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Abstract

The aim of this paper is to examine the effects of aggregate and individual

shocks on the dynamics of wealth distribution and macroeconomic variables.

For this purpose, the stochastic neoclassical representative agent model is

extended to an economy populated by heterogeneous agents with partially

uninsurable idiosyncratic risks. Agents differ in their labor productivity and

capital endowments whose steady state distributions are given exogenously.

Using log-linear approximation around the steady state it is shown that the

effects of aggregate shocks depend on the degree of heterogeneity and pref-

erences. Nevertheless, idiosyncratic shocks impose a consistent antagonistic

relationship between different types of agents where those experiencing a

positive shock are better off leaving the others worse off. Moreover, it is

found that agents do not care about the distribution of wealth beyond its

mean while making their decisions. In addition, the business cycle proper-

ties of the heterogeneous economy are distinguished from those of the corre-

sponding representative agent framework if the persistence of idiosyncratic

productivity shocks differs significantly from the persistence of the aggregate

technology shock. Given these results, one may conclude that it is time to

deviate from the representative agent assumption.
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1 Introduction

Although microfoundations is the key term in modern macroeconomic theory

many models are based on the supposition that the economy is populated

by a single infinitely living agent who is a proxy for the aggregate economy.

It is quite understandable that this framework has affected earlier dynamic

models for its strong implications. Essentially, the assumptions of infinite

horizon, competitive markets, constant returns to scale production and ho-

mogeneous agents indicate that the allocation attained by a decentralized

economy will be the same as the allocation achieved by a central planner.

As theory evolves, almost all of these assumptions are criticized: Infinite

horizon has been replaced with overlapping generations, monopolistic com-

petition has been added via intermediate goods sector and increasing returns

to scale has been introduced in innumerable number of studies. However, the

homogeneity assumption has remained almost untouched until recently de-

spite the fact that the dynamics of income and wealth distribution is at the

center of lively political discussions. This paper touches homogeneity as-

sumption by studying the stochastic dynamics of wealth distribution in an

economy inhabited by heterogeneous agents.

Our model is basically an extension of the well-known dynamic stochas-

tic general equilibrium model with an infinitely living representative agent

and neoclassical production function. The crucial difference is that we have

many agents subject to partially uninsurable idiosyncratic labor productivity

shocks affecting their labor earnings. Agents have the same time separable

preferences and try to maximize their discounted sum of utility subject to a

decentralized budget constraint by using all available information up to the

time of decision. The Cobb-Douglas production technology employs capital

and labor as production factors. Agents differ in their steady state endow-

ments, i.e. wealth and labor earnings. Labor is supplied inelastically and

wealth is the only asset that can be saved to smooth consumption and to

insure oneself against exogenous unpredictable events which include idiosyn-

cratic productivity and aggregate technology shocks.

In general, studies that employ heterogenous agents framework focus on

simulations and try to approximate the dynamics via limited state-space
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models1. However, the examination of idiosyncratic and aggregate shocks

separately has been absent until now. So, our approach is novel for this

branch of models because of being the first attempt to assess the contribution

of each shock to the dynamics and to interpret the properties of the economy

accordingly. Using this approach we will try to answer three main questions:

• What are the effects of aggregate technology and individual productiv-

ity shocks on wealth heterogeneity?

• Do wealth and income distributions matter for the dynamics of aggre-

gate capital and correspondingly of other aggregate variables?

• Do the distributional properties of wealth other than its mean matter

for the dynamics of individual decisions?

In order to reach our aim, we calculate the impulse responses of individ-

ual and aggregate variables to different shocks using the procedure presented

in Uhlig (1999) that has proved to be useful in solving dynamic stochas-

tic general equilibrium models in discrete time framework. This procedure

involves four main steps that lead to the calculation of impulse responses,

simulations and second moments. First of all, one gathers the equations that

define the equilibrium of the model including constraints, identities, first

order conditions, exogenous processes and other necessary equations. The

second step involves finding the (non-stochastic) steady state of these equa-

tions. The third step is the log-linearization of the equations around their

steady state and finally we employ method of undetermined coefficients to

obtain the recursive equilibrium laws of motion assuming that they are linear

in log-deviations of state variables. This last step, as well as the calculation

of impulse responses, simulations and moments, is automatically done by

Toolkit2.

Moreover, as our objectives concern dynamics of wealth heterogeneity

we should also choose a measure of inequality. There are several ways in

literature to address wealth inequality among which are

1See, for example, Krusell and Smith (1998) and Castañeda, Dı́az-Giménez and Rı́os-
Rull (1998) which will be discussed in the next section in more detail.

2 c©Prof. Harald Uhlig, Ph.D.. The latest information on Toolkit can be found under
http://www.wiwi.hu-berlin.de/wpol/html/toolkit.htm .
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• Comparison of percentile distributions where one percentile is compared

to another one or to the aggregation of some other percentiles,

• Lorenz curve which is a graphical representation of relative inequality

where one can read what fraction of the population owns how much

share of total wealth or income,

• Gini coefficient which is a proxy for the convexity of Lorenz curve used

to quantify inequality, and

• Standard deviation which is a well-known statistical quantity that should

be considered relative to average wealth rather than in absolute terms.

Although we employ the first three items to present the dimensions of

wealth inequality we track its dynamics using the Gini coefficient since it

is informative, easy to compare in different model settings and simple to

implement once we get the impulse responses from Toolkit. Knowing the

approach, we may now discuss some results.

Our first finding is that any wealth distribution is consistent with the

non-stochastic steady state of our model. So, the steady state distribution

of wealth and thereby of consumption is indeterminate. For this reason, the

aggregate and idiosyncratic shocks may and do have persistent effects on

wealth distribution and consumption paths of individuals.

Secondly, we find that if agents have the same constant relative risk aver-

sion (CRRA) preferences a positive technology shock promotes wealth equal-

ity. Moreover, it is shown that subsequent positive technology shocks can

reduce wealth inequality down to a limit where the ratio of individual cap-

ital holdings to individual labor productivity is equalized among all agents.

In other words, given that agents have the same CRRA utility and that the

probability of a positive technology shock is greater than a negative one, the

long-run stochastic steady state of the model implies the same capital-labor

ratio for all agents.

Thirdly, we observe that the idiosyncratic shocks cause an antagonistic

relationship between the agents and that the poor agents are hurt more than

the rich ones due to this relationship. Moreover, the distribution of wealth

12



matters for the impulse responses of aggregate capital to idiosyncratic shocks

but not to aggregate shocks under CRRA preferences. However, introducing

concave absolute risk tolerance to the model changes the latter result such

that wealth heterogeneity affects aggregate dynamics in response to aggre-

gate shocks.

Furthermore, we compare the coefficients that have been obtained using

the method of undetermined coefficients in order to find out whether the

distribution of wealth matters for the aggregate dynamics. This comparison

makes it clear that only the mean of the wealth distribution matters for the

individuals when they make their decisions. In addition, we see that this

property of the model is robust to changes in preferences.

Finally, we introduce a model with persistent idiosyncratic shocks and

discuss the effects of persistence and different preferences on the cyclical

properties of the aggregate variables. We find that the changes in preference

settings does not affect the business cycle characteristics in a significant way.

Nevertheless, persistence of idiosyncratic shocks play an important role in

the determination of cross-correlations of aggregate variables with aggregate

output.

The rest of this paper is organized as follows. In the next section we

discuss the literature on the same line of research to get an idea about the

current state of knowledge which will help the reader to position our paper

on this line. Section 3 presents facts regarding the wealth and earnings distri-

bution in the United States that are relevant to our model. The benchmark

model with two types of agents and its implementation are described in Sec-

tions 4 and 5 whereas Section 6 provides the corresponding results and their

explanation. In Section 7, we present variations of the benchmark model for

deeper understanding of model dynamics. Section 8 offers a discussion of the

results and alternative methods. Finally, Section 9 concludes with a brief

summary and additional remarks.
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2 Literature

This section reviews several models of wealth heterogeneity similar to the one

discussed in this paper in the sense that they employ infinitely living agents

framework. Therefore, these models implicitly assume that each generation

is perfectly altruistic toward its offspring. We will start the discussion by

focusing on deterministic models and then we move on to the stochastic ver-

sions.

In the deterministic models involving heterogeneity earnings are deter-

ministic, households differ in their asset holdings and wealth is indetermi-

nate3. Therefore, insurance against unforeseen events is not a motive for the

consumers to refrain themselves from spending their income. Moreover, it

is clear that if all the agents are alike and face no uncertainty the model

collapses to representative agent framework. Using this framework, Chatter-

jee (1994) shows that the initial distribution of wealth in an economy with

infinitely living agents, homothetic preferences and neoclassical production

remains constant throughout the equilibrium path regardless of the economy

being in the steady state or not.

The typical example of a model economy with stochastic dynamics of

idiosyncratic productivity that generates endogenous wealth distribution is

introduced by Aiyagari (1994)4. In his model, the distribution of labor earn-

ings is exogenous and the inclusion of stochastic earnings dynamics to the

model has resulted in precautionary savings against idiosyncratic shocks due

to the inexistence of complete insurance markets. Another crucial feature of

this model is that there is a lower limit for asset holdings to prevent agents

from running a Ponzi scheme. This feature creates distortion at the bottom

3In other words, the amount of wealth each agent owns is described via a probability
distribution over asset holdings. It may be mentioned, in passing, that the indeterminacy
of wealth will also show up in our calculations of steady state and we will see that any
wealth distribution is consistent with our non-stochastic steady state.

4It may be necessary to mention that Aiyagari (1994) is not the first paper that involves
a dynamic stochastic model. For example, Scheinkman and Weiss (1986) employ a simple
two-agent framework with idiosyncratic uncertainty. Their paper is similar to Aiyagari
(1994) in ignoring aggregate uncertainty. However, it differs from those discussed here
since they do not incorporate a neoclassical production function.
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such that the savings propensity of very poor agents differ from others5. The

basic difference of this influential paper from its successors is that it excludes

aggregate shocks whereas the constant relative risk aversion utility function,

the borrowing constraint and limited discrete state space for the Markov

process of labor endowment shocks are widely adapted by later contributors.

The main finding of Aiyagari (1994) is that the contribution of idiosyncratic

risk, i.e. of the precautionary motive, to aggregate savings is low.

A model which incorporates both aggregate and idiosyncratic uncertainty

is generated by Krusell and Smith (1998) which is also an important method-

ological contribution. The main motivation of their paper is to answer

whether the representative agent framework is a reasonable modeling strat-

egy. The answer to this question is positive if aggregate variables in a model

with a more realistic setting, in their context one that consists of many

agents with idiosyncratic risks, behave like those in the representative agent

framework. For this purpose they build a stochastic neoclassical growth

model with large number of infinitely living consumers who have CRRA

preferences and try to insure themselves against aggregate and idiosyncratic

productivity shocks using only one asset, which is capital. They use a novel

simulation technique to achieve the comparison of the aggregate properties of

this model’s stationary stochastic equilibrium with the corresponding repre-

sentative agent model and conclude that the heterogeneous-agents economy

behaves almost identically to its representative-agent counterpart except a

slight increase in the equilibrium level of aggregate capital if markets are

incomplete6.

Another stochastic model in this line of research is presented in Castañeda,

Dı́az-Giménez and Ŕıos-Rull (1998). They focus on the role of unemploy-

ment spells and cyclically moving factor shares in shaping the distribution of

income and business cycle dynamics. Their models are similar to the bench-

mark model in Krusell and Smith (1998) except the fact that they focus

primarily on two environments. In one of the environments all agents are ex

5See also Krusell and Smith (1998), pp. 880.
6In Krusell and Smith (1998), the employment status of agents and the aggregate

productivity shocks follow a joint discrete first order Markov process with limited state
space. Moreover, idiosyncratic shocks are uncorrelated conditional on the aggregate shock.
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ante identical and in the other one they divide the population into five types

that vary in their average skill levels and unemployment processes. These

two environments, even after the inclusion of cyclically moving factor shares

underestimate the wealth concentration observed in the U.S. as in Krusell

and Smith (1998). Finally, they propose a model which imposes an exoge-

nous initial wealth distribution and imitates the wealth concentration in the

United States better by construction. Nevertheless, they find that the dy-

namics of this model is not significantly different from their previous model

settings where wealth distribution is determined endogenously.

The papers by Krusell and Smith (1998), Castañeda, Dı́az-Giménez and

Ŕıos-Rull (1998) and many others utilizing the same approach for the over-

lapping generations (OLG) model7 claim that the movement of aggregate

variables can almost perfectly be described using only the mean of the cap-

ital distribution and the aggregate productivity shock8. In other words the

dynamics of their model economy are very similar to those of representative

agent framework. Moreover, almost all the models studied fail to attain the

magnitude of skewness and concentration of wealth distribution represented

in the data9.

3 Facts

There are two main sources on financial inequality which are widely referred

in the literature. One of these sources is the Panel Study of Income Dynamics

conducted by the Survey Research Center at the University of Michigan and

the other one is the Survey of Consumer Finances (SCF) conducted by the

7See Storesletten, Telmer and Yaron (2001) for a recent study of the OLG model with
idiosyncratic risk. A detailed discussion of the OLG models with heterogeneity can be
found in Quadrini and Rı́os-Rull (1997).

8Krueger and Kubler (2003) employ a different method for the computation of the
equilibrium of an OLG model and claim that the models in the other papers are extremely
special cases and the distributional properties of capital matter in more general cases.

