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1 Introduction

A central issue in macroeconomics is the question of how financial markets are connected
to the real side of the economy. The ongoing integration of international capital markets
and the repeated occurrence of large financial crises have raised the concern about this
topic beyond academic circles. However, compared to the considerable amount of interest
the subject attracts, as yet little is known about the interrelations between financial and
macroeconomic variables.

One branch of research related to this topic deals with the question of how stock re-
turns are linked to fluctuations of economic activity. Asset pricing theory and practice
have long been dominated by market-inherent measures of risk. A classic result, the cap-
ital asset pricing model (CAPM), models an asset’s expected return as a function of its
past exposure to the market risk. Despite its simplicity, the CAPM in general works
well in empirical tests. However, it fails to explain certain patterns in the cross-section
of asset returns. For example, it has been shown that small stocks in terms of market
capitalization on average earn higher returns than big stocks, even after accounting for
the market risk. Also, stocks of firms whose book value is high compared to its market
value on average exhibit higher returns than stocks with a low book-to-market equity ratio.

Recent results indicate that the variation of returns across assets and across time
can to some extent be accounted for by macroeconomic variables. A variety of models
have been proposed to explain effects like the two mentioned above, using as explana-
tory variables measures of economic activity or firm-specific characteristics that proxy for
such. Merton (1973) shows that consumer-investors who solve an intertemporal utility
maximization problem will hedge their portfolios against potential changes in the set of
investment opportunities. Accordingly, they would demand more of those assets whose
returns are positively correlated with changes in certain state variables that are expected
to result in less consumption. Chen, Roll, and Ross (1986) show empirically that standard
macroeconomic variables such as interest rate spreads, output and inflation growth indeed
explain some of the cross-sectional variation of stock returns.

An important contribution to the explanation of certain particularities in cross-sectional
return patterns has been made by Fama and French (1992, 1993, 1996). Constructing arti-
ficial portfolios on the basis of firm size and firms’ book-to-market equity ratio, the authors
show that together with the market return these portfolios go a long way explaining the
variation of average returns across stocks. Fama and French state that the size and book-
to-market portfolios mimic risk factors that are of concern to investors. In particular, they
argue that the book-to-market portfolio proxies for an unobservable “financial distress”
factor that earns significant risk premiums during recessions. However, there is as yet
little empirical evidence for a close link between the Fama-French factors and individual
macroeconomic variables.

1I thank David Hunt and Matthieu Nègre for helpful comments. I am very grateful to Kenneth French,
Sydney Ludvigson, and Mark Watson for making their data accessible on the internet. I am further grateful
to Martin Lettau for some helpful comments and for providing me with additional data. I especially thank
my advisor, Harald Uhlig. The view expressed and all errors are my own.
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More recently, the work of Lettau and Ludvigson (2001a, 2001b) shows that the log
consumption-aggregate wealth ratio helps forecasting stock returns in the time and the
cross-sectional dimension. Starting from a standard intertemporal budget constraint of a
consumer-investor, they argue that consumption, asset wealth and labor income share a
common trend, the deviations of which summarize the agent’s expectations about future
returns on asset wealth. Lettau and Ludvigson provide empirical evidence that an estimate
of the residual of this cointegrating relationship has forecasting power for stock returns in
time series regressions. They further show that this variable can also be successfully used
as an instrument in conditional pricing models.

In further studies, alternative macroeconomic variables have been employed to ex-
plain the cross-sectional return patterns of stocks. These include, among others, the yield
spread between BAA- and AAA-rated bonds, labor income growth (Jagannathan and
Wang (1996)), returns on physical investment (Cochrane (1996)), innovations to the div-
idend yield, deviations of the T-bill rate from its medium-term trend (Campbell(1996)),
and news related to future GDP growth (Vassalou (2002)). The results of these inves-
tigations indicate that all these variables explain some of the variation of returns across
stocks, suggesting that they account for sources of risk that investors hedge against.

Given this evidence, I put forward the hypothesis that summary measures of economic
activity - capturing the common variation in a large number of economic time series
variables - are potentially useful candidates for factors in a pricing model. In a pioneer-
ing paper, Stock and Watson (1998) have recently proposed an estimation methodology to
extract common dynamic factors from a large panel of time series variables. Based on prin-
cipal components analysis, the authors construct the factors as weighted cross-sectional
averages that minimize the idiosyncratic influences of individual variables. Correspond-
ing to the use of similar averages with fixed weighting schemes in business-cycle analysis,
Stock and Watson label these factors “diffusion indexes”. They provide evidence that
their estimates exhibit striking forecasting power for standard measures of economic ac-
tivity compared to benchmark forecasting methods. Stock and Watson further suggest an
extension of their method that makes it applicable to unbalanced data panels containing
series with missing observations or of different frequency.

According to Stock and Watson’s findings, diffusion indexes summarize different sources
of systematic macroeconomic risk. It thus seems natural to presume that they can prof-
itably be used as factors in a pricing model. Also, since risk premiums have been shown
to vary over the business cycle, diffusion indexes as measures of the common variation of
economic time series might prove useful as instrumental variables in conditional pricing
models. In this study, I investigate whether these conjectures can be confirmed empirically.
Following a common practice in empirical tests of asset pricing models, I limit my analysis
to the explanation of the cross-sectional patterns of size and book-to-market sorted stock
portfolios. I employ the cross-sectional regression approach of Fama and MacBeth (1973).
This method is intuitively appealing and therefore widely used in cross-sectional tests of
asset pricing models. However, since it exhibits some severe shortcomings, additional tests
of model misspecification are warranted.
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The empirical results of my study can be summarized as follows. Some lower-order dif-
fusion indexes, each capturing only a small portion of the common variation in the data
set, are shown to be significantly priced in cross-sectional tests of the model. Together
with the market return, a set of three such diffusion indexes explains the variation of av-
erage returns across 100 size and book-to-market sorted stock portfolios about as well as
the Fama-French three-factor model, and performs considerably better than other tested
benchmark models. However, the diffusion index pricing model as well as most of the con-
sidered benchmark models, fails additional tests of model misspecification. Consequently,
diffusion indexes cannot beyond all doubt be advocated as useful pricing factors. Yet,
the same holds for variables that have been suggested by other authors. Similar remarks
apply to the tested usefulness of diffusion indexes as scaling variables in conditional pric-
ing models. Although they perform better than alternative macroeconomic variables, the
overall model fit is unsatisfactory and the estimated relationships do not appear to be
robust to tests of misspecification.

The remainder of this text is organized as follows. In the next section I briefly re-
view some basic concepts of asset pricing theory that represent the starting point for my
empirical investigations. In section 3, some standard asset pricing models that serve as
benchmarks for tests of the diffusion indexes are presented. In section 4 I introduce Stock
and Watson’s methodology and briefly summarize their principal paper on diffusion in-
dexes. Finally, in section 5, the employed econometric methodology is discussed and the
empirical results of my investigation presented. Section 6 concludes the paper. A descrip-
tion of the data, some additional figures and tables, and a brief review of the most recent
contributions to the literature on dynamic factor models are provided in the appendix.

2 Some Key Concepts of Asset Pricing

In this section I briefly summarize some central concepts of asset pricing that build the
grounds for the theoretical and empirical derivations I will make in the remainder of the
text. I mainly adopt the notation and presentational approach of Cochrane (2001).

2.1 The Basic Pricing Equation

We want to model the prices of financial assets. Consider a representative investor with
utility function

U(ct, ct+1) = u(ct) + βEt[u(ct+1)],

where ct denotes consumption at date t. Given this utility and an annual labor income
of et and et+1, respectively, the investor chooses the amount to consume and to save in
period t. Assume there is only one asset with price pt offering a random payoff xt+1 at
the beginning of period t + 1. Then, the investor faces the following decision problem :

max
ξ

U(ct, ct+1) s.t.

ct = et − ptξ,

ct+1 = et+1 + xt+1ξ,
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where ξ denotes the quantity of the asset the investor chooses to buy. Solving this maxi-
mization problem, we obtain the following first-order necessary condition

∂U

∂ξ
= −ptu

′(ct) + βEt[u′(ct+1)xt+1] = 0,

or
ptu

′(ct) = Et[βu′(ct+1)xt+1].

This equation reflects the typical tradeoff between a loss of marginal utility in period t if
the investor buys one additional unit of the asset and thus consumes less, and the marginal
gain of utility in period t+1 resulting from the extra consumption the investor can afford
from the (risky) payoff. The equation can be solved for pt to get

pt = Et

[
β

u′(ct+1)
u′(ct)

xt+1

]
.

Now define the stochastic discount factor or pricing kernel mt+1 as

mt+1 ≡ β
u′(ct+1)
u′(ct)

.

With this definition, the above equation simplifies to

pt = Et[mt+1xt+1], (2.1)

which is the central asset pricing equation.

mt+1 is a measure of how the representative agent discounts uncertain future consumption.
It is unknown in period t and thus correctly specified as stochastic. Note that the relation
(2.1) is a very general statement that applies to basically all asset pricing problems since
it does not refer to a particular utility function or to a particular asset. It can be shown
that if the law of one price holds and if there is free portfolio formation, i.e. if investors
can buy any linear combination of the available assets, then there is a unique stochastic
discount factor mt+1 that prices all payoffs xt+1 in the payoff space correctly.2

If the investor pays pt in period t to receive the payoff xt+1 in the following period,
then the gross return Rt+1 to her investment is given by

Rt+1 =
xt+1

pt
.

Substituting this relation into (2.1), we obtain

1 = Et[mt+1Rt+1]. (2.2)

Hence, gross returns can be interpreted as assets which always have an expected discounted
value of 1. It follows directly that any excess return, Re

t+1 = Ra
t+1−Rb

t+1, has an expected
discounted value of zero,

0 = Et[mt+1R
e
t+1].

2See Cochrane (2001) for two different proofs of this statement.
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Since the main purpose of my investigation is to estimate the cross-section of returns
on stock portfolios, equation (2.2) is the starting point for the empirical work that I have
carried out. Yet, as it describes the representative agent’s expectation of a discounted
future return conditional on his time t information set, it is still unsuited for estimation.
Since we do not know the agents’ information sets in general, we can only estimate re-
lations of this type unconditionally. To derive the unconditional version of (2.2), simply
take the unconditional expectation of both sides,

E[1] = E[Et[mt+1Rt+1]].

