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0. Introductory Material Linear Regression Model, Conditional Expectation, and Causal Interpretation

0. Introductory Material

Linear Regression Model, Conditional Expectation, and Causal Interpretation

y explained/dependent/response variable

x = (x1, ...., xk) explanatory / independent variables, regressors, control
variables, covariates (x is observed)

Structural conditional expectation (CE): E (y |w , c)

Based on random sample of (y ,w , c) we can estimate the effect of w on y
holding c constant.
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Complications arise when there is no random sample of (y ,w , c)

→ measurement error

→ simultaneous determination of y ,w , c

→ some variables we would like to control for (elements of c) cannot be
observed

⇒ CE of interest involves data for which the econometrician cannot collect data
or requires an experiment that cannot be carried out.

Identification assumptions:

→ Can recover structural CE of interest
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Definition CE:

y (random variable) explained variable, x ≡ (x1, x2, ..., xk) (1× k)-vector of
explanatory variables, E (|y |) <∞

then function µ : Rk → R

(CE ) E (y |x1, x2, ..., xk) = µ(x1, x2, ..., xk) or E (y |x) = µ(x)

Distinguish

E (y |x): random variable because x is a random variable

from

E (y |x = x0): conditional expectation when x takes specific value x0

→ Distinction most of the time not important
→ Use E (y |x) as short hand notation
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Parametric model for E (y |x) where µ(x) depends on a finite set of unknown
parameters

Examples:

(i) E (y |x1, x2) = β0 + β1x1 + β2x2

(ii) E (y |x1, x2) = β0 + β1x1 + β2x2 + β3x2
2 + β4x1x2

(iii) E (y |x1, x2) = exp[β0 + β1 log(x1) + β2x2] with y ≥ 0, x1 > 0

(i) is linear in parameters and explanatory variables

(ii) is linear in parameters and nonlinear in explanatory variables

(iii) is nonlinear in both
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Partial Effect:

Continuous xi , and differentiable µ

∆E (y |x) =
∂µ

∂xj
∆xj holding x1, ..., xj−1, xj+1, ..., xk fixed

=̂ ceteris paribus effect for propertly specified population model

Discrete xj : xj,0 → xj,1

∆E (y |x) = E (y |x1, ..., xj−1, xj,1, xj+1, ..., xk)−E (y |x1, ..., xj−1, xj,0, xj+1, ..., xk)

Examples:

ad i) ∂E(y |x)
∂x1 = β1 = constant

ad ii) ∂E(y |x)
∂x1 = β1 + β4x2 , i.e. partial effect of x1 varies with x2

ad iii) ∂E(y |x)
∂x1 = exp[β0 + β1 log(x1) + β2x2]β1x1 → highly nonlinear
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(Partial) Elasticity (only continuous case)

∂E (y |x)

∂xj
· xj

E (y |x)
=
∂ log E (y |x)

∂ log xj

(Partial) Semielasticity:

∂E (y |x)

∂xj
· 1

E (y |x)
=
∂ log E (y |x)

∂xj
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Average Partial Effect (APE, ’integrate out distribution of x ’):

Ex {∆E (y |x)} = Ex

{
∂µ

∂xi
∆xj

}
Examples:

ad i) APE= β1

ad ii) APE= β1 + β4Ex2

ad iii) APE= E
{

exp[β0 + β1 log(x1) + β2x2]β1x1

}
APE’s in cases ii and iii can be estimated by sample averages of the expressions
evaluated at the sample estimates of the coefficients β̂
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Error form of models of conditional expectations

We can always write

(1) y = E (y |x) + u where u = y − E (y |x)

and it follows by definition:

(2) E (u|x) = 0

Implications:

(i) E (u) = 0

(ii) u is uncorrelated with any function of x1, ..., xk
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Implication (i) and (ii) follows from the law of iterated expectations

LIE : E (y |x) = E [E (y |w)|x ] if x = f (w)

i.e. {Information set incorporated in x} ⊆ {Information set incorporated in w}

i) E (y |x) = E [E (y |w)|x ]
→integrating out w wrt x :

∫
yf (y |x)dy =

∫
[
∫

yf (y |w , x)dy ]f (w |x)dw

ii) E (y |x) = E [E (y |x)|w ]
Knowing w implies knowing x
→ Routinely used in the course

’The smaller information set always dominates’
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Therefore
E (u) = Ex [E (u|x)] = Ex0 = 0

which gives implication (i) and

E (u|f (x)) = E [E (u|x)|f (x)] = E [0|f (x)] = 0

which gives implication (ii).
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Example:
y = β0 + β1x1 + β2x2 + u

with
E (u|x1, x2) = 0

implies:

E (u) = 0,Cov(x1, u) = 0,Cov(x2, u) = 0 and u is also uncorrelated with
x2
1 , x2

2 , x1x2, exp(x1) etc.

i.e. the functional form of E (y |x) is properly specified.

