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Abstract 
An estimation method for the inference on parameters of a dynamic macro model originally  

developed by Christiano, Eichenbaum and Evans is examined, extended and implemented in 

MATLAB. Since a large amount of research deals with the dynamic implications of models, 

the idea is to minimize the distance between the impulse response function of a Bayesian 

VAR and the model’s impulse response function. The results show that the method, with 

certain modifications, is applicable and can generate practically useful results.  
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1 Introduction 
 

In 1982 Finn Kydland and Edward Prescott introduced a new way of employing economic 

models. By that time, economic models provided a framework mainly for econometric 

methods. Economic theory was used to derive a system of equations conditional on unknown 

parameters. Furthermore was an error term added to account for the gap between the theory 

and the data, and certain assumptions were made about it. Different estimation methods for 

the parameters were discussed depending on certain properties of the error term. With the help 

of hypothesis tests, theories got evaluated and falsified.  

 

In Kydland and Prescott's opinion this approach was incorrect for two reasons: models fail to 

capture all characteristics of an economy and are likely to be misspecified. To put it 

differently, the model is false anyway and econometric methods to test if the model is right or 

not, are more or less useless. Instead, they suggested the following methodology to answer an 

economic question using a “false” model: choose a model, that bears some relevance to the 

question, solve for the endogenous variables depending on the exogenous ones and the 

parameters, select reasonable values for them and carry out an computational experiment. 

Then evaluate the outcome and propose an answer. This methodology is called calibration.      

 

Even though this methodology and the idea of a computational experiment has been widely 

accepted, there still remain some controversial parts. One question of interest is how to select 

the parameters of the model and how to evaluate their choice. In the paper “Nominal rigidities 

and the dynamic effects of a shock to monetary policy” from 2001 Christiano, Eichenbaum 

and Evans made a new contribution to this matter. In their opinion, “most of our economic 

intuition about a model is concentrated on its implications for the dynamic effects” 

(Christiano, 2002). They proposed consequently to assimilate the dynamics of the model to 

the dynamics observable in the data. A group of parameters could be therefore estimated “by 

making model impulse responses look like the estimated impulse response functions of a 

VAR process” (Christiano, 2002), i.e. by minimising the distance between the two impulse 

response functions. The distance can be measured by the variances of the data. This enabled 

them to evaluate the choice of the parameters. 
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In this thesis I want to make a contribution to the selection of parameters for a Dynamic 

Stochastic General Equilibrium (DSGE) model by examining and extending the estimation 

procedure proposed by Christiano, Eichenbaum and Evans.  

 

In order to analyse their approach an impulse response function for a Bayesian VAR process 

will be computed by a MATLAB program. As a benchmark model Hansen’s Real Business 

Cycle (RBC) model will be solved in dependence on the model’s parameter. The parameter 

will be estimated by employing the method above. The method will be supplemented by 

variation of the Variance Covariance matrix that is employed in the estimation criterion and 

by calculating standard deviations of the estimated parameter values. This will lead to a 

unified framework for the choice of parameters for a DSGE model. 

 

The thesis is organised in the following way. An overview of the literature is given in section 

two. Section three, four and five describe the theoretical background and methods that are 

used, i.e. foundations of the Bayesian VAR are outlined, the benchmark model is solved and 

the estimation method is explained. In the subsequent section the implementation in 

MATLAB is explained, a manual for further usage is presented, the building blocks are 

introduced and potential problems are treated. In section seven and eight the results are 

presented and discussed. A conclusion is drawn in section nine.    
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2 Literature 
 

When Kydland and Prescott first published their methodology in 1982, they also made the 

first suggestion of how to select parameters for a model. Parameters can be determined either 

on the basis of other studies in applied economics, i.e. studies in microeconomics about 

preferences, or by fitting the model’s steady state to long run characteristics of the economy. 

In succeeding papers (Kydland and Prescott 1991, 1992; Kydland 1992) they went into more 

detail, explaining which long run averages they wanted to meet (i.e. the shares of inventories 

of GDP or share of consumption) and how to use studies from other economic fields to 

determine, for example, the elasticity of substitution. The values of common parameters 

among different areas should be identical, because the language is the same, they argued. 

Additionally they argued against the use of econometric estimation methods. The goal of 

using a model is to provide a clear answer to a question, not to fit the data. They even 

emphasize, ”that the parameters values selected are not the ones that provide the best fit in 

some statistical sense”(Kydland and Prescott 1996). Given the simplicity and abstractions of a 

model anomalies and discrepancies will remain and provide the ground for further economic 

research.  

 

The literature criticized this way of choosing parameters for the following reasons. At first 

parameters available from other microeconomic studies are sparse and cannot be applied 

directly in the DSGE framework (Hansen and Heckmann, 1996). The wide range of existing 

parameter estimates (for example the risk aversion parameter) can lead to selection bias and 

therefore to inconsistencies between studies. But the most striking point was the problem of 

evaluation. Kydland and Prescott pointed out, that the confidence we have in an answer does 

depend more on our confidence in the theory we use than on a computed measure, of how 

well the model economy mimics historical data. They suggested dealing only with ”well 

tested theory” (Kydland and Prescott 1996). Many researchers did not agree and developed 

several methods to measure the fit of a model (for example Watson, 1993). Some argued, that 

the degree of uncertainty in the estimation of the parameters is ”an important ingredient of 

model evaluation” (Christiano and Eichenbaum, 1992). They tried to apply a method to 

estimate parameters within the computational experiment framework, which allowed them to 

measure the uncertainty. 
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Two different methods became apparent, namely, the generalized method of moments 

(GMM) estimator and the simulated methods of moment (SMM) estimator. These methods 

produce not only measures of uncertainty that make it possible to evaluate the quality of the 

model, they also provide a coherent framework for estimating parameters and avoid thereby 

selecting parameters in a way that was criticised by Hansen and Heckmann. Besides the 

advantages they have also a range of disadvantages. Inconsistency across studies can arise, 

because different researchers select different moments or statistics to match. Estimation by 

GMM can be biased in small samples. Additionally, most of the variables are measured with 

error or unobservable facts that can cause serious problems. Furthermore, the tests performed 

on the parameter to indicate how to obtain a better fit fail. All these shortcomings encouraged 

researchers to calibrate their models rather than to estimate the parameters. 

 

In 1995 Canova suggested a method, which responded to the criticism of calibration (Canova 

1994 and 1995). He developed a coherent framework for the choice of parameters, which 

account for the uncertainty in the choice, and an evaluation process. Prior information about 

the parameter is used to form a prior distribution. In a Monte Carlo procedure, parameters are 

drawn from the distribution and the model is simulated for each draw. The received 

information makes it possible to perform a sensitivity analysis and to evaluate the model. This 

method was successfully applied, for example by Maffezoli (Maffezoli 2000).  

 

The idea of comparing a model with VAR impulse responses had already been developed by 

Sims (1989) and Smith (1992). They also suggested measuring the distance between the 

impulse responses to judge the model. Finally, in 2001 Christiano, Eichenbaum and Evans 

proposed a criterion, which should “make models` impulse responses look like the estimated 

impulse responses” (Christiano, 2002). A formal estimation criterion was developed to 

minimize the distance between the models` impulse responses and impulse responses 

estimated from a VAR process. In their opinion, “most of our economic intuition about a 

model concentrated on its implications for the dynamic effects” (Christiano, 2002). Their 

main aim was, therefore, to fit their model to the dynamic effects of shocks. One advantage of 

the estimation procedure is that the estimated standard deviations of the VAR can be 

employed as measurement of the distance.  

 

In this thesis I use the approach by Christiano, Eichenbaum and Evans to estimate the 

parameters in Hansen’s RBC model. I will change their estimation criterion by making 
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different assumptions about the variance-covariance-matrix and by computing standard 

deviations of the estimates. Different assumptions about the variance covariance matrix can 

improve the fit of the model. The report of standard deviations enables the researcher to 

reflect the uncertainty in the choice of the parameter values and may be used afterwards in an 

evaluation process.  
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3 Bayesian Vector Autoregression  
 

In the first part of this section, the VAR is formally defined and some useful definitions are 

introduced. In the second and third part, Bayesian inference and the computation of the 

impulse response functions are described.    

 

3.1 Definition of the VAR process 

A VAR process of order k contains a m-variate time series Tt ...1= and can be written as:  

tktkttt tCCYBYBYBY ε++++++= −−− **...** 102211  

Where the Y  vectors are of size m*1, the coefficient matrices B of size m*m, the vectors 

containing the constant 0C , the time trend 1C and the error term ε  of size m*1. The error 

terms are normally identically and independently distributed: 

( )Σ,0~ Ntε , Tt ...1=  

It is convenient to write the system more compactly: 
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 with dimensions: 

( )mT ×         ( )( )2* +× kmT          ( )( )mkm ×+ 2*   ( )mT ×  or simply: 

ε+= BXY * . This is the standard notation for a reduced form VAR model.    

