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Abstract

The Capital Asset Pricing Model (CAPM) is, despite its simplicity, still the most cited
model in �nancial theory. However, empirically, it yields rather poor results in explaining
cross-sectional returns of assets. The most successful extensions of the standard model
often add factors that lack simple interpretations in terms of risk. In this study, instead
of developing more factors, we will develop in detail the analysis (of dependencies of
asset returns) with a single factor. We will concentrate on two main criticisms on the
CAPM, questioning the hypothesis of normal distributed asset returns and the single-
period character of the standard model. In the �rst step, we extend the model by taking
higher moments into account, leading to risk premia for co-skewness and co-kurtosis.
Second, we will allow these factors to vary over time in an autoregressive heteroscedastic
context, using the new four-moment bivariate GARCH-in-mean model. This will lead us
to the time-conditional four-moment Capital Asset Pricing Model.
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Introduction

A substantial part of today's research in �nance is directed towards explaining the cross-
section of expected returns. Concerning the understanding of how investors value risky
assets, it is commonly agreed that investors demand a higher expected return for in-
vestment in riskier projects. The Capital Asset Pricing Model (CAPM), developed by
Sharpe (1964) and Lintner (1965) is still the most widely used approach to relative asset
evaluation, in spite of its weak empirical success. In its simplest form this theory pre-
dicts that the expected returns on an asset above the risk free rate is proportional to
the non-diversi�able risk, which is measured by the covariance of the asset return with
a portfolio composed of all the existing assets, called the market portfolio. Based on
the mean-variance description developed by Markowitz (1952) in the framework of his
portfolio theory, the CAPM fundamentally relies on a Gaussian asset return distribution.
However, it has long been recognized that �nancial asset returns are non-normal. Hence,
it is appropriate to stress the importance of taking more moments into account. While
normal distributions are entirely described by the �rst two moments (mean and variance),
asymmetric and fat-tailed distribution are not. These two phenomena demand to consider
moments of higher order. A number of studies have proven that the comparison of direct
expected utility and utility approximated by the �rst two moments, leads to very small
di�erences in terms of optimal portfolio allocation (Simaan (1993), Chamberlain (1983)).
An explanation of the good performance of the mean-variance criterion in these papers
may be that, although asset returns are non-normal they are at least elliptically dis-
tributed. Chamberlain (1983) showed that in this case the mean-variance approximation
is equivalent to direct utility maximization.
However, recent research has shown that asset returns tend to deviate from elliptical
distributions, stressing the importance to consider higher moments. Moreover, behavior
studies proved that investors reveal a preference for skewness (third moment) and are
averse towards kurtosis (fourth moment). This stylized fact coincides with the �ndings
of the usual utility functions (Hwang and Satchell (1999)). Empirical results have proven
that the corresponding third and fourth moment (skewness and kurtosis) of asset distri-
butions signi�cantly di�er from those of the normal distribution (Kraus and Litzenberger
(1976), Campbell and Siddique (1999), Hwang and Satchell (1999), Fang and Lai (1997)).
Consequently, this work will highlight the recent research in this direction and propose
an extension of the traditional CAPM leading to a Four-Moment-Capital-Asset-Pricing-
Model, referring to Fang and Lai (1997), Hwang and Satchell (1999), Rohan and Chaudhry
(2000) and Kraus and Litzenberger (1976).
During the last decades, a second track has often been followed in order to improve the
standard CAPM. The hypothesis that the risk associated with an asset does not vary over
time, seems to be inappropriate. The traditional Capital Asset Pricing Model is built on
the hypothesis that the investor lives only one period and optimizes her wealth at the end
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of this period. However, in the real world the investment horizon consists of many periods.
Applying the CAPM in this context implies constant risk parameters which seems to be
over-simpli�ed. By now, it has long been recognized that there is no doubt about the
empirical evidence for time-varying risk premia of �nancial assets. This stylized fact was
�rst attributed to the time-varying behavior of conditional covariances (see Engle et al.
(1987) or Bollerslev et al. (1988)). A common way in order to model time-conditional
moments is to consider an autoregressive moving average relations. Engle (1982) �rst
introduced the Autoregressive Conditional Heteroscedasticity (ARCH) model followed by
Bollerslev (1986) with the Generalized ARCH (GARCH) aiming to parameterize the con-
ditional mean and the conditional covariance of �nancial time series. These models are
often built on the assumption that error terms are normally distributed, and the param-
eters are estimated using the conditional normal log-likelihood framework. However, as
already mentioned, kurtosis and skewness play an essential role in asset distributions.
This work will attempt to incorporate the need of taking higher moments into account
with the stated time-conditional context. Leon et al. (2002) and Campbell and Siddique
(1999) contributed to this area of research through the consideration of univariate time-
series. In both approaches, asymmetric and fat-tailed distributions have been applied in
order to parameterize the conditional moments. We will extend these models to arrive
at a bivariate model, which is composed of one asset and the market portfolio. We will
introduce this model as the new Four-Moment Time-Conditional Capital Asset Pricing
Model using the bivariate GARCH approach with time-conditional skewness and kurtosis
(GARCHSK). We will use the Gram-Charlier expansions of the normal distribution in
order to model the higher moments explicitly in the likelihood estimation. In doing so,
we need to introduce tensor methods and hermite polynomials that are often applied in
physics and mathematics, although these methods are yet to be widely used in �nancial
or economic theory.
The traditional CAPM is an intuitive and rather simple theory, but yields rather poor
empirical results. The most successful extensions in the sense of empirical results often
add factors that lack simple interpretations in terms of risk (cf. the empirical nature of
the Fama French factors). Instead of developing new factors, we will develop the "detail"
in the analysis of dependencies between asset returns with a single factor, taking higher
moments into account and letting the betas vary over time.
The rest of this study will be organized as follows: In the �rst chapter we give a brief
review on asset pricing theory. We revisit the CAPM and its shortcomings as well as
existing extensions. The derivation of the four-moment CAPM will be discussed in the
second chapter. In the third chapter we will transform this model to a time-conditional
one, using the bivariate GARCH-in-mean model extended with skewness and kurtosis.
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Chapter 1

A Review of the CAPM

1.1 Mean-Variance Portfolio Choice
In his seminal work, Harry Markowitz (1952) proposed a model that combined the pref-
erence of high expected investment returns and the aversion against the risk. His model
considers the portfolio as a whole and does not focus on securities on an individual basis.
In order to measure the market risk of a portfolio, he used the variance (volatility) of
the underlying portfolio returns. Markowitz de�ned the notion e�cient portfolio. This
approach can be understood in two di�erent ways. First, a portfolio is considered as
e�cient when it minimizes the volatility for a given expected return. Second, a portfolio
that maximizes the expected return for a �xed level of market risk (volatility) is called
e�cient. Considering the universe of all feasible portfolios these two de�nitions describe
a curve in the expected-return-variance space, known as the e�cient frontier. Due to its
two objectives this approach is called Mean-Variance-Analysis.
We will now formalize this model. The �rst two moments of the portfolio can be written
as follows:

E(RP ) =
N∑

i=1

ωiRi

Var(RP ) =
N∑

i=1

N∑
j=1

ωiωjσij

where RP de�nes the portfolio return, Ri the return on asset i, σij the covariance between
asset i and asset j, ωi the proportion of asset i held in the portfolio and N the number
of disposable assets. As already stated above the standard assumption is that the agent
prefers a higher expect return and a lower variance. Hence, this investor only takes those
two parameters into account, i.e. the �rst two moments of the distribution of the portfolio
return. In this approach the only income of investors is the outcome of their portfolio.
These agents construct their portfolio in order to maximize their wealth at the end of the
period. Thus, the underlying utility function is an increasing function of the expected
return. In addition, this function is assumed to be concave since the investor is risk averse.
This mean-variance analysis is fully consistent with expected utility maximization if the
expected returns are normally distributed, an assumption that is respected over a short
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time horizon. This assumption may not hold over a longer period. In this case, one can
consider the risk of loss (shortfall risk), which only considers negative deviations from a
target return (e.g. semi-variance proposed by Markowitz (1959)).
As described above, the e�cient frontier can be obtained by using either a maximization-
problem (expected returns) or a minimization-problem (variance). The simplest way to
determine this line can be expressed in the following matrix-form:

min
ω

1

2
ω′Σω (1.1)

s.t. : 1I′ω = 1

R′ω = µ

with Σ the variance-covariance matrix of returns, R the vector of expected returns and
ω the vector of asset weights in the portfolio. As long as there are no further constraints
(e.g. ωi ≥ 0) this problem can easily be solved by using the Lagrange multiplier method
(Merton (1973)). We obtain a hyperbolic relation between the expected return and the
portfolio's variance. Only the upper part of this hyperbola de�nes the e�cient frontier.
This relation is shown in �gure 1.1.

Figure 1.1: E�cient frontier hyperbola

We can de�ne more elaborate models by adding linear constraints, in particular non-
negative weights, which corresponds to restricted short sales. Elton and Gruber (1995)
present the di�erent cases in detail.
The choice of a particular point on the e�cient frontier depends on the speci�c utility
function of each investor.
We should mention that all the points on the e�cient frontier can be obtained by linear
combination of two e�cient portfolios. This result is known as Black's theorem and has
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interesting applications in the domain of mutual funds: an agent who wants to hold a
speci�c e�cient portfolio can achieve this by combining two e�cient mutual funds.

1.2 The Traditional Capital Asset Pricing Model
In the previous section, we introduced the Markowitz model, also known as the mean-
variance-approach. We considered a portfolio from the point of view of one investor.
However, this model cannot explain the observed asset allocations, since it is only a
normative analysis. It postulates that the chosen portfolio should represent a point on
the e�cient frontier, but does not say which one.
The next step is to consider the universe of investors as a whole, which leads us to the
deduction of the Capital Asset Pricing Model(CAPM). The idea is to derive a theory of
asset valuation in an equilibrium situation, drawing together expected returns and market
risk. This model is considered as the �rst to explain asset valuation by using the notion
of risk. We will see that this risk can be split into a systematic risk, common to all assets
in the same market segment and an unsystematic risk attributed to the speci�c asset.
The CAPM is built on the following main assumptions:

1. Investors are risk averse and maximize the expected utility of wealth at the end of
the period

2. The asset returns are normally distributed or the investor only considers the �rst
two moments of their return distribution (e.g. quadratic utility function)

3. Investors only consider one investment period which is the same for all investors

4. Investors have limitless access to �nancial markets and can borrow and lend at a
risk-free rate RF

5. Markets are complete (perfect information) and perfect (no taxes, no transaction
costs)

In the Markowitz world we considered an investor who acted in isolation and only pos-
sessed risky assets. We will now introduce a risk-free asset and consider the market
equilibrium.

