Estimation of Treatment Effects

Prof. Bernd Fitzenberger, Ph.D.

Humboldt-University Berlin - Winter Semester 2016/17

0. Introductory Material

Linear Regression Model, Conditional Expectation, and Causal Interpretation

- y explained/dependent/response variable
- $x=\left(x_{1}, \ldots ., x_{k}\right)$ explanatory / independent variables, regressors, control variables, covariates (x is observed)

Structural conditional expectation (CE): $E(y \mid w, c)$
Based on random sample of (y, w, c) we can estimate the effect of w on y holding c constant.

Complications arise when there is no random sample of (y, w, c)
\rightarrow measurement error
\rightarrow simultaneous determination of y, w, c
\rightarrow some variables we would like to control for (elements of c) cannot be observed
\Rightarrow CE of interest involves data for which the econometrician cannot collect data or requires an experiment that cannot be carried out.

Identification assumptions:
\rightarrow Can recover structural CE of interest

Definition CE:

y (random variable) explained variable, $x \equiv\left(x_{1}, x_{2}, \ldots, x_{k}\right) \quad(1 \times k)$-vector of explanatory variables, $E(|y|)<\infty$
then function $\mu: \mathbb{R}^{k} \rightarrow \mathbb{R}$
(CE) $E\left(y \mid x_{1}, x_{2}, \ldots, x_{k}\right)=\mu\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ or $E(y \mid x)=\mu(x)$
Distinguish
$E(y \mid x)$: random variable because x is a random variable
from
$E\left(y \mid x=x_{0}\right)$: conditional expectation when x takes specific value x_{0}
\rightarrow Distinction most of the time not important
\rightarrow Use $E(y \mid x)$ as short hand notation

Parametric model for $E(y \mid x)$ where $\mu(x)$ depends on a finite set of unknown parameters

Examples:

(i) $E\left(y \mid x_{1}, x_{2}\right)=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}$
(ii) $E\left(y \mid x_{1}, x_{2}\right)=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{2}^{2}+\beta_{4} x_{1} x_{2}$
(iii) $E\left(y \mid x_{1}, x_{2}\right)=\exp \left[\beta_{0}+\beta_{1} \log \left(x_{1}\right)+\beta_{2} x_{2}\right]$ with $y \geq 0, x_{1}>0$
(i) is linear in parameters and explanatory variables
(ii) is linear in parameters and nonlinear in explanatory variables
(iii) is nonlinear in both

Partial Effect:

- Continuous x_{i}, and differentiable μ

$$
\Delta E(y \mid x)=\frac{\partial \mu}{\partial x_{j}} \Delta x_{j} \text { holding } x_{1}, \ldots, x_{j-1}, x_{j+1}, \ldots, x_{k} \text { fixed }
$$

$\hat{=}$ ceteris paribus effect for propertly specified population model

- Discrete $x_{j}: x_{j, 0} \rightarrow x_{j, 1}$

$$
\Delta E(y \mid x)=E\left(y \mid x_{1}, \ldots, x_{j-1}, x_{j, 1}, x_{j+1}, \ldots, x_{k}\right)-E\left(y \mid x_{1}, \ldots, x_{j-1}, x_{j, 0}, x_{j+1}, \ldots, x_{k}\right)
$$

Examples:

ad i) $\frac{\partial E(y \mid x)}{\partial x_{1}}=\beta_{1}=\mathrm{constant}$
ad ii) $\frac{\partial E(y \mid x)}{\partial x_{1}}=\beta_{1}+\beta_{4} x_{2}$, i.e. partial effect of x_{1} varies with x_{2}
ad iii) $\frac{\partial E(y \mid x)}{\partial x_{1}}=\exp \left[\beta_{0}+\beta_{1} \log \left(x_{1}\right)+\beta_{2} x_{2}\right] \frac{\beta_{1}}{x_{1}} \rightarrow$ highly nonlinear
(Partial) Elasticity (only continuous case)

$$
\frac{\partial E(y \mid x)}{\partial x_{j}} \cdot \frac{x_{j}}{E(y \mid x)}=\frac{\partial \log E(y \mid x)}{\partial \log x_{j}}
$$

(Partial) Semielasticity:

$$
\frac{\partial E(y \mid x)}{\partial x_{j}} \cdot \frac{1}{E(y \mid x)}=\frac{\partial \log E(y \mid x)}{\partial x_{j}}
$$