In some situations it can be useful to write a VAR (k) process as a VAR (1) process. This can 

be achieved by ”stacking” the process together: 
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 with dimensions 

( )1* ×km       kmkm ** ×  ( )1* ×km  ( )2* ×km         1* ×km   or: 

tttt cCYY ε++Ρ= − ** 1 . 

This form of writing a VAR process will be called the companion form. In combination with 

the companion form the kmm *× matrix J is often defined as: [ ]00 LmIJ = .  

Another useful definition is to denote the inverse of the variance covariance matrix ∑ as 

precision matrix H . 
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3.2 Bayesian Inference 

In Bayesian Inference researchers are interested in making probability statements about the 

unknown parameters, which are here B and H. We form the probability density function (pdf) 

by combining sample information from the dataset with prior information via Bayes’ 

Theorem. The derived pdf is called the posterior pdf of the parameter and is defined by: 

( ) ( ) ( )TkT YYHBLHBHB ,...,;,*,, 1+−∝ ππ  where ( )HB,π  denotes the prior pdf and 

( )Tk YYHBL ,...,;, 1+−  the likelihood function conditional on the observations. 

 

To derive a posterior pdf we have to choose a prior pdf first. Using Uhlig (Uhlig, 1994) it is 

convincing to choose a Normal-Wishart-distribution ( )vSNBHBNW ,,,,φ .  The precision 

matrix H follows a Wishart distribution ( )vvSWm ,/1−  with mean [ ] 1−= SHE  and v degrees of 

freedom. The vectorized matrix B is normally distributed with 

( ) ( )( )11, −− ⊗= NHBvecNBvec .  To complete the prior distribution we have to choose values 

for N, S, B  and v. There are two reasonable priors suggested by Uhlig (Uhlig, 1994), the flat 

prior and the Minnesota prior. The first one is a non-informative prior, that simply sets all 

prior values equal to zero ( )0,,, 0000 =SvNB , while the latter one is informative on the 

coefficient matrix B. It sets the first coefficient matrix equal to the identity matrix, predicting 

a random walk, and the other equal to zero. The prior covariance matrix is a diagonal matrix 

with variances that decrease with higher lags to exclude them “softly”. The specification of 

the “Minnesota”-prior follows Uhlig (Uhlig (1997), Appendix C). 

 

After the specification of the prior pdf, the parameters are estimated by ordinary least squares 

and the posterior pdf is calculated, which is also a Normal-Wishart-distribution and given by: 

( )TTTTNW vSNBHB ,,,,φ , where: 

0vTvT +=  (T is the number of observations) 

XXNNT '*0 +=  

( )BXXBNNB TT
ˆ*'*** 00

1 += −  

( ) ( )0
1

000
0 ˆ*'**'*ˆ*1ˆ** BBXXNNBB

vv
TS

v
v

S T
TTT

T −−+Σ+= − . 
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The precision matrix H follows a Wishart distribution ( )TTTm vvSW ,/1−  with mean 

[ ] 1−= TSHE  and Tv  degrees of freedom; the vectorized matrix B follows a Normal 

distribution ( ) ( )( )11,~ −− ⊗ TT NHBvecNBvec .  With these results a sample of values for 

B and H can be generated directly from their probability distributions.  

 

3.3 Impulse response function for the data 

In this section, I describe how the program computes the impulse response function for the 

data. The main idea is to sample directly n draws of B and H, compute impulse responses for 

each draw and use the mean of these functions as an estimator for the impulse response 

function. The first task is done by the function “ziehen”, the second by the function 

“impulsedata”.  

 

The function “ziehen” uses the following theoretical background: Consider a mm*  Matrix X 

with ( )mINX ,0~ . The matrix vXXS /* ′=  follows then a Wishart distribution with 

[ ] mISE = and v  degrees of freedom. If we are interested in changing the VCV matrix of X 

from mI to Σ , we have to multiply X first with the Cholesky factorisation of Σ and 

compute S afterwards. The so obtained matrix S  follows then a Wishart distribution with 

[ ] Σ=SE .  

 

We draw one VCV Σ  and one coefficient matrix B each time. Because of 1−=Σ H  we draw 

first a precision matrix with the desired properties and invert it afterwards. Given the posterior 

specification for TS  and Tv  the function draws a matrix X  of size TS with standard normally 

distributed entries. It then uses the theoretical background from above to compute first H and 

Σ afterwards. To draw B the function draws a vector of size ( )Bvec with ( ) ( )1,0~ NBvec . It 

then computes the VCV matrix of B ( )11 −− ⊗ TNH  and their Cholesky factorisation. In some 

cases, the VCV matrix is not positive definite. To prevent the program from a breakdown, it 

uses the expected value of B as a substitute. Since it happens only once in a thousand draws, it 

should not lead to a biased estimation. Employing the Cholesky factorisation of the VCV 

matrix the function transforms the vector into a normally distributed vector with 

( ) ( )( )11,~ −− ⊗ TT NHBvecNBvec  and reshapes it into the coefficient matrix B afterwards. 

 



 17

The uncertainty about the coefficients can lead to draws of B, which contain explosive roots. 

These coefficients should be excluded from the impulse response computation. It is therefore 

necessary to check every coefficient matrix for stability.  

 

A VAR (1) process is stable, if ( ) ( ) 0*det 1 ≠−= zBIzp  for 1≤z , i.e. the solution to its 

reverse characteristic polynomial does not lie in and on the complex unit circle. As pointed 

out before, can every VAR (k) process be written as a VAR (1) process using companion 

form. This process is then stable, if ( ) ( ) 0*det ≠−= zPIzp  for 1≤z . The reverse 

characteristic polynomial can be written as:  

( ) ( )( )1**det)( −−−= zIPzzp   ( ) ( )1*det*)( −−−= zIPzzp m   ( ) )(*)( 1−−= zqzzp m   

The solution to 0)( 1 =−zq  are the eigenvalues of P. If they are smaller than 1, the process will 

be stable.   

 

If the matrix is stable the function proceeds with the next step, the computation of the impulse 

response functions. Impulse response functions describe the response of variable stiy +,  to a 

shock in tε . Following Lüthkepohl (1991) each period iI can be computed as: 

uAJPJI i
i *'***= , where PJ , were defined above, matrix A is the Cholesky 

decomposition of ∑ and u a vector containing the shock. The Cholesky decomposition creates 

uncorrelated error terms, which are necessary in order to calculate meaningful impulse 

response functions, but also involves the assumption of a recursive identification scheme. For 

the VAR process I use the assumption is justified. In other application this assumption does 

not necessarily hold.  

 

After the calculation of all impulses, averages for each period and the variance covariance 

matrix are calculated and saved as ID and VCV.   
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4 A Dynamic Macro Model 
 

As a benchmark model, I use Hansen’s Real Business Cycle model. In the model a 

representative agent maximizes the following utility function: 

( )






 −∑
∞

=0
*logmax

t
tt

t nAcE β  subject to the budget constraints: 

( ) 1
1

1 *1*** −
−

− −+=+ ttt
z

tt knkekc t δγ θθ  and ttt zz ερ += −1* with ( )2,0~ σε Nt  iid.  

Here β denotes the discount factor, tc  consumption, tn  labour, tk  capital and 

tz
t e*γγ = total factor productivity. The productivity shock tz follows an AR(1) process . It is 

common to define further equations for output ty and return on capital investments tR :  

θθγ −
−= 1
1 *** tt

z
t nkey t ; δθ −+=

−

1
1t

t
t k

yR . 

Because the purpose of the thesis is to estimate the parameters, they should be described in 

more detail.  

 

θ defines the share of capital in the production function. In case of a Cobb-Douglas 

production function it is also the production elasticity, a one percentage increase in capital 

will increase the production by θ percent. If the model would be calibrated, θ is often set 

around 0,3. 

 

δ is the depreciation rate of capital and should lie inside an interval between [ ]1,0;003,0 .   

 

ρ defines the persistence of the shock, the higher the persistence of the shock the longer last 

the impulse. For 1<ρ  the model will always return to its steady state, if 1>ρ the model can 

enter a new long run equilibrium or produce an unstable, explosive solution. Therefore ρ 

should lie between [ ]1;01,0 .  

 

How much an agent discounts the utility he will receive in further periods is measured by the 

discount factor β. β is often defined between [ ]99.0;9,0 . A low value of β means a high 

discount of further periods and vice versa. 
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The parameter γ defines the increase in total factor productivity after a shock in technology, A 

represents the discomfort of work and n the steady state level of employment. The steady 

state solution to the model has an equation left for one endogenous variable. In this case either 

n is set and the steady state is solved for A or A is set and the equation is solved for n . I 

decided to solve the steady state for A and set n . γ and n are then normalised and do not have 

to lie inside certain intervals.  