1.2.1 Portfolio Choice with a risk-free Asset
The introduction of a risk-free asset, whose return is denoted RF , enables the investor to
spread her wealth between an e�cient portfolio and this risk-free asset, which leads us to
the following equation, where RE denotes the return of the chosen e�cient portfolio and
RP the return of the resulting portfolio composed of the risky and the risk-less asset:

E(RP ) = xRF + (1− x)E(RE) (1.2)

with x the proportion of wealth invested in the risk-free asset. The portfolio's risk is than
simply given by:
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σP = (1− x)σE (1.3)

σ denoting the respective standard deviation of the portfolio returns. Combining (1.2)
and (1.3) leads us to the following expression:

E(RP ) = RF +

(
E(RE)−RF

σE

)
σP . (1.4)

For each e�cient portfolio we obtain a line representing all linear combinations of this e�-
cient portfolio and the risk-free asset. Among this set of lines there is one that dominates
all others.

Figure 1.2: E�cient frontier in the presence of a risk-free asset

This line corresponds to the point M . Thus, we can consider the e�cient frontier in a
world with a risk-free asset as a straight line from the point RF to M (see �gure 1.2). This
line is also called capital market line. As we can easily see in this �gure, investors bene�t
from the risk-free opportunity, since for a given expected return the risk on this new
e�cient frontier is less than or equal to the risk of the corresponding portfolio consisting
of risky assets. In other words, the e�cient frontier with a risk-free asset dominates the
e�cient frontier without a risk-free asset.
As in the Markowitz Model the choice of a speci�c point on this line depends on the
utility function and more precisely on the level of risk-aversion of the investor. If the
investor has unlimited access to an e�cient �nancial market, i.e. he can borrow money
to a rate RF , the e�cient frontier to the right of point M corresponds to the extension of
the line between RF and M . If the investor is constrained to borrow to a rate R̃F >RF

the e�cient frontier is �atter to the right of point M . If the investor has no access at all
to �nancial markets the e�cient frontier with a risk-free asset corresponds to the e�cient
frontier without a risk-free asset for E(RP ) > E(RM). These results do not only depend
on the respective �nancial market and its accessibility but also on the assumption that
all assets are in�nitely divisible.
The following derivation of the CAPM assumes an e�cient �nancial market (R̃F = RF )
and in�nite divisibility of assets. We call markets that ful�l these conditions as frictionless.
Figure 1.2 and equation (1.2) show that the portfolio decision problem can be divided
into two parts: �rst, the investor chooses the optimal risky portfolio corresponding to
one point on the e�cient frontier without a risk-free asset and second, the choice of the
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split between the risk-free asset and the risky portfolio. This is known as Tobin's (1958)
two-fund separation theorem.

1.2.2 Equilibrium Analysis
Until now, we have only considered one isolated investor. Subsequently, taking all in-
vestors into account, we move on to the market equilibrium. Since every investor is
supposed to hold a mean-variance portfolio and we assume homogenous expectations of
moments, all agents optimize the same program and derive the same e�cient frontier,
since the one passing through M dominates all the others. Depending on their level of
risk aversion they invest a certain proportion in the risk-free asset and the rest in the
portfolio M . In equilibrium, all assets are held and since the only traded risky portfolio
is portfolio M it must contain all assets. Hence, this portfolio is the market portfolio and
it holds all the assets in proportions of their market capitalization.
The Capital Asset Pricing Model aims to value each asset by considering an equilibrium
situation. By applying the two-fund theorem we only have to consider the risky part of
the portfolio in order to price each asset since the two decisions are independent. Similar
to (1.2) and (1.3) we de�ne:

E(RP ) = xRi + (1− x)E(RM) (1.5)
σP =

[
x2σi + (1− x)2σ2

M + 2x(1− x)σiM

]1/2
. (1.6)

By varying x we can derive all possible e�cient portfolios consisting of the risky asset i
and the market portfolio in the E(RP )−σP−space (cf. �gure 1.3).

Figure 1.3: e�cient frontier combining the market portfolio and a risky asset

In the optimum we can see that the leading coe�cient of the tangent to this e�cient
frontier must be equal to the slope coe�cient of the market line:

∂E(RP )

∂σP

=
E(RM)−RF

σM

. (1.7)

Considering the functional relations above we have:
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∂E(RP )

∂σP

=
∂E(RP )

∂x

∂x

∂σP

. (1.8)

The two derivatives are:

∂E(RP )

∂x
= E(Ri)− E(RM) (1.9)

∂σP

∂x
=

2xσi − 2(1− x)σ2
M + 2(1− 2x)σiM

2σP

(1.10)

which gives us:

∂E(RP )

∂σP

=
(E(Ri)− E(RM))σP

x(σ2
i + σ2

M − 2σiM) + σiM − σ2
M

. (1.11)

In equilibrium the market portfolio contains all assets. The proportion x is therefore
an excess in asset i in the portfolio P that must be zero at equilibrium (considering all
investors). The Portfolio P is then the market portfolio (σP =σM) and we obtain for the
point M:

∂E(RP )

∂σP

(M) =
(E(Ri)− E(RM))σM

σiM − σ2
M

(1.12)

From (1.7) we derive:

(E(Ri)− E(RM))σM

σiM − σ2
M

=
E(RM)−RF

σM

. (1.13)

That last expression can also be written as

E(Ri) = RF +
E(RM)−RF

σ2
M

σiM . (1.14)

De�ning

βi =
σiM

σ2
M

(1.15)

we obtain the characteristic relationship of the CAPM:

E(Ri) = RF + βi(E(RM)−RF ). (1.16)

This equation can be understood as follows: The expected return of the risky asset i equals
the return of the risk-free asset plus a risk premium. βi is also called the systematic risk
of asset i. By consequence, the risk-free asset has a beta of zero and the market portfolio
a beta of one.
The CAPM establishes a theory for valuing individual securities and highlights the im-
portance of taking risk into account. It states that there are two kinds of risk. First, we
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have the systematic risk, common to all assets, which is rewarded by the market (risk
premium). Second, each asset has an individual non-rewarded risk which can also be
called diversi�able risk, since it can be avoided by constructing diversi�ed portfolios. We
can also write:

Ri = RF + βi(E(RM)−RF ) + εi (1.17)

with E(εi)=0 and Var(ε) the unsystematic risk, according to the CAPM.
In the following section we will point out the shortcomings as well as some extensions of
the traditional CAPM.

1.3 Shortcomings and Extensions of the CAPM
Empirical studies trying to justify the Capital Asset Pricing Model in its traditional form
have shown that this model is inadequate to explain the observed cross-sectional returns.
This is partly due to its strong assumptions. However, there exist extensions that are
appropriate to eliminate some of these assumptions.

Black's zero-beta model
One example is the often criticized existence of a risk-free asset. Ingersoll (1987) showed
that in the absence of a risk-free asset the Capital Asset Pricing Model still holds by
introducing a zero-beta portfolio:
We assume that by combining risky assets it is possible to create portfolios that are
uncorrelated with the respective market portfolio and therefore have a beta of zero. As
a matter of fact, these portfolios have the same expected return E(RZ) since the risk
premium rewarded by the market is zero. Among all these zero-beta portfolios only one
is located on the e�cient frontier. It minimizes the risk subject to the expected return
E(RZ).

Figure 1.4: E�cient frontier in the absence of a risk-free asset

Ingersoll (1987) applied the same reasoning as in the basic case (section 1.2.2.) this time
combining the zero-beta portfolio and the market portfolio
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E(RP ) = xE(RZ) + (1− x)E(RM) (1.18)
σ(RP ) =

[
x2σ2

Z + (1− x)2σ2
M

]1/2
. (1.19)

They proved that the following equation holds:

E(Ri) = E(RZ) + βi(E(RM)− E(RZ)). (1.20)

This is the Black-CAPM (1972) or two-factor-model and it eliminates one major criticism
on the CAPM: the existence of a risk-free asset and the unlimited access to it.

Intertemporal Capital Asset Pricing Model (ICAPM)
Since Merton's (1973) seminal article on the intertemporal approach of the CAPM, many
successors followed him and developed di�erent models in the same line of criticism on
the traditional CAPM: Unlike the basic model by Sharpe and Lintner, Merton assumed
that the agent maximizes her expected utility of wealth over a time horizon longer then
one period. As a consequence, he allowed state variables, like the �xed risk-free return
RF in the basic model, to vary randomly over time. In this case Merton showed that
the investor's behavior can be better described by taking a third asset into account, that
is perfectly negatively correlated with changes in the return on the risk-free asset. Thus
it hedges against changes in the agent's investment opportunity set (here: the risk-free
asset). In the same way, any other state variable can be taken into consideration. Our
two-fund separation model now becomes a three-fund separation model, including the
risk-free asset, the market portfolio and the so called hedge portfolio. Merton proposed a
long term bond portfolio for this hedge portfolio. According to the standard logic of the
CAPM the expected return is then increased by the risk premium associated with this
last portfolio.

E(Ri) = RF + λiM(E(RM)−RF ) + λiH(E(RH)−RF ) (1.21)

with:

λiM =
σi(ρiM − ρiHρMH)

σM(1− ρ2
HM)

and λiM =
σi(ρiH − ρiMρMH)

σH(1− ρ2
HM)

. (1.22)

Hence, this approach was a �rst contribution to the explanation of the empirical "anomaly"
that small cap �rms that have the same market beta as comparable large cap �rms reveal
higher expected returns. According to Merton's intertemporal version of the CAPM this
could be due to a higher sensitivity to interest rate �uctuations.
Furthermore, this model allows the expected return of a zero-beta portfolio to di�er from
the risk-free rate, unlike the traditional form of the CAPM. Merton argues that this
third factor could be the expected return of a zero-beta portfolio and he obtains the
characteristic form of his intertemporal version of the CAPM:

E(Ri) = RF + βi(E(RM)−RF ) + γi(E(RZ)−RF ) (1.23)
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He uses the zero-beta portfolio as a proxy for the long term bond portfolio measuring
the volatility of the risk-free rate, since empirical evidence showed that the correlation of
a bond portfolio and the market portfolio is close to zero. Furthermore, Merton shows
that the gamma is negatively correlated with the beta and thus, explains why empirically
low-beta portfolios have higher expected returns than high-beta portfolios.
To conclude, Merton's multi-period version of the CAPM produces a multi-factor model,
when the investment opportunity set is stochastic. As we will see in the following sections,
this model can then be generalized by considering other risk-factors contributing through
risk premiums to the expected return on a speci�c asset.