Then, if the unconditional moment exists, the Law of iterated expectations tells us that
this is equivalent to

1 = E[mt+1Rt+1], (2.3)

which we can in principle use for estimation since the sample analogue of a variable’s
unconditional expectation is given by its time series mean.

2.2 Expected Return-Beta Representations

Roughly speaking, the essence of asset pricing theory is to understand the relationships
between the payoffs and the prices of assets. As we have seen in equation (2.1), they are
directly related by the stochastic discount factor m. Hence, one can try to draw con-
clusions about m by confronting prices and payoffs which are both observable. However,
equation (2.1) is not adapted to the use of linear regression techniques. We thus would like
to find a representation of the equation that makes such methods applicable. Expected
return-beta representations are a popular starting point for testing asset pricing models
via linear regressions. Still following Cochrane (2001), I will now show how one can derive
an expected return-beta representation from equation (2.3). I drop time subscripts for
presentational convenience.

Consider a single asset i with return Ri. Then, equation (2.3) tells us that

1 = E[mRi].

We know further that
Cov(m,Ri) = E[mRi]− E[m]E[Ri].

Using this result, we obtain

1 = E[mRi] = E[m]E[Ri] + Cov(m,Ri),

which is equivalent to

E[Ri] =
1

E[m]
− Cov(m,Ri)

E[m]
.

Now we can divide and multiply by V ar(m), define

γ ≡ 1
E[m]

,

6



βi,m ≡ Cov(m, Ri)
V ar(m)

,

and

λm ≡ −V ar(m)
E[m]

,

to finally obtain
E[Ri] = γ + βi,mλm. (2.4)

Equation (2.4) is called a beta pricing model or expected return-beta representation. One
can easily see that βi,m is the coefficient in a linear regression of the return Ri on the
stochastic discount factor m. It can be interpreted as the quantity of risk associated with
asset i. Accordingly, λm is often referred to as the price of risk. It is the same for all
assets and rises and falls with the volatility of the discount factor.

2.3 Factor Pricing Models

While equation (2.4) has a form that makes linear regression techniques applicable, it still
does not represent a testable model since we cannot directly observe the pricing kernel m.
However, m is likely to depend on the overall macroeconomic conditions. We can thus
try to model m in terms of observable state variables. Defining a vector f of explanatory
variables and assuming a linear relationship between m and f , the most basic factor model
is given by

m = a + b′f. (2.5)

It is straightforward to show that equations (2.3) and (2.5) together imply an expected
return-beta representation where the betas are the regression coefficients of Ri on the
factors f . In fact, as we have seen above, equation (2.3) is equivalent to

E[Ri] =
1

E[m]
− Cov(m,Ri)

E[m]
. (2.6)

For computational convenience, assume that the factors are demeaned and thus E[m] = a.
Now substitute a = E[m] and m = a + b′f into the above equation to obtain

E[Ri] =
1
a
− Cov(a + b′f, Ri)

a
=

1
a
− b′Cov(f,Ri)

a
. (2.7)

According to the notation used in the previous section, define βi,f as the vector of coeffi-
cients resulting from a time series regression of Ri on the factors f . If there is a constant
in the regression, βi,f is given by

βi,f =
Cov(f, Ri)

V ar(f)
.

Further define
γ ≡ 1

E[m]
=

1
a
,

7



and
λ ≡ −V ar(f)b

a
.

Then, equation (2.7) is equivalent to

E[Ri] = γ + λ′βi,f . (2.8)

Since equation (2.8) holds for every single asset i, we are now in a position to test whether
a given vector of pricing factors explains the variation of average returns across assets.
Let there be k factors f1, f2, . . . , fk and N assets with returns R1, R2, . . . , RN . Further,
let B denote the N × k matrix of the β estimates obtained from linear regressions of each
asset on the vector of pricing factors,

B =




β11 β12 . . . β1k

β21 β22 . . . β2k

...
...

. . .
...

βN1 βN2 . . . βNk




,

where

βi =
Cov(f, Ri)

V ar(f)
.

Then, the cross-sectional regression model

E[Ri] = γi + βi1λ1 + βi2λ2 + · · ·+ αi i = 1, 2, . . . , N, (2.9)

can equivalently be written in a more compact form as

E[R] = γ + Bλ + α (2.10)

where E denotes the time series mean, R denotes the N × 1 vector of returns, γ is the
N×1 vector of constants, and α is the N×1 vector of pricing errors. In section 5.1 we will
see how equations (2.9) and (2.10) can be employed to test the ability of a set of pricing
factors to explain the cross-section of portfolio returns.

2.4 Scaled Factor Pricing Models

If we estimate a model using unconditional moments as in (2.9) or (2.10), we can only do
this because we have assumed that the parameters a and b in equation (2.5) are constant.
To see this, consider the case of a factor model with time-varying parameters,

mt+1 = at + b′tft+1. (2.11)

Plugging this equation into (2.6), we obtain

E[Ri
t+1] =

1
E[at + b′tft+1]

− Cov(at + b′tft+1, R
i
t+1)

E[at + b′tft+1]
.

Since at and bt are time-varying, the above equation contains additional covariance terms
compared to equation (2.7). Thus, an unconditional expected return-beta representation
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similar to (2.8) cannot be obtained. One way to allow for time-varying parameters in factor
models when applying unconditional moments consists in introducing conditioning infor-
mation. Assume there is a variable zt that incorporates some information about possible
shifts in the relationship between the state variables and the way investors discount risky
payoffs. Then, we can model the parameters at and bt as functions of this conditioning
variable. The simplest way to do so is by assuming linear relationships

at = a0 + a1zt, bt = b0 + b1zt.

Now, equation (2.11) can be written as

mt+1 = a0 + a1zt + (b0 + b1zt)′ft+1

= a0 + a1zt + b′0ft+1 + b′1(ft+1zt),

and we thus have obtained a linear factor pricing model with constant coefficients and
additional factors zt and (ft+1zt). Since all pricing factors ft+1 are multiplied with zt,
we can think of zt as a scaling variable. Accordingly, this type of conditional model is
often labelled as a scaled factor model. After scaling the factors with zt, we can now apply
unconditional moments without generating undesired covariance terms,

1 = E[mt+1R
i
t+1]

= E[(a0 + a1zt + b′0ft+1 + b′1(ft+1zt))Ri
t+1],

which again implies an expected return-beta representation as in (2.8). Notice that in-
cluding only one conditioning variable doubles the number of factors in the pricing model.
Including more than one conditioning variable is possible in principle, but would result in
an exponentially growing number of factors.

In section 5, I will discuss and evaluate the suitability of different variables as instru-
ments in conditional pricing models. As mentioned above, candidates should incorporate
as much information as possible on potential shifts in the risk premiums demanded by
investors.

3 Benchmark Factor Pricing Models

In this section, I will present some well-known factor pricing models that shall serve
as benchmarks for the assessment of the diffusion index pricing model. These are the
static CAPM of Sharpe (1964), Lintner (1965) and Black (1972), a version of Merton’s
(1973) ICAPM with the selection of state variables following Chen, Roll, and Ross (1986),
the three-factor model of Fama and French (1993), and the conditional versions of the
consumption CAPM and the human capital CAPM proposed by Lettau and Ludvigson
(2001b). Aside from these influential studies, there are, of course, further authors who have
suggested factor pricing models to explain the cross-sectional patterns of stock returns.
However, for presentational convenience and for matters of data availability, I have limited
the number of comparison models to these five, basically adopting the selection of Lettau
and Ludvigson (2001b). For a more extensive overview of the range of pricing models using
macroeconomic variables as factors the reader is referred to Hodrick and Zhang (2000).
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3.1 The Capital Asset Pricing Model (CAPM)

The capital asset pricing model is due to Sharpe (1964) and Lintner (1965). Its basic
implication is that any individual asset’s expected excess return over a risk-free rate,
(E[Ri] − Rf ), is proportional to the expected excess return on the market portfolio,
(E[Rm]− Rf ). The proportionality factor in this relationship is given by the well-known
β, i.e. the coefficient in a linear time series regression of the asset’s return on the return
of the market portfolio,

βi,Rm =
Cov(Ri, R

m)
V ar(Rm)

.

Hence, the CAPM pricing formula is,

E[Ri] = Rf + βi,Rm(E[Rm]−Rf ). (3.1)

Equation (3.1) is a direct implication of Sharpe’s and Lintner’s result that the market
portfolio is mean-variance efficient if all investors in a market without frictions optimally
hold mean-variance efficient portfolios. Let us derive the CAPM formula for the simplest
case of a market with three assets, one of which guarantees the risk-free return Rf , while
the two risky assets have returns R1 and R2 with expected values µ1 and µ2, respectively.
Given these expected returns, an investor who wants to hold a mean-variance efficient
portfolio earning the expected return µp, must choose portfolio weights a and b, such that

{a, b} = arg min
a,bεR

{V ar(aR1 + bR2)}

s.t. µp = aµ1 + bµ2 + (1− a− b)Rf .

Letting σ2
1 and σ2

2 denote the variances of R1 and R2, respectively, and σ12 the covariance
of the two risky assets, the Lagrangian associated with the investor’s minimization problem
is given by,

L(a, b, λ) = a2σ2
1 + b2σ2

2 + 2abσ12 + λ[µp − aµ1 − bµ2 − (1− a− b)Rf ].

Solving for a, b, and λ obtains the first-order necessary conditions

(i) 2aσ2
1 + 2bσ12 − λµ1 + λRf = 0,

(ii) 2bσ2
2 + 2aσ12 − λµ2 + λRf = 0,

(iii) µp − aµ1 − bµ2 − (1− a− b)Rf = 0.

Multiplying (i) with a and (ii) with b and adding both equations yields

2a2σ2
1 + 4abσ12 + 2b2σ2

2 − λa(µ1 −Rf )− λb(µ2 −Rf ) = 0.

Now let σ2
p = V ar(aR1 + bR2) = a2σ2

1 + b2σ2
2 +2abσ12 denote the variance of the portfolio.

Then, the above equation simplifies to

2σ2
p − λ[aµ1 + bµ2 − (a + b)Rf ] = 0.