 

For the RBC model, a solution strategy already exist in MATLAB, but I had to solve the 

model ”by hand” in order to implement it into the program. The solution strategy is (see 

Uhlig, 1995): 

 

1. Find the First-order-conditions 

2. Calculate the steady state  

3. Loglinearize around the steady state 

4. Solve for the recursive law of motion 

5. Calculate impulse responses 

 

4.1 Find the First-order-conditions  

I form the Lagrangian and differentiate afterwards with respect to ttt knc ,, : 

( ) ( ) ( )( )






 −−−+−−= ∑
∞

=
−−

−

0
11 *1****logmax

1

t
ttt

z
ttttt

t knkekcnAcEL t δγλβ
θθ  

t
tt cc

L λ
δ
δ =1:  

( )
t

t
t

t n
yA

u
L *1*: θλ

δ
δ −−=  

[ ]11 **: ++= tttt
t

RE
k
L λβλ

δ
δ  

( ) 1*1: −−+=+ tttt
t

kykcL δ
δλ
δ  
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4.2 Calculate the steady state 

Here I calculate explicit solutions for the steady state for the variables. For eight variables we 

have four first order conditions and the four constraints from above. In the RBC literature it is 

often a value for n assumed. To prevent the model from over identification, it is then solved 

for the parameter A instead of n  (see discussion above). The solution for the model is: 

1. 
β
1=R  2. 








+−= δ

βθ
κ 111

k
y  3. ( ) θκγ −−= **1 uy  

4. 
κ
yk =  5. ( )δκ −= *kc   6. 

c
1=λ  7. 0=z  

8. ( )
n
yA *1* θλ −=  

 

4.3 Loglinearize around the steady state 

In this section I replace the non-linear equations by dynamic linear equations. The equations 

are expressed in percentage deviations from the steady state. The loglinearized equations are: 

I. tt ĉˆ0 += λ  

II. ttt ny ˆˆˆ0 −+= λ  

III. [ ]11
ˆˆˆ0 ++ ++−= tttt RE λλ  

IV. ( ) 1
ˆ**1ˆ*ˆ*ˆ*0 −−+−+−= tttt kkkkyycc δ  

V. 1
ˆ**ˆ**ˆ*0 −−+−= ttt kyRR κθκθ  

VI. ( ) tttt nkzy ˆ*1ˆ*ˆ0 1 θθ −+++−= −  

VII. ttt zz ερ += −1*  

 

4.4 Solve for the recursive law of motion 

For the RBC model, it is possible to formulate the dynamics of the model in dependence on 

the two state variables and λ only. After I formulated and solved recursive laws of motion 

(RLOM) for them, I can solve for the endogenous variables. RLOM can be postulated to be 

linear in log-deviations: 
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I can solve for the system using the method of undetermined coefficients. Writing the 

equation III. And IV. In dependence on λ̂,k̂ and z yields: 

( )( ) ( )
tttt z

k
y

k
ckk *

*
ˆ*1*ˆ*1ˆ0 1 θ

λ
θ

θκδκ +






 −++−++−= −  

 tttt zkk 3211
ˆ*ˆ*ˆ0 αλαα +++−= −  

( )







 +





 +−+−= ++ 11 *ˆ*11*ˆ0 tttt z

RR
E κλθκλ  

 [ ]1615 **ˆ0 ++ ++−= tttt zE αλαλ  

 

In these equations I plug the earlier formulated RLOM in and receive: 

( )
( )( ) tzkzkkzz

tkkkkkk

z
k

******

ˆ****0

6554

154

ραηαηηαηαη
ηηαηαη

λλλ

λλ

++++−+
++−= −  

( )
( )( ) tzkzkkzz

tkkkkkk

z
k

*****

ˆ****0

6554

154

ραηαηηαηαη
ηηαηαη

λλλ

λλ

++++−+
++−= −  

 

By comparing coefficients I can derive solutions for zkzkk ληηη ,, and kλη and afterwards use the 

equations, which are left, to solve for the dynamics of the endogenous variables.  

 

4.5 Calculate impulse responses 

The dynamics of the system are sufficiently described by the matrix systems above. Impulse 

response functions can now be calculated by setting 0,ˆ
00 =zk , the shock 11 =ε  and solving 

the system recursively.  
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5 The Estimation Method 
 

Let θ be the vector of model parameters and ( )θψ the model impulse response function 

depending on the parameter vector. The estimated impulse response function will be noted as 

ψ̂ and their variance covariance matrix as ∑. In this section, I will analyse three different 

estimation criteria conditional on the form of the VCV matrix. The first criterion will only use 

the diagonal of ∑, the second the complete matrix without weights and the third will put 

weights on the different covariances. For simplicity I will first describe each criterion with 

impulse responses computed for only one variable and one shock. The criterion will be 

extended to several variables later.  

 

5.1 Diagonal Variance-covariance matrix 

This is the estimation criterion as Christiano and Eichenbaum originally applied it. They 

defined their estimation criterion as: ( )( ) ( )( )θψψθψψ
θ

−′−= − ˆ**ˆmin 1VJ  where V is the 

sampling uncertainty in ψ̂  and not equal to Σ. They constructed V the following way 

(Christiano, Eichenbaum, Evans, 2001): Assume ( ) 0ˆ,ˆ =ψθg  as the first order condition 

associated with the solution to the minimization problem above, where ψθ ˆ,ˆ  are the estimates 

of the true values 00 ,ψθ . This function defines implicitly a mapping from 0ψ  to 0θ . They 

then used a Taylor series expansion to derive ( ) ( ) 0ˆˆ 0
2

0
1 =−+− ψψθθ gg   

2
1

1 * ggD −= where ig are the partial derivates with respect to ψθ ,  and derived: 

( ) ( )DDWNT ′− ,0~ˆ 0θθ  with W as the asymptotic variance covariance matrix of 

( )0ˆ θθ −T . V is then: ( )( ) TDDWdiagV /5.0′= . 00 ,ψθ were evaluated at the point 

estimates. 

 

In contrast to Christiano, Eichenbaum and Evans I employ the estimated VCV matrix from 

the VAR impulse response function ( )Σ= diagV .  
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5.2 Unweighted Variance-covariance matrix 

The second estimation criterion take the covariances into account. Since I include more 

information the estimation of the parameter should be improved. Incorporated covariances 

have an additional effect: it enables the estimation criterion to take correlations between 

different periods into consideration. If for example one estimated period deviates from the 

trend and is highly correlated with the following periods, these also necessarily deviate. The 

first estimation criterion will be surprised by each deviation; the second one will not and 

therefore lead to a different estimation for the model’s impulse response function. 

 

The estimation criterion is defined by:  

( )( ) ( )( )θψψθψψ
θ

−Σ′−= − ˆ**ˆmin 1J . 

 

5.3 Weighted Variance-covariance matrix 

This criterion is due to the idea that it is often more important to fit the first periods of the 

model and the VAR impulses rather than the latter ones. This might be, because scientists 

mostly try to predict the nearest periods ahead or because most model impulses die out at the 

end. Adding weights to the covariances can reflect this priority. These weights are chosen 

intuitively rather than with deduced mathematical reasoning. The results for the third criterion 

will therefore be only reported and not interpreted. The main focus will be on the first and 

second estimation criterion. 

 

I define the weighted variance covariance matrix the following way: 
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where im are the number of periods impulse 

responses are computed. 
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While the variances enter the matrix unweighted, the covariances are divided by the higher 

period of each covariance. Covariances of higher periods are systematically excluded. The 

estimation criterion is then defined by: 

( )( ) ( )( )θψψθψψ
θ

−′−= − ˆ**ˆmin 1VJ . 

 

5.4 Extension to several variables 

In the case of more variables the matrix ψ̂ , which contains the estimated impulse response 

functions for the VAR process of i variables with the horizon im, is defined as: 

[ ]imiiimim ,1,,21,2,11,1ˆ µµµµµµψ LLLK=  with the dimensions ( )imi *1× . The 

model’s impulse responses are defined equivalent. The variance covariance matrix Σ is a 

diagonal matrix containing the variance covariance matrix for each variable on the diagonal:  



















Σ

Σ
Σ

=Σ

i000
000
000
000

2

1

O
and has the dimensions ( )imiimi ** × . 

 

5.5 Standard deviation for the parameters 

The standard deviations for the parameter vector are deduced from non-linear estimation 

theory. Every draw from the VAR is collected in a vector y: 
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       1** ×lzi  

 

where the subscript i denote the variable, z the shock, l the impulse period and j the draw. In 

the case of one variable of interest, one shock and a horizon of 20 periods, jy  is 120× vector.  

Given a parameter vectorθ , the model's impulse response function is: ( )θψ , where ( )θψ  is a 

( )1** ×lzi  vector. The relationship between jy  and ( )θψ  can be described by: 
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( ) jj ey += θψ  or ( ) ey +Ψ= θ where all the j draws are stacked together, and the model’s 

impulse responses are j times replicated.  

 

In order to derive a linear model a first order Taylor series expansion is developed at 

*θ : ( ) ( ) ( ) ( )*** * θθθθψθψ −+≅ Z , where ( )
θθ

ψθ
∂
∂=*Z is a ( )klzi ×** matrix, which 

contains the first order derivates of ψ  w.r.t. each kth parameter.  