Consumption-based Capital Asset Pricing Model (CCAPM)
Another way of implementing a multi-period model is to explain the asset return through
the consumption growth rate, instead of explaining it through market return. Bree-
den (2003) was the �rst to come up with a continuous-time version of this so-called
Consumption-based Asset Pricing Model (CCAPM). The expected return for the asset i
in the equilibrium is given by:

E(Ri) = E(RZ) + γ(Cov(∆ct, Ri −RZ)) (1.24)

where γ is the coe�cient of relative risk aversion with respect to intraperiod utility �ow.
This was also a response to the main criticism by Roll (1977) that the market portfolio
does not exist and is di�cult to approximate.

Multi-Factor-Models
One major problem of the traditional CAPM is that it can not explain the empirical
fact that small cap �rms have signi�cantly higher expected returns than big cap �rms.
Similarly, �rms with a high book-value-to-price ratio (called "value" stocks) do better
than �rms with a low ratio (called "growth" stocks). Fama and French (1993) therefore
introduced two additional factors to the traditional CAPM:

• SMB (small minus big): denotes the excess returns of a small-capitalization portfolio
compared to a large-capitalization portfolio

• HML (high minus large): denotes the excess returns of value stocks compared to
growth stocks

The model then becomes:

E(Ri) = RF + βi(E(RM)−RF ) + bisE(SMB) + bivE(HML) (1.25)

Fama and French still see high returns as a reward for taking on high risks. Stocks with
a high book-to-price ratio are supposed to have higher expected returns. Consequently,
they must be more risky. The idea is that relatively low priced stocks are largely due to
the investors' mentality that these stocks are riskier.
In the same way as Fama and French introduced the two additional factors other authors
tried to take more factors into account. Carhart (1997), for example, added an index
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measuring the di�erence between the average of the highest and the average of the lowest
return.

Summarizing the CAPM extensions
Each of these approaches called only one essential assumption of the traditional CAPM
into question. They derived models for a world where a risk-less asset does not exist or
the market portfolio is not observable. Furthermore, they added more factors in order to
explain more and more of the observed deviations from the predictions by the traditional
CAPM. As a matter of fact, taking more factors into account, leads to higher R2 and a
better description of the asset return. However, there is a trade o� between the inter-
pretability and the deviation from true values. For an empirical review one can refer to
Cochrane (2001).
In the next chapter we will present a model that achieves better empirical results without
introducing new factors, keeping the relative simplicity of the CAPM in comparison to
other models.
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Chapter 2

The Four-Moment-CAPM

In this chapter we will present a �rst approach in order to reinstate the traditional one-
factor Capital Asset Pricing Model. We go back to the simple idea that the investor
has a speci�c utility function and is willing to optimize her expected utility of wealth.
In the mean-variance approach of Markowitz, upon which the CAPM is built, the risk
was represented by the variance (or the standard deviation) of the portfolio returns.
Consequently, the investor tried to maximize the expected portfolio return given a certain
standard deviation or tried to minimize the standard deviation given a level of expected
return of her portfolio. Depending on her level of risk aversion the investor chose a point
on the e�cient frontier representing an expected-utility-standard-deviation couple.
Considering only the �rst two moments of the portfolio return distribution is only an
approximation of the real portfolio allocation game, except in two situations:

1. When the portfolio returns are normally distributed, and hence the distribution is
perfectly determined by the �rst two moments.

2. When the representative agent (investor) has an utility function only depending on
the �rst two moments (e.g. a quadratic utility function).

However, empirical results have proved that the corresponding third and fourth mo-
ment (skewness and kurtosis) signi�cantly di�er from those of the normal distribution
(e.g. Kraus and Litzenberger (1976), Campbell and Siddique (1999), Hwang and Satchell
(1999), Fang and Lai (1997)). Hence, an equilibrium analysis such as the CAPM, that is
built on the expected utility - risk duality, should take these higher moments into account.
In addition, this approach is justi�ed by the fact that the most used utility functions yield
existing derivatives of higher order di�erent from zero. Instead of �xing one particular
utility function, we will concentrate on a general method that is applicable to a large
class of functions with the objective to demonstrate the need of consideration of higher
moments.

2.1 Approximation of Utility Functions
We consider any arbitrary utility function. As in Markowitz (1952), the investor only tries
to maximize her wealth stemming from her asset investment, since we assume a world
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without labor income. Hence, she will consider the utility of the investment return (R).
The fourth-order Taylor expansion gives us:

U(R) =
4∑

i=0

[
U(i)(E(R))

i!
(R− E(R))i

]
+ o

[
(R− E(R))4

]
(2.1)

where U (n) denotes the nth derivative of the function U . Taking the expectation on both
sides yields:

E[U(R)] = U(E(R)) +
U(2)(E(R))

2
σ2 +

U(3)(E(R))

6
s +

U(4)(E(R))

24
κ (2.2)

with s the non-standardized skewness and κ the non-standardized kurtosis of the port-
folio return distribution. Note that the usual de�nitions of skewness and kurtosis are
normalized:

S =
E(R− E(R))3

σ3
and K =

E(R− E(R))4

σ4
. (2.3)

If we neglect the in�uence of the last two components, (2.2) coincides with the mean-
variance approach, since the second derivative is negative1. Maximizing expected utility
is equivalent to the portfolio trade-o� between mean and variance and depends on the level
of risk aversion. Similarly, if the utility function only depends on the �rst two moments
(i.e. U ≡ U(µ, σ2)), the third and fourth derivatives are zero and the last two terms equal
consequently zero. This is the underlying quadratic utility function in the Markowitz
approach.
But what happens in a world where investors are sensitive to skewness and kurtosis and
portfolio returns are not normally distributed? First, we consider special utility functions
with desirable features2 in order to determine the sign of the third and the fourth moment.

U(W ) U(1)(W ) U(2)(W ) U(3)(W ) U(4)(W )
CRRA W 1−γ

1−γ W−γ −γW−(γ+1) γ(γ + 1)W−(γ+2) −γ(γ + 1)(γ + 2)W−(γ+3)

CARA − exp(−λW )
λ exp−λW −λexp(−λW ) λ2exp(−λW ) −λ3exp(−λW )

DARA ln(W ) 1
W − 1

W 2
2

W 3 − 3
W 4

λ and γ are respectively positive, denoting the absolute and the relative risk aversion.
For each utility function we can state that the third derivative is positive and the fourth
negative. Analyzing (2.2), we can therefore assume that investors have preference for
a higher skewness and an aversion towards kurtosis which had already been found by
Horvath and Scott (1980). Looking at the distribution this is rather easy to understand.
A positive skewness means a higher probability for higher values of wealth relative to
lower values:

P[x > E(R) + c]>P[x<E(R)− c] (2.4)
1We still assume that investors are risk averse.
2Constant Relative Risk Aversion (CRRA), Constant Absolute Risk Aversion (CARA) and Decreasing

Absolute Risk Aversion (DARA)
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Concerning the fourth moment, a high kurtosis re�ects so-called "fat tails", i.e. a higher
probability for extreme values than in the case of a normal distribution. Following the
prospect theory, the negative value that is attributed to the chance of highly negative
returns excesses the positive value that is attributed to the opportunity of higher returns.
Jondeau and Rockinger (2004) showed that the fourth-order Taylor expansion of a CARA-
Utility function leads to excellent approximations of the underlying function in the frame-
work of optimal portfolio allocation even under large departure from normally distributed
portfolio returns. On the contrary, the mean-variance approach yields large deviation
from the optimal portfolio constructed by direct expected utility maximization.
As a result, we consider the approximation of utility function by a fourth-order Taylor
expansion as satisfactory. Beside using the variance as a risk and uncertainty measure,
this approach also incorporates skewness and kurtosis. Since the traditional CAPM does
not consider the latter, we will correct the model by introducing two factors.

2.2 Higher Moment Risk Premia
As explained in the previous section, we can approximate any utility function as a function
of the expected return, the standard deviation, the skewness and the kurtosis of the
portfolio return distribution function. The maximization problem yields therefore:

max
ωP ,ω0P

Φ(µP , σ2
P , sP , κp) (2.5)

s.t.
N∑

i=1

ωiP = 1− ω0P

with:

µP = ω0P R0 + E(ω′P R) = ω0P R0 + ω′P µ

σ2
P = ω′P E[(R− µ)(R− µ)′]ωP = ω′P ΣωP

sP = ω′P E[(R− µ)(R− µ)′ ⊗ (R− µ)′](ωP ⊗ ωP ) = ω′P ΩωP

κP = ω′P E[(R− µ)(R− µ)′ ⊗ (R− µ)′ ⊗ (R− µ)′](ωP ⊗ ωP ⊗ ωP ) = ω′P ΨωP
.