9Two main exceptions are Krusell and Smith (1998) and Castañeda, Dı́az-Giménez
and Rı́os-Rull (2003). Although the equilibrium of the benchmark model in Krusell and
Smith (1998) does not show sufficient concentration of wealth they manage to handle this
problem via stochastic modeling of the rate of time preference. Castañeda, Dı́az-Giménez
and Rı́os-Rull (2003) employ a model that combines some properties of OLG and infinitely
living agents models.
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Pop. Percentile % 0-20 20-40 40-60 60-80 80-100 90-95 95-99 99-100
Earnings Share % 7.7 14.2 16.3 20.4 41.5 8.2 12.7 7.5
Wealth Share % -0.2 1.4 5.3 12.9 80.6 12.3 24.1 31.4

Table 1: Dimensions of Inequality from SCF 1992 data as summarized in

Budŕıa et al.(2002). Population percentiles are ordered from the poorest to

the richest in terms of wealth.

Pop. Percentile % 0-20 20-40 40-60 60-80 80-100 90-95 95-99 99-100 0-100
Labor % 71.8 83.4 77.4 71.2 48.4 58.1 41.7 31.8 63.0
Capital % 0.5 0.7 2.2 4.8 18.6 15.2 20.7 34.1 10.0
Business % 2.1 2.3 2.7 5.2 18.2 8.9 26.1 29.3 10.3
Transfers % 17.5 7.8 11.8 11.0 7.1 10.2 4.8 2.5 9.4
Others % 8.1 5.8 5.9 7.8 7.7 7.7 6.6 2.4 7.3

Table 2: Income Sources of U.S. households. Population percentiles are

ordered from the poorest to the richest in terms of wealth.

National Opinion Research Center at the University of Chicago. We focus

on the SCF 1992 data summarized in Budŕıa et al. (2002) since the SCF

minimizes top-coding by having a large sample of wealthy households. The

relevant numbers are reproduced in Tables 1 and 2 for convenience10.

When we look at Table 1 and Figure 1 we see that the wealth and earnings

are concentrated. First of all, the poorest quintile holds a negative amount of

wealth on average, whereas the richest quintile hold 80.6 percent of wealth.

The spread in wealth becomes more striking when we see that 31.4 percent

of total wealth is possessed by the top percentile meaning that the wealth of

the top percentile is almost equal to that of the bottom 90 percent of total

population. Moreover, we realize that the distribution of wealth within the

top quintile is far from being even11.

Considering the earnings share that has been obtained by each wealth

group we see that the wealthier groups tend to get a higher fraction of earn-

10See Table 33 in Budŕıa et al. (2002). Budŕıa et al. (2002) is principally an updated
version of Dı́az-Giménez, Quadrini and Rı́os-Rull (1997).

11The Gini coefficient for the wealth distribution within the top quintile is 0.54 according
to the numbers in Table 1.
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Figure 1: Lorenz curve for the wealth distribution in the United States ac-

cording to SCF 1992

ings. Given this fact we may infer that the mobility between different groups

is pretty limited. Nevertheless, earnings are far more equally distributed

than wealth.

Table 2 presents information about the income sources of different wealth

groups with its last column informing about the contribution of each income

source for an average person in the economy. As expected, the main source

of income of the poorest wealth group is labor whereas it also benefits from

transfers greatly. The importance of capital and business as a source of in-

come increases as we move to upper wealth groups.

In conclusion, the uneven distribution of wealth within the top quintile

and the fact that upper wealth groups get a higher share of labor earnings

than the lower groups point to the vital role played by the wealthy households

in all aspects of economic inequality. Therefore, we have decided to divide

the top quintile into its parts in our model frameworks that involve multiple

types of agents. The importance of different sources of income, especially of

labor and capital income among others, is another significant aspect that we

will consider in the explanation of the results implied by our model.
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4 The Model

This section introduces our benchmark neoclassical growth model with two

types of infinitely living agents having identical constant relative risk aversion

(CRRA) preferences. All agents are endowed with labor and capital which is

the only asset that can be stored for consumption in future periods. Using all

available information, they try to maximize their discounted sum of utility

max
{ci,t,ki,t}∞t=0

E0

∞∑
t=0

βt c
1−σ
i,t

1− σ (1)

subject to a decentralized budget constraint.

ci,t + ki,t = Rtki,t−1 + wt l̃θi,t (2)

Here, 0 < β < 1 is the discounting factor, c is consumption, ki,t−1 is the

capital endowment of an agent of type i and R is the gross rate of return on

capital. The wage rate per efficiency unit of labor is denoted by w, whereas

θi denotes the individual labor productivity of agents of type i and l̃ is an

adjustment parameter for labor supply in the economy12. The economy uses

a Cobb-Douglas technology that takes capital and labor as input for the

production of output, y, and capital depreciates at rate δ.

yt = Kα
t L

1−α
t (3)

Kt =
∑

i

Hiki,t−1 (4)

Lt =
∑

i

Hil̃θi,t (5)

K and L are aggregate capital and aggregate labor, which is measured in

efficiency units, respectively. Hi is the fraction of households characterized

as type i in the whole population and
∑
i
Hi = 1. The factor prices are deter-

mined by their marginal productivities such that we have got the following

equations for wage and gross rate of return on capital.

wt = (1− α)(Kt/Lt)
α (6)

Rt = α(Kt/Lt)
α−1 + (1− δ) (7)

12In other words, l̃θi is the efficiency units of labor provided by type i.
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Moreover, the labor productivity of each agent follows an exogenous pro-

cess consisting of permanent aggregate technology shocks, zt, and temporary

type-specific productivity shocks, ui,t
13.

log θi,t = log zt + log κi + ui,t (8)

log zt = (1− ρ) log z̄ + ρ log zt−1 + vt (9)

κi denotes the steady state labor productivity of type i agents. Finally, it

should be clear that the state variables at time t are zt and the distribution

of capital and labor productivity14.

5 Model Analysis

5.1 Implementation of the benchmark model

In this section, we will present the necessary steps to implement the bench-

mark model in Toolkit which include collection of the first order conditions

and other necessary equations that characterize the equilibrium, calculation

of the non-stochastic steady state, log-linearization of the equations to obtain

the impulse responses and calibration15.

The first order conditions of the agents’ maximization problem can be

summarized in two equations which are the budget constraint already pre-

sented in equation (2) and the following Euler equation.

c−σ
i,t = βEt[c

−σ
i,t+1Rt+1] (10)

Therefore, we may use the equations (2) to (9) along with equation (10) to

define the non-stochastic steady state and to analyze the stochastic dynamics

13In this context, the idiosyncratic shocks affect all agents belonging to the same type.
Therefore, these shocks are perfectly correlated within each group and all agents of the
same type are ex ante and ex post identical.

14Contrary to other papers there is no exogenously specified borrowing constraint in this
paper since we focus on impulse responses which are logarithmic deviations from steady
state. This induces an endogenous borrowing constraint for any non-negative initial capital
holding and the no-Ponzi-game condition is inherently satisfied.

15These steps, as well as Toolkit, are discussed in Uhlig (1999) in detail.
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of this model. The steady state versions of these equations, starting with the

Euler equation and continuing with the others as they have been ordered

before, are summarized as follows16.

R̄ = 1/β (11)

c̄i = (R̄− 1)k̄i + w̄l̃θ̄i (12)

K̄ =
∑

i

Hik̄i (13)

L̄ = l̃
∑

i

Hiθ̄i (14)

w̄ = (1− α)(K̄/L̄)α (15)

R̄ = α(K̄/L̄)α−1 + (1− δ) (16)

θ̄i = z̄κ̄i (17)

z̄ = z̄ (18)

It is clear that the equations above, excluding equation (12), are enough

to obtain the steady state values of aggregate variables. However, one can-

not also get an endogenous steady state distribution of capital holdings from

these equations. The reason is that the number of variables exceed the num-

ber of equations for the fact that the steady state versions of all individual

Euler equations are the same, namely equation (11). This underidentifica-

tion of the non-stochastic steady state implies that any distribution of capital

holdings is consistent with the non-stochastic steady state17.

The final step of our analysis is the log-linearization of necessary equations

characterizing the equilibrium. This step serves for the purpose of making the

equations approximately linear in the log-deviations from the steady state.

The details of this procedure can be found in Uhlig (1999)18. We present the

16We skip equation (3) because we work with the decentralized version of the economy
and the dynamics of aggregate output is not of particular interest for the explanation of
the impulse responses.

17Due to the indeterminacy indicated by this property of the model, shocks may and do
have permanent effects on wealth distribution as we will see in the next section.

18Uhlig (1999) studies the dynamic properties of the models via the method of un-
determined coefficients using the calibrated log-linearized equations. Toolkit takes this
intermediate step automatically and produces corresponding impulse responses, simula-
tions and moments.
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log-linearized equations in the same order as the steady state equations.

Et[σĉi,t − σĉi,t+1 + R̂t+1] = 0 (19)

c̄iĉi,t + k̄ik̂i,t − R̄k̄iR̂t − R̄k̄ik̂i,t−1 − w̄l̃θ̄iŵt − w̄l̃θ̄iθ̂i,t = 0 (20)

K̄K̂t −
∑

i

Hik̄ik̂i,t−1 = 0 (21)

L̄L̂t − l̃
∑

i

Hiθ̄iθ̂i,t = 0 (22)

ŵt − αK̂t + αL̂t = 0 (23)

R̄R̂t − α(K̄/L̄)α−1(α− 1)K̂t + α(K̄/L̄)
α−1(α− 1)L̂t = 0 (24)

θ̂i,t − ẑt = ui,t (25)

ẑt = ρẑt−1 + vt (26)

In the above equations the entries with a hat are the log-deviations of the

corresponding variables from their steady state, which can be interpreted as

the approximate percentage deviation19. Having all the equations that de-

scribe the dynamics, we now focus on the calibration of the model.

Some of the values used in calibration are pretty standard. For exam-

ple, for the capital share in production function we take 0.36 and assume

a quarterly depreciation rate of 0.025 and 1% real interest rate per quar-

ter as implied in Krusell and Smith (1998). The coefficient of relative risk

aversion, σ, is the same for all agents and is equal to 1.5 as in Castañeda,

Dı́az-Giménez and Ŕıos-Rull (1998).

For the non-stochastic steady state distribution of labor productivity and

capital we benefit from the 1992 Survey of Consumer Finances (SCF) data

as documented in Budŕıa et al. (2002) which is summarized in Table 1. Ac-

cordingly, we have selected H1 and H2 as 0.8 and 0.2, whereas the agents

belonging to these groups possess 20% and 80% of aggregate wealth respec-

tively. Moreover, we have employed the labor income as a proxy for labor

19The reader may refer to Uhlig (1999) for more information. Moreover, note that
we have indexed Kt as an endogenous variable. This was necessary in order to get the
correct impulse responses to a change in type-specific capital holdings in Toolkit and for
our analysis of multiple types of agents in Sections 7.1 and 7.3. It is validated by cross-
checking that this feature does not change the impulse responses to other shocks.
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productivity and adjusted its distribution such that the poor group gets 59%

and the rich one gets 41% of total labor income. Therefore, capital-labor ra-

tio of poor group is lower than that of rich group such that the main source

of income of poor people is labor earnings and that of rich people is capital

earnings20. In addition, z̄ is normalized to 1 and l̃ is chosen such that the

aggregate labor supply in steady state, L̄, is 1/3. Finally, we choose ρ = 0.95

for the autocorrelation of aggregate technology shocks as in Hansen (1985).

5.2 Gini Index

An elaborate way of tracking the dynamics of wealth heterogeneity is using

a standard inequality index which is both simple and informative. We make

use of Gini coefficient which fulfills these criteria. The Gini coefficient is the

ratio of the area between the perfect equality line and the Lorenz curve to

the area under the line of perfect equality. Figure 2 illustrates the line of

perfect equality and the Lorenz curve that corresponds to the non-stochastic

steady state of our benchmark economy. According to the definition above,

the Gini coefficient here is given by A/(A+B) or 1− 2B since A+B = 0.5.

It is important to note that the value of Gini coefficient lies in the range

[0, 1]. A zero value indicates perfect equality where everyone holds the same

amount of wealth whereas we have perfect inequality, i.e. a single person

possesses everything, if the value of Gini coefficient is unity.

We calculate the dynamics of the Gini coefficient for our model as follows.

First, we define ai as the fraction of wealth held by agents of type i and the

cumulative sum of ai, Ai, such that

ai,t =
Hiki,t

Kt+1
(27)

Ai,t =
i∑

j=1

aj,t (28)

hold21. Accordingly, the area under the Lorenz curve and the corresponding

20The capital to labor ratio for the agents will turn out to be important in the attempt to
explain our results and is therefore introduced as a new concept, the relative endowment.

21The value of Kt+1 is known at time t for certain since Kt+1 =
∑
i

Hiki,t. Therefore,

there are no expectations involved in these equations.
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Figure 2: Lorenz curve and line of perfect equality for the benchmark model

Gini coefficient can be calculated as

Bt =
∑

i

HiAi,t − 0.5
∑

i

Hiai,t (29)

Ginit = 1− 2Bt (30)

where Bt is the area under the Lorenz curve at time t. The related steady

state equations are:

āi =
Hik̄i

K̄
(31)

Āi =
i∑

j=1

āj (32)

B̄ =
∑

i

HiĀi − 0.5
∑

i

Hiāi (33)

¯Gini = 1− 2B̄ (34)

The last step is to log-linearize the equations (27) to (30) to get the

following equations that define the dynamics of the Gini coefficient given the

dynamics of wealth distribution.