Consider a market portfolio m that only consists of risky assets, i.e. that satisfies a+b = 1.
Further, let µm = aµ1+bµ2 denote its expected return and σ2

m its variance. Then, it follows
from the above relationship that

2σ2
m = λ(µm −Rf ),
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which is equivalent to
1
λ

=
µm −Rf

2σ2
m

. (3.2)

Notice that this equation implies that the market portfolio is mean-variance efficient. In
fact, since λ and Rf are constants, one cannot increase µm without increasing σ2

m, and,
inversely, one cannot decrease σ2

m without also decreasing µm. Resolving (i) for µ1 yields

µ1 = Rf +
1
λ

(2aσ2
1 + 2bσ12).

Plugging (3.2) into this equation, we obtain

µ1 = Rf +
µm −Rf

σ2
m

(aσ2
1 + bσ12). (3.3)

Now, given that the covariance between R1 and the return on the market portfolio, Rm,
is

Cov(R1, Rm) = E[(R1 − µ1)(aR1 + bR2 − aµ1 − bµ2)]
= E[(R1 − µ1)[a(R1 − µ1) + b(R2 − µ2)]]
= aσ2

1 + bσ12,

equation (3.3) is obviously the CAPM formula for asset 1,

µ1 = Rf +
Cov(R1, Rm)

V ar(Rm)
(µm −Rf ). (3.4)

Black (1972) derived a more general version of the CAPM which does not assume the
existence of a risk-free rate. In the Black version of the CAPM,

E[Ri] = E[R0] + βi,Rm(E[Rm]−E[R0]), (3.5)

E[R0] denotes the average return on a zero-beta portfolio, i.e. a portfolio that is uncorre-
lated with the market portfolio. Obviously, equation (3.5) implies an expected return-beta
representation

E[Ri] = γi + βi,Rmλm. (3.6)

Hence, employing the equivalence of m = a + b′f and 1 = E[mRi] with E[Ri] = γ + λ′βi,f

that we have derived in section 2.2, the CAPM can be interpreted as a factor pricing model
where the return on the market portfolio is the only risk factor. The expected return-beta
representation (3.6) can be used to test whether the CAPM explains the cross-section of
average returns. Contrary to the Sharpe-Lintner version of the model where the risk-free
rate is included as a fixed regression constant, in the Black-version the expected zero-beta
rate is thus simply estimated as the constant γi.

While first empirical tests of the capital asset pricing model based on single assets did
not support its validity, the problem was soon diagnosed as being due to measurement
errors in the estimated individual stock betas (see Cochrane (2001)). In fact, group-
ing stocks into portfolios based on sorts with respect to β, Fama and MacBeth (1973)
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and Black, Jensen, and Scholes (1972) found strong evidence for the linear relationship
between asset returns and beta risk as predicted by the model.3 However, despite this
success, researchers soon began to notice that the model has severe problems explaining
the cross-section of average returns when other sorting criteria are applied. In particular,
Basu (1977) first reported that firms with low price-earnings ratios tend to have higher
sample returns and firms with high price-earnings ratios on average have lower returns
than their betas would suggest. Another failure of the CAPM, first documented by Banz
(1981) and often referred to as the size effect, is the finding that small capitalization stocks
on average earn returns that are too high compared to what the CAPM would predict.
Further so-called CAPM anomalies have been found, including the evidence that stocks
sorted by the firms’ book-to-market equity ratios show average return patterns that can-
not be explained by the CAPM. In particular, firms whose book value is high compared
to their market value on average earn higher returns than their betas would suggest. This
is often called the value effect. Further, DeBondt and Thaler (1985) report that portfo-
lios formed on performance over the past three to five years exhibit some sort of mean
reversal. More concretely, they find evidence that medium-term past losers outperform
medium-term past winners. Jegadeesh and Titman (1993) come to a somewhat inverse
result showing that short-term (up to one year) past winners earn significantly higher
returns than short-term past losers. This is referred to as the momentum effect.

All these results show that the CAPM is a factor pricing model that exhibits some
severe shortcomings. While beta certainly proxies for risk that is important for an in-
vestor’s assessment of the value of an asset (namely its correlation with the market), it
should not surprise us that this is not the only source of risk that investors are concerned
about. However, the set of anomalies being quickly collected, it turns out that finding the
risk factors that generate them is a rather delicate task. For each CAPM anomaly there
is now a whole bunch of factor models trying to explain it. The models that I describe
in the following sections represent some of the wide variety of attempts to parsimoniously
describe the cross-section of average returns on stocks sorted by different criteria.

3.2 The Intertemporal CAPM

We have seen that the standard CAPM of Sharpe, Lintner, and Black has been derived un-
der the assumption that investors, in order to maximize their instantaneous utility, choose
a portfolio that is mean-variance efficient. However, this type of consumer-investor maxi-
mization behavior abstracts from potential changes of the set of investment opportunities
over time and thus implicitly assumes that mean-variance efficiency is a time-invariant
concept. Based on a critique of this restriction, Merton (1973) develops an intertem-
poral version of the capital asset pricing model, henceforth referred to as the ICAPM,
where it is instead assumed that investors trade assets continually in time and thus take
into account their expectations about the relationship between current and future returns.

In order to capture this idea, Merton makes the important assumption that investors

3As Campbell (2000) and Campbell, Lo, and MacKinlay (1997) point out, the slopes of the relation
found by these authors were not consistent with the Sharpe-Lintner version of the model since the estimated
mean return on the zero-beta portfolio was higher than the risk-free return. Yet, this could be accounted
for by the Black version.
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at each point in time have knowledge about the transition probabilities for returns on each
asset over the next trading interval and in all subsequent periods. They are thus assumed
to know the investment opportunity set vector and the stochastic process describing its
changes over time. Making some further assumptions, Merton obtains an Itô process rep-
resentation of the return of a single asset, the coefficients of which are equally assumed
to follow Itô processes.4 Then, he shows that the dynamics of the entire system can be
described as a vector Itô process for some state variables.5 The author further assumes
the existence of a fixed number of risky assets and of one instantaneously riskless asset.6

Given the dynamics of the system, Merton shows that the maximization of the consumer-
investors’ intertemporal utility function, subject to some accumulation equation and bud-
get constraint, obtains first-order conditions for both optimal consumption and optimal
investment as functions of the state variables. From these equilibrium conditions, the
author derives explicit demand functions for the different assets. One important result
of his derivations follows directly from the particular form of the demand functions. In
fact, these consist of two additive components the first of which is equivalent to the usual
demand function of a single-period mean-variance maximizing investor as implied by the
standard CAPM. Moreover, depending on the state variables, the second component has
a straightforward interpretation as an investment to hedge against potential shifts in the
investment opportunities set that are likely to reduce future consumption. More precisely,
Merton states that this implies that investors will demand more (less) of an asset if its
return is positively (negatively) correlated with changes in those state variables that are
expected to result in less consumption.

Referring to Merton (1972), the author provides a two-fund theorem for the case of
a time-invariant investment opportunities set. This theorem states that under the as-
sumptions made, a unique pair of mutual funds can be established, one only containing
the risky assets and the other only the riskless asset, such that investors are indifferent
between choosing portfolios from these two funds or the original assets.7 In a next step,
Merton generalizes this result by providing a three-fund theorem for the case of time-
varying investment opportunities sets. Assuming that there exists one of the risky assets
which is perfectly negatively correlated with the risk-free rate,8 he proves that under some
additional assumptions about investors’ expectations, one can establish three funds, one
containing all risky assets, one containing only the risky asset that is correlated with the

4For matters of simplicity I dispense with a formal derivation of Merton’s model. To establish a version
of the ICAPM that is testable in a cross-sectional regression, it shall suffice here to highlight the baseline
ideas of Merton’s arguments.

5These are the price vector of all risky assets, as well as the drift and variance describing its stochastic
change over time. Although Merton does not offer any straightforward interpretation of these state variables
as measurable economic quantities at this point, later in the text he refers to the simplest form of a model
with time-varying investment opportunities as one with the only state variable being a stochastically
changing interest rate.

6Notice that “instantaneously riskless” does not mean constant. It only implies that all investors know
at date t that they can earn a certain return if they hold the riskless asset over the next period. This
general definition also allows for situations where the instantaneously riskless asset is not the same at each
point in time.

7A mutual fund is defined as some financial intermediary holding all available individual assets and
issuing shares of its own for purchase by the investors.

8The author mentions long-term bonds as an example for such an asset.
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risk-free asset, and the third only containing the riskless asset, such that risk-averse in-
vestors will be indifferent between choosing portfolios from the original set of assets or
these three funds. More precisely, as Merton argues, this theorem implies that if individ-
ual investors believe that the fund managers estimate the distribution of returns at least
as well as they would do themselves, then all investment decisions can equivalently be
made between the shares of the three funds. Since the second fund was defined to contain
only the risky asset that is perfectly correlated with the instantaneously riskless rate, it
can be understood as a fund that hedges against unfavorable changes in the investment
opportunities set.

Finally, Merton derives an asset pricing formula equivalent to the CAPM formula,
implying that the expected excess return on an individual asset over the risk-free rate
depends on its correlation with the excess market return and on its correlation with the
excess return on an asset that proxies for intertemporal changes of the investment oppor-
tunities set.9 Hence, investors expect returns not only as a compensation for holding risk
associated to the market, but also for holding risk connected to potential changes of the
set of investment opportunities which, in turn, could arise due to changes of some state
variables. As Merton further notes, his pricing formula implies that if a security that
is perfectly negatively correlated with changes in the risk-free rate does not exist by it-
self, it would be created by investors since it always earns a premium over the risk-free rate.

Breeden (1979) provides an interesting simplification of Merton’s ICAPM. He shows
that under the same assumptions, the multi-beta pricing equation of Merton (1973) can
be transformed into a single-beta representation where the beta is the asset’s covariance
with aggregate consumption. This version of the intertemporal CAPM is therefore often
referred to as the consumption capital asset pricing model or CCAPM. Although the the-
oretical appeal of Breeden’s model still prevails in asset pricing theory, it has as yet widely
failed empirical tests (see Lettau and Ludvigson (2001b)).