We have β2 = ∂E(y |x1,x2)
∂x2 because E (u|x1, x2) = 0, i.e. u is uncorrelated with any

function of x2. Thus β2 describes the mean impact of x2 on y .
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E (u|x1, x2) = 0 sometimes called mean independence

We have:

Independence ⇒ Mean Independence ⇒ Uncorrelatedness
: :

Mean independence defines a Conditional Expectation

Uncorrelatedness defines a Linear Projection
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Different nested sets of conditioning variables

Important special case: w = (x , z)

E (y |x)︸ ︷︷ ︸
µ1(x)

= E [E (y |x , z)︸ ︷︷ ︸
µ2(x ,z)

|x ]

µ1︸︷︷︸
observed

= E [µ2(x , z︸︷︷︸
unobserved

)|x ]

Identification problem: Can we link the estimable µ1(x) to the structural µ2(x , z)
which is the causal relationship of interest?
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x , z︸︷︷︸
more information

versus x︸︷︷︸
less information

µ1(x , z) = E (y |x , z)

µ2(x) = E (y |x)

By LIE, we have (’integrating z out’)

µ2(x) = E (y |x) = E [E (y |x , z)|x ] = E [µ1(x , z)|x ]

→ allows to study effects of omitted regressors/unobserved components z on
the relationship between y and x .
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Example: Wage Equation
E (wage|educ, exper)

= β0 + β1educ + β2exper + β3exper2 + β4educ · exper

= E (wage|educ, exper , exper2, educ · exper)

by LIE, i.e. it is redundant to condition on exper2 and educ · exper .
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Conditional Variance

The conditional variance of y given x is defined as

Var(y |x) = E (u2|x) ≡ σ2(x) ≡ E [(y − E (y |x))2|x ]

= E (y2|x)− [E (y |x)]2

Note: σ2(x) is a random variable when x is viewed as a random vector.

Properties:
Var(a(x)y + b(x)|x) = [a(x)]2Var(y |x)

Decomposition of variance (corresponds to LIE)

Var(y) = E [Var(y |x)] + Var(E (y |x))

= E [σ2(x)]︸ ︷︷ ︸
average conditional variance

+ Var(µ(x))︸ ︷︷ ︸
variance of condtional expectation

where µ(x) = E (y |x).
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Extension (further conditioning variable z)

Var(y |x) = E [Var(y |x , z)|x ] + Var [E (y |x , z)|x ]

Consequently:
E [Var(y |x)] ≥ E [Var(y |x , z)]

→ further conditioning variables z reduce the average conditional variances.
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Linear Projections

Even though a structural CE (conditional expectation) E (y |x) is typically not a
linear function of x , it is possible to use the linear projection of y on the random
variables (x1, ..., xk) =: x

L(y |1, x1, ..., xk)︸ ︷︷ ︸
(including an intercept)

= L(y |1, x) = β0 + β1x1 + ...+ βkxk

= β0 + xβ

where β := [Var(x)]−1Cov(x , y)

β0 = E (y)− E (x)β = E (y)− β1E (x1)− ...− βkE (xk)
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Variance–Covariance matrix is the (k × k)-matrix

Var(x) =


Var(x1) . . . Cov(xk , x1)

Cov(x2, x1)
. . .

...
Cov(xk , x1) . . . Var(xk)

 = E [(x − E (x))(x − E (x))′]

Note:

x − E (x) =

 x1 − E (x1)
...

xk − E (xk)


and

(x − E (x))′ = (x1 − E (x1), ..., xk − E (xk))

Cov(x , y) =

 Cov(x1, y)
...