24



âi,t = k̂i,t − K̂t+1 (35)

ĀÂi,t =
i∑

j=1

ājâj,t (36)

B̄B̂t =
∑

i

HiĀiÂi,t − 0.5
∑

i

Hiāiâi,t (37)

¯GiniĜinit = −2B̄B̂t (38)

6 Model Results and Answer

This section will present the impulse responses to different shocks in the

benchmark model and the corresponding insights with their explanation. At

this stage, it is important to note that all shocks discussed in this paper are

one percent deviations of the respective variables from their steady state val-

ues. We can summarize the results for the given calibration of the benchmark

model as follows:

1. Under CRRA utility function with the same relative risk aversion co-

efficient for both types of agents, a positive technology shock results in

a decrease of wealth heterogeneity.

2. If one considers idiosyncratic shocks, one observes an antagonistic re-

lationship between different types of agents.

3. The impulse responses of aggregate variables, and therefore that of ag-

gregate capital, to aggregate technology shocks does not alter after a

change in wealth and labor productivity distribution. However, distri-

butions matter for the dynamics of aggregate variables in response to

idiosyncratic labor productivity shocks.

4. The capital-labor ratios of different types of agents are crucial to un-

derstand the model dynamics. Given CRRA preferences and higher

probability of positive technology shocks with respect to negative ones,

the stochastic steady state of the model in the long run is the one that

implies the same capital-labor ratio for all agents.
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Figure 3: Impulse responses to aggregate technology shock in benchmark

model. The impulse responses of labor, L̂t; idiosyncratic productivities, θ̂1,t

and θ̂2,t and aggregate technology, ẑt are overlapping.
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Figure 4: Long run impulse responses of capital holdings and Gini index to

aggregate technology shock in benchmark model

6.1 Technology Shocks and Wealth Distribution

Figure 3 shows the evidence for the first result. Here, the impulse response of

capital holdings of the first type of agents to an aggregate technology shock

is higher than that of agents of second type. Since our aggregate technol-

ogy is labor augmenting (Harrod-neutral), a positive technology shock that

increases labor productivity, and equivalently the aggregate labor supply,

causes the wage per efficiency units, wt, to fall. However, the careful reader

will note that the dynamics of the wage per allocated time, wtθi,t, is exactly

the same as in the case of output augmenting (Hicks-neutral) technology

shock by construction. The dynamics of the wage per allocated time can be

calculated easily by adding up the impulse responses of wt and θi,t.

In addition, Figure 4 presents the impulse responses of capital holdings

and the Gini index to the same shock in a longer time horizon. The per-

sistence of the impulse responses of capital holdings and Gini index, whose

impulse response is negative, implies that the technology shock has a per-

sistent smoothing effect on wealth distribution. The mathematical reason

for this persistence is that there are fewer stable eigenvalues than endoge-

nous state variables which makes the initial non-stochastic steady state of

idiosyncratic variables unstable. This reasoning is consistent with our previ-

ous finding that the wealth distribution in the steady state is indeterminate.

As a consequence, shocks affect the relative wealth of different types which
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leads to permanent changes in their consumption and saving paths22.

The technology shock has this smoothing effect on wealth distribution

because, due to the temporary nature of labor earnings increase after a tech-

nology shock, risk averse agents increase their capital which is the only asset

that allows storage of the value and consumption smoothing. Agents whose

main source of income is labor earnings, i.e. the poor agents in our bench-

mark model, enjoy a relatively higher increase in their income23, such that

they can save more compared to other agents as a percentage of their capi-

tal holdings. Therefore, the value of impulse responses of type 1 agents are

greater than that of type 2 agents.

6.2 Idiosyncratic Shocks and Wealth Distribution

The antagonistic relationship between different types of agents is documented

in Figure 5 and Figure 6, which show the impulse responses to type-specific

productivity shocks and to a deviation in type-specific capital holdings in

benchmark model24. One can easily see that a shock which has a positive

effect on one type’s capital holdings affects the other type’s capital holdings

negatively and this antagonistic relationship is persistent as shown by the

corresponding impulse responses of Gini indices25. We provide an intuition

for this fact in the following.

The increase in one type’s labor productivity drives the wage down. How-

ever, the reduction of the wage rate is not enough to offset the positive effect

22However, since none of the relevant eigenvalues are greater than one, our model is not
explosive such that we can still calculate an equilibrium satisfying the nonlinear equilib-
rium conditions locally. See Uhlig (1999), p. 46, for more information.

23This is obvious if one compares the impulse responses of rate of return on capital, R̂t,
and wage per allocated time, ŵt + θ̂i,t, in Figure 2.

24Some impulse responses are omitted from the figures if they are not significantly
different from zero, such as return in top left panel of Figure 6, or if they tend to ruin the
appearance of the corresponding figure, such as wage in Figure 5.

25Since the aggregate capital turns back to its steady state in the long-run, as it is the
case in any neoclassical real business cycle model, the persistence of the impulse response
of Gini index indicates that some agents get poorer whereas some others get richer at the
end and not that the distribution of wealth changes in a win-win situation. That is why
we call it an antagonistic relationship.
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Figure 5: Impulse responses to idiosyncratic productivity shocks in bench-

mark model
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of the increase in the productivity on the agents that are subject to this

shock. Therefore, the benefits from an idiosyncratic increase in productivity

is mainly collected by the agents that experience the shock. The positive

effect on return on capital, due to the increase in its marginal productivity,

does not cover the loss due to the decrease in wage for those who do not

experience the same shock. In conclusion, a positive technology shock in a

type’s productivity benefits this type and harms the other one.

The antagonism in case of capital shocks also stems from the changes in

marginal productivities. Any positive change in the amount of capital results

in the decrease of the marginal productivity of capital and in the increase

of marginal productivity of labor which also effects factor prices, return and

wage, in the same way. However, the decrease in return can be offset by

the increase in the capital holding of the agent that experiences the shock

whereas the agent that is not directly effected by this shock has not this op-

portunity. In addition to that, the increase in wage is not enough to cover the

loss of the latter agent due to the reduction in capital earnings. This results

in the change of wealth distribution in favor of the agent that experiences

the positive capital shock.

Moreover, Figure 5 and Figure 6 tell us that the effects of this antagonis-

tic relationship on the two types of agents are not symmetric: Poor agents

are hurt more than the rich ones in case of shocks that affect their posi-

tion negatively. The first reason for this asymmetry in case of idiosyncratic

productivity shocks is that the rich agents are not affected significantly by

a change in their labor income since their main source of income is capital

earnings. On the other hand, the poor agents rely mainly on their labor

earnings and are therefore greatly affected by a change in their labor income.

Another reason is that the amount of capital held by a rich agent is much

more higher than the capital held by a poor agent. Therefore, the percent-

age deviation of a rich agent’s capital is not as high as that of a poor agent’s

capital although the deviations in absolute terms are the same26.

26This becomes more clear if one remembers that the gain of an agent is the loss of
another one.
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In Figure 6, we see again that the negative effect of this antagonistic

relationship on the first type of agents is more severe than that on the second

type of agents, i.e. that the negative response of rich agents’ capital to a

deviation in poor agents’ assets is not as strong as the negative response of

poor agents’ capital to a deviation in rich agents’ assets. This has two main

reasons. First, a shock to the capital holdings of the first type of agents does

not affect the return on capital severely since the capital holdings of first type

of agents are much less than that of second type. Thus, the response of rich

agents’ capital to such a shock is not strong. Exactly the opposite arguments

hold for the effect of a shock to second type’s capital holdings on first type

of agents. Second, the labor earnings, which is the main source of income of

poor agents, is positively affected by an increase in the capital holdings of

rich agents, whereas the rate of return is negatively affected, obviously due

to the changes in marginal productivities. This results in the fact that poor

agents prefer to consume more and save less, expecting that their income will

remain high in the future due to higher wages. This effect, combined with

the decrease in return on capital, gives the poor agents strong incentive to

reduce their savings.

6.3 Wealth Distribution and Aggregate Dynamics

Our next result, the independence of the aggregate variables’ impulse re-

sponses from the distributional properties of wealth and labor productivity

in case of an aggregate technology shock, is a very important insight that

confirms the results of the studies discussed in previous sections, such as

Krusell and Smith (1998). The main reason for this phenomenon is the per-

fect aggregation of individual quantities which becomes clear if we focus on

the log-linearized versions of model equations. The first step to show per-

fect aggregation includes multiplying both sides of equation (19) with Hic̄i,

summing up the resulting equations over i and dividing both sides of this

equation by
∑
i
Hic̄i to obtain the following aggregate log-linearized Euler

equation

Et[σĈt − σĈt+1 + R̂t+1] = 0 (39)
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where Ct =
∑
i
Hici,t is the aggregate consumption defined in the same way

as aggregate capital and labor27. The second step is multiplying both sides

of equation (20) with Hi, summing up the resulting equations over i and

using equations (21) and (22) to obtain the aggregate log-linearized budget

constraint.

C̄Ĉt + K̄K̂t+1 − R̄K̄R̂t − R̄K̄K̂t − w̄L̄ŵt − w̄L̄L̂t = 0 (40)

The equations (39), (40) and (21) to (26), excluding (25), are enough

to characterize the stochastic aggregate dynamics of our model in response

to an aggregate technology shock28. It is important to see that these set of

equations are the same as in a model populated by a single representative

agent with CRRA utility. Since none of these equations are related with

the heterogeneity of agents the distribution of wealth and labor productivity

does not matter for the aggregate dynamics. For the same reason, the ag-

gregate dynamics are independent from the distributional properties of the

economy also in the case of an exogenous shock to aggregate capital that

affects all the individual capital holdings proportionately29. A final remark

regarding this analysis is that it provides an avenue to a set of models where

the distribution of wealth should matter for the aggregate dynamics, which

will be discussed in Section 7.2 as a variation of the benchmark model.

Figure 7 is helpful for demonstrating how heterogeneity matters for the

dynamics of aggregate capital in response to idiosyncratic productivity shocks.

The panels of Figure 7 include plots of the impulse responses of aggregate

capital in two different settings. In one of these settings wealth and labor

productivity are evenly distributed such that the economy is egalitarian and

resembles the representative agent framework whereas the other setting is our

benchmark model. Explanation of Figure 7 is straightforward. First of all,

it is clear that the impulse responses of aggregate capital in the egalitarian

27Equation (39) becomes more clear if one notes that Ct =
∑
i

Hici,t implies

C̄Ĉt =
∑
i

Hic̄iĉi,t after log-linearization.
28As discussed before, Kt+1 =

∑
i

Hiki,t and is therefore known at time t. For this

reason, there are no expectations involved here.
29A 1% increase in both types of capital holdings corresponds to a 1% increase in

aggregate capital regardless of the distribution of wealth and labor productivity.
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Figure 7: Impulse responses of aggregate capital to idiosyncratic productivity

shocks under different distributional settings

society should be the same in case of both idiosyncratic shocks because all

agents are identical. So, the difference between the impulse responses of the

aggregate capital in our benchmark model is due to the distributional settings

where agents of type 1 get a higher fraction of aggregate labor income than

the agents of type 2. This issue results in the fact that a (1%) productivity

shock affecting only the first type has a greater impact on the economy than

a (1%) shock affecting only the second type. Finally, it is noteworthy that if

both of the types would experience 1% productivity shocks simultaneously,

as if we have a temporary aggregate technology shock, then the impulse re-

sponses of aggregate capital in egalitarian and benchmark economies would

be the same as a result of our analysis of aggregate dynamics above.

To summarize, we can classify the shocks in two parts. Shocks that affect

aggregate variables, such as aggregate technology shocks or exogenous (pro-

portionate) shocks to aggregate capital, cause a balanced expansion of the

economy whereas shocks that affect individual variables disproportionately

cause an imbalanced expansion. Under CRRA preferences, the aggregate

dynamics of the balanced expansion and contraction of is independent from

the wealth distribution, whereas distributional properties matter in case of

an imbalanced expansion or contraction.
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6.4 Importance of the Relative Endowments

In the following, we introduce the concept of relative endowment, which is

simply the ratio of capital to labor endowment, and show that the implied

stochastic steady state of the capital distribution in the long run would be

the one that assumes the same relative endowment for all agents under the

assumptions that positive technology shocks are more likely than negative

ones and that agents have CRRA preferences. For this purpose, we will start

with three propositions.

Proposition 6.1 Given CRRA preferences, the impulse responses of indi-

vidual capital holdings remain totally the same if the relative endowments of

all agents remain the same in two different settings of wealth and income

distribution.

Proof. The only equation which may cause a difference in two different

distributional settings is the decentralized budget constrained since the log-

linearized Euler equations are the same for all agents. If one divides both

sides of the log-linearized budget constraint, equation (20), by the individual

labor endowment, θ̄i l̃, and calls the relative endowment of agents φ̄i = k̄i/(θ̄il̃)

one can easily see that the equation becomes

{(R̄− 1)φ̄i + w̄}ĉi,t + φ̄ik̂i,t − R̄φ̄iR̂t − R̄φ̄ik̂i,t−1 − w̄ŵt − w̄θ̂i,t = 0 (41)

since c̄i = (R̄− 1)k̄i + w̄l̃θ̄i by equation (12). Therefore, one gets exactly the

same set of log-linearized equations for different wealth and labor income

distributions, as long as the distribution of the relative endowments, φ̄i,

remain the same. It is obvious that the same set of equations should lead to

the same dynamics.

Proposition 6.2 Both types of agents have the same impulse responses if

their relative endowments are the same.

Proof. The proof is straightforward when one considers equation (41). If

both types of agents have the same relative endowment, i.e. φ̄i = φ̄j ∀i �= j,
one can easily see that the set of equations for both types of agents, including

the budget constraint, are identical. In this case, the agents’ responses are

also identical. Obviously, this claim holds as long as the agents have the
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same CRRA preferences such that the Euler equations are the same for all

agents30.