According to the above derivations, the ICAPM can be written in expected return-beta
language as

E[Ri] = γ + λ′βi,f ,

where f is a vector of state variables and βi,f is the vector of betas of Ri with the state
variables. Although Merton does not carry out empirical tests of the model himself, the
ICAPM is often referred to as the theoretical groundwork for asset pricing models involv-
ing macroeconomic variables as pricing factors (Fama and French (1996), Hodrick and
Zhang (2000), Lettau and Ludvigson (2001b), Brennan, Wang, and Xia (2002) etc.).

One of the first and most often cited empirical investigations of the question whether
risk associated to macroeconomic variables earns premiums in asset prices has been made
by Chen, Roll, and Ross (1986). Starting from the implications of Merton’s ICAPM and
Ross’s APT,10 they argue that in principle, any variable that systematically affects the

9Accordingly, some authors refer to the ICAPM as a “multi-beta CAPM”.
10The central idea of the arbitrage pricing theory (APT) of Ross (1976) is that in equilibrium, id-

iosyncratic risk will not be priced since investors can diversify it away by holding portfolios. Thus, only
systematic risk that is common to all assets in the market will carry risk prices. These common risk
factors can, for example, be determined applying a statistical factor analysis to the covariance matrix of
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economy’s pricing operator, the stream of expected future dividend payments or, more
generally, that helps describing the investment opportunities set, should be priced. From
the simple observation that stock prices should equal expected discounted dividends,11

Chen, Roll, and Ross identify the systematic forces that determine asset returns as those
variables which influence the discount factor or future dividend yields. Precisely, they ar-
gue that unanticipated changes in the riskless interest rate represent one potential source
of shifts in the discount rate. Another channel through which the discount factor will be
affected is given by the risk-premium, i.e. the additional return investors demand over
the risk-free rate for holding risky assets. Moreover, according to the CCAPM, Chen et
al. suggest changes in real consumption as a proxy for changes in the marginal utility of
investors and thus for the discount factor. The authors further identify the variables that
potentially influence future cash flows or dividends as the following. First, they argue that
unanticipated changes of the price-level will systematically influence asset returns since
“pricing is done in real terms”. Chen et al. argue that changes of the average inflation
rate can also affect asset returns since relative prices may change due to movements of the
inflation rate. Second, unanticipated changes of the level of production are likely to have
an impact on future cash flows. Thus, the authors suppose that innovations to the time
series behavior of industrial production are likewise linked to asset prices.

From these somewhat ad hoc assumptions about the interaction of individual macroe-
conomic variables and asset prices, Chen et al. construct a set of twelve state variables for
which they investigate empirically the impact on stock portfolio returns in a cross-sectional
asset pricing test. These variables comprise the monthly growth rate of industrial pro-
duction, the annual growth in industrial production, the expected inflation as computed
by Fama and Gibbons (1984), the unexpected inflation, the real short-term interest rate,
the change in expected inflation, the risk premium as the return differential of low-grade
corporate bonds and long-term government bonds, and the term structure as the re-
turn differential of long-term government bonds and the treasury bill rate, further the
value-weighted and the equally-weighted NYSE index, the growth rate of real aggregate
consumption, and an oil price index.

In a next step, Chen et al. test the ability of these state variables to explain the cross-
sectional return variation of stock portfolios sorted by size. Applying a version of the
Fama-MacBeth cross-sectional regression methodology that I will discuss more in detail
in section 5.1, they obtain the following results. The monthly growth rate of industrial
production, the risk premium, and the term spread appear to be highly significant in
all considered subperiods. Moreover, unanticipated inflation and changes in expected in-
flation seem to be priced significantly during periods characterized by a high volatility
of these variables. Interestingly, the considered stock indexes, although significant when
tested alone, lose their predictive power in the presence of these state variables. Further,
neither the change in real per capita consumption nor the oil price index show a significant
impact on the size-sorted stock returns. Chen, Roll, and Ross conclude from their findings
that stock returns are indeed subject to different sources of systematic risk which can be

asset returns (Connor and Korajczyk (1986)).
11Without taking into account the possibility of selling the asset, this is exactly the central asset pricing

equation we have derived above, namely p = E[mR].
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proxied for by the innovations to some standard macroeconomic variables.

Based on the results of Chen, Roll, and Ross, I employ a simplified version of their
pricing model as a benchmark for the diffusion index pricing model. Specifically, in addi-
tion to the market return, Rm, I include the following variables as factors: the monthly
change of industrial production (∆IP ), the monthly change of the consumer price index
as a measure of inflation (∆CPI), the term spread as represented by the difference be-
tween long-term government bonds and the 1-month T-bill rate (TSpr), and the difference
between low-grade corporate bonds and the 1-month T-bill rate as a measure for the risk
premium or default spread (DSpr).12 Hence, this factor pricing model has the expected
return-beta representation

E[Ri] = E[R0] + βi,RmλRm + βi,∆IP λ∆IP + βi,∆CPIλ∆CPI +
+βi,T sprλTspr + βi,DsprλDspr, (3.7)

where R0 is the return on the zero-beta portfolio and where βi,Rem , βi,∆IP , βi,∆CPI , βi,T spr,
and βi,Dspr denote the betas of the respective factors with the i-th asset. I use equation
(3.7) as the basis for cross-sectional tests of this version of the ICAPM.

3.3 The Three-Factor Model of Fama and French

In a widely recognized work, Fama and French (1993) have proposed a three-factor model
that has quickly become a benchmark for all asset pricing models constructed to capture
the cross-sectional variation of average stock returns. Two observations build the starting
point for their reflections. First, the CAPM market beta as well as the consumption-
based ICAPM beta both fail in explaining most of the observed cross-sectional patterns
of stock returns. Second, several authors report good explanatory power of firm-related
return variables such as size, book-to-market, leverage, and earnings-to-price for the cross-
section of average returns. Based on these findings, Fama and French (1992) in a first step
show that when these variables are tested jointly, size and book-to-market alone capture
an important portion of the cross-sectional variation in average stock returns. In a second
step, Fama and French (1993) construct a set of portfolios designed to mimic the returns
on the size (price of the stock times number of shares traded) and book-to-market (ratio of
the firm’s book equity to its market capitalization (size)) factors. They show that together
with the excess market return, these mimicking portfolios exhibit a striking good ability
to explain the cross-section of average stock returns. In the following, I will briefly review
the study of Fama and French (1993).

Fama and French construct their mimicking portfolios as weighted averages of the re-
turns on six size and book-to-market (BE/ME)-sorted portfolios of all NYSE, Amex and

12Chan, Karceski, and Lakonishok (1997) perform an extensive empirical comparison of different state
variables with regard to their ability to explain the cross-section of stock returns. They find that besides
size, book-to-market, past returns and dividend yields, the term spread and the default spread are the only
macroeconomic variables that are significantly priced. This results supports the use of these two variables
in my version of the ICAPM. However, the observation made by Chan et al. that “industrial production
growth and unanticipated inflation do not seem to be more useful than a randomly generated series of
numbers” strongly questions my selection of these variables. Yet, as we will see in section 5, the empirical
results I obtain do not fully confirm this view.
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NASDAQ stocks. In particular, in June13 of each year, they split all stocks into two size
groups (small, S, and big, B) using the size median of all NYSE stocks as the breakpoint.
Equivalently, based on the breakpoints for the top 30%, the middle 40% and the bottom
30% of the book-to-market ranked NYSE stocks, they sort all NYSE, Amex and NASDAQ
stocks into three BE/ME equity categories (high, H, medium, M, and low, L).14 From the
intersections of these two size and three BE/ME categories, Fama and French construct
the six portfolios S/L, S/M, S/H, B/L, B/M, and B/H,15 for which they calculate monthly
value-weighted returns from July to next years’s June when the rankings are redone. It
is important to note that only firms that have appeared in COMPUSTAT for at least to
years are included in the portfolios to avoid survivor bias.16

Finally, Fama and French construct the factor mimicking portfolio SMB (small minus
big), designed to capture the risk associated to firm size, as the difference each month
between the average returns on the three small-stock portfolios and the average returns
on the three big-stock portfolios,

SMB = 1/3 · (S/L + S/M + S/H)− 1/3 · (B/L + B/M + B/H).

In the same vein, they construct the portfolio HML (high minus low), designed to mimic
the risk factor related to firms’ book-to-market equity, as the difference each month of the
average returns on the two high-BE/ME portfolios minus the average returns on the two
low-BE/ME portfolios,

HML = 1/2 · (S/H + B/H)− 1/2 · (S/L + B/L).

Obviously, Fama and French’s way of constructing SMB and HML aims at minimizing
the influence of size in HML and that of BE/ME in SMB. Hence, the two portfolios
should be good proxies for the risk factors they are assumed to mimic. Fama and French
emphasize that since return variances are negatively related to size, their use of value-
weighted returns for the construction of the factor mimicking portfolios is in line with
the purpose of minimizing the variance of firm-specific factors. Finally, as a third factor
designed to proxy for the market risk, Fama and French consider the excess market return,
i.e. the return on all stocks in the six size and BE/ME categories minus the one-month
bill rate, henceforth denoted Rem. As we have seen above, Black (1972) has derived a
version of the CAPM that does not assume the existence of a risk-free interest rate. He
instead estimates the expected zero-beta rate, i.e. the expected return on a portfolio that
is uncorrelated with the market, as the regression constant. It is now a widely accepted
result that the Black version of the CAPM performs better in empirical tests than the
Sharpe-Lintner version. Hence, instead of employing the excess market return, in my tests
of the Fama-French three-factor model I simply use the return on the market portfolio,

13This is to ensure that the accounting data of all firms be known when the ranking is performed.
14Fama and French define a firm’s book equity as the COMPUSTAT book value of stockholders’ equity,

plus balance-sheet deferred taxes and investment tax credit, minus the book value of preferred stock
(redemption, liquidation, or par value depending on availability).

15S/M, for example, contains all stocks that are simultaneously in the small size group and in the middle
BE/ME category.