Average Partial Effect (APE, 'integrate out distribution of x^{\prime}):

$$
E_{x}\{\Delta E(y \mid x)\}=E_{x}\left\{\frac{\partial \mu}{\partial x_{i}} \Delta x_{j}\right\}
$$

Examples:

$$
\begin{aligned}
& \text { ad i) } \mathrm{APE}=\beta_{1} \\
& \text { ad ii) } \mathrm{APE}=\beta_{1}+\beta_{4} E x_{2} \\
& \text { ad iii) } \mathrm{APE}=E\left\{\exp \left[\beta_{0}+\beta_{1} \log \left(x_{1}\right)+\beta_{2} x_{2}\right] \frac{\beta_{1}}{x_{1}}\right\}
\end{aligned}
$$

APE's in cases ii and iii can be estimated by sample averages of the expressions evaluated at the sample estimates of the coefficients $\hat{\beta}$

Error form of models of conditional expectations

We can always write
(1) $y=E(y \mid x)+u$ where $u=y-E(y \mid x)$
and it follows by definition:
(2) $E(u \mid x)=0$

Implications:
(i) $E(u)=0$
(ii) u is uncorrelated with any function of x_{1}, \ldots, x_{k}

Implication (i) and (ii) follows from the law of iterated expectations

$$
\text { LIE }: E(y \mid x)=E[E(y \mid w) \mid x] \quad \text { if } x=f(w)
$$

i.e. $\{$ Information set incorporated in $x\} \subseteq\{$ Information set incorporated in $w\}$
i) $E(y \mid x)=E[E(y \mid w) \mid x]$ \rightarrow integrating out w wrt $x: \int y f(y \mid x) d y=\int\left[\int y f(y \mid w, x) d y\right] f(w \mid x) d w$
ii) $E(y \mid x)=E[E(y \mid x) \mid w]$ Knowing w implies knowing x \rightarrow Routinely used in the course
'The smaller information set always dominates'

Therefore

$$
E(u)=E_{x}[E(u \mid x)]=E_{x} 0=0
$$

which gives implication (i) and

$$
E(u \mid f(x))=E[E(u \mid x) \mid f(x)]=E[0 \mid f(x)]=0
$$

which gives implication (ii).

Example:

$$
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+u
$$

with

$$
E\left(u \mid x_{1}, x_{2}\right)=0
$$

implies:
$E(u)=0, \operatorname{Cov}\left(x_{1}, u\right)=0, \operatorname{Cov}\left(x_{2}, u\right)=0$ and u is also uncorrelated with $x_{1}^{2}, x_{2}^{2}, x_{1} x_{2}, \exp \left(x_{1}\right)$ etc.
i.e. the functional form of $E(y \mid x)$ is properly specified.

We have $\beta_{2}=\frac{\partial E\left(y \mid x_{1}, x_{2}\right)}{\partial x_{2}}$ because $E\left(u \mid x_{1}, x_{2}\right)=0$, i.e. u is uncorrelated with any function of x_{2}. Thus β_{2} describes the mean impact of x_{2} on y.
$E\left(u \mid x_{1}, x_{2}\right)=0$ sometimes called mean independence
We have:
Independence \Rightarrow Mean Independence \Rightarrow Uncorrelatedness

Mean independence defines a Conditional Expectation
Uncorrelatedness defines a Linear Projection

Different nested sets of conditioning variables

Important special case: $w=(x, z)$

Identification problem: Can we link the estimable $\mu_{1}(x)$ to the structural $\mu_{2}(x, z)$ which is the causal relationship of interest?
$\underbrace{x, z}_{\text {more }}$ versus $\underbrace{x}_{\text {less information }}$

$$
\begin{aligned}
\mu_{1}(x, z) & =E(y \mid x, z) \\
\mu_{2}(x) & =E(y \mid x)
\end{aligned}
$$

By LIE, we have ('integrating z out')

$$
\mu_{2}(x)=E(y \mid x)=E[E(y \mid x, z) \mid x]=E\left[\mu_{1}(x, z) \mid x\right]
$$

\rightarrow allows to study effects of omitted regressors/unobserved components z on the relationship between y and x.

Example: Wage Equation

$$
\begin{gathered}
E(\text { wage } \mid \text { educ, exper }) \\
=\beta_{0}+\beta_{1} \text { educ }+\beta_{2} \text { exper }+\beta_{3} \text { exper }{ }^{2}+\beta_{4} \text { educ } \cdot \text { exper } \\
=E\left(\text { wage } \mid \text { educ }, \text { exper }, \text { exper }{ }^{2} \text {, educ } \cdot \text { exper }\right)
\end{gathered}
$$

by LIE, i.e. it is redundant to condition on exper ${ }^{2}$ and educ - exper.