Cov(xk , y)

 (k × 1)-vector
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Linear projection with a zero intercept

L(y |x) = L(y |x1, ..., xk) = γ1x1 + ...+ γkxk = xγ

where γ := [E (x ′x)]−1E (x ′y)

The linear projection can be derived as the linear predictor minimizing the mean
square prediction error (≡ Best linear predictor or least squares linear predictor),
i.e.

min
b0,b∈Rk

E [(y − b0 − xb)2]

yields β and β0 as defined.
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Using the linear projection

L(y |x) = β0 + β1x1 + ...+ βkxk

define the error term u by
u := y − L(y |x)

or
y = β0 + β1x1 + β2x2 + ...+ βkxk + u

By definition of linear projections:

Eu = 0 and Cov(xj , u) = 0 (j = 1, . . . , k)

Note: This does not imply independence between x and u or mean independence
E (u|x) = 0

Primary use of linear projections: Obtaining estimable equations involving the
parameters of an underlying conditional expectation of interest. Appendix of WO
Chapter 2 contains more results on conditional expectations etc. which will be
useful later.
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Derivation of the OLS Estimator and its Asymptotic
Properties

Population equation of interest:

y = xβ + u

where: x is a 1× K vector
β = (β1, . . . , βK )
x1 ≡ 1: with intercept

Sample of size N: {(xi , yi ) : i = 1, . . . ,N}
i.i.d. random variables where xi is 1× K and yi is a scalar.

For each observation
yi = xiβ + ui
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Consistency

Assumption OLS.1: E (x ′u) = 0

Assumption OLS.2: rank(Ex ′x) = K
→ expected outer product matrix has full rank, i.e.

Ex ′x =


1 Ex2 . . . ExK

Ex2 Ex2
2 . . . Ex2xK

...
...

. . .
...

ExK ExK x2 . . . Ex2
K

 is invertible

Under OLS.1 and OLS.2, the parameter vector β is identified, which is equivalent
to saying that β can be written in terms of population moments (and of course
be solved for!)

Prof. Bernd Fitzenberger, Ph.D. Estimation of Treatment Effects HU Berlin - WS 2016/17 24 / 37



0. Introductory Material OLS and Asymptotic Properties

To see this:

y = xβ + u
x ′y = x ′xβ + x ′u

Ex ′y = Ex ′xβ + Ex ′u︸︷︷︸
=0

by OLS.1

β = (Ex ′x)−1Ex ′y by OLS.2

Because (x , y) is observed → β is identified.
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Analogy principle:

Choose an estimator by turning the population relationship (based on the
probability distribution for the data generating process) into its sample
counterpart (based on the empirical distribution for the sample).

Here, the analogy principle implies the method-of-moments: Replace the
population moments E (x ′y) and E (x ′x) (expected values) by their corresponding
sample moments (averages).

E (x ′y)→ 1
N

N∑
i=1

x ′i yi

E (x ′x)→ 1
N

N∑
i=1

x ′i xi
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β̂ =

(
1
N

N∑
i=1

x ′i xi

)−1(
1
N

N∑
i=1

x ′i yi

)
with yi = xiβ + ui

=

(
1
N

N∑
i=1

x ′i xi

)−1(
1
N

N∑
i=1

x ′i (xiβ + ui )

)

=

(
1
N

N∑
i=1

x ′i xi

)−1(
1
N

N∑
i=1

x ′i xi

)
β +

(
1
N

N∑
i=1

x ′i xi

)−1(
1
N

N∑
i=1

x ′i ui

)

= β +

(
1
N

N∑
i=1

x ′i xi

)−1(
1
N

N∑
i=1

x ′i ui

)
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WO Theorem 4.1:

Under assumptions OLS.1 and OLS.2, the OLS estimator β̂ obtained from a
random sample following the population model (5) is consistent for β.

→ Simplicity should not undermine usefulness.
→ Whenever estimable equation is of the form then consistency follows.

Under the assumption of theorem 4.1, xβ is the linear projection of y on x .

→ OLS estimates linear projection consistently (also in cases such as y being a
binary variable) . . . and conditional expectations that are linear in parameters.
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If either OLS.1 or OLS.2 fail, β is not identified
→ typically because x and u are correlated.

OLS estimator not necessarily unbiased under OLS.1 and OLS.2 (Jensen’s
Inequality)

E

( 1
N

N∑
i=1

x ′i xi

)−1(
1
N

N∑
i=1

x ′i ui

)
6= E

[
1
N

N∑
i=1

x ′i xi

]−1
E
[
1
N

N∑
i=1

x ′i ui

]
︸ ︷︷ ︸

=0

→ E (u|x) = 0 implies E β̂ = β (unbiasedness) because of LIE.