16However, as we will see later, there has been an interesting debate on the issue of survivor bias in the
construction of the Fama-French factors.
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Rm, as the third pricing factor. Note that Lettau and Ludvigson (2001b) proceed similarly
in their model comparison exercise. Given these three factors, the expected return-beta
representation of Fama and French’s model is17

E[Ri] = E[R0] + βi,RmλRm + βi,SMBλSMB + βi,HMLλHML, (3.8)

where E[R0] is the return on the zero-beta portfolio, and βi,Rm , βi,SMB, and βi,HML are
the time series regression coefficients of Ri on Rm, SMB, and HML, respectively. While
I use equation (3.8) as the basis for cross-sectional regression tests of the Fama-French
model, Fama and French (1993) adopt a different estimation methodology. Their objective
is to explain average returns across stocks and bonds, in particular to test for overlap in
the stochastic processes characterizing them. Hence, they seek for an estimation method
which delivers estimates that have a clear interpretation as risk-factor sensitivities for both
stocks and bonds. Given this requirement, Fama and French advocate the time series re-
gression approach suggested by Black, Jensen, and Scholes (1972) as a suitable estimation
methodology. This method consists in regressing separately the returns of all individual
assets on the risk factors. Thus, one has to perform as many time series regressions as
there are assets in the cross-section. Fama and French (1993) emphasize the following fea-
tures of this method which make its use convenient for their purpose. First, the regression
slopes have a clear interpretation as risk-factor sensitivities for both stocks and bonds.
Second, and more importantly, a well specified factor model should produce regression
intercepts that are indistinguishable from zero. Thus, the time series regression intercepts
represent a simple summary measure of model fit.

The main results of Fama and French’s analysis are the following. Although the excess
return on the market portfolio has the largest explanatory power in describing the common
time series variation of size and BE/ME-sorted stock portfolios, it leaves some variation -
especially that of small-stock and high BE/ME portfolios - unexplained. SMB and HML
show less overall predictive power, but work particularly well for these groups of portfolios.
Tested jointly, all three factors, Rem, SMB, and HML, each capture some variation that
the other factors fail to explain. Altogether, the time series variation of the 25 size and
book-to-market sorted stock portfolios is very well explained by the three-factor model.18

The empirical results of Fama and French further show that the term-structure related
risk factors, when tested alone, explain a considerable portion of the time series variation
of stock returns. Interestingly, they lose their predictive power when tested jointly with
the three stock factors, but remain significant when the excess return on the market port-
folio is excluded as a regressor. A time series regression of the excess market return on
the term-structure factors shows that these have strong explanatory power. In a nutshell,
there is variation of stock returns related to term-structure risk factors, but this type of
risk turns out to be largely captured by the excess market return.

17In their paper, Fama and French also consider two term structure factors similar to those considered
by Chen, Roll, and Ross (1986), and constructed to capture common risk in bond returns. They find,
however, that these do not add much to the explanation of the cross-section of average stock returns when
tested jointly with the three stock-market factors. Thus, in the model comparisons I perform, only the
three-factor version of Fama and French’s model is considered.

18In 21 out of the 25 regressions the R2 is greater than 0.9.
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The exceptionally good test results of Fama and French’s three-factor model have in-
duced an intense discussion about the worth of its scientific contribution. Although I
cannot summarize the entire debate here, it appears necessary to briefly review the main
arguments.19 One important critique of the Fama-French model is that there is no clear
economic interpretation of what sources of common risk the mimicking portfolios SMB
and HML proxy for. Based on their finding that low book-to-market firms tend to have
high earnings while high BE/ME firms have persistently low earnings, Fama and French
(1995) argue that HML can be seen as a premium for risk related to “financial distress”.
They further note that both SMB and HML are correlated with firm profitability which
could also suggest that they summarize variation of returns that is due to financial dis-
tress. They admit, however, that the empirical link between SMB and profitability is
mainly determined by the fact that small stocks did not participate in the boom of the
middle and late 1980s. As Cochrane (2001) further observes, there is only weak empiri-
cal evidence that HML is correlated with other indicators of financial distress. Another
argument against the Fama-French interpretation of HML is given by Griffin and Lem-
mon (2002) who find that the Fama-French factors do not explain well the returns of low
BE/ME stocks of firms that actually are in financial distress. Daniel and Titman (1996)
state that the strong correlation of returns on stocks with high book-to-market ratios is
not due to a common risk factor associated with BE/ME, but rather the result of similar
firm-specific properties as industry or geographic location. Controlling for firm charac-
teristics, they find that none of the Fama-French factors adds predictive power to the
explanation of expected returns. On the other hand, Liew and Vassalou (2000) find that
SMB and HML help forecasting GDP growth in different countries, supporting the view
that they act as state variables in the context of Merton’s (1973) ICAPM. Vassalou (2002)
provides similar evidence, showing that much of the information in SMB and HML is news
related to future GDP growth. Finally, Brennan, Wang, and Xia (2002) show that the
Fama-French mimicking portfolios have predictive power for both real interest rates and
the Sharpe ratio, which would be consistent with the existence of risk premia associated
to SMB and HML.

Another line of argumentation against the Fama-French model focuses on the potential
problem of survivor bias inherent to the construction of the factor mimicking portfolios. In
particular, Kothari, Shanken and Sloan (1996) support this view, stating that the Fama-
French factors, since based on COMPUSTAT data, exhibit a serious survivorship bias that
is the major reason for the observed premium on book-to-market. However, as Daniel and
Titman (1996) note, there are several authors who provide evidence against this argu-
ment. Davis (1994), for example, finds that even if the portfolios are constructed in a way
such that survivorship bias can be excluded, the risk premium on HML remains significant.

Although not directly alleviating the critique that there is no clear economic interpre-
tation of SMB and HML, Fama and French (1996) refresh the theoretical and practical
justification of their three-factor model by showing that it helps to explain most of the
asset pricing anomalies discussed in section 3.1. As pointed out above, one of the mo-

19In the introductions to their articles, Daniel and Titman (1996) and Brennan, Wang, and Xia (2002)
both provide extensive but largely complementary summaries of work related to the findings of Fama and
French. This may be seen as an indicator of the pervasiveness of literature on that issue.
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tivations for the elaboration of their three-factor model had been the so far unexplained
size effect that they show to be captured by SMB and HML. In Fama and French (1996)
they investigate whether the three-factor model also helps to explain the value effect, the
long-term reversal of stock returns, and the momentum effect. They find evidence that the
three factors Rem, SMB, and HML largely capture the average return patterns associated
with the value effect as well the long-term return reversal. However, the model fails in
explaining the often observed momentum effect, i.e. the fact that short-term past winners
tend to outperform short-term past losers.

Despite the continuing controversy about the interpretation of Fama and French’s
results, their three-factor model remains a cornerstone in the literature on cross-sectional
asset pricing tests. As yet, there is no model that performs better in explaining the cross-
section of average returns on size and book-to-market sorted portfolios. It is thus perfectly
suited to serve as a benchmark for the assessment of the diffusion index pricing model.

3.4 The Conditional (C)CAPM of Lettau and Ludvigson

In a recent paper, Lettau and Ludvigson (2001b) have suggested conditional versions of
several CAPM specifications that explain the cross-sectional return patterns of size and
BE/ME-sorted portfolios about as well as the Fama-French three-factor model. In partic-
ular, Lettau and Ludvigson show that the simple static CAPM, the consumption CAPM,
and a version of the CAPM augmented with a proxy for human capital - when scaled with
a conditioning variable derived in an earlier paper (Lettau and Ludvigson (2001a)) - per-
form far better than the models’ respective unconditional versions. The main contribution
of Lettau and Ludvigson consists in the derivation of the conditioning variable ĉay that I
will now briefly summarize.

The theoretical starting point for Lettau and Ludvigson’s (2001a) investigation is the
idea that the empirically proved predictability of excess returns at business cycle frequen-
cies “could simply reflect the rational response of agents to time-varying investment op-
portunities, possibly driven by cyclical variation in risk aversion”. Then, macroeconomic
variables that proxy for the time-variation of risk premia demanded by the investors should
forecast excess stock returns. Lettau and Ludvigson thus explicitly seek for a variable that
can serve as a summary measure of investors’ conditional expectations of excess returns.
They argue that one such variable is given by the consumption-aggregate wealth ratio,
since in a wide class of forward looking models it summarizes agent’s expectations of fu-
ture returns on the market portfolio. To see this, start with an investor’s intertemporal
budget constraint

Wt+1 = (1 + Rm,t+1)(Wt − Ct),

where Wt denotes the investor’s aggregate wealth (human capital plus asset holdings),
Rm,t+1 the net return on aggregate wealth, and Ct consumption in period t. Following
Campbell and Mankiw (1999), the authors show that under the assumption of a sta-
tionary consumption-aggregate wealth ratio, a first-order Taylor expansion of the budget
constraint obtains20

∆wt+1 ≈ k + rw,t+1 + (1− 1/ρw)(ct − wt),
20Unless otherwise indicated, lowercase letters denote log variables in the remainder of this section.
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where k is some constant, and where ρw denotes the steady-state ratio of new investment to
total wealth.21 Solving this equation forward, imposing that limi→∞ ρi

w(ct+i − wt+i) = 0,
and taking unconditional expectations, yields an explicit expression for the consumption-
aggregate wealth ratio as a function of expected future returns on aggregate wealth and
expected future consumption growth,

ct − wt = Et

[ ∞∑

i=1

ρi
w(rw,t+i −∆ct+i)

]
. (3.9)

Lettau and Ludvigson insist on the fact that since this expression has been derived on
the basis of a very general intertemporal budget constraint, the consumption-aggregate
wealth ratio summarizes the investors’ expectations of future excess returns in a wide class
of optimal consumption models.22

However, since aggregate wealth incorporates human capital that is not directly ob-
servable, the above expression of the consumption-aggregate wealth ratio is not useful for
empirical applications. As a consequence, one has to find a proxy for human capital that
only consists of observable variables. Lettau and Ludvigson do this by decomposing log
human capital into ht = κt + zt + yt, where κ is a constant, zt is a mean-zero stationary
component, and yt is a non-stationary component which is assumed to be well-described
by aggregate labor income. The authors justify this assumption by offering a number
of different model specifications that link labor income to the stock of human capital
and that all imply that the log of aggregate labor income summarizes the non-stationary
component of human capital. Given this approximation, Lettau and Ludvigson express
aggregate wealth, Wt, as the sum of asset wealth, At, and human capital, Ht, so that log
aggregate wealth is given by

wt ≈ ωat + (1− ω)ht,

where ω is the average share of asset holdings in total wealth. Accordingly, there is an
approximate relationship between the log return on total wealth, rw,t, and the log returns
on asset wealth, ra,t, and human capital, rh,t,

rw,t ≈ ωra,t + (1− ω)rh,t.