Proposition 6.3 Positive technology shocks reduce wealth heterogeneity un-

til relative endowments of the agents become equalized. The impulse responses

of the agents follow the same path thereafter.

Proof. It is easy to see this by analytical thinking after combining the result

presented in Section 6.1 with the first two propositions that show how relative

endowments determine the individual dynamics. However, it may be a good

idea to visualize this result. In Figure 8, we see the path of agents’ relative

endowments after subsequent positive technology shocks31. It is clear that

the relative endowments of both types converge to the same value which is

equal to aggregate capital-labor ratio32.

The third proposition leads to the immediate result stated before: We can

conclude that the stochastic steady state in the long run would be the one

that implies the same relative endowment for all agents whereas the non-

stochastic steady state may assume any distributional property for wealth

and labor productivity. Since all agents have the same relative endowment

in this new stochastic equilibrium, the log-deviations of individual variables

co-move with each other and with log-deviations of aggregate variables such

that the wealth distribution is stable. Obviously, this result is contingent on

the conditions that positive technology shocks are more likely than negative

ones and that agents have CRRA preferences.

The implications of these results are very important for several reasons.

First of all, our results confirm previous studies like Krusell and Smith (1998)

30Under different preference settings like constant absolute risk tolerance (CART), the
Euler equations will depend on the prosperity of the agents. We will deal with such type
of preferences in the next section.

31We obtain this figure by updating the steady state wealth distribution in the economy
using the long run responses of individual capital holdings after each positive technology
shock.

32Due to the same equalizing effect, the wealth gap between wealth-rich and wealth-poor
agents may increase if the relative endowment (capital-labor ratio) of rich agents is lower
than that of poor agents. In that case, the wealth of rich agents increase whereas that
of poor agents decrease since the main source of income of rich agents would be labor
earnings whereas that of poor ones would be return on capital.
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by showing that the aggregate dynamics in response to aggregate shocks are

independent from distributional properties of the model under CRRA prefer-

ences. Moreover, we have provided evidence for the antagonistic relationship

among different classes of agents and shown that heterogeneity matters for

aggregate dynamics in response to idiosyncratic shocks. Finally, our results

about the dynamics of wealth heterogeneity in case of a technology shock

provide an important intuition why a model with CRRA preferences may

fail to generate wealth concentration of the magnitude observed in the data.

7 Variations

Although our benchmark model is well suited to understand the basic prop-

erties of the economy, it is necessary to look at further models to answer

other questions that are part of our goal. For this purpose, we will introduce

three variations of our benchmark model, which include multiple types of

agents with CRRA preferences, two-types framework with concave absolute

risk tolerance (CART) preferences and many types with CART preferences.

Each of these variations will mainly serve for the purpose of answering two

questions: Does the wealth distribution matter for the decisions of individu-

als, i.e. for the impulse responses of individual capital holdings, beyond its

mean? Can we think of a model where the distributional properties mat-

ter for the aggregate dynamics in response to aggregate shocks? Finally, we

will provide cross-correlations of aggregate variables in different settings for

deeper understanding of the effects of preferences and persistence of idiosyn-

cratic shocks on the model dynamics.

7.1 Many Types of Agents

The benchmark model provides us with important insights regarding the dy-

namics of the economy populated by heterogeneous agents. However, one

of the main motivating questions remain unanswered: Does wealth hetero-

geneity matter for the decisions of individuals? This part makes use of the

benchmark model with multiple types to deal with this question33. However,

we should first have some basic knowledge about how our solution method,

33Our benchmark model becomes more realistic as we increase the number of types of
agents. In the limiting case we would have one type for each single agent in the economy.
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the method of undetermined coefficients, work.

Our model economy, like any other neoclassical growth model, consists

of three groups of variables among which are endogenous (predetermined)

state variables that are in our case the capital holdings of individuals at

the beginning of a period; exogenous state variables, which are technology

and labor productivity and finally other endogenous variables that include

all other variables being part of the model dynamics. The method of un-

determined coefficients tries to solve the system of log-linearized equations

assuming that the model is describable by recursive laws of motion that are

linear in log-deviations of state variables. In this context, we can write the

recursive law of motion for the log-deviations of individual capital holdings

as

k̂i,t =
n∑

j=1

τij k̂j,t−1 +
n∑

j=1

ςij ûj,t + ςziẑt (42)

where τij , which can be obtained via our solution method, determines how a

change in type j’s capital holdings affects type i’s decision about its assets

to be transferred to the next period. The number of types is denoted by n

whereas the remaining coefficients denote the contributions of individual la-

bor productivity shocks and aggregate technology shocks. The deterministic

part of this equation can also be expressed as

k̂i,t = ψik̂i,t−1 + µi

n∑
j=1

ωijk̂j,t−1 (43)

where ψi + µiωii = τii and µiωij = τij. It should be clear that ωij should

be proportional to the wealth share of type j, Hjk̄j/K̄, if only the mean of

the capital distribution matters for the individual decisions34. This is what

we are going to check using the data from Budŕıa et al.(2002) as tabulated

in Table 1 which we have modified slightly35. Table 3 presents the values of

34Considering equation (21), this proportionality makes the second term on the right-
hand side of equation (43) equal to the log-deviation of aggregate capital. Moreover, it is
obvious that ωii is indeterminate and that a single value of τij = µiωij is not informative
for our purpose. Therefore, we need more than two types of agents to analyze whether
wealth distribution matters for individual decisions.

35So, we have eight types of agents in this framework. We have set the wealth share
of poorest quintile to 0.001%, instead of -0.2%, to keep the corresponding agents from
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j=1 j=2 j=3 j=4 j=5 j=6 j=7 j=8
i=1 (x103) 100.14 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566
i=2 -0.0948 71.4773 -0.0948 -0.0948 -0.0948 -0.0948 -0.0948 -0.0948
i=3 -0.0429 -0.0429 18.8630 -0.0429 -0.0429 -0.0429 -0.0429 -0.0429
i=4 -0.0319 -0.0319 -0.0319 7.7356 -0.0319 -0.0319 -0.0319 -0.0319
i=5 -0.0278 -0.0278 -0.0278 -0.0278 7.8004 -0.0278 -0.0278 -0.0278
i=6 -0.0252 -0.0252 -0.0252 -0.0252 -0.0252 8.1213 -0.0252 -0.0252
i=7 -0.0241 -0.0241 -0.0241 -0.0241 -0.0241 -0.0241 4.1336 -0.0241
i=8 -0.0220 -0.0220 -0.0220 -0.0220 -0.0220 -0.0220 -0.0220 3.1691

Table 3: The ratios τij/(Hjk̄j/K̄) for the benchmark model with multiple

types of agents

τij/(Hjk̄j/K̄) since the equality of this ratio for different values of j, given i

s. t. i �= j, implies that ωij ∝ Hjk̄j/K̄ holds for each j, given i.

Table 3 shows the validity of ωij ∝ Hjk̄j/K̄. So, we can assert that only

the first moment of the capital distribution matters for individual decisions.

The intuition for this insight is simple. The income of an agent is defined by

the movements of aggregate variables that determine the factor prices and

by her individual endowment. Therefore, aggregate (mean) capital and one’s

own capital holdings are the only state variables that have an effect on the

non-stochastic dynamics of one’s capital holdings.

Finally, Figures 9, 10 and 11 show the impulse responses of Gini index

to different types of shocks to confirm that the same dynamics of wealth

inequality holds in multi-types framework. Figure 9 illustrates the impulse

response of Gini coefficient to an aggregate technology shock which has the

similar U-shape as in our benchmark model. Figures 10 and 11 only refer

to the shocks that affect the labor productivity and capital holdings of the

richest and poorest agents. Although the shapes of the impulse responses in

these figures are similar to their counterparts in the benchmark model the

magnitudes are different because each type in this framework has less amount

running a Ponzi scheme remembering that our endogenous borrowing constraint depends
on the non-negativity of capital holdings in the non-stochastic steady state. Then the sum
of the shares are normalized to 1. This change has been kept for all the variations that
involve more than two types of agents.
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Figure 9: Impulse response of Gini index to an aggregate technology shock

of capital and labor productivity compared to the types in the benchmark

model. This limits the effects of corresponding shocks.

7.2 Changing the Preferences

In the previous section, we have seen that the wealth distribution does not

matter for the aggregate dynamics of our benchmark model because the in-

dividual equations can be added up to obtain perfect aggregation. Since the

perfect aggregation of budget constraints is inevitable, one should focus on

the Euler equations, thus on preferences, to obtain a model where hetero-

geneity matters for the economy as a whole. This section introduces concave

absolute risk tolerance (CART) for this purpose36.

The absolute risk tolerance is represented as ART = −u′(c)/u′′(c), which

is the inverse of absolute risk aversion. A simple form for concave absolute

risk tolerance can be given as ART = cη/σ, 0 < η < 1, which implies the

36Evidence for concave absolute risk tolerance can be found in Guiso and Paiella (2001)
who use data from the Bank of Italy’s Survey of Household Income and Wealth.
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Figure 10: Impulse response of Gini index to a shock in the idiosyncratic

productivity of the poorest (left panel) and richest (right panel) agents in

benchmark model with many types of agents
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Figure 11: Impulse response of Gini index to a one percent deviation in the

capital holdings of the poorest (left panel) and richest (right panel) agents

in benchmark model with many types of agents
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following form for the utility function adapted from Hatchondo (2003).

u(c) =
∫ c

a
exp(−σ x

1−η

1− η )dx (44)

The introduction of concave absolute risk tolerance to our model only

results in a change of the Euler equation. The new set of log-linearized

equations can simply be obtained by replacing σ with σ ∗ c̄1−η in equation

(19) and our new log-linearized Euler equation looks like

Et[σc̄
1−η
i ĉi,t − σc̄1−η

i ĉi,t+1 + R̂t+1] = 0. (45)

It is obvious that this functional form is quite general since setting η = 0

results in a constant absolute risk aversion (CARA) utility function whereas

setting η = 1 gives us our original CRRA utility function. The value of η

used in the following analysis ranges from 0.1 to 0.9. The values of other

parameters are exactly the same as in the benchmark model37.

Figure 12 compares the impulse responses of aggregate capital in our

new economy with that in corresponding egalitarian economy38 for different

values of η. It is obvious that the difference in the dynamics of aggregate

capital becomes more visible for higher deviations of η from 0 and 1 although

it is still small. The reason is that the aggregation, which is perfect if η = 0

or η = 1, becomes the less perfect the more we move away from CARA and

CRRA assumptions. To see this more precisely, one should first multiply

both sides of equation (45) with Hic̄
η and sum the outcome over i to get

Et[σC̄Ĉt − σC̄Ĉt+1 +
∑

i

Hic̄i
ηR̂t+1] = 0. (46)

After dividing both sides of this equation by C̄η we end up with the

pseudo-Euler equation for aggregate consumption

37In case of CARA (η = 0), one would again see that perfect aggregation holds after
multiplying both sides of equation (45) by Hi and summing the resulting equations over i.
The outcome will be nothing but the log-linearized Euler equation of a representative agent
with CARA preferences regardless of the distribution of wealth and labor productivity.
So, as in case of CRRA preferences, the distribution of production factors does not matter
for aggregate variables reacting to aggregate shocks.

38It is useful to remember that every agent gets the same fraction of wealth and labor
earnings in the egalitarian setting such that the impulse response of aggregate capital to
an aggregate shock is the same as in the corresponding representative agent framework.
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Figure 12: Impulse responses of aggregate capital to aggregate technology

shocks under CART preferences, η ∈ {0.1, 0.4, 0.6, 0.9}

Et[σC̄
1−ηĈt − σC̄1−ηĈt+1 +

∑
iHic̄i

η

C̄η
R̂t+1] = 0 (47)

which is similar to equation (45) except the last term on the left. The value

of the multiplier in the last term of equation (47) depends on the distribu-

tional properties of steady state consumption and therefore of wealth and

labor productivity. This dependence becomes higher if the deviation of η

from 0 and 1 gets higher whereas for η = 0 or η = 1 or for c̄i = c̄j ∀i, j,
this multiplier will become unity39. Consequently, in case of strictly concave

absolute risk tolerance, distribution of wealth and labor productivity affects

the behavior of aggregate variables in response to macroeconomic shocks and

39Remember that in egalitarian economy c̄i = c̄j = C̄ and
∑
i

Hi = 1 as usual.

44



0 10 20 30 40 50 60 70

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Impulse responses to a shock in technology, eta=0.1 

Years after shock

P
er

ce
nt

 d
ev

ia
tio

n 
fr

om
 s

te
ad

y 
st

at
e

capital
1
  

capital
2
  

return     

wage       

labor      

0 10 20 30 40 50 60 70
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

Years after shock

P
er

ce
nt

 d
ev

ia
tio

n 
fr

om
 s

te
ad

y 
st

at
e

Impulse response of Gini index to a shock in technology, eta=0.1

Figure 13: Long-run dynamics of wealth heterogeneity in response to an

aggregate technology shock in the benchmark model with CART preferences,

η = 0.1

one cannot simply reduce the aggregate dynamics of the economy to the cor-

responding representative agent framework.

Figure 12 reveals another interesting phenomenon: The impulse response

of aggregate capital in the heterogeneous setting is greater than that in the

egalitarian setting. In order to find the intuition behind this insight, we

multiply both sides of equation (47) with A = (
∑

i
Hic̄i

η

C̄η )−1 ≥ 1 to obtain

Et[σ
∗C̄1−ηĈt − σ∗C̄1−ηĈt+1 + R̂t+1] = 0 (48)

which is similar to the log-linearized Euler equation of a representative agent

having CART utility with σ∗ = σA. If 0 < η < 1 and there is heterogeneity in

the model, then A > 1, whereas A = 1 if the economy is egalitarian40. There-

fore, the pseudo-representative agent of a heterogeneous economy is more

risk-averse than the pseudo-representative agent of an egalitarian economy.