⊗ denotes the Kronecker-product, R = (R1, . . . , RN)′ the vector of asset returns, ωP =
(ω1P , ω2P , . . . , ωNP )′ the vector of portfolio proportions invested in these assets, ω0P the
part invested in the risk-free asset (returning R0) and µ = (E(R1), E(R2), . . . , E(RN))′.
ΩωP

is the vector of co-skewnesses for the weighting vector ωP and ΨωP
the vector of co-

kurtosises respectively. We took this matrix representation from Jondeau and Rockinger
(2004) who used it in a di�erent approach (Asset allocation problem). Writing the La-
grangian of this problem gives:

L(ωP , λ) = Φ(µP , σ2
P , sP , κp)− λ(ω′P 1I + ω0P − 1). (2.6)

The �rst order conditions yields:
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∂L(ωP , λ)

∂ω′P
= Φ1µ + 2Φ2ΣωP + 3Φ3ΩωP

+ 4Φ4ΨωP
− λ

!
= 0 (2.7)

∂L(ωP , λ)

∂ω0P

= Φ1R0 − λ
!
= 0 (2.8)

∂L(ωP , λ)

∂λ
= ω′P 1I + ω0P − 1

!
= 0 (2.9)

where Φi is the partial derivative of the ith argument. In the equilibrium every investor
behaves optimal: From (2.7) and (2.8) we derive the condition for an optimum:

µ−R0 = α1ΣωP + α2ΩωP
+ α3ΨωP

(2.10)

with:

α1 = −2Φ2

Φ1

, α2 = −3Φ3

Φ1

and α3 = −4Φ4

Φ1

(2.11)

In order to move from optimal conditions for individuals to the resulting market equi-
librium, we refer to Cass and Stiglitz (1970). Under identical agent's probability beliefs,
a necessary and su�cient condition to apply a two-fund separation theorem is that all
agents have a hyperbolic absolute risk aversion utility function (HARA), i.e. that each
investor's risk tolerance is a linear function of his wealth (−U ′

i/U
′′
i = ai + biW ) with the

same parameter bi. In this case the portfolio weights of each portfolio are the same. Sum-
ming up all these portfolios lets us conclude that the condition (2.10) must also hold for
the market portfolio. De�ning:

β =
ΣωM

σ2
M

(2.12)

γ =
ΩωM

sM

(2.13)

ϑ =
ΨωM

κM

(2.14)

we obtain the four-moment Capital Asset Pricing Model:

µ−R0 = b1β + b2γ + b3ϑ (2.15)

The variables bi can be understood as the corresponding risk premia associated with the
respective risk. Moving to a single asset we obtain a more intuitive and comprehensible
version, resembling the usual form of the CAPM:

E(Ri)−R0 = b1βi + b2γi + b3ϑi (2.16)

Referring to the traditional CAPM βi denotes the systematic beta, γi the systematic
skewness and ϑi the systematic kurtosis of asset i. It is easy to verify that:

16



βi =
Cov(Ri, RM)

σ2
M

, γi =
CoS(Ri, RM)

sM

and ϑi =
CoK(Ri, RM)

κM

(2.17)

with:

CoS(X, Y ) = E
[
(X − E(X))(Y − E(Y ))2

]
(2.18)

CoK(X, Y ) = E
[
(X − E(X))(Y − E(Y ))3

]
(2.19)

the corresponding co-moments and

sM = E [RM − E(RM)]3 and κM = E [RM − E(RM)]4 . (2.20)

We have thus derived a multi-factor model. However, the three factors go back to the same
root. Indeed, they measure the relation of the asset with the market portfolio concerning
the respective risk. Hence, we need only one appropriated index in contrast to "real"
multi-factor models. We should stress the important problem, that indices are mostly
not prede�ned and often hard to estimate, which goes back to critique of Roll (1977).
We have to admit that the stated market portfolio is probably the index that is the least
observable.
As a consequence of the four-moment CAPM, the agent will be rewarded a risk premium
not only for the volatility (variance) of the market portfolio but also premia for the market
skewness and the market kurtosis provided the asset is correlated with the market portfolio
in the sense of the speci�c order (i.e. the co-moments are signi�cant).
The expected excess return of the market portfolio becomes now:

E(RM)−R0 = b1 + b2 + b3. (2.21)

We will now have a look on these premia: As developed in the previous section, investors
have a positive preference for expected returns and skewness, on the contrary they have an
aversion towards high variance (standard deviation) and high kurtosis. As a consequence,
we can state:

Φ1 > 0 , Φ2 < 0 , Φ3 > 0 , Φ4 < 0. (2.22)

Regarding the risk premia we obtain:

b1 = −2Φ2

Φ1

σ2
M > 0 (2.23)

b2 = −3Φ3

Φ1

sM R 0 (2.24)

b3 = −4Φ4

Φ1

κM > 0 (2.25)

For the systematic beta we get the same sign as already determined in the framework of
the traditional CAPM. The risk premium that is rewarded for a beta reduction is assumed
to be positive (b1 >0). Higher market risk results in a higher risk premium.
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For the systematic skewness the result concerning the sign is ambiguous. b2 will take the
opposite sign of the market skewness. Since agents have a preference for high skewness,
a negative market skewness is considered as a risk and will be rewarded with a positive
skewness-risk premium. For the Kurtosis we can apply the same argument as for the
second moment: high kurtosis ("fat tails") is a negative investment incentive and the
corresponding kurtosis-risk premium will be positive.
Hwang and Satchell (1999) showed that the four-moment CAPM yields better results in
terms of explanation of cross-sectional returns than the standard mean-variance approach.
This is especially true in the case of emerging markets or hedge funds, since skewness and
kurtosis are particulary signi�cant in these contexts. However, the model, as presented
in this chapter, applies a stationary analysis to an evolutionary problem. Especially in
emerging markets the assumption of stationarity of risk premia does not hold. The next
chapter will challenge this assumption by allowing the corresponding moments and co-
moments to vary over the investment horizon.
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Chapter 3

The Time-Conditional CAPM

This chapter will highlight another substantial part of today's research e�orts in �nance
in order to improve the standard Capital Asset Pricing Model. One rather strong assump-
tion of the latter is that the investment horizon is one period and the investor optimizes
her expected return (wealth) at the end of this period. In the real world, however, in-
vestors live many periods. Hence, applying the CAPM on the real world, we make the
assumption that the speci�c risk (beta) of an asset remains constant over time. Consid-
ering the well-accepted fact that the relative risk of a �rm's cash �ow is varying over,
time this assumption seems to be misleading. During a recession, for example, �rms'
need for �nancial leverage depends on their cash-�ow situation. Firms that actually have
problems may be obliged to borrow more money than �rms that are more substantial.
This makes them more dependent on the market and increases their covariance with it.
In addition, the positioning of �rms in the di�erent markets is likely to vary, inducing
�uctuations in the co-moments, too. Consequently, this chapter will o�er a model which
allows systematic risk parameters to vary over time, in contrast to the standard CAPM.

3.1 The One-Factor Model
First, due to its simplicity, we will derive the one factor conditional CAPM. Rit and RMt

will denote the excess returns of the Portfolio i and the market portfolio respectively at
period t. The conditional version is given as:

Et(Rit|Ft−1) = βitEt(RMt|Ft−1) (3.1)

with

βit =
Covt(Ri, RM |Ft−1)

Vart(RM |Ft−1)
and RMt = ω′tRt (3.2)

ω = (ω1, ω2, . . . , ωN)′ being the vector of asset proportions in the market portfolio, R =
(R1, R2, . . . , RN)′ the vector of excess asset returns and Ft the information set available
at period t. As a result of the consumption based Capital Asset Pricing, it is often argued
that the risk premium should be constant over the time. As derived by Jensen (1972) and
Campbell and Viceira (2001), we have:
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Et(Rit|Ft−1) = γCovt(Ri, RM |Ft−1) (3.3)

with

γ =
Et(RMt|Ft−1)

Vart(RM |Ft−1)
. (3.4)

Following the cited theory, γ can be understood as a measure of relative risk aversion.
The decomposition of the market portfolio yields:

Et(Rit|Ft−1) = γCovt(Ri, ω
′
t−1R|Ft−1) (3.5)

= γ

N∑

k=1

ωk,t−1Covt (Ri, Rk|Ft−1) . (3.6)

For the whole vector of conditional expected excess returns we obtain:

µt = γHtωt−1 (3.7)

where µt = Et(Rt|Ft−1) denotes conditional mean vector and Ht = Covt(R, R|Ft−1) the
conditional covariance matrix of the excess returns given the information available at time
t−1. Hence, we can derive the conditional moments of the market excess return as:

σ2
Mt = ω′t−1Hωt−1 and µMt = ω′t−1µt. (3.8)

Substituting (3.4) in (3.7) and de�ning βt =Htωt−1/σ
2
Mt lead us back to our starting model:

µt = βtµMt. (3.9)

The introductory ideas at the beginning of this chapter and former empirical work (e.g.
Jagannathan andWang (1996)) lead to the hypothesis that the covariances of asset returns
and thus Ht vary over time. Hence, the de�nition of beta and (3.9) show that the betas as
well as the conditional means are time-dependent and likely to vary over the investment
horizon.
We will now prove that under the stated conditions the conditional CAPM deviates from
the unconditional CAPM. For this purpose, we remind the decomposition formula of the
variance:

Var(X) = Var[E(X|Y = y)] + E[Var(X|Y = y)]. (3.10)

This formula is also known under the name of analysis equation of variance. Applying
(3.10) to our model yields:

Σt = Var(µt) + E(Ht) (3.11)

where Σt =Cov(R, R) denotes the unconditional covariance matrix of excess asset returns.
Another formula stemming from standard probability courses shows:
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E[E(X|Y = y)] = E(X) (3.12)

which gives us:

E(µt) = E[E(Rt|Ft−1)] = E(Rt). (3.13)

Taking the expectation in t on both side of (3.7) leads us to:

E(Rt) = E(µt) = γE(Htωt−1). (3.14)

In the special case where the market portfolio weights are �xed to ωt≡ω we can multiply
(3.11) by ω from the right hand side. By rearranging terms we obtain:

E(Rt) = γ(Σtω − Var(µt)ω). (3.15)

Using (3.7) �nally yields:

E(Rt) = γ(Σtω − γ2Var(Htω)ω) (3.16)
= γΣtω − γ3Var(Htω)ω. (3.17)

The latter equation shows that the unconditional moments satisfy the same CAPM rela-
tion as the conditional moments (see (3.7)) only if Var(Htω) = 0. Since Ht is supposed
to vary over time the conditional version of the CAPM deviates from the unconditional
CAPM. Hence, we need a model that incorporates this time-conditional context.