Plugging these two relations into equation (3.9) yields

ct − ωat − (1− ω)ht = Et

[ ∞∑

i=1

ρi
w{[ωra,t+i + (1− ω)rh,t+i]−∆ct+i}

]
,

which still contains the unobservable human capital ht. Substituting the decomposition
ht = κt + zt + yt for ht, Lettau and Ludvigson finally obtain

ct − ωat − (1− ω)yt = Et

[ ∞∑

i=1

ρi
w{[ωra,t+i + (1− ω)rh,t+i]−∆ct+i}

]
+ (1− ω)zt. (3.10)

21Strictly following the authors’ derivations, unimportant linearization constants have been omitted.
22Obviously, this statement requires that the conditional expectation of future consumption growth be

approximately constant, a fact that the authors conjecture to be confirmed by the data.
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On the right-hand side of equation (3.10) figure only stationary variables. This implies
that c, a, and y share a common trend whose deviation is given by ct − ωat − (1 − ω)yt,
henceforth denoted as cay.

Lettau and Ludvigson (2001a) estimate cay by applying a dynamic least squares (DLS)
technique as suggested by Stock and Watson (1993). They report that the estimation
results give strong support to the view that there is a single cointegrating vector for con-
sumption, labor income, and asset wealth. Further, their finding that the shares of asset
holdings and human capital in aggregate wealth are about one-third and two-thirds, re-
spectively, are consistent with the capital and labor shares documented in the real business
cycle literature.

Again assuming that ∆ct+i and rh,t+i are not too volatile, another implication of equa-
tion (3.10) is that cay summarizes the conditional market expectations of future asset re-
turns. This property strongly qualifies it as a potential predictor for stock returns. In fact,
Lettau and Ludvigson (2001a) show that their estimate of the cointegration residual, ĉay,
performs very well in forecasts of the S&P 500 Index and the CRSP value-weighted index
over short and intermediate horizons. Perhaps the most striking of their results is that
ĉay appears to be the best univariate predictor of stock returns for horizons up to one year.

With what has been said in section 2.4, the predictive power of ĉay for the market
return makes of it a promising candidate for a scaling variable in factor pricing models.
Lettau and Ludvigson (2001b) explore this issue. They use ĉay as a conditioning variable
in a simple static CAPM, in a CAPM augmented with a proxy for human capital, and in a
consumption CAPM. The consumption CAPM can be derived from the basic intertemporal
consumption maximization framework introduced in section 2.1. In fact, we have defined
the stochastic discount factor mt+1 as

mt+1 ≡ β
u′(ct+1)
u′(ct)

.

By simply taking a first-order Taylor expansion of this equality, one can derive a linear
relationship between m and ∆c independently of the functional form one assumes for the
utility function u(ct),

mt+1 = at + bt∆ct+1.

This relation can be considered as a single-factor model where ∆ct+1 is the only pricing
factor. Combined with 1 = E[mt+1R

i
t+1], the Black version of this factor model has the

expected return-beta representation

E[Ri] = E[R0] + βi,∆cλ, (3.11)

where E[R0] is the expected return on a zero-beta portfolio, and where βi,∆c is the regres-
sion coefficient of Ri on ∆c. Scaling with ĉay results in a three-factor model with expected
return-beta representation

E[Ri] = E[R0] + βi,cayλcay + βi,∆cλ∆c + βi,cay∆cλcay∆c. (3.12)
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Following Campbell (1996) and Jagannathan and Wang (1996) who find that labor income
growth as a proxy for human capital is significantly priced in cross-sectional tests of the
CAPM, Lettau and Ludvigson (2001b) further test the specification

E[Ri] = E[R0]+βi,cayλcay+βi,RmλRm+βi,∆yλ∆y+βi,RmcayλRmcay+βi,cay∆yλcay∆y. (3.13)

Lettau and Ludvigson document strong improvements of the (C)CAPM specifications
scaled by ĉay over the unconditional versions. In their cross-sectional regressions using
quarterly returns of 25 Fama-French size and BE/ME-sorted portfolios, the scaled con-
sumption CAPM and the scaled human capital CAPM exhibit R2’s of 0.70 and 0.77,
respectively, with the factors scaled by ĉay being always significantly priced.

Despite these good overall results, in a recent paper, Brennan and Xia (2002) cast
doubt on Lettau and Ludvigson’s assertion that the predictive power of ĉay is due to
the variable’s ability to proxy for investors’ conditional expectations of future returns.
Instead, they argue that the good forecasting performance arises as a result of the fact
that the cointegrating relation between consumption, labor income, and asset wealth has
been estimated in-sample and therefore incorporates a considerable look-ahead bias. To
support their view, Brennan and Xia construct the variable tay as the residual of a similar
cointegrating regression, where log consumption has been replaced with calendar time,
and provide empirical evidence that tay forecasts excess stock returns at least as well as
ĉay.

In a response to Brennan and Xia’s critique, Lettau and Ludvigson (2002) defend their
findings. Referring to results from cointegration theory, they argue that the mere fact that
ĉay has been estimated in-sample does not necessarily imply that its forecasting power be
spurious. They further point out that - contrary to Brennan and Xia’s characterization of
tay as a mechanistic variable - this is in fact a forecasting variable which is consistent with
forward-looking behavior of investors. Finally, based on recent theoretical work suggest-
ing that in-sample tests are more reliable than out-of-sample tests, Lettau and Ludvigson
defend the use of the former in their study.

It is beyond the scope of this paper to analyze the validity of the arguments put forward
by Brennan and Xia and Lettau and Ludvigson, respectively. With the only exception
being the paper of Hodrick and Zhang (2000), the predictive power of ĉay as a conditioning
variable in cross-sectional tests of asset pricing models has been widely accepted so far
(Cochrane (2001), Campbell (2000), Menzly (2001), Vassalou (2002)). In my study, I will
thus use Lettau and Ludvigson’s conditional versions of the consumption CAPM and the
human capital CAPM (henceforth denoted CCAPM and HCCAPM) as benchmarks for
the diffusion index pricing model.
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4 The Diffusion Indexes of Stock and Watson

In the previous section we have seen that a central issue in asset pricing theory is the
search for state variables that are of special hedging concern to investors. The CAPM
indicates that investors care about the covariation of an asset’s return with the return
of the market portfolio. However, as the evidence on CAPM anomalies such as the size
effect or the value effect suggests, there are differences in average returns across groups
of assets that are not captured by the market risk. Fama and French find artificially con-
structed factors that explain the cross-section of stocks sorted on size and book-to-market
surprisingly well. Yet, there is an ongoing controversy about the question what state
variables these portfolios poxy for. Lettau and Ludvigson state that investors’ conditional
expectations about future returns are related to the consumption-aggregate wealth ratio.
Showing that this ratio can equivalently be expressed by the deviations of consumption,
asset wealth and labor income from their shared common trend, they find evidence that the
estimated residual of this cointegrating relationship indeed helps forecasting future excess
returns. They further demonstrate that conditioning on the log consumption-aggregate
wealth ratio substantially improves the predictive power of the consumption CAPM in
cross-sectional regression tests.

Still other asset pricing models that are not reported in section 3 relate macroeco-
nomic variables to cross-sectional variations of average stock returns. Cochrane (1996)
from a supply-side point of view studies the asset pricing implications of firms’ invest-
ment decisions. He develops a factor pricing model with returns on investment - inferred
from a production function - as the pricing factors. Campbell (1996) advances a multi-
factor model allowing for intertemporal changes in investment opportunities. Exclusively
selecting variables as factors that predict the market return in time series regressions, he
considers the innovations of the dividend yield, the relative bill rate, the yield spread and
labor income growth as pricing factors.23 Jagannathan and Wang (1996) also use labor
income growth as a proxy for human capital in their model. They further include the yield
spread between high and low-grade bonds as a pricing factor. Finally, Vassalou (2002)
considers a measure of news related to future GDP growth as an alternative risk factor.

All these models have in common that they try to identify the state variables which
represent sources of risk that are priced by investors. The results are encouraging in that
they provide empirical evidence for existing links between asset returns and macroeco-
nomic variables. They also suggest that investors care about a variety of macroeconomic
risk factors such as, for example, interest rates, aggregate production, consumption, labor
income, and investment. However, all individual variables tested as factors in one of the
above models are just what they are, individual variables. To exhaustively account for all
types of risk that have been found to be priced by investors, one would have to include a lot
of factors, thus leaving the path of parsimony. Yet, since all of these variables are closely
linked to the business cycle, there must be a large common component in their variation.
Hence, identifying the common components in the variation of the state variables could
possibly provide us with a parsimonious representation of the sources of macroeconomic

23The relative bill rate is calculated as the difference between the one-month T-bill rate and its 1-year
backward moving average.
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risk that asset prices are subject to. Let us still go a bit further. Assume there are other
types of macroeconomic risk that investors hedge against, but which have not yet been
pinpointed by empiricism or theory. Then, if we were able to find a priced factor that has
been constructed to capture some of the common variation of macroeconomic variables,
we could use the correlation patterns of the common factor with the individual variables
to identify those which contribute the most to the priced variation.

However, the first building block we need before we can pursue this idea is a suitable
method to identify the common variation in macroeconomic variables. One such method
has recently been proposed by Stock and Watson (1998). From a large number of variables
they construct a small number of common factors using principal components analysis.
They show that forecasts of output and inflation based on these factors outperform uni-
variate autoregressions, small vector autoregressions, and leading indicator models. Given
the apparent predictive power of the Stock-Watson factors for macroeconomic variables,
I conjecture that they are potentially promising candidates for the summary measures of
priced risk we are searching for. The central issue of this paper is to investigate whether
this conjecture can be confirmed empirically. Before I document my empirical findings in
section 5, I will present Stock and Watson’s method in the remainder of this section.