So, the aggregate consumption path in heterogeneous economy is smoother,

and hence the aggregate savings path lies higher, than those in egalitarian

economy.

One may wonder how the dynamics of wealth distribution changes in

this new framework in response to aggregate and idiosyncratic productivity

40A < 1 is not possible since c̄η
i is a concave function of c̄i.
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Figure 14: Long-run dynamics of wealth heterogeneity in response to idiosyn-

cratic productivity shocks in the benchmark model with CART preferences,

η = 0.1
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Figure 15: Long-run dynamics of wealth heterogeneity in response to a de-

viation in individual capital holdings in the benchmark model with CART

preferences, η = 0.1
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shocks. Figures 13, 14 and 15 provide the answer to this question. We have

set η = 0.1 since this value is in the range reported in Guiso and Paiella

(2001).

The wealth gap between the two types of agents gets smaller at the ini-

tial periods after a positive technology shock as indicated by the negative

response of Gini coefficient in Figure 13. However, the long-run impulse re-

sponses tell us that the wealth distribution changes at the end in favor of rich

agents. The reason for this behavior of impulse responses is that we have two

competing forces in this framework. One of these forces is the one discussed

in Section 6.1, namely that an agent whose main source of income is labor

earnings, in our context a poor agent, enjoys higher increase in her income as

a percentage of her total income since the rate of return changes only slightly

compared to the wage per allocated time41. This force tries to change the

wealth distribution in favor of poor agents. Second, the risk aversion of rich

agents relative to the risk aversion of poor agents has increased due to CART

preferences. To see this more clearly, one should remember that the ratio of

absolute risk aversion of rich agents to that of poor agents is

ARArich

ARApoor
=

(
c̄poor

c̄rich

)η

(49)

where the ratio c̄poor/c̄rich is less than one and independent of preferences.

Therefore, the value of expression (49) increases with decreasing value of η.

Knowing that the value of η for a CRRA utility function is greater than the

value of η for a strictly CART utility, we can say that the rich agents in

this new framework are relatively more risk averse than their analogues in

our benchmark model. For this reason, the new preferences of rich agents

give them relatively higher incentive to save than before whereas the op-

posite holds for poor agents. This builds a force that changes the wealth

distribution in favor of rich agents. In conclusion, we may say that in our

new framework, the first force is more effective than the second in the initial

periods whereas the second one overcomes the first one thereafter.

41The reader will recall that the wage per allocated time is wtθit whose impulse response
can be found by adding the impulse responses of the involving variables.
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j=1 j=2 j=3 j=4 j=5 j=6 j=7 j=8
i=1 (x104) 9.9806 -0.0395 -0.0395 -0.0395 -0.0395 -0.0395 -0.0395 -0.0395
i=2 -0.2458 71.3264 -0.2458 -0.2458 -0.2458 -0.2458 -0.2458 -0.2458
i=3 -0.0724 -0.0724 18.8335 -0.0724 -0.0724 -0.0724 -0.0724 -0.0724
i=4 -0.0354 -0.0354 -0.0354 7.7321 -0.0354 -0.0354 -0.0354 -0.0354
i=5 -0.0230 -0.0230 -0.0230 -0.0230 7.8052 -0.0230 -0.0230 -0.0230
i=6 -0.0181 -0.0181 -0.0181 -0.0181 -0.0181 8.1284 -0.0181 -0.0181
i=7 -0.0133 -0.0133 -0.0133 -0.0133 -0.0133 -0.0133 4.1444 -0.0133
i=8 -0.0138 -0.0138 -0.0138 -0.0138 -0.0138 -0.0138 -0.0138 3.1773

Table 4: The ratios τij/(Hjk̄j/K̄) for the CART model with multiple types

of agents, η = 0.1

We see that the second force described above is also in charge in case

of idiosyncratic shocks to capital and labor productivity. The shapes of the

impulse responses in Figures 14 and 14 are similar to their counterparts in

Figures 5 and 6. However, the comparison of the impulse responses of Gini

coefficient in both frameworks shows that the impulse responses in CART

framework ends up in higher levels than those in CRRA framework. There-

fore, the change of the wealth distribution in the long-run is more in favor of

rich agents if agents have CART preferences. The driving force behind this

phenomenon is again the increase in the risk aversion of rich agents relative

to the risk aversion of poor agents which gives the rich agents higher incentive

to save compared to the poor agents.

7.3 Many Types of Agents with CART Preferences

We refer again to the multiple types of agents framework to analyze whether

the distributional properties of wealth, beyond its first moment, matter for

the individual decisions in case of CART preferences. The intuition provided

in Section 7.1, which is independent of the functional form of the preferences,

points to the idea that the same insight should also be valid here. So, one

should expect that the ratios τij/(Hjk̄j/K̄) should be the same for all js,

given i s.t. i �= j, indicating that agents’ decisions are solely dependent on

the first moment of the distribution of capital. Table 4 and 5 confirm this

intuition providing evidence that also agents with CART preferences care
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j=1 j=2 j=3 j=4 j=5 j=6 j=7 j=8
i=1 (x104) 9.9950 -0.0251 -0.0251 -0.0251 -0.0251 -0.0251 -0.0251 -0.0251
i=2 -0.1960 71.3761 -0.1960 -0.1960 -0.1960 -0.1960 -0.1960 -0.1960
i=3 -0.0639 -0.0639 18.8420 -0.0639 -0.0639 -0.0639 -0.0639 -0.0639
i=4 -0.0353 -0.0353 -0.0353 7.7322 -0.0353 -0.0353 -0.0353 -0.0353
i=5 -0.0251 -0.0251 -0.0251 -0.0251 7.8031 -0.0251 -0.0251 -0.0251
i=6 -0.0204 -0.0204 -0.0204 -0.0204 -0.0204 8.1261 -0.0204 -0.0204
i=7 -0.0158 -0.0158 -0.0158 -0.0158 -0.0158 -0.0158 4.1419 -0.0158
i=8 -0.0149 -0.0149 -0.0149 -0.0149 -0.0149 -0.0149 -0.0149 3.1762

Table 5: The ratios τij/(Hjk̄j/K̄) for the CART model with multiple types

of agents, η = 0.4

only about the mean of the wealth distribution42.

7.4 Business Cycle Implications

Until now, we have assumed that the idiosyncratic shocks are of temporary

nature since introducing persistence would not change our main insights in

the previous sections. Nevertheless, one can anticipate that persistence of

idiosyncratic shocks will turn out to be important for cyclical features of ag-

gregate variables. Therefore, this section aims to provide information about

how different preference settings and persistence of idiosyncratic shocks af-

fect business cycle properties of macroeconomic variables such that we may

obtain a better understanding of the effects of introducing heterogeneity to

the model. For this reason, we have extended our economy such that it is

inhabited by 30 agents divided into five wealth groups. Each wealth group

corresponds to a different quintile of the economy as summarized in Table

1 and includes equal number of agents. Moreover, agents belonging to the

same group have the same endowments and the idiosyncratic productivity

process of each agent is independent. In that sense, this modification is more

realistic compared to the analysis conducted in previous sections. Finally,

the aggregate output and consumption are now officially introduced to the

model framework. These changes are brought to life via following equations

42The result implied by Tables 4 and 5 is robust for other values of η and that is why
we only provide two tables.
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ŷt − αK̂t − (1− α)L̂t = 0 (50)

C̄Ĉt −
∑

i

Hic̄iĉi,t = 0 (51)

ui,t = ρ̃ui,t−1 + εi,t (52)

where ρ̃ is the persistence parameter for idiosyncratic shocks and y and C are

the aggregate output and consumption respectively43. The standard devia-

tion of idiosyncratic shocks are selected in such a way that the unconditional

variance of the mean of idiosyncratic productivity processes is equal to the

unconditional variance of aggregate technology. The details regarding the

calculation of standard deviations can be found in Section B of Appendix.

Tables 6 to 10 here and 12 to 26 in Appendix C provide the cross-

correlations of aggregate variables with aggregate output for different levels

of concavity of risk tolerance and for different persistence levels of idiosyn-

cratic shocks44. Moreover, the corresponding moments of aggregate variables

in representative agent framework are provided in Tables 11 and 27 to 29.

All moments are obtained via Toolkit using the frequency domain based cal-

culations after filtering the series with Hodrick and Prescott (HP) filter45.

We have selected the value of the smoothing parameter for HP-filter as 1600

since we assume that each period is a quarter.

If one compares the tables for different preferences for a given value of ρ̃

one observes that the difference between cross-correlations is less than 0.01

in absolute value. Therefore, we provide here only the tables for the CRRA

preferences (η = 1) and the rest in Appendix C. This fact also leads us to

the conclusion that preferences do not matter significantly for the effects of

heterogeneity on the business cycle properties of HP-filtered macroeconomic

43The reader will remember that yt = Kα
t L1−α

t and Ct =
∑
i

Hici,t. The latter equation

implies C̄ =
∑
i

Hic̄i for its steady state.
44Since the equilibrium of aggregate variables is stable, this is a legitimate approach.

Tables presenting the moments of aggregate variables are slightly modified versions of
Toolkit’s output. This modification has been discussed in Section A of Appendix.

45Details regarding the HP-filter can be found in Hodrick and Prescott (1997). For
information about the frequency domain representation and Fourier transform of the HP
filter, see King and Rebelo (1993).
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series and one should rather focus on persistence of idiosyncratic shocks.

The most obvious effect of introducing persistence of idiosyncratic shocks

is the increase in the cross-correlations of aggregate variables. Knowing that

the main source of variability in our model is aggregate and idiosyncratic pro-

ductivity shocks, this is not a counterintuitive result. If autocorrelation of

the idiosyncratic shocks is lower than that of the aggregate shock, there will

be a lower dependence of total productivity, which is composed of both type

of shocks, on its past values such that the cross-correlations are lower than

their counterparts in the representative agent framework. As ρ̃ increases the

dependence of total productivity on its past values gets higher which directly

effects the autocorrelation of output in a positive way since productivity is

the main driving force in the economy. This also increases the degree of

co-movements of aggregate capital and consumption with aggregate output

since agents’ behavior tend to be more persistent with increasing persistence

of own and total productivity.

Comparing Tables 10 and 11 reveals the information that the values of

the cross-correlations in the representative agent framework is exactly the

same as in the heterogeneous agents framework if the autocorrelation of the

idiosyncratic shocks matches that of the aggregate technology shock. The

reason is that the autocorrelation of total productivity converges to ρ as the

value of ρ̃ gets closer to the value of ρ. To see this more clearly one should

first remember that the aggregate labor in efficiency units is our proxy for

total productivity46. So, combining equations (25), (26), (52) and ρ = ρ̃ leads

to

θ̂i,t = ρẑt−1 + ρui,t−1 + vt + εi,t

= ρθ̂i,t−1 +mi,t (53)

where mi,t = vt + εi,t. Using equation (53) in equation (22) one may obtain

the following expression for aggregate labor

L̄L̂t = l̃
∑

i

Hiθ̄i(ρθ̂i,t−1 +mi,t)

46This also explains why aggregate labor’s cross-correlations with output are similar to
the autocorrelation of output if one considers the variation in total productivity as the
main source of variability in output.
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Cross Correlations with output, corr(Xt+j, yt)
(HP-filtered series)

σx % t − 4 t − 3 t − 2 t − 1 t t+ 1 t+ 2 t+ 3 t+ 4
L 2.65 -0.03 -0.01 0.01 0.04 1.00 0.00 -0.02 -0.04 -0.05
K 0.25 -0.24 -0.24 -0.24 -0.22 0.40 0.38 0.35 0.31 0.27
y 1.68 -0.04 -0.02 0.00 0.03 1.00 0.03 0.00 -0.02 -0.04
C 0.24 -0.09 -0.06 0.00 0.07 0.49 0.40 0.31 0.24 0.17

Table 6: Frequency domain based calculation of moments, η = 1, ρ̃ = 0

Cross Correlations with output, corr(Xt+j, yt)
(HP-filtered series)

σx % t − 4 t − 3 t − 2 t − 1 t t+ 1 t+ 2 t+ 3 t+ 4
L 2.58 -0.06 -0.03 0.06 0.29 1.00 0.24 0.00 -0.08 -0.10
K 0.29 -0.32 -0.33 -0.30 -0.15 0.37 0.48 0.46 0.41 0.34
y 1.63 -0.08 -0.05 0.04 0.27 1.00 0.27 0.04 -0.05 -0.08
C 0.25 -0.16 -0.13 -0.06 0.11 0.54 0.48 0.39 0.30 0.22

Table 7: Frequency domain based calculation of moments, η = 1, ρ̃ = 0.3

which may be manipulated to get

L̄L̂t = ρl̃
∑

i

Hiθ̄iθ̂i,t−1 + l̃
∑

i

Hiθ̄imi,t

= ρL̄L̂t−1 + l̃
∑

i

Hiθ̄imi,t. (54)

Dividing both sides of equation (54) leads us to a total productivity pro-

cess whose autocorrelation is the same as the aggregate technology and which

differs from equation (26) only in the standard deviation of its innovation. In

conclusion, if someone is just interested in the cross-correlations as a proxy

for the goodness of fit of the model to the data and if the data indicates

that the autocorrelation of aggregate shocks is close to that of idiosyncratic

shocks, one can be happy with the representative agent framework47.