 

Substituting the Taylor series expansion into the non-linear equation yields the linear 

pseudomodel:  

( ) ( ) eZy += θθθ *** , where ( ) ( ) ( ) **** *θθθψθ Zyy j +−= . 

 

The variance covariance matrix for the parameter vector θ̂  is then defined as: 

( ) ( )[ ]θθσθ
ˆ'*ˆ*ˆˆ 2 ZZ=Σ , where ( )KTee −= /'*ˆ 2σ and lziT **= the number of observations 

and kK = the number of parameters. 

 

The first derivates are computed as: 

( ) ( )
001,0

ˆ001,0ˆ θψθψ
δθ
δψ −+

= k

k
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6 The MATLAB Program 
 

In this section I will give a brief introduction to the program, a kind of manual, an overview 

of the building blocks of the program and point at possible problems that can arise. 

 

6.1 A Manual 

Before the program can be executed, the user has to make some preparations. First of all he 

has to order the time series in a data matrix: 



















TmTT

m

m

yyy

yyy
yyy

,,2,1

2,2,22,1

1,1,21,1

MMM

L

L

 

The matrix has to be saved as D. 

  

Furthermore, an initial guess as a starting point for the parameters of the model has to be 

inserted and saved as b. If the user wants to restrict the interval for the parameter, the upper 

and the lower bound has to be entered and saved as bu and bl respectively.  

 

After these preparations, the program can be executed by entering ”program” in the 

MATLAB prompt. 

 

In the following part I will explain the questions the user will be asked. The first question is 

about the characteristics of the VAR process. The number of lags can be determined. This 

gives the user the opportunity to vary the number of lags for different experiments. Another 

choice offered concerns the prior distribution. The user can choose between the flat prior 

version and the Minnesota prior version. Another prior could be added later. 

 

Afterwards he will be asked about the Monte Carlo procedure to compute the impulse 

response function of the data. The number of draws from the posterior distribution and the 

number of periods can be specified. The program computes impulse response functions for 

every variable in the VAR. In case the user wants to use only some of the functions for the 

estimation procedure, he is asked about the number of impulse response functions and their 
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position within the VAR. If the user, for example, only wants to use the second variable 

impulse response function, he has to enter 1 and 2.  

 

Subsequent to the choices above, the user can decide on the estimation criterion he wants to 

employ and whether the intervals for possible solutions should be restricted or not. It is 

possible to try different settings, i.e. to repeat the estimation of the parameters with a different 

estimation criterion or with/without restrictions on the intervals.  

 

6.2 The building blocks of the program 

The program consists of different functions as building blocks. I want to shortly describe their 

characteristics in order to give an orientation for the MATLAB code. I find that useful 

because all functions can be used independent of each other. A more detailed description can 

be found in the MATLAB code in the appendix.  

 

Function “order” 

The function “order” constructs the VAR matrices Y and X as described above from the 

matrix D, which contains the time series for the variables. 

 

Function “prior” 

The function “prior” specifies the prior distribution for the coefficient matrix B and the VCV-

matrix Σ.  

 

Function “posterior” 

The function “posterior” calculates the posterior distribution for the coefficient matrix B and 

the VCV-matrix Σ.  

 

Function “impulsedata” 

The function “impulsedata” contains a routine to compute the impulse response function for 

the data and the standard deviation for each period. 

 

Function “kriterium” 

The function “kriterium” contains the equation that should be minimized. 
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Function “estimat” 

The function “estimat” includes the choice of the different estimation criteria and the choice 

between a restricted and unrestricted intervals for the parameter. It computes the VCV matrix, 

which is used in the estimation procedure, and executes the minimization routine.  

 

Function “standardb” 

The function “standardb” incorporate the routine to calculate the standard deviation of the 

parameter. 

 

Function “ziehen” 

The function “ziehen” is part of the function “impulsedata”. It embodies an algorithm to draw 

from a Wishart and a Normal probability distribution given the posterior distribution of B and 

Σ. 

 

Function “impulseth” 

The function “impulseth” contains the solution of Hansen’s RBC model in dependence of the 

parameter. This function has to be rewritten for another model.  

 

6.3 Problems 

There are some problems that can arise when executing the program. I want to describe them 

and give an overview about possible solutions. 

 

One problem that emerges easily is related to the savings routine in MATLAB. The command 

”save y” should normally save only the variable y. In the version I used, the whole workspace 

was saved. Because some vectors are loaded every time the minimization routine is executed, 

this problem can lead to a long calculation time especially with a high number of draws. 

Furthermore,  it can happen that some variables are overwritten. 

 

I experienced another problem with the function “standardb”. An inference on the parameters 

can generate very inappropriate results. It can be possible that the function fails to compute 

standard deviations for these values. This kind of problem did not occur in relation with 

reasonable estimates. 
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A limitation of the program can lead to another problem. The program can be applied for one 

shock. The extension of the program to several shocks would be beneficial, but is left out due 

to time constraints. 
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7 Results 
 

In this section the results are presented. I will also give a description of the dataset. As the 

different experiments show, the results are not only dependent on different estimation criteria 

but also on the prior specification and the number of draws from the posterior distribution. 

Since some parameters only have an economic meaning, it can be necessary to put restrictions 

on the estimated parameters when they are outside a certain interval. This will influence the 

inference as well.  

 

To show these effects, the section is organized in the following way: The first case is an 

unconstrained estimation procedure employing the flat prior and the Minnesota prior 

specification for 1000 draws from the posterior distribution. Afterwards I will restrict the 

interval for each parameter. While I accomplished the experiments above, I determined a high 

uncertainty in the Monte Carlo simulation. I, therefore, repeated the experiments 1000 times 

and computed mean and standard deviation. The results showed that the first case is not a 

representative one. In order to reduce the uncertainty in the Monte Carlo procedure 100,000 

draws from the posterior distribution are generated. This is the second case. The parameter 

vector is estimated employing the flat prior and the Minnesota prior specification. Again this 

is an unconstrained and a constrained procedure considered. 

 

I will judge the criteria by their ability to generate reasonable estimates with a low standard 

deviation and to produce a graph inside the band of mean plus/minus one time the standard 

deviation of the VAR impulse response function. The obtained estimates can give an idea 

how the procedure works and the relationship between the model’s impulse response function 

and the VAR impulse response function. I will point out this as well. 

 

7.1 The Dataset 

The dataset consists of two time series for multi factor productivity and average weekly 

working hours in the U.S.A. from 1949-01-01 to 2000-01-01. The multi factor productivity 

index is an annual index (with 1996=100) for the manufacturing sector and was provided by 

the Bureau of Labour Statistics, a U.S. governmental department. I downloaded the time 

series for average weekly working hours from freelunch.com. As a source, the Bureau of 
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labour statistics is named. It is a quarterly index for the non-farm business sector (1992=100). 

I only used the annual observations that fit to the productivity index. 

 

7.2 The First Case 

7.2.1 Unrestricted Estimation 
The parameters were estimated for each criterion employing a flat prior specification and for 

n=1000 draws from the posterior distribution. Standard deviations are reported in brackets 

(where available, for a detailed explanation see section 6.3) 

Table 7.1 Results for Flat Prior and n=1000 
Parameter/Criterion 1 2 3 

θ 
14.6695 
(0.6582) 

15.2765 
n.a. 

16.0868 
n.a. 

δ 
-1.0727 
(0.2198) 

-0.3707 
n.a. 

-0.1966 
n.a. 

ρ 
0.6788 
(0.0293) 

-0.0059 
n.a. 

0.8766 
n.a. 

β 
0.4618 
(0.0648) 

6.8959 
n.a. 

44.1746 
n.a. 

γ 388.8450 -2.2016 -7.3148 

n  16.7319 -1.4940 -8.3340 

Figure 10.1/10.2 10.3/10.4 10.5/10.6 
 

All parameter estimates lie outside a reasonable interval. But they illustrate the procedure and 

show important differences between the estimation criteria. I, therefore, want to interpret 

some values. 

 

The response of the VAR is much lower then the response predicted by the calibrated model. 

In order to fit the model responses, the procedure estimates parameters, which decrease the 

response of the model. It results in a very high share of capital, negative depreciation, low 

persistence of the shock and a very low discount rate. 

 

The higher the share of capital in the production function, the lower is the share of labour. A 

technology shock leads to a lower impulse of labour the lower the share is in the production.  
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The lower the discount factor is, the higher are future periods discounted and present utility 

becomes more important to the agent. Since working lowers the utility, the agent is not 

willing to work much more after a shock in technology. This lowers the response to the shock. 

The low impulse of the VAR is also approaching the steady state fast. This is replicated by a 

low persistence of the shock in the model. While these results are possible to interpret, the 

very odd results for δ (criterion 1+2), β (criterion 2) and ρ (criterion 2) hardly give any 

insight. 