4.1 The Model

As a motivation for the development of the diffusion index methodology, Stock and Wat-
son point out that the information technology nowadays enables the access to a very large
number of macroeconomic time series while forecasting still is mostly based on only a
small number of variables. Thus, potentially valuable information is neglected. To over-
come this deficiency, the authors develop a theoretical framework for forecasting single
time series using a large number of predictors. They get their inspiration from a common
practice of NBER business cycle analysts who construct weighted averages of many time
series with fixed weighting schemes which they call diffusion indexes. Stock and Watson
argue that since these diffusion indexes are averages of a large number of variables, they
summarize the common information contained in these by cross-sectionally averaging out
idiosyncratic disturbances. According to this characteristic, they propose to estimate dif-
fusion indexes as the unobserved factors in an approximate dynamic factor model. In a
dynamic factor model setting, factor loadings are allowed to vary over time. This ensures
that correlation patterns between individual variables be time-varying as one observes to
be the case in reality. Further, Stock and Watson permit correlation of idiosyncratic errors
across series, which implies an approximate factor structure. Finally, they extend their
model to be applicable to unbalanced panels, i.e. data sets that exhibit missing values
or time series of different frequency. Stock and Watson show that when both the num-
ber of observations in the time series and the number of times series in the cross-section
tend to infinity, then the forecasts based on the estimated dynamic factors are as efficient
asymptotically as if the true factors were observed. Stock and Watson’s theory builds on
previous work on dynamic factor models (e.g. Sargent and Sims (1977), Geweke (1977))
as well as on approximate static factor models, mostly studied for financial applications
(e.g. Chamberlain and Rothschild (1983), Connor and Korajczyk (1986, 1988, 1993)).
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Consider the scalar times series variable yt as the variable to be forecasted and Xt the N-
dimensional multiple time series variable containing useful information for the prediction
of yt+1.24 Further assume that Xt can be represented by the factor structure,

Xt = ΛtFt + et (4.1)

where Ft is the r× 1 vector of common factors, Λt is the N × r matrix of factor loadings,
and et is the N × 1 vector of idiosyncratic disturbances. We are interested in predicting
yt+1 with the information contained in Xt. To reduce the number of predictors, we make
use of the factor structure of Xt, and model yt+1 as,

yt+1 = β′tFt + εt+1 (4.2)

where βt is the r×1 vector of coefficients and εt+1 is the scalar error term. We now assume
that E[εt+1|Xt, yt, βt, Xt−1, yt−1, βt−1, . . .] = 0. This assumption is central to the model
since it implies that E[yt+1|Xt, yt, βt, Xt−1, yt−1, βt−1, . . .] only depends on Ft and not on
Xt hence ensuring the dimension reduction from a large number of predictor time series
variables (N) to a smaller number of factors (r). Further, the above assumption implies
that no lags of Ft or yt enter the forecasting equation. This implication can be relaxed
easily by interpreting Ft as including lags (stacking) and yt+1 as a quasidifference thus
also including lagged values of yt.

Stock and Watson assume that the factor loadings, Λt, and their coefficients in the fore-
casting equation, βt, vary over time according to,

Λt = Λt−1 + Hξt (4.3)

and
βt = βt−1 + ηt (4.4)

where ξt and ηt denote a N × r matrix and a r × 1 vector of stochastic disturbances,
and where H is a N × N scaling matrix. Notice that specific assumptions have to be
made about H when deriving the asymptotics for the estimators. Since I will not discuss
thoroughly the proofs of consistency, the reader is referred to Stock and Watson’s paper
for details on this.

It is worth noting at this point that the model (4.1)-(4.4) is more general than the dy-
namic factor models without time-variation of Geweke (1977), Sargent and Sims (1977),
and others, as well as the static factor models proposed by Chamberlain and Rothschild
(1983), and Connor and Korajczik (1986, 1993). Both sets of models can be obtained as
special cases of (4.1)-(4.4). In particular, a static factor model representation of (4.1)-(4.4)
can be derived assuming that there is no time variation in the factor loadings (Λt = Λ0 ∀ t),
that et are serially uncorrelated, and that Ft and {eit} are i.i.d. and mutually uncorrelated.
If there is no correlation of idiosyncratic disturbances across series (eit ⊥ ejt ∀ i 6= j), the
model is referred to as an exact static factor model. If the idiosyncratic disturbances are al-
lowed to be slightly cross-correlated, then the model is called an approximate factor model.

24Except for some notational changes and omissions of some minor steps, I strictly follow the derivations
in Stock and Watson’s (1998) seminal work.
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In standard dynamic factor models without time-variation, the factor loadings are simi-
larly supposed to be constant. However, dynamics are introduced by assuming that (i)
the factors evolve according to a time series process, (ii) lagged values of the factors are
allowed to enter the model, and (iii) the idiosyncratic error terms can be serially corre-
lated. Stock and Watson suggest two ways of transforming a dynamic factor model into
a static one without losing too much information. The first transformation is based on
the assumption that only a finite number q of lagged factors enter the model. Then, by
stacking the contemporaneous factor with its first q lags, the factor loadings can be rep-
resented by a matrix of constants. Specifically, let Zt denote a N × 1 vector of time series
variables that follow the dynamic factor model,

Zti = αi(L)ft + vti (4.5)

where gi(L)vti = ηti, ηti i.i.d.N(0, φ2
i ), ft is a vector of factors that are independent

of {vti}, αi(L) has finite order q, and gi(L) is a finite order lag polynomial with all
roots outside the unit circle. Then, letting Xt = Zt, stacking ft and its q lags into a
(dim(ft) · (q +1)×1) vector Ft = (f ′t , f ′t−1, . . . , f

′
t−q)

′, further letting Λ0 = (α0, α1, . . . , αq)
and et = vt, one can easily see that model (4.5) is equivalent to model (4.1) where
r = dim(ft) · (q + 1), Λt = Λ0 ∀ t and et = vt being serially correlated. That is, un-
der the assumption that there is only a finite number q of factors entering the dynamic
model, one can stack them to obtain a static model with constant coefficients. This is the
approach adopted by Stock and Watson. The second way to rewrite the dynamic factor
model in a static form consists in stacking the data and the factors and then again esti-
mating the factor loadings as constant coefficients. This representation has the advantage
that more information is included since also lagged values of the explanatory variables are
considered. However, for their consistency proofs and forecasts, Stock and Watson only
use contemporaneous values of X.

As Stock and Watson notice, dynamic factor models are usually estimated by max-
imum likelihood using the Kalman filter. However, they point out that the use of the
Kalman filter is not appropriate for the estimation of their model since the number of pa-
rameters to estimate is large, missing data have to be handled, and nonlinear filters would
be needed for computing the likelihood when both factors and factor loadings were treated
as random. To avoid these problems, Stock and Watson suggest the following approach
towards the estimation of the factors. They start with some restrictive assumptions. In
particular, they suppose that (i) the factor loadings are constant (Λt = Λ0∀ t), (ii) the
idiosyncratic disturbances {eit} are i.i.d.N(0, σ2

e) and cross-sectionally uncorrelated, and
(iii) {Ft} is a T × r dimensional unknown non-random parameter. Notice that the last
two assumptions represent considerable restrictions compared to the assumptions made
in standard dynamic factor models. However, Stock and Watson prove the consistency of
the estimated factors under weaker nonparametric assumptions. It is in this sense that
they classify their method as quasi-maximum likelihood.

Before we derive the factor estimates, it is convenient to introduce some additional
notation. In the following, Xti denotes the observation on variable i at time t, the i-th time
series variable is given by the T ×1 vector Xi = (X1i, X2i, . . . , XTi)′, and correspondingly,
X is the T × N matrix of all observations in the data set. Equivalently, let Fti be the
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observation on factor i at time t and F = (F1, F2, . . . , FT )′ the T ×r matrix of factors. Let
F 0 denote the true value of F. Further, let Λt = (λ1t, λ2t, . . . , λNt)′ be the N × r matrix
of factor loadings where λit is the r × 1 vector of factor loadings on variable i at time t.
Finally, let Iti denote a nonrandom indicator function where Iti = 1 if the i-th variable is
observed at time t and Iti = 0 otherwise. This indicator function is needed to address the
problem of missing data in an unbalanced panel.

4.2 Derivation of the Estimator

Given this notation and the assumptions made above, Stock and Watson obtain the factor
and factor loading estimates (F, Λ0) by solving the nonlinear least squares problem

VNT (F, Λ0) =
1

NT

N∑

i=1

T∑

t=1

Iti(Xti − λ′i0Ft)2 (4.6)

which is implied by the maximization of the likelihood function. Solving the first order
conditions of this problem for the minimizers (F̃ , Λ̃0) of VNT (F, Λ0) yields

λ̃i0 =

[
T∑

t=1

ItiF̃tF̃
′
t

]−1[ T∑

t=1

ItiF̃tXti

]
, (4.7)

and

F̃t =

[
N∑

i=1

Itiλ̃i0λ̃
′
i0

]−1[ N∑

i=1

Itiλ̃i0Xti

]
. (4.8)

From equations (4.7) and (4.8) it is obvious that balanced and unbalanced panels require
different treatment. Let us first consider the case of balanced panels, i.e. Iti = 1 ∀ i ∀ t.
One way of estimating the parameters consists in substituting (4.7) into (4.6) to obtain
the concentrated objective function,

VNT (F, Λ̃0) =
1

NT

N∑

i=1

[
X ′

iXi −X ′
iPF Xi

]
, (4.9)

where PF denotes the projection matrix F (F ′F )−1F ′.25 Normalizing all factors F to be
mutually uncorrelated and to have standard deviation of unity, F ′F/T = Ik, it is easy to
see that the minimization of (4.9) is equivalent to the maximization of 1

N

∑N
i=1 X ′

iFF ′Xi.
This expression being a scalar, one can apply the trace operator to get

1
N

N∑

i=1

X ′
iFF ′Xi = tr[F ′(

1
N

N∑

i=1

XiX
′
i)F ] =

1
N

tr(F ′XX ′F ),

the maximum of which is obtained by choosing F̃ as the eigenvectors corresponding to
the k largest eigenvalues of the T × T matrix XX ′.26 Obviously, the matrix XX ′ is the

25Dropping tildes for presentational convenience, this can be derived easily by plugging the matrix
representation of (4.7), λi0 = (F ′F )−1F ′Xi, into (4.6), multiplying terms out, and again employing the

matrix notations F ′Xi =
∑T

t=1
FtX

′
ti, X

′
iF =

∑T

t=1
XtiF

′
t , F

′F =
∑T

t=1
FtF

′
t , and X ′

iXi =
∑T

t=1
XtiX

′
ti.