Conditional Variance

The conditional variance of y given x is defined as

$$
\begin{aligned}
\operatorname{Var}(y \mid x)=E\left(u^{2} \mid x\right) & \equiv \sigma^{2}(x) \equiv E\left[(y-E(y \mid x))^{2} \mid x\right] \\
& =E\left(y^{2} \mid x\right)-[E(y \mid x)]^{2}
\end{aligned}
$$

Note: $\sigma^{2}(x)$ is a random variable when x is viewed as a random vector.
Properties:

$$
\operatorname{Var}(a(x) y+b(x) \mid x)=[a(x)]^{2} \operatorname{Var}(y \mid x)
$$

Decomposition of variance (corresponds to LIE)

$$
\begin{aligned}
\operatorname{Var}(y) & =E[\operatorname{Var}(y \mid x)]+\operatorname{Var}(E(y \mid x)) \\
& =\underbrace{E\left[\sigma^{2}(x)\right]}_{\text {average conditional variance }}+\underbrace{\operatorname{Var}(\mu(x))}_{\text {variance of condtional expectation }}
\end{aligned}
$$

where $\mu(x)=E(y \mid x)$.

Extension (further conditioning variable z)

$$
\operatorname{Var}(y \mid x)=E[\operatorname{Var}(y \mid x, z) \mid x]+\operatorname{Var}[E(y \mid x, z) \mid x]
$$

Consequently:

$$
E[\operatorname{Var}(y \mid x)] \geq E[\operatorname{Var}(y \mid x, z)]
$$

\rightarrow further conditioning variables z reduce the average conditional variances.

Linear Projections

Even though a structural CE (conditional expectation) $E(y \mid x)$ is typically not a linear function of x, it is possible to use the linear projection of y on the random variables $\left(x_{1}, \ldots, x_{k}\right)=: x$

$$
\begin{aligned}
& \qquad \begin{aligned}
\underbrace{L\left(y \mid 1, x_{1}, \ldots, x_{k}\right)}_{\text {(including an intercept) }}=L(y \mid 1, x) & =\beta_{0}+\beta_{1} x_{1}+\ldots+\beta_{k} x_{k} \\
& =\beta_{0}+x \beta
\end{aligned} \\
& \text { where } \beta:=[\operatorname{Var}(x)]^{-1} \operatorname{Cov}(x, y) \\
& \qquad \beta_{0}=E(y)-E(x) \beta=E(y)-\beta_{1} E\left(x_{1}\right)-\ldots-\beta_{k} E\left(x_{k}\right)
\end{aligned}
$$

Variance-Covariance matrix is the $(k \times k)$-matrix

$$
\operatorname{Var}(x)=\left(\begin{array}{ccc}
\operatorname{Var}\left(x_{1}\right) & \ldots & \operatorname{Cov}\left(x_{k}, x_{1}\right) \\
\operatorname{Cov}\left(x_{2}, x_{1}\right) & \ddots & \\
\vdots & & \\
\operatorname{Cov}\left(x_{k}, x_{1}\right) & \ldots & \operatorname{Var}\left(x_{k}\right)
\end{array}\right)=E\left[(x-E(x))(x-E(x))^{\prime}\right]
$$

Note:

$$
x-E(x)=\left(\begin{array}{c}
x_{1}-E\left(x_{1}\right) \\
\vdots \\
x_{k}-E\left(x_{k}\right)
\end{array}\right)
$$

and

$$
(x-E(x))^{\prime}=\left(x_{1}-E\left(x_{1}\right), \ldots, x_{k}-E\left(x_{k}\right)\right)
$$

$$
\operatorname{Cov}(x, y)=\left(\begin{array}{c}
\operatorname{Cov}\left(x_{1}, y\right) \\
\vdots \\
\operatorname{Cov}\left(x_{k}, y\right)
\end{array}\right) \quad(k \times 1) \text {-vector }
$$

Linear projection with a zero intercept

$$
\begin{array}{ll}
L(y \mid x)= & L\left(y \mid x_{1}, \ldots, x_{k}\right)=\gamma_{1} x_{1}+\ldots+\gamma_{k} x_{k}=x \gamma \\
\text { where } & \gamma:=\left[E\left(x^{\prime} x\right)\right]^{-1} E\left(x^{\prime} y\right)
\end{array}
$$

The linear projection can be derived as the linear predictor minimizing the mean square prediction error (\equiv Best linear predictor or least squares linear predictor), i.e.

$$
\min _{b_{0}, b \in \mathbb{R}^{k}} E\left[\left(y-b_{0}-x b\right)^{2}\right]
$$

yields β and β_{0} as defined.

