrow}N(0,B)$$

where B is a $K \times K$ matrix: $B \equiv E(u^2 x' x)$

Recall: x'x is the outer product of the $K \times 1$ row vector xThis implies

$$\sqrt{N}(\widehat{\beta} - \beta) = A^{-1}\left(\frac{1}{\sqrt{N}}\sum_{i=1}^{N}x'_{i}u_{i}\right) + o_{p}(1)$$

Under Heteroscedasticity: $\sqrt{N}(\widehat{\beta} - \beta) \stackrel{a}{\sim} N(0, A^{-1}BA^{-1})$

Under Heteroscedasticity:
$$\sqrt{N}(\widehat{eta} - eta) \stackrel{a}{\sim} N(0, A^{-1}BA^{-1})$$

Under Homoskedasticity:

Assumption OLS.3: $E(u^2x'x) = \sigma^2 Ex'x$

where $\sigma^2 = Eu^2 = Var(u)$

WO Theorem 4.2 (Asymptotic Normality of OLS):

Under Assumptions OLS.1 - OLS.3: $\sqrt{N}(\hat{\beta} - \beta) \stackrel{a}{\sim} N(0, \sigma^2 A^{-1})$

Proof: Use $B = \sigma^2 A$ q.e.d.

Practical usage:

Treat $\hat{\beta}$ as approximately jointly normal with expected value β and Variance-Covariance-Matrix (VCOV) $V = \frac{\sigma^2}{N} [Ex'x]^{-1}$.

V is estimated by

$$\widehat{Avar(\widehat{\beta})} = \frac{\widehat{\sigma}^2}{N} \left[\frac{1}{N} \sum_{i=1}^{N} x_i' x_i \right]^{-1} = \widehat{\sigma}^2 \left(X' X \right)^{-1}$$

and

$$\widehat{\sigma}^2 \equiv s^2 = \frac{1}{N - K} \sum_{i=1}^N \widehat{u}_i^2$$

Heteroscedasticity

Failure of assumption OLS.3: $E(u^2x'x) = \sigma^2 E(x'x)$ has nothing to do with consistency of OLS estimator $\hat{\beta}$ (WO theorem 4.1) and the proof of asymptotic normality is still valid but the final asymptotic variance is different.

Two options:

Option i): Weighted Least Squares to obtain a more efficient estimator

Specify a model for Var(y|x) and 'estimate' this model (e.g. by regressing \hat{u}_i^2 on a flexible function of x_i or other covariates). This model povides an estimate (prediction) of $Var(u_i|x_i) = Var(y_i|x_i)$.

Then, use Weighted Least Squares (WLS) as follows:

Divide y_i and every element of x_i (including unity for the intercept) by $\sqrt{Var(y_i|x_i)}$ and apply OLS to the weighted data

$$\underbrace{\frac{y_i}{\sqrt{Var(y_i|x_i)}}}_{\tilde{y}_i} = \underbrace{\frac{1}{\sqrt{Var(y_i|x_i)}}}_{\tilde{x}_i}\beta + \underbrace{\frac{u_i}{\sqrt{Var(y_i|x_i)}}}_{\tilde{u}_i}$$

$$Var(ilde{u}_i|x_i) = rac{Var(u_i|x_i)}{Var(y_i|x_i)} \equiv 1$$

Transformed Model:

 $\tilde{y}_i = \tilde{x}_i \beta + \tilde{u}_i$ satisfies OLS.1-OLS.3 (homoskedastic)

 \Rightarrow Special case of Generalized Least Squares which we will cover later

 \Rightarrow leads to a different estimator of β which hinges on a correct specification of $Var(y_i|x_i)$

 \Rightarrow Efficiency gain possible with correct specification of $Var(y_i|x_i)$

Option ii): Heteroscedasticity robust inference

Often we want to stick to the consistent estimator $\hat{\beta}$ \rightarrow because no correct specification of $Var(y_i|x_i)$ available \rightarrow WLS generally inconsistent for linear projections (e.g. when OLS.1 holds but $E(u|x) \neq 0$)

Appropriate asymptotic variance

Without OLS.3 the asymptotic variance of $\hat{\beta}$ is $Avar(\hat{\beta}) = \frac{1}{N}A^{-1}BA^{-1}$

$$\mathcal{A}^{-1}$$
 is consistently estimated by $\left(rac{1}{N}\sum_{i=1}^N x_i' x_i
ight)^{-1} = \widehat{\mathcal{A}}^{-1}$

B is consistently estimated by $\left(\frac{1}{N}\sum_{i=1}^{N}u_{i}^{2}x_{i}'x_{i}\right)$

We replace the unobserved error terms u_i by the estimated residuals $\hat{u}_i = y_i - x_i \hat{\beta}$ $\hat{B} = \frac{1}{N} \sum_{i=1}^{N} \hat{u}_i^2 x_i' x_i \xrightarrow{p} B$ Heteroscedasticity-robust variance estimator

$$\widehat{Avar}(\widehat{\beta}) = \frac{1}{N}\widehat{A}^{-1}\widehat{B}\widehat{A}^{-1} = (X'X)^{-1}\left(\sum_{i=1}^{N} \widehat{u}_{i}^{2}x_{i}'x_{i}\right)(X'X)^{-1}$$

often called White standard errors, White-Eicker standard error, or Huber standard errors.

Typically with degrees-of-freedom adjustment to improve finite sample properties.

$$\widehat{Avar}(\widehat{\beta}) = \frac{1}{N-K}\widehat{A}^{-1}\widehat{B}\widehat{A}^{-1} = (X'X)^{-1}\left(\frac{N}{N-K}\sum_{i=1}^{N}\widehat{u}_{i}^{2}x_{i}'x_{i}\right)(X'X)^{-1}$$

t-statistics, χ^2 -statistics (but not F-statistics based on comparison of sums of squared residuals in restricted and unrestricted model!) can be used in the usual way.