47The differences in the standard deviations is just a matter of calibration. For σv

in representative agent framework, we choose 2*0.7 percent to make up for the loss of
idiosyncratic variability whereas it is 0.7 if there are heterogeneous agents. Actually, the
variability does not matter since the cross-correlations remain essentially the same in this
framework regardless of the value of σv.
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Cross Correlations with output, corr(Xt+j, yt)
(HP-filtered series)

σx % t − 4 t − 3 t − 2 t − 1 t t+ 1 t+ 2 t+ 3 t+ 4
L 2.41 -0.04 0.06 0.24 0.53 1.00 0.48 0.17 -0.02 -0.12
K 0.33 -0.42 -0.39 -0.28 -0.06 0.35 0.53 0.58 0.55 0.49
y 1.53 -0.08 0.03 0.21 0.51 1.00 0.51 0.21 0.03 -0.08
C 0.28 -0.25 -0.17 -0.02 0.23 0.64 0.59 0.50 0.40 0.30

Table 8: Frequency domain based calculation of moments, η = 1, ρ̃ = 0.6

Cross Correlations with output, corr(Xt+j, yt)
(HP-filtered series)

σx % t − 4 t − 3 t − 2 t − 1 t t+ 1 t+ 2 t+ 3 t+ 4
L 1.71 0.14 0.30 0.49 0.72 1.00 0.67 0.41 0.19 0.03
K 0.29 -0.43 -0.33 -0.18 0.04 0.33 0.52 0.63 0.67 0.66
y 1.09 0.09 0.25 0.46 0.70 1.00 0.70 0.46 0.25 0.09
C 0.32 -0.11 0.06 0.28 0.56 0.90 0.76 0.61 0.47 0.35

Table 9: Frequency domain based calculation of moments, η = 1, ρ̃ = 0.9

Cross Correlations with output, corr(Xt+j, yt)
(HP-filtered series)

σx % t − 4 t − 3 t − 2 t − 1 t t+ 1 t+ 2 t+ 3 t+ 4
L 1.39 0.16 0.32 0.51 0.73 1.00 0.69 0.43 0.22 0.06
K 0.23 -0.42 -0.32 -0.16 0.05 0.33 0.51 0.62 0.66 0.66
y 0.89 0.12 0.28 0.48 0.72 1.00 0.72 0.48 0.28 0.12
C 0.32 -0.02 0.15 0.36 0.63 0.96 0.77 0.60 0.44 0.30

Table 10: Frequency domain based calculation of moments, η = 1, ρ̃ = 0.95

Cross Correlations with output, corr(Xt+j, yt)
(HP-filtered series)

σx % t − 4 t − 3 t − 2 t − 1 t t+ 1 t+ 2 t+ 3 t+ 4
L 1.82 0.16 0.32 0.51 0.73 1.00 0.69 0.43 0.22 0.06
K 0.30 -0.42 -0.32 -0.16 0.05 0.33 0.51 0.62 0.66 0.66
y 1.17 0.12 0.28 0.48 0.72 1.00 0.72 0.48 0.28 0.12
C 0.42 -0.02 0.15 0.36 0.63 0.96 0.77 0.60 0.44 0.30

Table 11: Frequency domain based calculation of moments, η = 1, represen-

tative agent framework
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8 Discussion

Throughout the analysis in this paper we have seen that the effects of shocks

on aggregate variables and wealth heterogeneity are dependent on the pref-

erences whereas persistence of uninsurable idiosyncratic shocks play an im-

portant role for the cyclical properties of aggregate variables. We have found

that we can perfectly aggregate individual log-linearized equations if agents

have CRRA preferences whereas aggregation is imperfect if we have CART

preferences. In case of perfect aggregation, heterogeneity of agents does

not matter for the dynamics of aggregate variables in response to aggregate

technology shocks. However, we have shown that heterogeneity results in

increased aggregate savings in response to aggregate shocks if aggregation is

imperfect. Nevertheless, this increase is quite small and we do not observe

its effects on the business cycle properties of aggregate variables. Finally,

we have obtained the result that it is not possible to differentiate the mo-

ments of aggregate variables in heterogeneous agent framework from those in

representative agent framework if the autocorrelation of idiosyncratic shocks

equals to the autocorrelation of aggregate technology shock. All of these

findings have interesting implications for economic theory and policy.

The theoretical importance of our analysis is related with the adequacy of

representative agent framework for the analysis of the behavior of aggregate

variables. There are two options to justify the representative agent assump-

tion. The first one is having an environment in which there are complete

markets such that agents can perfectly insure themselves against idiosyn-

cratic risks since this will result in the collapse of our heterogeneous economy

to the corresponding representative agent framework. However, we do not

have perfect insurance markets in real economies. The second option would

be showing that the aggregate variables in a heterogeneous economy behave

in a similar way to their counterparts in the representative agent economy.

Our results based on impulse responses and cross-correlations indicate that

representative agent framework is not adequate especially if there is sufficient

heterogeneity and concave risk tolerance making the aggregation imperfect

or if there is a significant difference between the persistence of idiosyncratic

and aggregate shocks.
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Moreover, the dynamics of wealth heterogeneity in response to different

shocks gives us important clues about policy implications of our model al-

though our economy does not directly include a government. First of all,

we may say that any policy affecting the labor income positively will pri-

marily benefit the poorer groups and smooth the wealth distribution since

labor earnings is the main source of income of poor households. Besides, an

unemployment insurance would be an important device to avoid significant

fluctuations in the income of poor agents due to the strong effects of the

antagonistic relationship between different groups of people.

In addition, we have seen that the impulse response of the aggregate

capital in the heterogeneous economy is higher than that in the correspond-

ing homogeneous economy if we have an environment where heterogeneity

affects the behavior of aggregate variables in response to aggregate shocks.

The policy implications of this phenomenon are two-sided. One may claim

that greater inequality leads to higher aggregate savings and therefore higher

output in good times, i.e. when we have positive aggregate shocks. So, a

government which places heavy emphasis on the macroeconomic aggregates

may favor inequality during booms. However, there is also the other side

of the medallion since the amount of savings in heterogeneous framework is

not Pareto-optimal, i.e. the impulse responses are inefficiently high. There-

fore, a government may improve welfare by eliminating heterogeneity such

that perfect aggregation holds and the decentralized economy can imitate

the Pareto-optimal allocation. In conclusion, one should be very careful in

interpreting the results for not being the devil’s advocate.

Last but not least, it is necessary to discuss the advantages and disad-

vantages of our method. The main disadvantage of our method is that it

is a linear approximation to the model dynamics meaning that our results

are reliable locally and for small deviations from steady state. However, our

method does not require statistical procedures or inference in order to reach

the necessary conclusions such that our results are not subject to estimation

errors. Moreover, we do not limit us to particular values of a discrete state-

space matrix like in Aiyagari (1994), Krusell and Smith (1998) and others

following the same approach since our exogenous processes are well defined

and the value domain for state variables is continuous. Finally and most im-
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portantly, our approach allows us to focus on the dynamics after each kind

of shock separately which provides much better information about what is

happening behind the picture48.

9 Conclusion

Being the first one of its kind, this paper studies a simple dynamic stochastic

model of heterogeneity and analyzes the effects of exogenous aggregate and

individual shocks separately. Using this model and the solution approach

detailed in Uhlig (1999) we have tried to find out the effects of aggregate

and idiosyncratic shocks on wealth heterogeneity and whether wealth and

income distribution matters for macroeconomic dynamics and for the deci-

sions of individuals. We do not claim that this model can perfectly capture

the dynamics of a real economy which is the cost of using a simple model

framework. Nevertheless, we believe that our results are pretty instructive

and this is how the simplicity pays off.

Papers following the approach of Krusell and Smith (1998) define an

equilibrium as the case where the state vector is convergent such that wealth

distribution is well defined in the steady state. However, our stationary

economy is the one in which aggregate variables are fixed but idiosyncratic

variables may move between different states over time. This property of

our model is due to the indeterminacy of the non-stochastic steady state of

wealth distribution49.

The indeterminacy of wealth distribution results in persistent effects of

shocks on wealth distribution. We have seen that idiosyncratic shocks affect

48Two alternative methods are the Parameterized Expectations Approach of Marcet and
Lorenzoni (1999) and the limited state space approach by Krusell and Smith (1998). The
first approach allows calculation of impulse responses but it employs a statistical proce-
dure to approximate a nonlinear recursive law of motion. The second one uses statistical
inference as a proof of approximate aggregation of individual variables. The method em-
ployed in this paper helps us to calculate impulse responses and to show exactly under
which conditions perfect aggregation holds and which environments violate the conditions
necessary for perfect aggregation without making use of any statistical procedure.

49Such stationary economies are also present in several other papers in the literature,
such as Loury (1981), Banerjee and Newman (1991, 1993) and Hopenhayn (1992).
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the wealth distribution in favor of the agents that experience the positive

shock. Nevertheless, whether aggregate shocks lead to a smoother or more

asymmetric distribution is heavily dependent on the choice of preferences

which determine the relative effects of two competing forces on the dynamics

of wealth heterogeneity. One of these forces changes the wealth distribution

in favor of poor agents since aggregate technology shocks have a positive

effect especially on labor earnings which constitute the main endowment of

poor agents. The second force is due to the preferences that determine the

risk aversion of rich agents relative to poor agents. If the ratio of risk aversion

of rich agents to that of poor agents is sufficiently high, this second force,

which gives the rich agents higher incentive to save compared to the poor

agents, may overcome the first force such that one observes an increase in

wealth heterogeneity in the long-run after an aggregate shock.

In addition, we have shown that wealth heterogeneity does not matter for

the decisions of the individuals and for the dynamics of aggregate variables

responding to aggregate shocks if households have CRRA utilities. Intro-

ducing CART utility function does not change the first result whereas the

impulse response of aggregate capital changes if one moves away from CRRA

and CARA assumptions. Moreover, we have compared the aggregate busi-

ness cycle traits of various models that differ in their preference settings and

persistence of idiosyncratic shocks. We have shown that the preferences play

almost no role in the determination of cyclical properties of aggregate vari-

ables. However, the difference between the persistence levels of aggregate and

idiosyncratic shocks is important to explain the deviation of cyclical proper-

ties of a heterogeneous economy from those belonging to the representative

agent framework.

The potential extensions of our model are only limited to the consumption

and saving motives of individuals. The most immediate extension would be

introducing labor decisions of agents since occupational choices of individuals

are likely to depend on their wealth. This would result in greater imperfection

in the economy if one considers upper or lower bounds for the labor supply of

each agent. Another possible extension is the consideration of the life cycle

motive which can be introduced via the overlapping generations framework.

Moreover, we have seen in Table 2 that transfers play an important role as an
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income source of poor households. Therefore, one can introduce government

and transfers to the model to study the reactions of the economy in case of a

change in fiscal policy that affects taxes and transfers. All of these extensions

are candidates for future research proposals.
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A Further Discussion

One will note that there is a difference between the moments provided by

Toolkit and the tables in Section 7.4: The contemporaneous correlation of

aggregate capital with output in Toolkit’s results is quite low and sometimes

even negative in an unexpected manner. To understand the reason for this

strange result we have set the number and types of agents equal to one and

the value of the variance of idiosyncratic shocks close to zero (10−30). This

has allowed us to compare our results with that of exampl0.m provided in

Toolkit. (The relevant file, comparison.m, is provided in the accompanying

compact disc.) The comparison between the outputs of these two files and

the comparison of the correlation coefficients for individual capital with that

of the aggregate capital, which should be the same since the number of types

is restricted to one, has shown that we should shift the correlation coefficients

for aggregate capital one period back in order to obtain consistent results.

Once this is done, we obtain the same cross-correlations as in the output of

exampl0.m50. This is why there is difference between the output of Toolkit

and the tables provided here.

The reason for this issue is that aggregate capital has been defined as

an endogenous variable rather than a state variable51. Since we have shifted

the cross correlations of aggregate capital with output one period back one

should consider K in the relevant tables as the capital to be carried over to

the next period, rather than the capital employed in current production. We

use this notation to avoid confusion in case when someone else uses Toolkit’s

approach in a different framework where aggregate capital is state variable

and wants to compare her results with ours. Nevertheless, this issue does

not result in any significant change of our main insights in Section 7.4.

50The comparison is based on the frequency-domain method based calculation of mo-
ments. The only difference between the outputs of the two programs, comparison.m and
exampl0.m, is the values of the standard deviations since we have a labor augmenting
technology whereas exampl0.m employs an output augmenting technology with the same
variance of innovations.

51This changes the usual dating convention in Toolkit. So, there is no magic involved
here.
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B Calculations

This section explains the determination of σε for equation (52) such that

the variability of the unconditional mean of idiosyncratic productivity pro-

cesses is the same as the unconditional variability of the aggregate tech-

nology process. First of all, since the aggregate technology shock, ẑt, fol-

lows an AR(1) process we calculate its unconditional standard deviation as

σz = σv/
√
(1− ρ2) where σv is the standard deviation of the innovations in

equation (26). Similarly, we can write the unconditional standard deviation

of idiosyncratic productivity shocks as σu = σε/
√
(1− ρ̃2) using equation

(52). Finally, we know that the standard deviation of the average of n in-

dependent random variables can be given as σ/
√
n, σ being the standard

deviation of each random variable.

Using this information we determine σu as follows: We first set the value of

σv equal to 0.7 percent following Hansen (1985) and obtain σz accordingly.