We do not need to assume independence
→ Var(u|x) unrestricted.
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Asymptotic distribution of the OLS estimator

Rewrite

β̂ = β +

(
1
N

N∑
i=1

x ′i xi

)−1(
1
N

N∑
i=1

x ′i ui

)
as

√
N(β̂ − β) =

(
1
N

N∑
i=1

x ′i xi

)−1(
1√
N

N∑
i=1

x ′i ui

)

We know

( 1
N

N∑
i=1

x ′i xi

)−1
− A−1

 = Op(1)
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Also {(x ′i ui ) : i = 1, 2 . . . } is i.i.d. sequence with Ex ′i ui = 0 and we assume each
element has a finite variance. Then the central limit theorem implies:

1√
N

N∑
i=1

x ′i ui
d→ N(0,B)

where B is a K × K matrix: B ≡ E (u2x ′x)

Recall: x ′x is the outer product of the K × 1 row vector x

This implies
√

N(β̂ − β) = A−1
(

1√
N

N∑
i=1

x ′i ui

)
+ op(1)

Under Heteroskedasticity:
√

N(β̂ − β)
a∼ N(0,A−1BA−1)
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Under Heteroskedasticity:
√

N(β̂ − β)
a∼ N(0,A−1BA−1)

Under Homoskedasticity:

Assumption OLS.3: E (u2x ′x) = σ2Ex ′x

where σ2 = Eu2 = Var(u)

Prof. Bernd Fitzenberger, Ph.D. Estimation of Treatment Effects HU Berlin - WS 2016/17 32 / 37



0. Introductory Material OLS and Asymptotic Properties

WO Theorem 4.2 (Asymptotic Normality of OLS):

Under Assumptions OLS.1 - OLS.3:
√

N(β̂ − β)
a∼ N(0, σ2A−1)

Proof: Use B = σ2A q.e.d.

Practical usage:

Treat β̂ as approximately jointly normal with expected value β and
Variance-Covariance-Matrix (VCOV) V = σ2

N [Ex ′x ]−1.

V is estimated by

Âvar(β̂) =
σ̂2

N

[
1
N

N∑
i=1

x ′i xi

]−1
= σ̂2 (X ′X )

−1

and

σ̂2 ≡ s2 =
1

N − K

N∑
i=1

û2
i
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Heteroskedasticity

Failure of assumption OLS.3: E (u2x ′x) = σ2E (x ′x) has nothing to do with
consistency of OLS estimator β̂ (WO theorem 4.1) and the proof of asymptotic
normality is still valid but the final asymptotic variance is different.

Heteroskedasticity robust inference

Often we want to stick to the consistent estimator β̂
→ because no correct specification of Var(yi |xi ) available
→ WLS generally inconsistent for linear projections (e.g. when OLS.1 holds but
E (u|x) 6= 0)
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Appropriate asymptotic variance

Without OLS.3 the asymptotic variance of β̂ is Avar(β̂) =
1
N A−1BA−1

A−1 is consistently estimated by
(

1
N

N∑
i=1

x ′i xi

)−1
= Â−1

B is consistently estimated by
(

1
N

N∑
i=1

u2
i x ′i xi

)

We replace the unobserved error terms ui by the estimated residuals ûi = yi − xi β̂

B̂ =
1
N

N∑
i=1

û2
i x ′i xi

p→ B

Prof. Bernd Fitzenberger, Ph.D. Estimation of Treatment Effects HU Berlin - WS 2016/17 35 / 37



0. Introductory Material OLS and Asymptotic Properties

Heteroskedasticity-robust variance estimator

Âvar(β̂) =
1
N Â−1B̂Â−1 = (X ′X )−1

( N∑
i=1

û2
i x ′i xi

)
(X ′X )−1

often called White standard errors, White-Eicker standard error, or Huber
standard errors.

Typically with degrees-of-freedom adjustment to improve finite sample properties.

Âvar(β̂) =
1

N − K Â−1B̂Â−1 = (X ′X )−1

(
N

N − K

N∑
i=1

û2
i x ′i xi

)
(X ′X )−1

t-statistics, χ2-statistics (but not F-statistics based on comparison of sums of
squared residuals in restricted and unrestricted model!) can be used in the usual
way.
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H0 : Rβ = r

W = (Rβ̂ − r)′(RV̂ R ′)−1(Rβ̂ − r)

where V̂ is the heteroskedasticity consistent estimate of Avar β̂

Applied work often uses artificial (asymptotic) F-statistics =
W
Q and adjusts the

degrees-of-freedom of V̂ as above. This asymptotic F-statistic is assumed to be
FQ,N−K -distributed under H0.
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