 

When comparing the figures 10.1 and 10.3, the differences between the estimation criteria 

become apparent. The first estimation criterion takes every period separately into 

consideration. This causes the model’s impulse response function to lie within the impulse 

response function of the VAR. The second estimation criterion considers the correlations 

between different periods. It looks much smoother than the first one. Both lie within the band 

of the impulse response function plus/minus the standard deviation. 

 

The results change when the Minnesota prior is applied. The impulse from the VAR is much 

stronger than it was before. This prevents the first estimation criterion from a number of odd 

results: 

Table 7.2 Results for Minnesota Prior and n=1000 
Parameter/Criterion 1 2 3 

θ 
0.8121 
(0.0240) 

6.1893 
n.a. 

1.1836 
(0.0342) 

δ 
-0.0046 
(0.2039) 

-0.0018 
n.a. 

-0.0037 
(0.1152) 

ρ 
0.9964 
(0.0389) 

0.1250 
n.a. 

0.9940 
(0.0481) 

β 
0.9985 
(0.0193) 

7.5927 
n.a. 

1.0016 
(0.0177) 

γ 
0.3173 
 

-23.8701 -2.2383 

n  
0.5313 
 

-5.0499 -0.3857 

Figure 10.7/10.8 10.9/10.10 10.10/10.11 
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The figure for the first estimation criterion shows a strong response followed by a sharp 

downturn for the first two periods. Afterwards the curve approaches the steady state.  

The estimates for β and ρ employing the first criterion are appropriate estimates. The long 

persistence of the VAR impulse response function induces a value for ρ near unity. θ is still 

too high to be reasonable, but it does lie between [ ]1,0  meaning that the labour share in 

production is not a negative one. The high value of θ is probably the reason that the response 

of labour is falling so fast (in two periods from1.2 to 0.2). 

 

The second criterion produces estimates similar to the first case when the flat prior was 

employed, although they are not as high, because of a stronger response in the first period.  

Both graphs lie within the band of mean plus/minus one time the standard deviation.  

 

From these results I can conclude that the procedure leads to dynamics of the model which are 

similar to the dynamics in the data. Despite of the exception of the first criterion combined 

with the Minnesota prior all criteria generate inappropriate parameter values. In order to 

receive reasonable estimates, I will restrict the intervals for possible solutions. 

 

7.2.2 Restricted Estimation 
To choose the right interval is clearly a difficult task. I tried to find appropriate intervals in 

such a way that would allow the upper and lower bounds to remain at reasonable values while 

not constraining the estimation too much.  

Table 7.3 Parameter Restrictions 
Parameter Lower bound Upper bound 

θ 0.25 0.44 

δ 0.003 0.1 

ρ 0.5 0.999 

β 0.9 0.99 

γ 0.05 10 

n  0.05 10 
 

The program is then rewritten, to minimize the different criteria for all values inside the 

intervals.  
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I start again by reporting the results for the flat prior version:  

Table 7.4 Results for Flat Prior and n=1000 
Parameter/Criterion 1 2 3 

θ 
0.44 
0.039 

0.44 
0.039 

0.44 
0.039 

δ 
0.1 
0.0421 

0.1 
0.0396 

0.1 
0.0421 

ρ 
0.5 
0.0455 

0.5184 
0.0429 

0.5 
0.0455 

β 
0.9 
0.0389 

0.9 
0.0372 

0.9 
0.0389 

γ 1 1 1 

n  0.33 0.33 0.33 

Figure 10.25/10.26 10.27/10.28 See Criterion 1 
 

All criteria generate similar results. The restrictions lead to appropriate estimates but also to 

an impulse response function of the model, which differs from the VAR response for the first 

four periods. All generated functions are above the mean of the VAR impulse response 

function plus one standard deviation. 

 

β, δ and θ are at their bounds. As the unrestricted experiment showed will the estimation 

procedure induce high values for θ and low values for β. It also produces the highest value for 

δ. This is surprising because δ has been estimated negative in the unrestricted experiment. A 

high depreciation rate causes a lower rate of return on capital and a lower steady state level 

for capital. A lower rate of return lead to less investment after a technology shock, and 

therefore to a lower increase in the marginal rate of productivity in labour. This lowers the 

response of labour to a shock in technology. The high value for δ can be a substitute for the 

higher values of θ, which are not possible anymore. 

 

The standard deviations of the parameters are indicating a low rate of uncertainty. The 

standard deviations from the second criterion are slightly smaller than the standard deviations 

of the first one. 
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Employing the Minnesota prior version lead to the following results: 

Table 7.5 Results for Minnesota Prior and n=1000 
Parameter/Criterion 1 2 3 

θ 
0.44 
0.0052 

0.44 
0.0052 

0.44 
0.0052 

δ 
0.1 
0.0386 

0.1 
0.0386 

0.1 
0.0386 

ρ 
0.999 
0.0070 

0.999 
0.0070 

0.999 
0.0070 

β 
0.9 
0.0565 

0.9 
0.0565 

0.9 
0.0565 

γ 1 1 1 

n  0.33 0.33 0.33 

Figure 10.33/10.34 
 

All criteria generate equivalent results. Except for ρ, the estimated values are also equivalent 

to the flat prior case. But the standard deviations of the parameters are smaller than the 

standard deviations before. This indicates that the prior choice matters for the estimation 

procedure. 

 

The explanation for the values of the parameters was given above. Even though the graph 

looks similar to the graph in the figures 10.25 and 10.27, it does lies closer to the band of the 

VAR. But this is only because the standard deviation of the data is higher in the special case 

for the Minnesota prior than for the special case with the flat prior. This will not be the case in 

general.  

 

7.3 The Second Case 

Employing Bayesian inference on the VAR process, impulse response functions can vary over 

single computations. This generates different estimates for the parameters. To measure the 

uncertainty, I repeated the process n-times and compute first and second moments for each 

parameter estimate. The results showed a high uncertainty in the Monte Carlo procedure. In 

order to reduce it I set the number of draws equal to n=100,000 and repeated the experiments 

from above. 
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Applying the flat prior lead to the following results: 

Table 7.6 Results for Flat Prior, n=100.000 – Unrestricted Estimation 
Parameter/Criterion 1 2 3 

θ 
0.5409  
0.2751 

0.2303 
n.a. 

0.9924 
0.9182 

δ 
-0.3408 
0.8994 

0.0147 
n.a. 

0.0451 
55.7008 

ρ 
0.9784 
0.1644 

0.7678 
n.a. 

0.9793 
0.9245 

β 
0.7351 
0.4586 

1.3186 
n.a. 

1.0006 
0.6187 

γ 
60.6132 
 

1.3031 
 

0.2320 

n  
-10.4431 
 

0.4060 -0.4097 

Figure 10.13/10.14 10.15/10.16 10.17/10.18 
 

The first point to notice is the high standard deviation of the VAR impulse response function. 

This is probably due to the poor dataset. The estimated values differ from the first case, but 

the trend in the estimation criteria is the same (high θ, low β, negative δ for the first criterion). 

They are much more reasonable, but still not satisfying. The second criterion results in a low 

share of capital and a positive, reasonable δ. 

  

The difference in the parameters is caused by differences in the impulse response function. 

Corresponding to the first case is the flat and persistent response function estimated by the 

first criterion, while the response function estimated by the second criterion is a very strong 

immediate response, which only last for two periods. Both function are inside the band of the 

VAR, but this is not a surprising result given the very high standard deviation in the data. 

The standard deviations of the parameters are also higher than the standard deviation in the 

former cases. 
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The results for the restricted estimation procedure are: 

Table 7.7 Results for Flat Prior, n=100.000 – Restricted Estimation 
Parameter/Criterion 1 2 3 

θ 
0.44 
0.1823 

0.44 
0.1823 

0.44 
0.1823 

δ 
0.1 
1.9912 

0.1 
1.8684 

0.1 
1.9912 

ρ 
0.5 
2.1512 

0.5184 
2.0244 

0.5 
2.1512 

β 
0.9 
1.8386 

0.9 
1.7584 

0.9 
1.8386 

γ 1 1 1 

n  0.33 0.33 0.33 

Figure 10.29/10.30 10.31/10.32 See Criterion 1 
 

The results are the same as for the case with a lower n. The only difference is the standard 

deviations of the parameters, which are bigger than before. It is now possible to draw a 

conclusion about the estimation procedure applying a flat prior version. Firstly, the high 

uncertainty in the data leads to a big standard deviation of the mean of the VAR impulse 

response function. This prevents a valuation of the model’s impulse response function relative 

to the standard deviation of the data. A sensitivity analysis may be necessary towards the 

number of draws in the Monte Carlo procedure. Secondly, the high standard deviation of the 

parameters makes the estimates useless in practice. Thirdly, if the flat prior is applied, an 

unrestricted estimation may generate inappropriate results.  
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The estimation of the parameters employing the Minnesota prior produced the following 

results: 

Table 7.8 Results for Minnesota Prior, n=100.000 – Unrestricted Estimation 
Parameter/Criterion 1 2 3 

θ 
3.7560 
n.a. 

4.5982 
n.a. 