Using the linear projection

$$
L(y \mid x)=\beta_{0}+\beta_{1} x_{1}+\ldots+\beta_{k} x_{k}
$$

define the error term u by

$$
u:=y-L(y \mid x)
$$

or

$$
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\ldots+\beta_{k} x_{k}+u
$$

By definition of linear projections:

$$
E u=0 \text { and } \operatorname{Cov}\left(x_{j}, u\right)=0 \quad(j=1, \ldots, k)
$$

Note: This does not imply independence between x and u or mean independence $E(u \mid x)=0$

Primary use of linear projections: Obtaining estimable equations involving the parameters of an underlying conditional expectation of interest. Appendix of WO Chapter 2 contains more results on conditional expectations etc. which will be useful later.

Derivation of the OLS Estimator and its Asymptotic Properties

Population equation of interest:

$$
y=x \beta+u
$$

where: x is a $1 \times K$ vector
$\beta=\left(\beta_{1}, \ldots, \beta_{K}\right)$
$x_{1} \equiv 1$: with intercept
Sample of size $\mathrm{N}:\left\{\left(x_{i}, y_{i}\right): i=1, \ldots, N\right\}$
i.i.d. random variables where x_{i} is $1 \times K$ and y_{i} is a scalar.

For each observation

$$
y_{i}=x_{i} \beta+u_{i}
$$

Consistency

Assumption OLS.1: $\quad E\left(x^{\prime} u\right)=0$

Assumption OLS.2: $\quad \operatorname{rank}\left(E x^{\prime} x\right)=K$
\rightarrow expected outer product matrix has full rank, i.e.

$$
E x^{\prime} x=\left(\begin{array}{cccc}
1 & E x_{2} & \ldots & E x_{K} \\
E x_{2} & E x_{2}^{2} & \ldots & E x_{2} x_{K} \\
\vdots & \vdots & \ddots & \vdots \\
E x_{K} & E x_{K} x_{2} & \cdots & E x_{K}^{2}
\end{array}\right) \quad \text { is invertible }
$$

Under OLS. 1 and OLS.2, the parameter vector β is identified, which is equivalent to saying that β can be written in terms of population moments (and of course be solved for!)

To see this:

$$
\begin{aligned}
y & =x \beta+u \\
x^{\prime} y & =x^{\prime} x \beta+x^{\prime} u \\
E x^{\prime} y & =E x^{\prime} x \beta+\underbrace{E x^{\prime} u}_{=0} \quad \text { by OLS. } 1 \\
\beta & =\left(E x^{\prime} x\right)^{-1} E x^{\prime} y \quad \text { by OLS. } 2
\end{aligned}
$$

Because (x, y) is observed $\rightarrow \beta$ is identified.

Analogy principle:

Choose an estimator by turning the population relationship (based on the probability distribution for the data generating process) into its sample counterpart (based on the empirical distribution for the sample).

Here, the analogy principle implies the method-of-moments: Replace the population moments $E\left(x^{\prime} y\right)$ and $E\left(x^{\prime} x\right)$ (expected values) by their corresponding sample moments (averages).

$$
\begin{aligned}
& E\left(x^{\prime} y\right) \rightarrow \frac{1}{N} \sum_{i=1}^{N} x_{i}^{\prime} y_{i} \\
& E\left(x^{\prime} x\right) \rightarrow \frac{1}{N} \sum_{i=1}^{N} x_{i}^{\prime} x_{i}
\end{aligned}
$$