Thereafter, we find the unconditional standard deviation of idiosyncratic

productivity shocks via σu = σz

√
n where n is the number of agents in the

economy. The last step is finding the standard deviation of idiosyncratic

innovations using σε = σu

√
(1− ρ̃2). And we are done!
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C Tables

Cross Correlations with output, corr(Xt+j, yt)
(HP-filtered series)

σx % t − 4 t − 3 t − 2 t − 1 t t+ 1 t+ 2 t+ 3 t+ 4
L 2.65 -0.03 -0.01 0.01 0.04 1.00 0.00 -0.02 -0.04 -0.05
K 0.25 -0.24 -0.24 -0.23 -0.22 0.40 0.38 0.35 0.31 0.27
y 1.68 -0.04 -0.02 0.00 0.03 1.00 0.03 0.00 -0.02 -0.04
C 0.24 -0.10 -0.06 -0.01 0.06 0.49 0.40 0.32 0.24 0.17

Table 12: Frequency domain based calculation of moments, η = 0.1, ρ̃ = 0

Cross Correlations with output, corr(Xt+j, yt)
(HP-filtered series)

σx % t − 4 t − 3 t − 2 t − 1 t t+ 1 t+ 2 t+ 3 t+ 4
L 2.58 -0.06 -0.03 0.06 0.29 1.00 0.24 0.00 -0.08 -0.10
K 0.29 -0.32 -0.33 -0.29 -0.15 0.37 0.48 0.46 0.41 0.34
y 1.63 -0.08 -0.05 0.04 0.27 1.00 0.27 0.04 -0.05 -0.08
C 0.25 -0.17 -0.13 -0.06 0.10 0.54 0.48 0.39 0.30 0.22

Table 13: Frequency domain based calculation of moments, η = 0.1, ρ̃ = 0.3

Cross Correlations with output, corr(Xt+j, yt)
(HP-filtered series)

σx % t − 4 t − 3 t − 2 t − 1 t t+ 1 t+ 2 t+ 3 t+ 4
L 2.41 -0.04 0.06 0.24 0.53 1.00 0.48 0.17 -0.02 -0.12
K 0.33 -0.42 -0.39 -0.28 -0.06 0.35 0.53 0.58 0.55 0.49
y 1.53 -0.08 0.03 0.21 0.51 1.00 0.51 0.21 0.03 -0.08
C 0.28 -0.25 -0.17 -0.03 0.22 0.64 0.59 0.50 0.40 0.31

Table 14: Frequency domain based calculation of moments, η = 0.1, ρ̃ = 0.6
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Cross Correlations with output, corr(Xt+j, yt)
(HP-filtered series)

σx % t − 4 t − 3 t − 2 t − 1 t t+ 1 t+ 2 t+ 3 t+ 4
L 1.71 0.14 0.30 0.49 0.72 1.00 0.67 0.41 0.19 0.03
K 0.29 -0.43 -0.33 -0.18 0.04 0.33 0.52 0.63 0.67 0.66
y 1.09 0.09 0.25 0.46 0.70 1.00 0.70 0.46 0.25 0.09
C 0.32 -0.11 0.05 0.27 0.55 0.90 0.76 0.62 0.48 0.35

Table 15: Frequency domain based calculation of moments, η = 0.1, ρ̃ = 0.9

Cross Correlations with output, corr(Xt+j, yt)
(HP-filtered series)

σx % t − 4 t − 3 t − 2 t − 1 t t+ 1 t+ 2 t+ 3 t+ 4
L 2.65 -0.03 -0.01 0.01 0.04 1.00 0.00 -0.02 -0.04 -0.05
K 0.25 -0.24 -0.24 -0.24 -0.22 0.40 0.38 0.35 0.31 0.27
y 1.68 -0.04 -0.02 0.00 0.03 1.00 0.03 0.00 -0.02 -0.04
C 0.24 -0.09 -0.06 0.00 0.07 0.49 0.40 0.31 0.24 0.17

Table 16: Frequency domain based calculation of moments, η = 0.4, ρ̃ = 0.0

Cross Correlations with output, corr(Xt+j, yt)
(HP-filtered series)

σx % t − 4 t − 3 t − 2 t − 1 t t+ 1 t+ 2 t+ 3 t+ 4
L 2.58 -0.06 -0.03 0.06 0.29 1.00 0.24 0.00 -0.08 -0.10
K 0.29 -0.32 -0.33 -0.30 -0.15 0.37 0.48 0.46 0.41 0.34
y 1.63 -0.08 -0.05 0.04 0.27 1.00 0.27 0.04 -0.05 -0.08
C 0.25 -0.16 -0.13 -0.06 0.11 0.54 0.48 0.39 0.30 0.22

Table 17: Frequency domain based calculation of moments, η = 0.4, ρ̃ = 0.3

Cross Correlations with output, corr(Xt+j, yt)
(HP-filtered series)

σx % t − 4 t − 3 t − 2 t − 1 t t+ 1 t+ 2 t+ 3 t+ 4
L 2.41 -0.04 0.06 0.24 0.53 1.00 0.48 0.17 -0.02 -0.12
K 0.33 -0.42 -0.39 -0.28 -0.06 0.35 0.53 0.58 0.55 0.49
y 1.53 -0.08 0.03 0.21 0.51 1.00 0.51 0.21 0.03 -0.08
C 0.28 -0.25 -0.17 -0.02 0.23 0.64 0.59 0.50 0.40 0.30

Table 18: Frequency domain based calculation of moments, η = 0.4, ρ̃ = 0.6
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Cross Correlations with output, corr(Xt+j, yt)
(HP-filtered series)

σx % t − 4 t − 3 t − 2 t − 1 t t+ 1 t+ 2 t+ 3 t+ 4
L 1.71 0.14 0.30 0.49 0.72 1.00 0.67 0.41 0.19 0.03
K 0.29 -0.43 -0.33 -0.18 0.04 0.33 0.52 0.63 0.67 0.66
y 1.09 0.09 0.25 0.46 0.70 1.00 0.70 0.46 0.25 0.09
C 0.32 -0.11 0.06 0.28 0.56 0.90 0.76 0.61 0.47 0.35

Table 19: Frequency domain based calculation of moments, η = 0.4, ρ̃ = 0.9

Cross Correlations with output, corr(Xt+j, yt)
(HP-filtered series)

σx % t − 4 t − 3 t − 2 t − 1 t t+ 1 t+ 2 t+ 3 t+ 4
L 2.65 -0.03 -0.01 0.01 0.04 1.00 0.00 -0.02 -0.04 -0.05
K 0.25 -0.24 -0.24 -0.24 -0.22 0.40 0.38 0.35 0.31 0.27
y 1.68 -0.04 -0.02 0.00 0.03 1.00 0.03 0.00 -0.02 -0.04
C 0.24 -0.09 -0.05 0.00 0.07 0.49 0.40 0.31 0.23 0.17

Table 20: Frequency domain based calculation of moments, η = 0.7, ρ̃ = 0.0

Cross Correlations with output, corr(Xt+j, yt)
(HP-filtered series)

σx % t − 4 t − 3 t − 2 t − 1 t t+ 1 t+ 2 t+ 3 t+ 4
L 2.58 -0.06 -0.03 0.06 0.29 1.00 0.24 0.00 -0.08 -0.10
K 0.29 -0.32 -0.33 -0.30 -0.15 0.37 0.48 0.46 0.41 0.34
y 1.63 -0.08 -0.05 0.04 0.27 1.00 0.27 0.04 -0.05 -0.08
C 0.25 -0.16 -0.13 -0.05 0.11 0.54 0.48 0.39 0.30 0.21

Table 21: Frequency domain based calculation of moments, η = 0.7, ρ̃ = 0.3

Cross Correlations with output, corr(Xt+j, yt)
(HP-filtered series)

σx % t − 4 t − 3 t − 2 t − 1 t t+ 1 t+ 2 t+ 3 t+ 4
L 2.41 -0.04 0.06 0.24 0.53 1.00 0.48 0.17 -0.02 -0.12
K 0.33 -0.42 -0.39 -0.28 -0.06 0.35 0.53 0.58 0.55 0.49
y 1.53 -0.08 0.03 0.21 0.51 1.00 0.51 0.21 0.03 -0.08
C 0.28 -0.24 -0.17 -0.02 0.23 0.64 0.58 0.50 0.40 0.30

Table 22: Frequency domain based calculation of moments, η = 0.7, ρ̃ = 0.6
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Cross Correlations with output, corr(Xt+j, yt)
(HP-filtered series)

σx % t − 4 t − 3 t − 2 t − 1 t t+ 1 t+ 2 t+ 3 t+ 4
L 1.71 0.14 0.30 0.49 0.72 1.00 0.67 0.41 0.19 0.03
K 0.29 -0.43 -0.33 -0.18 0.04 0.33 0.52 0.63 0.67 0.66
y 1.09 0.09 0.25 0.46 0.70 1.00 0.70 0.46 0.25 0.09
C 0.32 -0.10 0.06 0.28 0.56 0.90 0.76 0.61 0.47 0.34

Table 23: Frequency domain based calculation of moments, η = 0.7, ρ̃ = 0.9

Cross Correlations with output, corr(Xt+j, yt)
(HP-filtered series)

σx % t − 4 t − 3 t − 2 t − 1 t t+ 1 t+ 2 t+ 3 t+ 4
L 1.39 0.16 0.32 0.51 0.73 1.00 0.69 0.43 0.22 0.06
K 0.23 -0.42 -0.31 -0.16 0.05 0.33 0.51 0.62 0.67 0.66
y 0.89 0.12 0.28 0.48 0.72 1.00 0.72 0.48 0.28 0.12
C 0.32 -0.03 0.14 0.36 0.63 0.95 0.77 0.60 0.45 0.31

Table 24: Frequency domain based calculation of moments, η = 0.1, ρ̃ = 0.95

Cross Correlations with output, corr(Xt+j, yt)
(HP-filtered series)

σx % t − 4 t − 3 t − 2 t − 1 t t+ 1 t+ 2 t+ 3 t+ 4
L 1.39 0.16 0.32 0.51 0.73 1.00 0.69 0.43 0.22 0.06
K 0.23 -0.42 -0.32 -0.16 0.05 0.33 0.51 0.62 0.66 0.66
y 0.89 0.12 0.28 0.48 0.72 1.00 0.72 0.48 0.28 0.12
C 0.32 -0.02 0.15 0.36 0.63 0.96 0.77 0.60 0.44 0.30

Table 25: Frequency domain based calculation of moments, η = 0.4, ρ̃ = 0.95

Cross Correlations with output, corr(Xt+j, yt)
(HP-filtered series)

σx % t − 4 t − 3 t − 2 t − 1 t t+ 1 t+ 2 t+ 3 t+ 4
L 1.39 0.16 0.32 0.51 0.73 1.00 0.69 0.43 0.22 0.06
K 0.23 -0.42 -0.32 -0.17 0.05 0.33 0.51 0.62 0.66 0.66
y 0.89 0.12 0.28 0.48 0.72 1.00 0.72 0.48 0.28 0.12
C 0.32 -0.02 0.15 0.36 0.63 0.96 0.77 0.60 0.44 0.30

Table 26: Frequency domain based calculation of moments, η = 0.7, ρ̃ = 0.95
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Cross Correlations with output, corr(Xt+j, yt)
(HP-filtered series)

σx % t − 4 t − 3 t − 2 t − 1 t t+ 1 t+ 2 t+ 3 t+ 4
L 1.82 0.16 0.32 0.51 0.73 1.00 0.69 0.43 0.22 0.06
K 0.30 -0.41 -0.31 -0.16 0.05 0.33 0.52 0.62 0.67 0.66
y 1.17 0.12 0.28 0.48 0.72 1.00 0.72 0.48 0.28 0.12
C 0.42 -0.03 0.14 0.36 0.63 0.95 0.77 0.61 0.45 0.31

Table 27: Frequency domain based calculation of moments, η = 0.1, repre-

sentative agent framework

Cross Correlations with output, corr(Xt+j, yt)
(HP-filtered series)

σx % t − 4 t − 3 t − 2 t − 1 t t+ 1 t+ 2 t+ 3 t+ 4
L 1.82 0.16 0.32 0.51 0.73 1.00 0.69 0.43 0.22 0.06
K 0.30 -0.42 -0.31 -0.16 0.05 0.33 0.51 0.62 0.67 0.66
y 1.17 0.12 0.28 0.48 0.72 1.00 0.72 0.48 0.28 0.12
C 0.42 -0.03 0.14 0.36 0.63 0.96 0.77 0.60 0.45 0.31

Table 28: Frequency domain based calculation of moments, η = 0.4, repre-

sentative agent framework

Cross Correlations with output, corr(Xt+j, yt)
(HP-filtered series)

σx % t − 4 t − 3 t − 2 t − 1 t t+ 1 t+ 2 t+ 3 t+ 4
L 1.82 0.16 0.32 0.51 0.73 1.00 0.69 0.43 0.22 0.06
K 0.30 -0.42 -0.32 -0.16 0.05 0.33 0.51 0.62 0.67 0.66
y 1.17 0.12 0.28 0.48 0.72 1.00 0.72 0.48 0.28 0.12
C 0.42 -0.03 0.14 0.36 0.63 0.96 0.77 0.60 0.44 0.31

Table 29: Frequency domain based calculation of moments, η = 0.7, repre-

sentative agent framework
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D MATLABR© Codes

D.1 Benchmark Model with Two Types of Agents

% VERSION 2.0, MARCH 1997, COPYRIGHT H. UHLIG.

% Code by ALI K OZDAGLI for the M.A. thesis, July 2004

% "Implications of Aggregate and Idiosyncratic Shocks

% for Neoclassical Growth and Wealth Distribution"

% DENEME_RAMSEY_BASIC_REAL.M: 2 agents with CRRA preferences

% Wealth and labor productivity distribution is exogenously given

% This is the generic version of the code that can be easily extended to

% include many agents which is limited by the speed of your processor.

% Copyright: H. Uhlig. Feel free to copy, modify and use at your own risk.