2.9902 
n.a. 

δ 
-0.0317 
n.a. 

-0.0019 
n.a. 

-0.0132 
n.a. 

ρ 
-0.2002 
n.a. 

0.0238 
n.a. 

-0.1766 
n.a. 

β 
2.1315 
n.a. 

1.0402 
n.a. 

1.1232 
n.a. 

γ 
-5.2042 
 

-4.7380 1.8535 

n  
-0.0453 
 

-0.0597 -0.3985 

Figure 10.19/10.20 10.21/10.22 10.23/10.24 
 

All parameter values are inappropriate. The model's impulse response function is fitted very 

well to the impulse response function of the data relative to the standard deviation of data. 

The differences between the first and the second criteria are the same as described before. 

 

The restriction of the intervals for the parameters lead to the following results: 

Table 7.9 Results for Minnesota Prior, n=100.000 – Restricted Estimation 
Parameter/Criterion 1 2 3 

θ 
0.44 
0.0013 

0.44 
0.0013 

0.44 
0.0013 

δ 
0.1 
0.0095 

0.1 
0.0095 

0.1 
0.0095 

ρ 
0.999 
0.0017 

0.999 
0.0017 

0.999 
0.0017 

β 
0.90 
0.0139 

0.90 
0.0139 

0.90 
0.0139 

γ 1 1 1 

n  0.33 0.33 0.33 

Figure 10.35/10.36 
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These results are satisfying. On the one hand, most of the parameters are either at their lower 

or upper bound, but on the other hand, the standard deviations of the parameters are small and 

the impulse response function of the model are close to the band of the VAR. These are 

workable estimates for the parameter, which could be used in Hansen’s RBC model. 

 

While the Minnesota prior outperforms the flat prior, it is hard to discriminate between the 

different estimation criteria. It is advisable to apply both criteria, the one with a diagonal 

VCV matrix and the one with included covariances. The third criterion can be left out, 

because of the lack of theoretical foundation.  
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8 Discussion 
 
In this section I will discuss the results presented in the last section and possible extensions of 

the estimation procedure.  

 

The results showed two essential weak points of the estimation procedure. Firstly, inference 

on parameters that embody an economic meaning can lead to unreasonable values for the 

parameters. This can be solved in two ways. One-way was suggested before, namely, to 

restrict the interval for possible solution. The weaknesses of this approach will be discussed 

later. Another way was provided by Christiano, Eichenbaum and Evans (2001) in their paper 

“Nominal rigidities and the dynamic effects of a shock to monetary policy”. They divided the 

parameters in two categories: parameters that do not enter the formal estimation criterion and 

parameters that do enter it. The first group of parameters was calibrated to avoid unreasonable 

results. The parameters, which belonged to the second group, were, for example, parameters 

entering Calvo price setting of wages and prices (fraction of households and firms that cannot 

renegotiate prices and wages), the steady state mark-up, the habit parameter and the parameter 

of investment adjustment costs. Scientists have a higher degree of freedom when choosing 

these parameters. The exclusion of some parameters is therefore a possible solution to the 

problem. 

 

The second weakness was when the intervals for possible solutions were restricted; the 

outcome was likely to be at the upper or the lower bound. This makes the determination of the 

bounds look equivalent to the determination of the parameter values. This weakness can 

hardly be resolved. One way is an agreement among economists about the range of certain 

parameters. This would secure a unified framework. The estimated parameter value would 

then represent the best choice out of the interval and standard deviations for each choice could 

be reported. 

  

It is also possible that the problems vanish, if the estimation procedure is extended to more 

variables. In this thesis I only looked at the relationship between a shock in technology and 

labour. This generates the effects described in the last section. Interest rate, consumption and 

output could be included in the VAR, impulse response functions could be computed and 

incorporated in the estimation procedure. It is possible that certain effects leading to odd 

estimates cancel out. An extension of the VAR is therefore recommendable.  
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As the discussion demonstrates is it possible to remove the weak points of the estimation 

procedure. The results showed the advantages of the estimation procedure as well. The 

dynamics of the model can be made to look like the dynamics of the data. The standard 

deviation of the impulse response function of the VAR can be used as a measure of distance 

between the model’s impulse response function and the data ones. All parameters can be 

estimated within a unified framework. There is no lack of equation. The estimation procedure 

therefore avoids the problem of inconsistency between studies. The uncertainty in the choice 

of parameters can be quantified and used to evaluate the model. Furthermore, the framework 

can be applied easily. After all, the advantages outweigh the disadvantages. 

 

The estimation procedure can be extended in several ways. One limitation is that only one 

shock can be considered. For an advanced use of the program code, the possibility to account 

for further shocks should be added. Another feature, which would improve the code, is to 

include more prior distribution especially the Sims-Zha prior (Sims and Zha, 1998). In 

connection with the calculation of the impulse response of the VAR process, an alternative to 

the Cholesky transformation could be built in. This would have the advantage that the user 

would not have to make the recursiveness assumption.  

 

I planned to include all the features named above, but took a decision against it because I do 

not think they contribute further to the specific topic I want to discuss.   
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9 Conclusion 
 

Because a large amount of research deals with the dynamic implications of a model, an 

estimation method developed by Christiano, Eichenbaum and Evans has been examined and 

extended. As the results showed, this method led to workable estimates for Hansen’s RBC 

model. I therefore suggest the following framework for choosing parameters within a DSGE 

model: 

 

1. Computation of the dynamics of a Bayesian VAR process for the variables of interest in 

the model 

2. Derivation of the model’s dynamics depending on the model’s parameters (not all 

parameters have to be included) 

3. Application of the estimation procedure 

4. Improvement of the estimates by restricting the intervals for possible solution or by 

employing a different prior probability distribution  

5. Report of estimated values and their standard deviations in connection with the graphs 

 

This framework avoids problems of the methods presented in section two. It provides the 

researcher with a measurement of the uncertainty in the choice of parameters that can be used 

for a further evaluation of the model. Because it concentrates on the dynamics of the data, the 

method is mostly robust against measurement errors. All variables of interest are observable. 

It also avoids arbitrary choices of parameter and inconsistence between studies by offering a 

unified framework. There is no lack of equation for the estimation procedure. 

 

Conclusively, I agree with Christiano, Eichenbaum and Evans, that research with DSGE 

models is about their dynamic implications. The estimation method presented in this thesis 

can then be helpful. 
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10 Appendix 
10.1 MATLAB Code 

10.1.1 “Program” 
%this m-file is the main program 
 
%D is the matrix that contains the data 
load D; 
 
%collecting some information 
m= size(D,2); 
rho= input('number of lags'); 
T= size(D,1); 
 
%builds the VAR process 
[Y,X]= order (D, m, rho, T) ; 
 
%decides the prior distribution 
[N, S, v, B]=prior (D, m, rho, T);  
 
%function that estimates the coefficients and computes 
%the posterior distribution 
[Bt, Nt, vt, St]=posterior (Y, X, B, N, v, S, T); 
 
%collecting information about impulse responses for the VAR 
dr=input ('number of draws?'); 
disp('          '); 
im=input ('number of periods?'); 
save im; 
 
%computation of the I-R-F 
[IDA, VCV, IV, plt, t]=impulsedata (Bt, St, vt, m, rho, Nt, 
im, dr); 
 
%IDA- contains the average for each period 
save IDA 
%VCV- contains the variance covariance matrix 
save VCV 
%IV- contains every variable, period for every draw 
save IV 
%plt- average +/- standard deviation of the data 
save plt 
 
loop=1; 
while loop==1; 
   %parameters are estimated and their standard deviation  
 %is computed 
 psi=estimat(VCV, t, im); 
 stdb=standardb(IV, psi); 
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 %models I-R-F for the estimated parameters 
 %are computed 
 ih=impulseth(psi); 
 
 disp ('your parameter estimate is:   '); 
 disp(psi); 
 disp ('          ') 
 disp ('press enter') 
 pause 
 disp ('the standard deviations for the parameters are:   ') 
 disp (stdb); 
 disp ('press enter') 
 pause 
 
 %preparations for the plots 
 x=1:im; 
 for i=1:t 
    %plot I-R-F data vs. I-R-F model 
    r=[IDA(1,((i-1)*im)+1:(i*im));ih]; 
    plot(x,r) 
    xlabel('periods after shock'); 
    ylabel('percent deviation from steady state') 
    pause 
    
    %plot that includes standard deviation 
    w=[r; plt(:,((i-1)*im)+1:(i*im))]; 
    plot (x,w) 
    xlabel('periods after shock'); 
    ylabel('percent deviation from steady state') 
    pause 
    
 end 
 
disp(' 1 - repeat the calculation for a different settings') 
disp(' 2 - end') 
disp('        ') 
loop=input('What do you want'); 
end 
 
10.1.2 Function “order” 
function [Y, X]= order (D, m, rho, T) 
 
%this function builds the VAR process from the data- matrix D 
%it orders the data into the Y and X matrix 
 