$$
\begin{aligned}
\widehat{\beta} & =\left(\frac{1}{N} \sum_{i=1}^{N} x_{i}^{\prime} x_{i}\right)^{-1}\left(\frac{1}{N} \sum_{i=1}^{N} x_{i}^{\prime} y_{i}\right) \quad \text { with } y_{i}=x_{i} \beta+u_{i} \\
& =\left(\frac{1}{N} \sum_{i=1}^{N} x_{i}^{\prime} x_{i}\right)^{-1}\left(\frac{1}{N} \sum_{i=1}^{N} x_{i}^{\prime}\left(x_{i} \beta+u_{i}\right)\right) \\
& =\left(\frac{1}{N} \sum_{i=1}^{N} x_{i}^{\prime} x_{i}\right)^{-1}\left(\frac{1}{N} \sum_{i=1}^{N} x_{i}^{\prime} x_{i}\right) \beta+\left(\frac{1}{N} \sum_{i=1}^{N} x_{i}^{\prime} x_{i}\right)^{-1}\left(\frac{1}{N} \sum_{i=1}^{N} x_{i}^{\prime} u_{i}\right) \\
& =\beta+\left(\frac{1}{N} \sum_{i=1}^{N} x_{i}^{\prime} x_{i}\right)^{-1}\left(\frac{1}{N} \sum_{i=1}^{N} x_{i}^{\prime} u_{i}\right)
\end{aligned}
$$

WO Theorem 4.1:

Under assumptions OLS. 1 and OLS.2, the OLS estimator $\widehat{\beta}$ obtained from a random sample following the population model (5) is consistent for β.
\rightarrow Simplicity should not undermine usefulness.
\rightarrow Whenever estimable equation is of the form then consistency follows.
Under the assumption of theorem 4.1, $x \beta$ is the linear projection of y on x.
\rightarrow OLS estimates linear projection consistently (also in cases such as y being a binary variable) and conditional expectations that are linear in parameters.

If either OLS. 1 or OLS. 2 fail, β is not identified
\rightarrow typically because x and u are correlated.
OLS estimator not necessarily unbiased under OLS. 1 and OLS. 2 (Jensen's Inequality)

$$
\begin{aligned}
& E\left[\left(\frac{1}{N} \sum_{i=1}^{N} x_{i}^{\prime} x_{i}\right)^{-1}\left(\frac{1}{N} \sum_{i=1}^{N} x_{i}^{\prime} u_{i}\right)\right] \\
& \\
& \neq E\left[\frac{1}{N} \sum_{i=1}^{N} x_{i}^{\prime} x_{i}\right]^{-1} \underbrace{E\left[\frac{1}{N} \sum_{i=1}^{N} x_{i}^{\prime} u_{i}\right]}_{=0}
\end{aligned}
$$

$\rightarrow E(u \mid x)=0$ implies $E \hat{\beta}=\beta$ (unbiasedness) because of LIE.
We do not need to assume independence
$\rightarrow \operatorname{Var}(u \mid x)$ unrestricted.

Asymptotic distribution of the OLS estimator

Rewrite

$$
\widehat{\beta}=\beta+\left(\frac{1}{N} \sum_{i=1}^{N} x_{i}^{\prime} x_{i}\right)^{-1}\left(\frac{1}{N} \sum_{i=1}^{N} x_{i}^{\prime} u_{i}\right)
$$

as

$$
\sqrt{N}(\widehat{\beta}-\beta)=\left(\frac{1}{N} \sum_{i=1}^{N} x_{i}^{\prime} x_{i}\right)^{-1}\left(\frac{1}{\sqrt{N}} \sum_{i=1}^{N} x_{i}^{\prime} u_{i}\right)
$$

We know $\left[\left(\frac{1}{N} \sum_{i=1}^{N} x_{i}^{\prime} x_{i}\right)^{-1}-A^{-1}\right]=O_{p}(1)$

Also $\left\{\left(x_{i}^{\prime} u_{i}\right): i=1,2 \ldots\right\}$ is i.i.d. sequence with $E x_{i}^{\prime} u_{i}=0$ and we assume each element has a finite variance. Then the central limit theorem implies:

$$
\frac{1}{\sqrt{N}} \sum_{i=1}^{N} x_{i}^{\prime} u_{i} \xrightarrow{d} N(0, B)
$$

where B is a $K \times K$ matrix: $B \equiv E\left(u^{2} x^{\prime} x\right)$
Recall: $x^{\prime} x$ is the outer product of the $K \times 1$ row vector x
This implies

$$
\sqrt{N}(\widehat{\beta}-\beta)=A^{-1}\left(\frac{1}{\sqrt{N}} \sum_{i=1}^{N} x_{i}^{\prime} u_{i}\right)+o_{p}(1)
$$

Under Heteroskedasticity: $\quad \sqrt{N}(\widehat{\beta}-\beta) \stackrel{a}{\sim} N\left(0, A^{-1} B A^{-1}\right)$