% However, you are not allowed to sell this software or otherwise impinge

% on its free distribution.

disp(’DENEME_RAMSEY_BASIC_REAL:: Implications of aggregate and idiosyncratic shocks on neoclassical growth’);

disp(’and wealth distribution; 2 types of agents’);

disp(’Hit any key when ready...’);

pause;

% Setting parameters:

number=2; %number of types/groups

H_i = [0.8 0.2]’; % fraction of households in each group

% H_i =[0.5 0.5]’; % homogenous agents

a_i=zeros(number,1); % contains share of wealth possessed by each group

a = [0.2 0.8];

% a =[0.5 0.5]; % homogenous agents

a_i = (a/sum(a))’;

chi = [0.59 0.41]; % total earnings(productivity) in each group as a % of aggregate economy

% chi = [0.5 0.5]; % homogenous agents

chi_i=(chi/sum(chi))’;

Z_bar = 1; % Normalization, aggregate technology shock

alpha = .36; % Capital share

delta = .025; % Depreciation rate for capital

R_bar = 1.01; % One percent real interest per quarter

gamma_i = ones(number,1)*1.5; % Relative risk aversion coefficient (sigma in paper)
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rho = 0.95; % autocorrelation of technology shock

sigma_tech = .712; % Standard deviation of aggregate technology shock. Units: Percent.

sigma_eps = 0.5*ones(1,number); % Standard deviation of idiosyncratic shock. Units: Percent.

L_tilda = 1/(3*Z_bar); % labor supply parameter, chosen such that L_bar is 1/3

% Calculating the steady state:

betta = 1.0/R_bar; % Discount factor beta

KL_bar = ((alpha)/(R_bar - 1 + delta))^(1.0/(1 - alpha)); % aggregate capital labor ratio

W_bar = (1-alpha)*(KL_bar)^alpha; % wage per efficiency unit

eps_i = Z_bar*chi_i./H_i; % labor productivity of an "average person" in group i (theta in paper)

L_bar = L_tilda*sum(eps_i.*H_i); % aggregate (mean) labor supply

K_bar = KL_bar*L_bar; % aggregate (mean) capital

k_i = (a_i*K_bar)./H_i; % capital holdings of an "average person" in group i

c_i = (R_bar-1)*k_i + W_bar*L_tilda*eps_i; % consumption of an "average person" in group i

% Declaring the matrices.

VARNAMES = [’capital_1 ’,

’capital_2 ’,

’consum_1 ’,

’consum_2 ’,

’return ’,

’wage ’,

’labor ’,

’labor_1 ’,

’labor_2 ’,

’capitaltot ’,

’technology ’,

’idiosyncr_1’,

’idiosyncr_2’,

];

% Translating into coefficient matrices.

% The loglinearized equations are given in Section 5 of the paper:

% The variables are ordered as (each variable with index ’i’ is individual variable)

% Endogenous state variables "x(t)": k_i(t)

% Endogenous other variables "y(t)": c_i(t), R(t), w(t), L(t), eps_i(t), K(t)

% Exogenous state variables "z(t)": z(t), u_i(t)

% Switch to that notation. Find matrices for format

% 0 = AA x(t) + BB x(t-1) + CC y(t) + DD z(t)

% 0 = E_t [ FF x(t+1) + GG x(t) + HH x(t-1) + JJ y(t+1) + KK y(t) + LL z(t+1) + MM z(t)]

% z(t+1) = NN z(t) + epsilon(t+1) with E_t [ epsilon(t+1) ] = 0,

% DETERMINISTIC EQUATIONS with the corresponding equation number in the paper:

BIG=alpha*(K_bar/L_bar)^(alpha-1); % parameter prededined to simplify the eqn. for R(t)
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% for x(t): k_i(t), 1-number

AA=zeros(2*number+4,number); %Initializing the matrix

for i=1:number

AA(i,i)=k_i(i); % eqn. 20

end

% for x(t-1): k_i(t-1), 1-number

BB=zeros(2*number+4,number); %Initializing the matrix

for i=1:number;

BB(number+1, i)=-H_i(i)*k_i(i); % eqn. 21

end

for i=1:number

BB(i,i)=-R_bar*k_i(i); % eqn. 20

end

% For y(t): c_i(t), 1toN; R(t), N+1; w(t), N+2; L(t), N+3; eps_i(t), N+4to2N+3;

% K(t), 2N+4

CC=zeros(2*number+4,2*number+4); %Initializing the matrix

for i=1:number % eqn. 20

CC(i,i) = c_i(i);

CC(i,number+1)= -R_bar*k_i(i);

CC(i,number+2)= -W_bar*L_tilda*eps_i(i);

end

CC(number+2,number+3) = L_bar; %eqn 22

CC(number+3,number+2) = 1; % eqn 23

CC(number+3,number+3) = alpha; % eqn 23

CC(number+4,number+1) = R_bar; % eqn 23

CC(number+4,number+3) = BIG*(alpha-1); % eqn 23

for i=number+4:2*number+3

CC(i-(number+3),i) = -W_bar*L_tilda*eps_i(i-(number+3)); %eqn 20

CC(number+2,i)= -H_i(i-(number+3))*L_tilda*eps_i(i-(number+3)); %eqn 22

end

CC(number+5:2*number+4,number+4:2*number+3)=eye(number); % eqn 25

%K_t carried here!

CC(number+3,2*number+4)=-alpha; % eqn 23

CC(number+4,2*number+4)=-BIG*(alpha-1); % eqn 24

CC(number+1,2*number+4)=K_bar; % eqn 21

%end of carriage

% For z(t): z(t), 1; u_i(t), 2toN+1

DD=zeros(2*number+4,number+1); %Initializing the matrix
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DD(number+5:2*number+4,1)=-ones(number,1); % eqn 25

DD(number+5:2*number+4,2:number+1)=-eye(number); % eqn 25

% EXPECTATIONAL EQUATIONS:

% For x(t+1)

FF = zeros(number,number);

% For x(t)

GG = zeros(number,number);

% For x(t-1)

HH = zeros(number,number);

% For y(t+1): c_i(t+1), 1toN; R(t+1), N+1; w(t+1), N+2; L(t+1), N+3; eps_i(t+1), N+4to2N+3;

% K(t+1), 2N+4

% All for equation 19.

JJ = zeros(number,2*number+4); %Initializing the matrix

for i=1:number

JJ(i,i) = -gamma_i(i);

end

JJ(1:number,number+1) = ones(number,1);

% For y(t): c_i(t), 1toN; R(t), N+1; w(t), N+2; L(t), N+3; eps_i(t), N+4to2N+3;

% K(t), 2N+4

% All for equation 19.

KK = zeros(number,2*number+4); %Initializing the matrix

for i=1:number

KK(i,i) = gamma_i(i);

end

% For z(t+1)

LL = zeros(number,number+1);

% For z(t)

MM = zeros(number,number+1);

% AUTOREGRESSIVE MATRIX FOR z(t)

NN = zeros(number+1,number+1); %Initializing the matrix

NN(1,1) = rho; % The idiosyncratic shocks are not persistent

Sigma_vector = [ sigma_tech^2, sigma_eps.^2];

Sigma = diag(Sigma_vector);

% Setting the options:
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[l_equ,m_states] = size(AA);

[l_equ,n_endog ] = size(CC);

[l_equ,k_exog ] = size(DD);

PERIOD = 4; % number of periods per year, i.e. 12 for monthly, 4 for quarterly

GNP_INDEX = 4; % Index of output among the variables selected for HP filter

IMP_SELECT = 1:(m_states+n_endog+k_exog); % a vector containing the indices of the variables to be plotted

HP_SELECT = 1:(m_states+n_endog+k_exog); % Selecting the variables for the HP Filter calcs.

DO_SIMUL = 0; % Calculates Simulations

DO_MOMENTS = 0; % Calculates Moments

DISPLAY_IMMEDIATELY = 1;

DISPLAY_AT_THE_END = 0;

DO_QZ=1;

HORIZON=300;

IMP_SELECT = [1:2 ];

DO_STATE_RESP = 0;

SELECT_STATES = 2;

DO_SHOCK_RESP = 1;

SELECT_SHOCKS = 1;

SIM_SELECT=1:4;

%DO_HP_FILTER= 0;

SIM_LENGTH = 2000;

SIM_MAX = 2000;

% Starting the calculations:

do_it;

D.2 Impulse Response of Gini Index

% GINI.M:

% This program calculates and plots the impulse response of the Gini index

% WARNING: Run the code that produces the impulse response of capital first

% Input: k_i, a_i, H_i, K_bar, impulse responses of k_i and K

% Output: Lorenz curve, Impulse response of Gini index

% See section 5 of the paper for details

A_i = cumsum(a_i);

area_B = H_i’*A_i - H_i’*a_i/2;

Gini_bar = 1 - 2* area_B;

disp(’Press any key to see the Lorenz curve’); pause;

plot([[0; cumsum(H_i)], [0; A_i]], [0; A_i]) % plots the Lorenz curve and the line of perfect equality

axis tight

grid on

xlabel(’Population Share’,’FontSize’,14)

ylabel(’Wealth Share’,’FontSize’,14)

title(’Lorenz Curve for Wealth Distribution’,’FontSize’,14)

74



%--------------------------------------------------------------------------

gini_resp = zeros(1,HORIZON-1); disp(’Press any key to see impluse response of Gini index’);

pause;

for time=1:HORIZON-1

aa_i = Response(1:number,time) - Response(3*number+4,time+1); % \hat a_it

AA_i = cumsum(a_i.*aa_i); % \barA_i \hatA_it

BB_hat = H_i’*AA_i - H_i’*(a_i.*aa_i)/2; % \barB \hatB_t

gini_resp(time) = - 2 * BB_hat / Gini_bar; %impulse resp. of gini index

end

%plot([0:1/PERIOD:(HORIZON-2)/PERIOD], gini_resp)

plot([0:1/PERIOD:(HORIZON-2)/PERIOD], [gini_resp; zeros(1,HORIZON-1)])

xlim([0 (HORIZON-2)/PERIOD])

xlabel(’Years after shock’,’FontSize’,14)

ylabel(’Percent deviation from steady state’,’FontSize’,14)

if DO_STATE_RESP == 1;

title(’Impulse response of Gini index to a one percent deviation in’,’FontSize’,14)

else

title(’Impulse response of Gini index to a shock in’,’FontSize’,14)

end

grid on

D.3 Convergence of Relative Endowments

% LOOP_RAMSEY_BASIC_REAL.M:

% Produces the plot for the convergence of relative endowments

% in case of subsequent technology shocks

tot_iter = 3000; % Upper limit number of iterations

number=2; % number of types of agents

a_i=zeros(number,1); % share of wealth possessed by each group

a = [0.2 0.8];

a_i = (a/sum(a))’;

getKL=zeros(number,tot_iter); % This matrix will contain the new values of the

% share of wealth possessed by each wealth group

% after an aggregate technology shock

simulation_ramsey_basic_real; % This is simply our benchmark model except that

% the values of a_i is taken from the output of this program

iter=0;

ask=abs(k_i(1)/(eps_i(1)*L_tilda)-KL_bar); % Precision of convergence
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while ask>10^-4

iter=iter+1;

a_i=k_i.*(1+Response(1:number,HORIZON)/100).*H_i/K_bar;

a_i=(a_i/sum(a_i));

getKL(1:number,iter)=a_i;

simulation_ramsey_basic_real;

if iter==tot_iter

break

end

ask=abs(k_i(1)/(eps_i(1)*L_tilda)-KL_bar);

end

plot([getKL(1,1:iter)’*K_bar./(chi_i(1)*Z_bar*L_tilda), ...

... getKL(2,1:iter)’*K_bar./(chi_i(2)*Z_bar*L_tilda), KL_bar*ones(1,iter)’])

D.4 The Benchmark Model with CART preferences

The code is essentially the one in Section D.1 with the addition of the fol-

lowing code to make the necessary changes:

eta = 1; % concavity parameter of absolute risk tolerance set equal to 1

% for CRRA and to 0 for CARA preferences

...

gamma_i=gamma_i.*(c_i.^(1-eta));

D.5 Multiple Types of Agents

We only change the number of the agents and the corresponding entries for

the distribution of wealth and labor earnings.

number=8

H_i = [0.2 0.2 0.2 0.2 0.1 0.05 0.04 0.01]’; % fraction of households in each group

a = [0.001 1.4 5.3 12.9 12.8 12.3 24.1 31.4];

% share of capital of each agent

% The poorest agents capital holdings are chosen to be

% non-negative for budget constraint considerations,

% the actual value should be -0.2

chi = [7.7 14.2 16.3 20.4 13.1 8.2 12.7 7.5];

% total earnings(productivity) in each group as a % of economy
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D.6 Many Agents and Persistent Idiosyncratic Shocks

We change the number of the agents and the corresponding entries for the

distribution of wealth and labor earnings. Moreover, we add a parameter

for the autocorrelation of idiosyncratic shocks and change the NN matrix

accordingly.

number = 30

H_i = 1/number*ones(number,1) ; % fraction of households in each group

a = [0.001*ones(1,number/5) 1.4*ones(1,number/5) 5.3*ones(1,number/5) 12.9*ones(1,number/5)...

...80.6*ones(1,number/5)]/(number/5); % share of capital of each agent

chi = [7.7*ones(1,number/5) 14.2*ones(1,number/5) 16.3*ones(1,number/5) 20.4*ones(1,number/5)...

... 41.5*ones(1,number/5)]/(number/5);

% total earnings(productivity) in each group as a % of economy

rho_idio=0.3; % autocorrelation of idiosyncratic shocks

...

NN(1,1) = rho;

for i=2:number+1

NN(i,i) = rho_idio;

end
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