3.2 A Model with Autoregressive and Heteroscedastic
Covariances

We have derived a conditional version of the Capital Asset Pricing Model without deter-
mining the set of available information. It is possible to estimate this model for example
by the generalized methods of moments using instrumental variables (cf. Hansen (1982)).
For an application in a similar framework one can refer to Narasimhan and Pradhan
(2002). The advantage of this method is its relative simplicity due to a �xed number of
variables and their realizations. However, if the set of chosen variables is not convenient,
the econometrician will fail to estimate the true time-dependent moments. A di�erent
approach is to determine the covariance as well as the higher co-moments (in a second
step) matrices using a generalized autoregressive conditional heteroscedastic (GARCH)
process.
The GARCH approach assumes that agents learn from the past, i.e. that they update
their estimates of the means and covariances each period using the errors in last period's
expectations. Thus, agents adapt their expectations only from information on the excess
asset returns.
From (3.7) we derive the standard expression of the multidimensional GARCH(1,1)-in-
mean model (GARCH(1,1)-M) (see Bollerslev et al. (1988)):
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Rt = α + γHtωt−1 + εt

vech(Ht) = C + Avech(εt−1ε
′
t−1) + Bvech(Ht−1) (3.18)

εt|Ft−1 ∼ N(0,Ht).

where vech(·) denotes the column stacking operator of the lower portion of a symmetric
matrix. According to the Capital Asset Pricing Model, the N×1 vector α should be zero.
The N(N +1)/2×N(N +1)/2 matrices A and B determine the �rst order autoregressive
and moving average characteristics of the excess asset price time series.
The CAPM states furthermore that the evaluation of the asset price can be obtained by
its relation to the market portfolio. Thus, from (3.18) we derive the bivariate model:

(
Rit

RMt

)
=

(
αi

αM

)
+γ

(
Vart(Ri|Ft−1) Covt(Ri, RM |Ft−1)

Covt(Ri, RM |Ft−1) Vart(RM |Ft−1)

)(
0

1

)
+

(
εit

εMt

)
(3.19)




Vart(Ri|Ft−1)
Covt(Ri, RM |Ft−1)

Vart(RM |Ft−1)


 =




c1

c2

c3


+A




ε2
i,t−1

εi,t−1εM,t−1

ε2
M,t−1


+B




Vart−1(Ri|Ft−2)
Covt−1(Ri, RM |Ft−2)

Vart−1(RM |Ft−2)




Hence, we obtain the characteristic equation of the conditional one-factor CAPM:

Rit = αi + γCovt(Ri, RM |Ft−1) + εit (3.20)

with

Covt(Ri, RM |Ft−1) = c2 + A2·




ε2
i,t−1

εi,t−1εM,t−1

ε2
M,t−1


 + B2·




Vart−1(Ri|Ft−2)
Covt−1(Ri, RM |Ft−2)

Vart−1(RM |Ft−2)


 (3.21)

where A2· and B2· denote, respectively, the second rows of the matrices.

3.3 The Four-Moment Extension of the GARCH
We now return to the four-moment CAPM proposed in the second chapter and transform
it into a conditional model following the procedure stated for the two-moment model in
the previous section. Introducing the third and the fourth moment into the conditional
form, (3.19) becomes:

(
Rit

RMt

)
=

(
αi

αM

)
+ γ1

(
Vart(Ri|Ft−1) Covt(Ri, RM |Ft−1)

Covt(Ri, RM |Ft−1) Vart(RM |Ft−1)

)(
0

1

)

+ γ2

(
s?

it CoSt(Ri, RM |Ft−1)
CoSt(RM , Ri|Ft−1) s?

Mt

)(
0

1

)
(3.22)

+ γ3

(
κ?

it CoKt(Ri, RM |Ft−1)
CoKt(RM , Ri|Ft−1) κ?

Mt

)(
0

1

)
+

(
εit

εMt

)
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with the common notation from the second chapter and s?
jt =E [(Rj − E(Rj))

3|Ft−1] and
κ?

jt =E [(Rj − E(Rj))
4|Ft−1] the corresponding conditional third and fourth moments. As

the second chapter, we �nd the three components of the risk premium associated with the
covariance (γ1), the co-skewness (γ2) and the co-kurtosis (γ3). The γi denote the market
prices for the corresponding risks and are supposed to be constant over the investment
horizon.
(3.22) can be rewritten as:

(
Rit

RMt

)
=

(
αi

αM

)
+ γ1

(
Covt(Ri, RM |Ft−1)

Vart(RM |Ft−1)

)
+ γ2

(
CoSt(Ri, RM |Ft−1)

s?
Mt

)

+ γ3

(
CoKt(Ri, RM |Ft−1)

κ?
Mt

)
+

(
εit

εMt

)
. (3.23)

In the previous section, we introduced the conditional covariance matrix (H) to allow
heteroscedasticity and time-moving covariances. Thus, we dealt with one of the main
restrictions in standard CAPM, due to its one-period horizon. However, we still assumed
a normal distribution of the asset returns. As we introduced the co-skewness and the
co-kurtosis, we should allow the third and the fourth moment of the asset distribution
not only to deviate from the normal distribution, but also to vary over time. Hence, the
error terms no longer follow a normal distribution. We will come back to this point after
having de�ned the diverse conditional moments in (3.22). As in the previous section, we
will use the vech-operator:




Vart(Ri|Ft−1)
Covt(Ri, RM |Ft−1)

Vart(RM |Ft−1)
CoSt(Ri, RM |Ft−1)

s?
Mt

CoKt(Ri, RM |Ft−1)
κ?

Mt




=




c1

c2

c3

c4

c5

c6

c7




+A




ε2
i,t−1

εi,t−1εM,t−1

ε2
M,t−1

εi,t−1ε
2
M,t−1

ε3
M,t−1

εi,t−1ε
3
M,t−1

ε4
M,t−1




+B




Vart−1(Ri|Ft−2)
Covt−1(Ri, RM |Ft−2)

Vart−1(RM |Ft−2)
CoSt−1(Ri, RM |Ft−2)

s?
M,t−1

CoKt−1(Ri, RM |Ft−2)
κ?

M,t−1




(3.24)
In this case, the matrices A and B are 7 × 7 dimensional. As one can see, this model
reveals the problem of a large number of parameters. As a consequence, our simple
bivariate model has already 110 parameters to estimate. Thus, we will impose certain
constraints. One method often used in general GARCH models is to consider the matrices
A and B to be diagonal. By doing so, we reduce the number of parameters to estimate
to 26. A common way to estimate these parameters is the maximum likelihood method.
The GARCH speci�cation assumes that returns come from a conditionally normal distri-
bution. However, stock market returns reveal thicker tails (excess kurtosis). Oelker (2004)
showed that the GARCH process yields higher kurtosis than a normal distribution, even if
the underlying error terms are normally distributed. Furthermore, the model needs to ac-
commodate time-varying conditional skewness, which stresses the need of an asymmetric
distribution function. In this context an underlying conditional t-Distribution would be
appropriate. However, since we want to model the co-moments of the second, third and
fourth order, we need a distribution function that includes these moments explicitly. In
the case of small deviations from the normal distribution Blinnikov and Moessner (1998)
showed that the Gram-Charlier expansion of the normal density o�ers such a solution.
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We de�ne S and K as the matrices of conditional co-moments according to (3.22) which
yields:

(
Rit

RMt

)
=

(
αi

αM

)
+ γ1Ht

(
0

1

)
+ γ2St

(
0

1

)
+ γ3Kt

(
0

1

)
+

(
εit

εMt

)
. (3.25)

For the distribution of the asset returns we have:

εt|Ft−1 =

(
εit|Ft−1

εMt|Ft−1

)
∼ (0,Ht,St,Kt). (3.26)

In order to facilitate the following multivariate Gram-Charlier expansion, we will stan-
dardize the obtained error terms using

Ht =

(
Vart(Ri|Ft−1) Covt(Ri, RM |Ft−1)

Covt(Ri, RM |Ft−1) Vart(RM |Ft−1)

)
. (3.27)

De�ning ηt = H
−1/2
t εt we have:

ηt|Ft−1 =

(
ηit|Ft−1

ηMt|Ft−1

)
∼ (0, I, S̃t, K̃t) (3.28)

with I the two-dimensional unit matrix, S̃ and K̃ the matrices of standardized conditional
co-moments of third and fourth order. The bivariate Gram-Charlier expansion of the two-
dimensional standard normal density is given by (see McCullagh (1987)):

Ψ(ηt|Ft−1) =
1

2π
e−

η′tηt
2

(
1 +

1

3!

∑

ijk

dijkh
ijk(ηt) +

1

4!

∑

ijkl

dijklh
ijkl(ηt)

)

︸ ︷︷ ︸
def
= Zt

(3.29)

where the d's are coe�cients denoting the di�erence between the cumulants of the under-
lying conditional error terms and the cumulants of the standard gaussian:

d1...n = κΨ
1...n − κN

1...n and κΨ
1...n = cum(x1, . . . , xn). (3.30)

In our case the two functions (Ψ and the gaussian) have zero mean vectors and unit
variance matrices. Hence, the multivariate cumulants are de�ned by:

cum(xi, xj, xk) = E(xixjxk) (3.31)
cum(xi, xj, xk, xl) = E(xixjxkxl)− E(xixj)E(xkxl)[3]. (3.32)

The bracket notation means that the corresponding term appears for all the relevant index
permutations (the number in the brackets indicates the number of these permutations).
The functions denoted with h in (3.29) correspond to the multidimensional hermite poly-
nomials (see McCullagh (1987)):
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hijk(x) = xixjxk − xiδjk[3] (3.33)
hijkl(x) = xixjxkxl − xixjδkl[6] + δijδkl[3] (3.34)

where δij is the Kronecker symbol with:

δij =

{
0, if i 6= j
1, if i = j.

(3.35)

For our bivariate model the mentioned indices take either the value i or the value M
denoting respectively the asset and the market portfolio. In the case of only two di�erent
indices one can easily see that only the number of the occurring indices determines the
value of the cumulants and the Hermite polynomials. For the third moment we have 8
terms and for the fourth moment we obtain 16 terms. However, for symmetric reasons
we only have 4 di�erent terms for the third and 5 di�erent terms for the fourth moment.
For the Hermite polynomials we obtain:

hiii(ηt) = η3
it − 3ηit

hiiM(ηt) = hiMi(ηt) = hMii(ηt) = η2
itηMt − ηMt

hMMi(ηt) = hMiM(ηt) = hiMM(ηt) = ηitη
2
Mt − ηit

hMMM(ηt) = η3
Mt − 3ηMt

hiiii(ηt) = η4
it − 6η2

it + 3 (3.36)
hMMMi(ηt) = hMMiM(ηt) = hMiMM(ηt) = hiMMM(ηt) = ηitη

3
Mt − 3ηitηMt

hiiiM(ηt) = hiiMi(ηt) = hiMii(ηt) = hMiii(ηt) = η3
itηMt − 3ηitηMt

hMMii(ηt) = hMiMi(ηt) = hMiiM(ηt)

= hiiMM(ηt) = hiMiM(ηt) = hiMMi(ηt) = η2
itη

2
Mt − η2

it − η2
Mt + 1

hMMMM(ηt) = η4
Mt − 6η2

Mt + 3.