Y=ones (T-rho, m); 
X=ones (T-rho, m*rho+2); 
i=1; 
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%Y matrix  
while i<=m 
    Y(:,i)=D(rho+1:T, i); 
    i=i+1; 
end 
  
%X-matrix  
j=rho; 
k=1; 
for k=k:rho 
    n=1; 
    for n=n:m 
        X(:,(j-1)*m+n)=D(k:(T-j),n); 
    end 
    j=j-1; 
end 
 
b=1:(T-rho); 
 
%X matrix plus constant and time-trend 
X(:,m*rho+2)=b'; 
 
10.1.3 Function “prior” 
function [N, S, v, B]=prior (D, m, rho, T) 
%function that chooses the prior distribution 
 
disp('1 - flat prior') 
disp('2 - Minnesota prior') 
disp('                   ') 
 
pri=input('Prior?'); 
 
switch pri 
%flat prior    
case 1 
   Bo=0; 
   No=0; 
   So=0; 
   vo=0; 
%minnesota prior 
case 2 
   %So 
   So=zeros(m); 
   for i=1:m 
      Uy=D(1:(T-1),i); 
      Ux=D(2:T,i); 
      bs=((Ux'*Ux)^(-1))*Ux'*Uy; 
      e=Uy-Ux*bs; 
      s=e'*e/T; 
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      So(i,i)=s; 
   end 
   %No 
   No=zeros(rho*m+2); 
   %hyperparameters 
   eta1=5; eta2=2; eta3=8; 
   No(1,1)=eta3; No(1,2)=(-eta3^2)/2; No(2,1)=No(1,2);
 No(2,2)=(eta3^3)/3; 
   Y0=D(1,:); 
   for i=1:m 
      for l=1:rho 
         No(2+m*(l-1)+i,2+m*(l-1)+i)=(Y0(i))^2*eta1*l^(eta2); 
      end 
   end 
   %Bo 
   Bo=eye(m,m*rho+2)'; 
   %vo (I had annual data) 
   vo=5; 
end 
N=No; 
B=Bo; 
S=So; 
v=vo; 
 
10.1.4 Function “posterior” 
function [Bt, Nt, vt, St]= posterior (Y, X, B, N, v, S, T) 
%function that computes the posterior 
 
 
%likelihood estimation 
 
Bhat=inv((X'*X))*X'*Y; 
shat=(1/T)*(Y-X*Bhat)'*(Y-X*Bhat); 
 
%posterior computation 
 
vt=v+T; 
Nt=N+X'*X; 
Bt=inv(Nt)*(N*B+X'*X*Bhat); 
St=(v/vt)*S+(T/vt)*shat+(1/vt)*(Bhat-B)'*N*inv(Nt)*X'*X*(Bhat-
B); 
 
10.1.5 Function “impulsedata” 
function[IDA, VCV, IV, plot, t]=impulsedata (Bt, St, vt, m, 
rho, Nt, im, dr) 
 
%this function computes for a given posterior distribution  
%cholesky-impulse response function with horizon im 
%it draws dr-times 
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%all draws are collected in I 
I=zeros (m,dr,im); 
%u is the shock - it is also possible to load a shock  
u=[1;0]; 
%matrix J is a brick for the companion form of the VAR 
J=eye(m,m*rho); 
 
%the loop, that computes dr stable impulse response function 
j=1; 
 
while j<=dr   
    
%first it draws from the posterior 
[SZ, BZ]= ziehen (Bt, St, vt, m, rho, Nt); 
 
%some preparations for the stability test 
B=BZ'; 
B=B(:,1:m*rho); 
C=zeros(m*rho,m*rho); 
 
%building the companion form 
if rho==1 
   C=B; 
else 
   Ar=eye(rho-1); 
   Ak=eye(m); 
   Akm=kron(Ar,Ak); 
   Ab=B; 
   C(1:m,:)=Ab; 
   C((m+1):m*rho,1:m*rho-m)=Akm; 
end 
 
%computing the roots 
roots=abs(eig(C)); 
ro=max(roots); 
 
%Test for stability 
%if the VAR is stable the function computes the  
%impulse response function 
if ro<1 
   A=chol(SZ); 
   I(:,j,1)=A'*u; 
   for i=2:im 
      I(:,j,i)=J*C^(i-1)*J'*A*u; 
   end 
 j=j+1;    
end 
 
end 
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%after the impulse response function are drawn, they are 
ordered from 
%the 3-d matrix I into the 2-d matrix Ip 
%this is necessary in order to compute first and second 
moments 
Ip=zeros(m*im,dr); 
tal=1; 
for k=1:im 
   Ip(tal:tal+m-1,:)=I(:,:,k); 
   tal=tal+m; 
end 
 
%in case the VAR process includes more variables than the user 
wants to employ 
%(for example a productivity index), he is asked about the 
variables he is interested in and their position  
 
t=input('For how many variables do you want to compute impulse 
response functions?'); 
tb=zeros(1,t); 
disp('please insert now the position of the variables in the 
VAR. you will be asked once for each variable') 
 
for i=1:t 
   tb(i)=input('position:'); 
end 
 
%generating matrices that should save the information 
 
% matrix that saves the average impulse responses function for 
each variable of interest 
IDA=zeros(1,t*im); 
 
%matrix that saves the variance covariance matrix for each 
variable of interest 
VCV=zeros(im,im,t); 
 
%matrix that contains the information for the plot 
plot=zeros(t*3,im); 
 
% a matrix for the computation of the average 
Du=ones(dr,1); 
Du=Du/dr; 
 
% the matrix for the computation of the standard deviation of 
the parameters 
IV=zeros(t*im,dr); 
 
%loop that computes mean, variance for every variable of 
interest 
for i=1:t 
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   ta=tb(i); 
    
   %matrix that contains every draw and period 
   %(needed to compute standard deviations of the parameters) 
   Iv=zeros(im,dr); 
    
   %loop to take the impulse response function for variable ta  
 for k=1:im 
   Iv(k,:)=Ip(ta,:); 
   ta=ta+m; 
 end 
    
   %computation of the average for each period 
   ID=Iv*Du; 
 M=repmat(ID,1,dr); 
 ID=reshape(ID,1,im); 
    
   %computation of the variance covariance matrix  
   Sg=Iv-M; 
   VC=(Sg*Sg')/dr; 
    
   %computation of the standard deviation for the VAR 
   v=(diag (VC)).^(0.5); 
 std=zeros(2,im); 
 std(1,:)=ID+v'; 
 std(2,:)=ID-v'; 
 pl=[ID;std]; 
    
   %put the matrices into the matrices that save the values 
for all variables of interest 
    
   IV(((i-1)*im)+1:i*im,:)=Iv; 
    
   IDA(1,((i-1)*im)+1:i*im)=ID; 
    
   VCV(:,:,i)=VC; 
    
   plot(((i-1)*3)+1:i*3,:)=pl; 
    
 end 
    
IV=IV(:); 
 
10.1.6 Function “estimat” 
function [fit]= estimat (VCV, s, im) 
 
%this function generates the matrix, which is needed for 
different criteria and  
%starts the minimization routine 
%it hands the parameter estimate back (fit) 
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om=size (VCV,1); 
 
%the user can choose, between the different criteria 
 
disp('      '); 
disp('      '); 
disp('1 - only variances') 
disp('2 - full variance covariance matrix') 
disp('3 - weighted variance covariance matrix') 
 
sce=input('which estimation criterion do you want to 
employ?'); 
 
if s==1 
switch sce 
case 1 
   v=diag(VCV); 
   V=diag(v); 
case 2 
   V=VCV; 
case 3 
   V=zeros(size(VCV)); 
   for w=1:om 
      for a=1:om 
         if a==w 
            V(a,w)=VCV(a,w); 
         elseif a>w  
            V(a,w)=VCV(a,w)*(1/a); 
         else 
            V(a,w)=VCV(a,w)*(1/w); 
         end 
     end 
  end    
              
end 
 
else 
    
   switch sce 
   case 1 
      v=zeros(s*im,1); 
      for h=1:s     
         v((h-1)*im+1:h*im,1)=diag(VCV(:,:,h)); 
      end 
      V=diag(v); 
       
 case 2 
      V=zeros(im*s); 
      for h=1:s 
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         V((h-1)*im+1:h*im,(h-1)*im+1:h*im)=VCV(:,:,h); 
      end 
       
 case 3 
      V=zeros(im*s); 
      for h=1:s 
         v=zeros(im,im); 
       for w=1:om 
        for a=1:om 
          if a==w 
             v(a,w)=VCV(a,w,h); 
          elseif a>w  
             v(a,w)=VCV(a,w,h)*(1/a); 
          else 
             v(a,w)=VCV(a,w,h)*(1/w); 
          end 
        end 
     end    
           V((h-1)*im+1:h*im,(h-1)*im+1:h*im)=v; 
        end 
     end 
      
 end 
 
  
save V 
%the matrix V is saved and loaded again by the "kriterium" 
function 
 
load b 
%b is the initial guess that has to be saved before 
 
disp('1 - estimate the parameters without restrictions') 
disp('2 - estimate the parameters with interval restrictions') 
disp('              ') 
 
cho=input('What kind of estimation do you prefer'); 
 
switch cho 
  case 1 
 fit=fminsearch('kriterium',b); 
   % minimization routine with no restrictions 
case 2 
   load bu 
   load bl 
   fit=fmincon('kriterium',b,[],[],[],[],bl,bu); 
   %minimization routine with restrictions 
end 
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10.1.7 Function “kriterium” 
function [X]=kriterium (c); 
 