Under Heteroskedasticity: $\quad \sqrt{N}(\widehat{\beta}-\beta) \stackrel{\beth}{\sim} N\left(0, A^{-1} B A^{-1}\right)$
Under Homoskedasticity:
Assumption OLS.3: $E\left(u^{2} x^{\prime} x\right)=\sigma^{2} E x^{\prime} x$
where $\sigma^{2}=E u^{2}=\operatorname{Var}(u)$

WO Theorem 4.2 (Asymptotic Normality of OLS):
Under Assumptions OLS. 1 - OLS.3: $\sqrt{N}(\widehat{\beta}-\beta) \stackrel{\beth}{\sim} N\left(0, \sigma^{2} A^{-1}\right)$
Proof: Use $B=\sigma^{2} A \quad$ q.e.d.
Practical usage:
Treat $\widehat{\beta}$ as approximately jointly normal with expected value β and Variance-Covariance-Matrix (VCOV) $V=\frac{\sigma^{2}}{N}\left[E x^{\prime} x\right]^{-1}$.

V is estimated by

$$
\widehat{\operatorname{Avar}(\widehat{\beta})}=\frac{\widehat{\sigma}^{2}}{N}\left[\frac{1}{N} \sum_{i=1}^{N} x_{i}^{\prime} x_{i}\right]^{-1}=\widehat{\sigma}^{2}\left(X^{\prime} X\right)^{-1}
$$

and

$$
\widehat{\sigma}^{2} \equiv s^{2}=\frac{1}{N-K} \sum_{i=1}^{N} \widehat{u}_{i}^{2}
$$

Heteroskedasticity

Failure of assumption OLS.3: $E\left(u^{2} x^{\prime} x\right)=\sigma^{2} E\left(x^{\prime} x\right)$ has nothing to do with consistency of OLS estimator $\widehat{\beta}$ (WO theorem 4.1) and the proof of asymptotic normality is still valid but the final asymptotic variance is different.

Heteroskedasticity robust inference

Often we want to stick to the consistent estimator $\widehat{\beta}$
\rightarrow because no correct specification of $\operatorname{Var}\left(y_{i} \mid x_{i}\right)$ available
\rightarrow WLS generally inconsistent for linear projections (e.g. when OLS. 1 holds but $E(u \mid x) \neq 0)$

Appropriate asymptotic variance
Without OLS. 3 the asymptotic variance of $\widehat{\beta}$ is $\operatorname{Avar}(\widehat{\beta})=\frac{1}{N} A^{-1} B A^{-1}$
A^{-1} is consistently estimated by $\left(\frac{1}{N} \sum_{i=1}^{N} x_{i}^{\prime} x_{i}\right)^{-1}=\widehat{A}^{-1}$
B is consistently estimated by $\left(\frac{1}{N} \sum_{i=1}^{N} u_{i}^{2} x_{i}^{\prime} x_{i}\right)$
We replace the unobserved error terms u_{i} by the estimated residuals $\widehat{u}_{i}=y_{i}-x_{i} \widehat{\beta}$ $\widehat{B}=\frac{1}{N} \sum_{i=1}^{N} \widehat{u}_{i}^{2} x_{i}^{\prime} x_{i} \xrightarrow{p} B$

Heteroskedasticity-robust variance estimator
$\widehat{A v a r}(\widehat{\beta})=\frac{1}{N} \widehat{A}^{-1} \widehat{B} \widehat{A}^{-1}=\left(X^{\prime} X\right)^{-1}\left(\sum_{i=1}^{N} \widehat{u}_{i}^{2} x_{i}^{\prime} x_{i}\right)\left(X^{\prime} X\right)^{-1}$
often called White standard errors, White-Eicker standard error, or Huber standard errors.

Typically with degrees-of-freedom adjustment to improve finite sample properties.

t-statistics, χ^{2}-statistics (but not F-statistics based on comparison of sums of squared residuals in restricted and unrestricted model!) can be used in the usual way.
$H_{0}: R \beta=r$

$$
W=(R \widehat{\beta}-r)^{\prime}\left(R \widehat{V} R^{\prime}\right)^{-1}(R \widehat{\beta}-r)
$$

where \widehat{V} is the heteroskedasticity consistent estimate of $\operatorname{Avar} \widehat{\beta}$
Applied work often uses artificial (asymptotic) F-statistics $=\frac{W}{Q}$ and adjusts the degrees-of-freedom of \hat{V} as above. This asymptotic F-statistic is assumed to be $F_{Q, N-K}$-distributed under H_{0}.