Since Ψ is standardized it has the same �rst-order and second-order cumulants as the
gaussian. That is why (3.29) only yields terms of the third and the fourth order (the
coe�cients d are zero for the �rst two moments). As we know the cumulants of higher
order of the standard normal density, we obtain:

diii(ηt) = E(η3
it|Ft−1)

diiM(ηt) = diMi(ηt) = dMii(ηt) = E(η2
itηMt|Ft−1)

dMMi(ηt) = dMiM(ηt) = diMM(ηt) = E(ηitη
2
Mt|Ft−1)

dMMM(ηt) = E(η3
Mt|Ft−1)

diiii(ηt) = E(η4
it|Ft−1)− 3 (3.37)

dMMMi(ηt) = dMMiM(ηt) = dMiMM(ηt) = diMMM(ηt) = E(ηitη
3
it|Ft−1)

diiiM(ηt) = diiMi(ηt) = diMii(ηt) = dMiii(ηt) = E(η3
itηMt|Ft−1)

dMMii(ηt) = dMiMi(ηt) = dMiiM(ηt)

= diiMM(ηt) = diMiM(ηt) = diMMi(ηt) = E(η2
itη

2
Mt|Ft−1)− 1

dMMMM(ηt) = E(η4
Mt|Ft−1)− 3.
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The last di�culty is now to proceed from the observed co-moments of ε and its expected
conditional co-moments in (3.24) to the respective expressions for the standardized error
terms η. For the covariance matrix this is rather simple:

(
η2

i ηiηM

ηiηM η2
M

)
= H−1/2

(
ε2

i εiηM

εiεM ε2
M

)
H−1/2. (3.38)

Second, we will consider the third-order moments. Using the Kronecker product yields:
(

η2
i ηiηM

ηiηM η2
M

)
⊗ (ηi ηM) =

(
η3

i η2
i ηM η2

i ηM ηiη
2
M

η2
i ηM ηiη

2
M ηiη

2
M η3

M

)
. (3.39)

Thus, we can derive the needed co-moments using the standardization formula η =
H−1/2ε:

(
η3

i η2
i ηM η2

i ηM ηiη
2
M

η2
i ηM ηiη

2
M ηiη

2
M η3

M

)
= H−1/2

(
ε2

i εiεM

εiεM ε2
M

)
H−1/2 ⊗ (εi εM)H−1/2. (3.40)

We proceed in the same manner for the fourth-order moments:

(
η2

i ηiηM

ηiηM η2
M

)
⊗(ηi ηM )⊗(ηi ηM ) =

(
η4

i η3
i ηM η3

i ηM η2
i η2

M η3
i ηM η2

i η2
M η2

i η2
M ηiη

3
M

η3
i ηM η2

i η2
M η2

i η2
M ηiη

3
M η2

i η2
M ηiη

3
M ηiη

3
M η4

M

)

(3.41)

and �nally:

(
η4

i η3
i ηM η3

i ηM η2
i η

2
M η3

i ηM η2
i η

2
M η2

i η
2
M ηiη

3
M

η3
i ηM η2

i η
2
M η2

i η
2
M ηiη

3
M η2

i η
2
M ηiη

3
M ηiη

3
M η4

M

)

= H−1/2

(
ε2

i εiεM

εiεM ε2
M

)
H−1/2 ⊗ (εi εM)H−1/2 ⊗ (εi εM)H−1/2. (3.42)

(3.38), (3.40) and (3.42) give us the elements of the hermite polynomials in(3.36). For
the conditional standardized co-moments de�ning the coe�cients in (3.37) we impose the
same autoregressive moving average relations as for the non-standardized error terms:




Et(η
3
it|Ft−1)

Et(η
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Et(ηitη
2
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Et(η
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Et(η
4
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Et(η
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Et(η
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2
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Et(ηitη
3
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Et(η
4
Mt|Ft−1)


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=


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(3.43)
Having de�ned all the elements of (3.29), we can pass to the likelihood function. First,
we denote θ the vector containing all the parameters to estimate:
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θ′ = (αi, αM , γ1, γ2, γ3, c
′, a′, b′) (3.44)

where c is the 16× 1 vector containing the constants in (3.24) and (3.43). a denotes the
16 × 1 vector of the diagonal elements of the matrices A (a1 . . . a7) and Ã (a8 . . . a16).
b contains the respective values of the diagonal matrices B and B̃. Hence, we have 53
parameters to estimate.
From (3.29) we obtain the log-likelihood function:

Lt(θ, η) = − ln 2π − η′tηt

2
+ lnZt. (3.45)

Thus the log-likelihood function for the sample is given by:

L(θ) =
T∑

t=1

Lt(θ) (3.46)

= −T ln 2π − 1

2

T∑
t=1

η′tηt +
T∑

t=1

lnZt. (3.47)

Some parameter constraints concerning the autoregressive moving average process are
necessary. The stationarity condition for these processes implies:

ai + bi < 1 ∀ i = 1 . . . 16. (3.48)

Thus, by maximizing (3.47) with respect to (3.48) the parameters can be estimated.
We should stress the importance of using data sets with a su�ciently high number of
observations. Otherwise, one can get to misleading results. Regarding the number of
parameters (53), even sophisticated statistical software could eventually �nd local optima
instead of the global solution. Hence, a simulation, using di�erent starting parameters,
could be appropriate.
The presented model can be tested in di�erent stages in order to analyze the contribution
of the corresponding terms. Information criteria (Akaike's (AIC) or Schwarz' (SC)) should
be used in order to determine the signi�cant factors (moments) in the model.
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Conclusions

In this study we considered the Capital Asset Pricing Model, �rst developed by Sharpe
(1964) and Lintner (1965), as the benchmark model in asset pricing theory. Despite its
simplicity and its relatively weak empirical results in explaining cross-sectional returns,
it is still the most widely used model in this �eld of �nancial theory, e.g. in MBA
courses. We �rst stated the standard CAPM and pointed out the di�erent hypotheses
upon which it is founded. Furthermore, we discussed existing extensions that relax some of
these assumptions, yielding better empirical results to further explain the cross-sectional
returns. The most successful models, derived from the standard CAPM, achieve their
goal in adding explanatory factors to the model (e.g. Fama and French (1993)). However,
the problem of economic interpretability arises and many of these factors reveal a pure
empirical nature instead of being derived from an underlying economic theory.
This work aimed to reinstate the main idea of the standard Capital Asset Pricing Model:
The agent maximizes her expected return while minimizing the corresponding risk. Ac-
cordingly, this study tried to concentrate on the question how the risk can be determined.
The standard CAPM has been built on a mean-variance approach by Markowitz (1952)
de�ning the �rst two moments of a portfolio distribution as target variables. However,
especially in the long run, asset returns often deviate from normality. This is particularly
true for alternative investments such as hedge funds. We further conclude that the distri-
bution of portfolio returns can not be properly described by expected returns and historic
variances. Moreover, the mean-variance approach assumes (in the case of non-normal
distributions) that the agent is not interested in higher moments of the portfolio return.
We challenged this assumption and developed a hypothesis that any utility function can
be approximated by the fourth-order Taylor-expansion. We cited recent research works
that proved that in asset allocation this approximation yields results that are very sim-
ilar to direct utility maximization. Thus, we de�ned the risk in a more complex way,
taking skewness and kurtosis and the corresponding risk premia into account, leading to
the four-moment-CAPM. We proved that, theoretically, agents prefer skewness and are
averse towards kurtosis, thus, we expect higher risk premia for lower skewness and higher
risk premia for higher kurtosis.
Next, we challenged the assumption of a one period model and considered a longer in-
vestment horizon. Accordingly, the factors should be allowed to vary over time, since
the hypothesis of stationarity of the explanatory factors would be over-simpli�ed. The
literature o�ers two main directions in the modelling of time-varying factors. First, in-
struments that yield better predictability characteristics can be used to enhance the con-
ditional CAPM. However, the choice of instruments is always arbitrary and the subset
of used instruments does not necessarily capture the time-varying characteristics of the
factors. Second, the GARCH model is often used to model time-conditional factors. It
assumes autoregressive and heteroscedastic relations for the covariances and variances of
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time series. We took this model and extended it by the co-moments of third and fourth
order. In order to model the higher moments we applied the Gram-Charlier expansion
of the normal distribution. Whilst this approach is often used in physics and mathemat-
ics, economic and �nancial modelling has not yet taken advantage of it. The method
enables us to explicitly enter all four moments and their co-moments in the distribution
function. Hence, as in the one factor GARCH speci�cation, the factors appear in their
time-conditional form in the likelihood function. In the bivariate case (asset and market
portfolio), the application of tensor methods (cf. McCullagh (1987)) is necessary. As a
result we arrived at a four-moment time-conditional Capital Asset Pricing Model.
Instead of adding factors, we added detail in the analysis of dependencies between assets
and the market portfolio. However, the latter is not observable (Roll's criticism) and
the choice of an appropriate measure for it is ambiguous. Second, we assumed that risk
premia for co-variance, co-skewness and co-kurtosis remain constant over time. This
convention is a often applied in CAPM models, however, future research could challenge
this assumption. An appropriate extension could, for example follow the approach of
Hafner and Herwatz (1999) and parameterize the market risk premia for the given factors.
Empirically, our model could �nd di�erent ways of application. First, it should be tested
and compared to existing models (CAPM and its extensions) by analyzing cross sectional
returns of Fama-French-portfolios. In other words, when our model holds, futures research
must prove that the risk premia associated with co-skewness and co-kurtosis are signi�-
cant. Second, it could be used as a performance measure of assets and funds, especially
in the �eld of emerging markets and alternative investments, where skewness and kurtosis
are highly signi�cant. Provided that the explanation power of our model is higher than
those of other models1, the constant of the regression (alpha) yields a better measure of
the unexplained performance than in former models. Recently, these alphas are receiving
more attention and are increasingly applied as additional performance measures to the
conventionally used Sharpe-ratios and other instruments. Especially in the world of hedge
funds, our model can reveal interesting changes of rankings, since skewness and kurtosis
are highly signi�cant in the distributions of alternative investments.
Another possible extension of our model could be the analysis of structural breaks in
the investment horizon. The introduction of states of nature in the context of Regime-
Switching (Markov) could ameliorate the time-varying description of the factors and re-
duce the occurring error terms. The autoregressive and heteroscedastic process in every
state of nature would probably be a better approximation of the "real" relation. However,
a potential problem of an overwhelming number of parameters could arise and constrain
future research in this direction.