%this function computes the sum that 
%should be minimized 
 
%the impulse response function of the data and the 
%chosen variance covariance matrix(in “estimat”) are loaded 
load IDA 
load V 
 
%models impulse response are computed 
IT=impulseth (c); 
 
%minimization criterion 
X=(IDA-IT)*V^(-1)*(IDA-IT)'; 
 
10.1.8 Function “standardb” 
function [stdb]= standardb (IVS, bs) 
 
%function that computes the standard deviations of 
%the parameter 
 
%number of parameter 
k=4;%size(bs,1) 
%number of observation 
do=size(IVS,1); 
 
%the models I-R-F 
IO=impulseth(bs)'; 
%horizon 
o=size (IO,1); 
 
%computation of the error terms 
f=repmat(IO, do/o ,1); 
e=IVS-f; 
%sum of the error terms 
S=e'*e/(do-k); 
 
%computation of the first derivates w.r.t. every 
%parameter 
bt=bs; 
Zs=zeros(k,o); 
for h=1:k 
   bt(h)=bt(h)+0.01; 
   Zs(h,:)=(impulseth(bt)-IO')/0.01; 
   bt=bs; 
end 
 
%computation of the standard deviation 
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Z=zeros(k,do); 
Z=repmat(Zs,1,do/o); 
vcvm=S*((Z*Z')^(-1)); 
 
stdb=diag(vcvm).^(0.5); 
    
10.1.9 Function “ziehen” 
function [SZ, BZ]= ziehen (Bt, St, vT, m, k, Nt) 
%This function draws from the Wishart and the standard normal 
distribution 
 
%drawing one VCV matrix from the Wishart distribution 
%inverse of sigma=precision matrix H 
S=inv(St); 
w=size (St); 
%a matrix containing standard normal distributed entries  
%P~N(0,1) 
P=randn (w); 
A=chol (S); 
%after the transformation is P~(0,St) 
P=A'*P; 
%Si~W(St/vT,vT) 
Si=P*P'/vT; 
%inverting H to derive sigma 
SZ=inv(Si); 
 
 
%drawing a coefficient matrix B from a standard normal 
distribution 
%computation of E[B] 
Ni=inv(Nt); 
sigb=kron(SZ,Ni); 
q=0;    
beta=Bt(:); 
l=size(beta); 
%O~N(0,1) 
O=randn (l); 
%check if sigb is positive definite 
[Q q]=chol (sigb); 
if q~=0 
   BZ=Bt; 
else 
   %O~N(0,sigma) 
   O=Q'*O; 
    
 %O~N(beta, sigb)  
 O=O+beta; 
 
 BZ=reshape (O, m*k+2, m); 
end 
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10.1.10 Function “impulseth” 
function [Itv]=impulseth (ve) 
 
%this function computes for a given parameter vector the 
impulse response 
%function of the model 
 
% the impulse response horizon  
im=20; 
 
%reading the parameters 
teta=ve(1); 
delta=ve(2); 
rhot=ve(3); 
beta=ve(4); 
gamma=ve(5); 
nbar=ve(6); 
 
 
%steady state 
 
Rbar=1/beta; 
kappa=(Rbar-1+delta)/teta; 
ybar=nbar*(gamma*kappa^(-teta))^(1/(1-teta)); 
kbar=ybar/kappa; 
cbar=(kappa-delta)*kbar; 
lambar=1/cbar; 
A=(lambar*(1-teta)*ybar)/nbar; 
 
%alpha coefficients 
 
a1=kappa+1-delta; 
a2=cbar/kbar+kappa*((1-teta)/teta); 
a3=kappa/teta; 
a5=1+((1-teta)*kappa)/Rbar; 
a6=kappa/Rbar; 
 
%comparing coefficients 
 
etakk1=0.5*((a1+1/a5)+((a1+1/a5)^2-4*(a1/a5))^0.5); 
etakk2=0.5*((a1+1/a5)-((a1+1/a5)^2-4*(a1/a5))^0.5); 
if -1<etakk1<1 
    etakk=etakk1; 
else 
    etakk=etakk2; 
end 
 
etalk=(etakk-a1)/a2; 
etalz=(etalk*a5*a3+a6*rhot)/(1-etalk*a5*a2-a5*rhot); 
etakz=a2*etalz+a3; 
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%generating the shock 
z=eye(1,im); 
for i=2:im 
   z(i)=rhot*z(i-1); 
end 
 
%impulse response function 
 
I=zeros(3,im); 
I(1,:)=z; 
LZ=[etakz;etalz]; 
LK=[etakk; etalk]; 
 
for i=2:im 
    I(2:3,i)=LK*I(2,i-1)+LZ*I(1,i); 
 end 
 
J=zeros(4,im); 
L=[0         0       -1 
   1/teta    0       (1-teta)/teta 
   kappa/Rbar  0   (kappa/Rbar)*(1-teta)        
   1/teta    0       1/teta]; 
 
O=[0        0       0 
   0        1       0 
   0        0       0 
   0        1       0]; 
J(:,1)=L*I(:,1); 
for i=2:im 
    J(:,i)=L*I(:,i)+O*I(:,i-1); 
end 
 
It=[I;J]; 
 
%output 
%the 7th variable is n for example 
Itv=It(7,:); 
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10.2 Figures 

Figure 10.1 First Criterion, Flat Prior, n=1000, unrestricted 
 

 
Figure 10.2 First Criterion, Flat Prior, n=1000, unrestricted 
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Figure 10.3 Second Criterion, Flat Prior, n=1000, unrestricted 

 
Figure 10.4 Second Criterion, Flat Prior, n=1000, unrestricted 
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Figure 10.5 Third Criterion, Flat Prior, n=1000, unrestricted 

 
Figure 10.6 Third Criterion, Flat Prior, n=1000, unrestricted 
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Figure 10.7 First Criterion, Minnesota Prior, n=1000, unrestricted 

 
Figure 10.8 First Criterion, Minnesota Prior, n=1000, unrestricted 
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Figure 10.9 Second Criterion, Minnesota Prior, n=1000, unrestricted 

 
Figure 10.10 Second Criterion, Minnesota Prior, n=1000, unrestricted 
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Figure 10.11 Third Criterion, Minnesota Prior, n=1000, unrestricted 

 
Figure 10.12 Third Criterion, Minnesota Prior, n=1000, unrestricted 
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Figure 10.13 First Criterion, Flat Prior, n=100,000, unrestricted 

 
Figure 10.14 First Criterion, Flat Prior, n=100,000, unrestricted 
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Figure 10.15 Second Criterion, Flat Prior, n=100,000, unrestricted 

 
Figure 10.16 Second Criterion, Flat Prior, n=100,000, unrestricted 
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Figure 10.17 Third Criterion, Flat Prior, n=100,000, unrestricted 

 
Figure 10.18 Third Criterion, Flat Prior, n=100,000, unrestricted 
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Figure 10.19 First Criterion, Minnesota Prior, n=100,000, unrestricted 

 
Figure 10.20 First Criterion, Minnesota Prior, n=100,000, unrestricted 
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Figure 10.21 Second Criterion, Minnesota Prior, n=100,000, unrestricted 

 
Figure 10.22 Second Criterion, Minnesota Prior, n=100,000, unrestricted 
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Figure 10.23 Third Criterion, Minnesota Prior, n=100,000, unrestricted 

 
Figure 10.24 Third Criterion, Minnesota Prior, n=100,000, unrestricted 
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Figure 10.25 First Criterion, Flat Prior, n=1000, restricted 

 
Figure 10.26 First Criterion, Flat Prior, n=1000, restricted 
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Figure 10.27 Second Criterion, Flat Prior, n=1000, restricted 

 
Figure 10.28 Second Criterion, Flat Prior, n=1000, restricted 
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Figure 10.29 First Criterion, Flat Prior, n=100,000, restricted 

 
Figure 10.30 First Criterion, Flat Prior, n=100,000, restricted 
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Figure 10.31 Second Criterion, Flat Prior, n=100,000, restricted 

 
Figure 10.32 Second Criterion, Flat Prior, n=100,000, restricted 
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Figure 10.33 All Criteria, Minnesota Prior, n=1000, restricted 

 
Figure 10.34 All Criteria, Minnesota Prior, n=1000, restricted 
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Figure 10.35 All Criteria, Minnesota Prior, n=100,000, restricted 

 
Figure 10.36 All Criteria, Minnesota Prior, n=100,000, restricted 
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