1measured by Akaike's Information Criterion (AIC) or by Schwarz's Criterion (SC)
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Appendix A

Pricing of Hedge Funds

According to the U.S. Securities and Exchange Commission (SEC) a Hedge fund is a
general, non-legal term that was originally used to describe a type of private and unreg-
istered investment pool that employed sophisticated hedging and arbitrage techniques to
trade in the corporate equity markets. Hedge funds have traditionally been limited to
sophisticated, wealthy investors. Over time, the activities of hedge funds have broadened
into other �nancial instruments and activities. Today, the term "hedge fund" refers not
so much to hedging techniques, which hedge funds may or may not employ, but to their
status as private and unregistered investment pools.
Hedge funds are similar to mutual funds in that they both are pooled investment vehicles
that accept investors' money and generally invest it on a collective basis. Hedge funds
di�er signi�cantly from mutual funds, however, because hedge funds are not as strictly
regulated under the federal securities laws.
Hedge funds also are not subjected to the numerous regulations that apply to mutual funds
for the protection of investors such as regulations requiring a certain degree of liquidity,
regulations requiring that mutual fund shares be redeemable at any time, regulations
protecting against con�icts of interest, regulations to assure fairness in the pricing of fund
shares, disclosure regulations, regulations limiting the use of leverage, and more. This
freedom from regulation permits hedge funds to engage in leverage and other sophisticated
investment techniques to a much greater extent than mutual funds.
The primary aim of most hedge funds is to reduce volatility and risk while attempting to
preserve capital and deliver positive returns under all market conditions.

A.1 The di�erent Strategies
The existing hedge fund strategies can be classi�ed in three broad categories:
Arbitrage Strategies
Arbitrage is the exploitation of an observable price ine�ciency and, as such, pure arbi-
trage is considered riskless. For example, Convertible Arbitrage entails buying a corporate
convertible bond, which can be converted into common shares, while simultaneously sell-
ing short the underlying stock of the same company that issued the bond. This strategy
tries to exploit the relative prices of the convertible bond and the stock: the arbitrageur
of this strategy would think the bond is a little cheap and the stock is a little expensive.
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The idea is to make money from the bond's yield if the stock goes up but also make
money from the short sale if the stock goes down.

Event Driven Strategies
Event-driven strategies take advantage of transaction announcements and other one-time
events. One example is Merger Arbitrage, which is used in the event of an acquisition
announcement and involves buying the stock of the target company and hedging the
purchase by selling short the stock of the acquiring company.
Another example of Event Driven Strategies are Distressed Securities funds, that invest
in securities (equity and/or debt) of a company either already in bankruptcy or facing
it. These securities are purchased by the investor inexpensively. It is hoped that as the
company emerges from bankruptcy the securities will appreciate.

Directional or Tactical Strategies
The largest group of hedge funds uses directional or tactical strategies. One example is
the Global Macro fund that aim to pro�t from major economic trends and events in the
global economy, such as large currency and interest shifts. Macro managers employ a
"top-down" global approach, and may invest in any markets using any instruments to
participate in expected market movements. These movements may result from forecasted
shifts in world economies, political fortunes or global supply and demand for resources,
both physical and �nancial. Exchange-traded and over-the-counter derivatives are often
used to magnify these price movements.
Long/short strategies combine purchases (long positions) with short sales. For example,
a long/short manager might purchase a portfolio of core stocks that occupy the S&P 500
and hedge by selling (shorting) S&P 500 Index futures. If the S&P 500 goes down, the
short position will o�set the losses in the core portfolio, limiting overall losses.
Market neutral strategies are a speci�c type of long/short whose goal is to negate the
impact and risk of general market movements, trying to isolate the pure returns of indi-
vidual stocks. This type of strategy is a good example of how hedge funds can aim for
positive, absolute returns even in a bear market.
Emerging Markets Fund invests in securities of companies in developing, or, emerging
countries. The strategy consists of purchasing sovereign or corporate debt and/or equity
in such countries.
Fixed Income Arbitrage is a market neutral hedging strategy that seeks to pro�t by ex-
ploiting pricing ine�ciencies between related �xed income securities while neutralizing
exposure to interest rate risk. Fixed Income Arbitrage is a generic description of a variety
of strategies involving investment in �xed income instruments, and weighted in an attempt
to eliminate or reduce exposure to changes in the yield curve. Managers attempt to ex-
ploit relative mispricing between related sets of �xed income securities. The generic types
of �xed income hedging trades include: yield-curve arbitrage, corporate versus Treasury
yield spreads, municipal bond versus Treasury yield spreads and cash versus futures.
Emerging Markets funds invest in securities of companies or the sovereign debt of develop-
ing or "emerging" countries. Investments are primarily long. "Emerging Markets" include
countries in Latin America, Eastern Europe, the former Soviet Union, Africa and parts
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of Asia. Emerging Markets - Global funds will shift their weightings among these regions
according to market conditions and manager perspectives. In addition, some managers
invest solely in individual regions.

A.2 Data
In order to analyze the di�erent strategies presented in the previous section we use the
CSFB/Tremont indices for each strategy respectively. The table (A.1) shows the �rst
four moments of the empirical distribution of the corresponding indices for the period of
January 1994 to December 2003.

Table A.1: Distribution statistics of strategy indices

This table underlines the already mentioned departure from normality which is character-
istic for hedge funds. The Jarque-Bera test for normality indicates that with exception of
the Market Neutral fund all hedge funds distributions di�er signi�cantly from the normal
distribution. This stresses the need to take higher moments into account and reinforces
our model.
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Appendix B

MATLAB Source Codes

The next section provides MATLAB source codes for the following model stages:

1. bivariate GARCH-in-mean (main1, model1, core1)

2. bivariate GARCHS1-in-mean (main1, model2, core2)

3. bivariate GARCHSK2-in-mean (main3, model3, core3)

We applied these source codes on hedge funds and tried to parameterize the models. The
database CISDM provided the return series of the various hedge funds. Unfortunately,
in the framework of this study, we cannot present reliable results. In the �rst model
(bivariate GARCH) the matrix H yields values that are 10 times higher than the values
of the true covariance matrix. This can either be due to a bug in the source code or to
the fact that the disposable 150 observations are not su�cient to test the model. Hence,
we decided not to provide the estimated parameters. Future research should correct this
problem. For instance, it can be thought of simulation procedures.

1GARCH with skewness
2GARCH with skewness and kurtosis
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function [parameters,LogL,Ht]=main1(data)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 'data' is a bivariate time series
% simulates different starting values for the 2-moment-model
% calling 'model1', which calls 'core1'
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

C=cov(data); %unconditional covariance matrix
g=mean(data(:,2))/C(2,1); %gamma proxy
for i=1:10 %simulate 10 different starting value sets

gamma1=-g;
par1=gamrnd(2,2,[3 1]);
par1=par1/sum(par1);
par2=gamrnd(2,2,[3 1]);
par2=par2/sum(par2);
par3=gamrnd(2,2,[3 1]);
par3=par3/sum(par3);
par=[par1(1);par2(1);par3(1);par1(2);par2(2);par3(2);par1(3);par2(3);par3(3)];
alpha=gamrnd(2,2,[2 1]);
for j=1:10

starting=[par; alpha; gamma1];
[para1(10*(i-1)+j,:),LLF1(10*(i-1)+j),H(:,:,10*(i-1)+j),...
e(:,:,10*(i-1)+j),eta(:,:,10*(i-1)+j)]=model1(data,starting);
gamma1=gamma1+0.4*g;
loop=10*(i-1)+j

end
end
[LogL,ind]=min(LLF1);
parameters=para1(ind,:)';
Ht=ones(size(data,1)+1,3);
Ht(:,:)=H(:,:,ind);
eopt(:,:)=e(:,:,ind);
etaopt(:,:)=eta(:,:,ind);
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function [parameters,LogL,H,e,eta]=model1(data,starting)

options = optimset('fmincon');
options = optimset(options, 'Display', 'iter');
options = optimset(options, 'Diagnostics', 'off');
options = optimset(options, 'LevenbergMarquardt', 'off');
options = optimset(options, 'LargeScale', 'off');
options = optimset(options, 'MaxFunEvals', 1000);
options = optimset(options, 'MaxIter', 20);
options = optimset(options, 'TolX', 13e-06);
options = optimset(options, 'TolFun', 13e-06);
options = optimset(options, 'TolCon', 13e-06);

A=[eye(3) eye(3) zeros(3,6); -eye(6) zeros(6,6)];
B=[ones(3,1);zeros(6,1)];

parameters=fmincon('core1',starting,A,B,[],[],[],[],[],options,data);
[LogL,H,e,eta]=core1(parameters,data);
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function [logL,H,e,eta]=core1(starting,data)

[t,k]=size(data);
a=starting(1:3);
b=starting(4:6);
c=starting(7:9);
alpha1=starting(10);
alpha2=starting(11);
gamma1=starting(12);
Cov=cov(data);
H=zeros(t+1,3);
H(1,1)=Cov(1,1);
H(1,2)=Cov(1,2);
H(1,3)=Cov(2,2);
e=zeros(t,2);
eta=zeros(t,2);
logL=0;
likelihoods=zeros(t,1);
for i=1:t

e(i,1)=data(i,1)-alpha1-gamma1*H(i,2);
e(i,2)=data(i,2)-alpha2-gamma1*H(i,3);
he=e;
he(1,:)=[0 0];
c=[0;0;0];
H(i+1,1:3)=c'+a'.*[he(i,1)^2 he(i,1)*he(i,2) he(i,2)^2]+b'.*H(i,1:3);
if (isinf(H(i,1:3))==[0 0 0]) & (isnan(H(i,1:3))== [0 0 0])
Cov=[H(i,1) H(i,2); H(i,2) H(i,3)];
eta(i,:)=he(i,:)*Cov^-0.5;
likelihoods(i)=log(2*pi)+eta(i,:)*eta(i,:)'/2;
logL=logL+likelihoods(i);
else logL=10000000;
end

end
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function [parameters,LogL,Ht]=main2(data)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 'data' is a bivariate time series
% simulates different starting values for the 3-moment-model
% calling 'model2', which calls 'core2'
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

C=cov(data); %unconditional covariance matrix
g=mean(data(:,2))/C(2,1); %gamma proxy
for i=1:10 %simulate 10 different starting value sets

gamma1=-g;
par1=gamrnd(2,2,[3 1]);
par1=par1/sum(par1);
par2=gamrnd(2,2,[3 1]);
par2=par2/sum(par2);
par3=gamrnd(2,2,[3 1]);
par3=par3/sum(par3);
par4=gamrnd(2,2,[3 1]);
par4=par4/sum(par4);
par5=gamrnd(2,2,[3 1]);
par5=par5/sum(par5);
par6=gamrnd(2,2,[3 1]);
par6=par6/sum(par6);
par7=gamrnd(2,2,[3 1]);
par7=par7/sum(par7);
par8=gamrnd(2,2,[3 1]);
par8=par8/sum(par8);
par9=gamrnd(2,2,[3 1]);
par9=par9/sum(par9);
par=[par1(1);par2(1);par3(1);par4(1); par5(1); par6(1);par7(1);par8(1);par9(1)];
par=[par;par1(2);par2(2);par3(2);par4(2); par5(2); par6(2);par7(2);par8(2);par9(2)];
par=[par;par1(3);par2(3);par3(3);par4(3); par5(3); par6(3);par7(3);par8(3);par9(3)];
alpha=gamrnd(2,2,[2 1]);
gamma2=0;
for j=1:10

starting=[par; alpha; gamma1; gamma2];
[para2(10*(i-1)+j,:),LLF2(10*(i-1)+j),H(:,:,10*(i-1)+j),e(:,:,10*(i-1)+j),...
eta(:,:,10*(i-1)+j)]=model2(data,starting);
gamma1=gamma1+0.4*g;
loop=10*(i-1)+j

end
end [LogL,ind]=min(LLF2);
parameters=para2(ind,:)';
Ht=ones(size(data,1)+1,3);
Ht(:,:)=H(:,:,ind);
eopt(:,:)=e(:,:,ind);
etaopt(:,:)=eta(:,:,ind);
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function [parameters,LogL,H,e,eta]=model2(data,starting)

options = optimset('fmincon');
options = optimset(options, 'Display', 'iter');
options = optimset(options, 'Diagnostics', 'off');
options = optimset(options, 'LevenbergMarquardt', 'off');
options = optimset(options, 'LargeScale', 'off');
options = optimset(options, 'MaxFunEvals', 1000);
options = optimset(options, 'MaxIter', 20);
options = optimset(options, 'TolX', 13e-06);
options = optimset(options, 'TolFun', 13e-06);
options = optimset(options,'TolCon', 13e-06);

A=[eye(9) eye(9) zeros(9,13); -eye(18) zeros(18,13)];
B=[ones(9,1);zeros(18,1)];

parameters=fmincon('core2',starting,A,B,[],[],[],[],[],options,data);
[LogL,H,e,eta]=core2(parameters,data);
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function [parameters,LogL,Ht]=main3(data)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 'data' is a bivariate time series
% simulates different starting values for the 4-moment-model
% calling 'model3', which calls 'core3'
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

C=cov(data); %unconditional covariance matrix
g=mean(data(:,2))/C(2,1); %gamma proxy
for i=1:10 %simulate 10 different starting value sets

gamma1=-g;
par1=gamrnd(2,2,[3 1]);
par1=par1/sum(par1);
par2=gamrnd(2,2,[3 1]);
par2=par2/sum(par2);
par3=gamrnd(2,2,[3 1]);
par3=par3/sum(par3);
par4=gamrnd(2,2,[3 1]);
par4=par4/sum(par4);
par5=gamrnd(2,2,[3 1]);
par5=par5/sum(par5);
par6=gamrnd(2,2,[3 1]);
par6=par6/sum(par6);
par7=gamrnd(2,2,[3 1]);
par7=par7/sum(par7);
par8=gamrnd(2,2,[3 1]);
par8=par8/sum(par8);
par9=gamrnd(2,2,[3 1]);
par9=par9/sum(par9);
par10=gamrnd(2,2,[3 1]);
par10=par10/sum(par10);
par11=gamrnd(2,2,[3 1]);
par11=par11/sum(par11);
par12=gamrnd(2,2,[3 1]);
par12=par12/sum(par12);
par13=gamrnd(2,2,[3 1]);
par13=par13/sum(par13);
par14=gamrnd(2,2,[3 1]);
par14=par14/sum(par14);
par15=gamrnd(2,2,[3 1]);
par15=par15/sum(par15);
par16=gamrnd(2,2,[3 1]);
par16=par16/sum(par16);
par=[par1(1);par2(1);par3(1);par4(1); par5(1); par6(1);par7(1);par8(1);...
par9(1);par10(1);par11(1);par12(1);par13(1);par14(1); par15(1); par16(1)];
par=[par;par1(2);par2(2);par3(2);par4(2); par5(2); par6(2);par7(2);par8(2);...
par9(2);par10(2);par11(2);par12(2);par13(2);par14(2); par15(2); par16(2)];
par=[par;par1(3);par2(3);par3(3);par4(3); par5(3); par6(3);par7(3);par8(3);...
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par9(3);par10(3);par11(3);par12(3);par13(3);par14(3); par15(3); par16(3)];
alpha=gamrnd(2,2,[2 1]);
gamma2=0;
gamma3=0;
for j=1:10

starting=[par; alpha; gamma1; gamma2; gamma3];
[para3(10*(i-1)+j,:),LLF3(10*(i-1)+j),H(:,:,10*(i-1)+j),e(:,:,10*(i-1)+j),...
eta(:,:,10*(i-1)+j)]=model3(data,starting);
gamma1=gamma1+0.4*g;
loop=10*(i-1)+j

end
end [LogL,ind]=min(LLF3);
parameters=para3(ind,:)';
Ht=ones(size(data,1)+1,3);
Ht(:,:)=H(:,:,ind);
eopt(:,:)=e(:,:,ind);
etaopt(:,:)=eta(:,:,ind);
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function [parameters,LogL,H,e,eta]=model3(data,starting)

options = optimset('fmincon');
options = optimset(options, 'Display', 'iter');
options = optimset(options, 'Diagnostics', 'off');
options = optimset(options, 'LevenbergMarquardt', 'off');
options = optimset(options, 'LargeScale', 'off');
options = optimset(options, 'MaxFunEvals', 1000);
options = optimset(options, 'MaxIter', 20);
options = optimset(options, 'TolX', 13e-06);
options = optimset(options ,'TolFun', 13e-06);
options = optimset(options ,'TolCon', 13e-06);

A=[eye(16) eye(16) zeros(16,21); -eye(32) zeros(32,21)];
B=[ones(16,1);zeros(32,1)];

parameters=fmincon('core3',starting,A,B,[],[],[],[],[],options,data);
[LogL,H,e,eta]=core3(parameters,data);
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function [logL,H,e,eta]=core3(starting,data)

[t,k]=size(data);
a=starting(1:16);
b=starting(17:32);
c=starting(33:48);
alpha1=starting(49);
alpha2=starting(50);
gamma1=starting(51);
gamma2=starting(52);
gamma3=starting(53);

H=zeros(t+1,16);

est1=(data(:,1)-mean(data(:,1)));
est2=(data(:,2)-mean(data(:,2)));
Cov=cov(data);
H(1,1)=Cov(1,1);
H(1,2)=Cov(1,2);
H(1,3)=Cov(2,2);
H(1,4)=mean(est1.*(est2.^2));
H(1,5)=mean(est2.^3);
H(1,6)=mean(est1.*(est2.^3));
H(1,7)=mean(est2.^4);
H(1,12)=3;
H(1,14)=1;
H(1,16)=3;

e=zeros(t,2);
eta=zeros(t,2);
her=zeros(9,1);

logL=0;
likelihoods=zeros(t,1);
for i=1:t

e(i,1)=data(i,1)-alpha1-gamma1*H(i,1)-gamma2*H(i,4)-gamma3*H(i,6);
e(i,2)=data(i,2)-alpha2-gamma1*H(i,2)-gamma2*H(i,5)-gamma3*H(i,7);
H(i+1,1:7)=c(1:7)'+a(1:7)'.*[e(i,1)^2 e(i,1)*e(i,2) e(i,2)^2 e(i,1)*e(i,2)^2...

e(i,2)^3 e(i,1)*e(i,2)^3 e(i,2)^4]+b(1:7)'.*H(i,1:7);
if (isinf(H(i,1:7))==[0 0 0 0 0 0 0]) & (isnan(H(i,1:7))== [0 0 0 0 0 0 0])

Cov=[H(i,1) H(i,2); H(i,2) H(i,3)];
eta(i,:)=e(i,:)*Cov^-0.5;
eta2=eta(i,:)'*eta(i,:);
eta3=kron(eta2,eta(i,:));
eta4=kron(eta3,eta(i,:));
H(i+1,8:16)=c(8:16)'+a(8:16)'.*[eta3(:,1)' eta3(:,4)' eta4(:,1)' eta4(1,4)...

eta4(:,8)']+b(8:16)'.*H(i,8:16);
d=H(i,8:16);
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d(5)=d(5)-3;
d(7)=d(7)-1;
d(9)=d(9)-3;
her(1)=eta3(1,1)-3*eta(1);
her(2)=eta3(2,1)-eta(2);
her(3)=eta3(1,4)-eta(1);
her(4)=eta3(2,4)-3*eta(2);
likelihoods(i)=t*log(2*pi)+eta(i,:)*eta(i,:)'/2+log(1+d*her);
logL=logL+likelihoods(i);

else logL=10000000;
end

end
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