26This is a standard result of matrix algebra. See, for example, theorem 3.6 in Härdle and Simar (1998).
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cross-sectional covariance matrix of all observations Xti, i.e. its elements represent the
variation and covariation across series in each period. As Stock and Watson note, a sim-
ilar approach has been applied by Connor and Korajczyk (1986,1993) in their studies of
the APT.

Notice that one could also maximize VNT (F, Λ0) by substituting the first-order condi-
tion (4.8) in equation (4.6). Equivalently to the above derivations, the maximum of the
concentrated objective function VNT (F̃ , Λ0) would be obtained by choosing Λ̃0 as the first
k principal components of X, i.e. the first k eigenvectors of the N×N variance-covariance
matrix X ′X =

∑T
t=1 XtX

′
t.

Matters are more complicated if we have an unbalanced panel. Stock and Watson note
that iterating on the first-order conditions (4.7) and (4.8) subject to the normalization
F ′F/T = Ik would in principle be possible, but computationally burdensome in the case
of large N. They thus suggest to minimize VNT (F, Λ0) by using the EM algorithm.27 They
denote X∗

ti as the latent value of Xti. Hence, X∗
ti = λ′i0Ft + eti and Xti = X∗

ti if Xti is
observed, i.e. if Iti = 1. The complete-data likelihood is thus given by

V ∗
NT (F, Λ0) =

1
NT

N∑

i=1

T∑

t=1

(X∗
ti − λ′i0Ft)2.

Let QNT (F (j),Λ(j)
0 ) denote the expected complete-data likelihood in iteration j,

QNT (F (j),Λ(j)
0 ) = E

[
V ∗

NT (F (j), Λ(j)
0 )|X, F̃ (j−1), Λ̃(j−1)

0

]
,

where F (j) and Λ(j)
0 denote the j-th iterates of F and Λ0, respectively. Then, under the

assumption that eti is i.i.d.N(0, σ2),

QNT (F (j),Λ(j)
0 ) =

1
NT

N∑

i=1

T∑

t=1

(
X̂
∗(j−1)
ti − (λ(j)

i0 )′F (j)
t

)2
, (4.10)

where terms that do not depend on F or Λ0 have been omitted and where

X̂
∗(j−1)
ti = E[X∗

ti|X, F̃ (j−1), Λ̃(j−1)
0 ] =

{
Xti if Iti = 1
(Λ̃(j−1)

i0 )′F̃ (j−1)
t if Iti = 0

}
.

Given this representation, one can again “concentrate” the likelihood by substituting the
first-order condition resulting from the maximization of QNT (F (j),Λ(j)

0 ) into (4.10). Ac-
cordingly, one obtains F̃ (j) as the eigenvectors of the cross-sectional covariance matrix

(X̂∗(j−1))(X̂∗(j−1))′ =
N∑

i=1

(X̂∗(j−1)
i )(X̂∗(j−1)

i )′,

27The expectation-maximization (EM) algorithm was first developed by Dempster, Laird, and Rubin
(1977). It is an iterative method for finding the likelihood-maximizing parameters of a model by introducing
some appropriate unobserved latent variable. First, the complete-data log likelihood is estimated (E-step).
Second, this expected value is maximized (M-step). Both steps are repeated until convergence.
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where (X̂∗(j−1)) is the T ×N matrix of all X̂
∗(j−1)
ti , i.e. the observed and the data points

calculated on the basis of Λ̃(j−1)
0 and F̃ (j−1). Finally, the two steps (computation of the

expected complete-sample likelihood and its maximization) are iterated until convergence.
Notice that this algorithm can also be applied if there are series of different frequency in
the sample. This makes it applicable to very large data sets and thus particularly useful
for forecasts based on a large number of predictors.

4.3 Consistency Proofs

Stock and Watson exclusively provide consistency proofs for the balanced panel estimates.
The authors further limit their proofs to the numerator matrix F̂t of the factor estimates
given in (4.8),28 i.e.

F̂t =
∑N

i=1 Itiλ̃i0Xti∑N
i=1 Iti

. (4.11)

They first show that F̂t is a uniformly consistent estimator for a linear combination of
the true factors F 0

t . As they remark, the consistency is obtained by averaging over a
very large number N of cross-sectional observations, relative to the number T of time
series observations. Since forecasting time series variables based on the common variation
of many predictors has been the main objective for Stock and Watson to develop their
method, they show in a second step that forecasts of yt+1 based on the estimated factors F̂t

are uniformly consistent for forecasts of yt+1 based on the true factors F 0
t . Concerning this

result, two remarks are in order, however. First, Stock and Watson exclusively consider
the case of time-invariant coefficients in the forecasting equation (4.2), i.e. βt = β ∀ t.
Second, since the true number of factors r is unknown in general, they estimate the number
q (1 ≤ q ≤ k) of factors which enter the forecasting equation by using an information
criterion of the form,

ICq = ln(σ̂2
ε (q)) + g(T )q,

where g(T ) is some penalty function, and where σ̂2
ε (q) = SSR(q)/T is the squared error

of forecasting yt+1 with q factors. Then, they show that for any g(T ) satisfying g(T ) → 0
and δNT g(T ) → ∞, where δNT denotes the rate at which the estimated converge to the
true factors, the information criterion estimate r̂ of the number of factors converges in
probability to the true number of factors. In a nutshell, Stock and Watson demonstrate
that the efficient forecast of the forecasting variable given the true factors, yt+1 = β′F 0

t ,
can be achieved asymptotically (in L2) by using the estimated factors, even if the number
of factors has itself also been estimated.29

28Although Stock and Watson do not go into that in more detail, the reason why the denominator can
be neglected seems to be the following. In matrix notation, the first-order conditions (4.7) and (4.8) are

given by λ̃i0 = (F̃ ′F̃ )−1F̃ ′Xi and F̃ = (Λ̃′0Λ̃0)
−1Λ̃′0Xi. Taking into account the normalization of the

factors, F ′F/T = Ik, (4.7) reduces to λ̃i0 = T · F̃ ′Xi. Then, λ̃′i0λ̃i0 = 1
T2 X ′

iF̃ F̃ ′Xi. Now, again using the

normalization of the factors, it is easy to see that the denominator matrix in (4.8), Λ̃′0Λ̃0 =
∑N

i=1
λ̃′i0λ̃i0,

is not stochastic and can thus be ignored for the derivation of the consistency proofs.
29Stock and Watson notice, however, that the convergence criterion δNT g(T ) → ∞ for the penalty

function deviates from the usual information criterion condition Tg(T ) → ∞. Since neither the Akäıke
(AIC) nor the Bayesian information criterion (BIC) satisfy the condition δNT g(T ) → ∞, they apply the
penalty function g(T ) = ω ln T/δNT which obviously does satisfy it. Here, ω denotes some constant and
δNT =min(N1/2/T 1+ε, T 1−ε) is the rate of convergence derived in the proof of consistency.
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4.4 Monte Carlo Analysis Results

In order to verify whether their method really delivers factor estimates that are good
forecasters in a finite sample setting, Stock and Watson perform a Monte Carlo analysis.
Specifically, they test for three properties. First, for different values of T, N, r, and k, they
investigate if the estimated factors are good proxies for the true factors. Second, assuming
that the true number of factors is known, they analyze whether the forecasting errors sig-
nificantly rise if one uses the estimated rather than the true factors. Third, they seek to
quantify the additional error that results from forecasting yt+1 with the estimated number
r̂ of factors compared to forecasts where the true number of factors, r, is known. Since
the finite-sample performance of the SW factors in forecasting individual macroeconomic
time series variables is not the focus of my paper, I omit discussing the design of Stock
and Watson’s Monte Carlo analysis here. Let me nonetheless briefly sketch their main
results.

First, even for relatively small N and T , the estimated are quite close to the true
factors, as measured by the coefficient of determination in a multivariate regression of
F̂ on F 0, denoted R2

F̂ ,F 0
. Increasing both the number of time series observations and

the number of variables in the cross-section significantly improves the results, obtaining
values of R2

F̂ ,F 0
close to 1 for T ≥ 100 and N ≥ 250. Also, they show that forecasts based

on k rather than r factors do not considerably decrease the coefficient of determination.
One important result is further that R2

F̂ ,F 0
remains high when the true model is dynamic

but the factors are extracted from the stacked static model as described above. However,
Stock and Watson notice that in the case of highly autocorrelated factors the Monte Carlo
results deteriorate slightly. A comparison across specifications shows that the worst results
are obtained in the case of time-varying factor loadings. With values of R2

F̂ ,F 0
in the range

from 0.83 to 0.87, the estimated factors nonetheless seem to be quite good proxies for the
true factors even in this case. Stock and Watson further report that forecasts based on
the estimated factors in general do not differ significantly from forecasts based on the true
factors. However, the results deteriorate somewhat when dynamics and time-variation
in the factor loadings are introduced. Finally, forecasts based on a number r̂ of factors
determined by different information criteria are compared with forecasts based on the true
number of factors. It turns out that except for the case of large ω in Stock and Watson’s
information criterion, all three criteria yield broadly similar results.

4.5 Forecasting Results

Having shown that the factors extracted from their algorithm are relatively good proxies
for the true factors, Stock and Watson in a final step compare their forecasting power
with that of standard forecasting methods. In particular, they contrast diffusion index
forecasts of annual growth rates of US industrial production (IP) and consumer price
index (CPI) with simple autoregressive forecasts, multivariate leading indicator forecasts,
and with Phillips curve forecasts in the case of CPI. Since equation (4.2) allows for serial
correlation in the error terms, Stock and Watson consider a forecasting equation that also
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includes lagged values of the variable to be forecasted,

ln(zt+12/zt) = β0 +
q∑

i=1

βiF̂ti +
p∑

j=1

γj∆ ln zt−j + εt,

the coefficients of which are estimated by OLS. Different specifications for the selection of
the number of lags to include, p and q, are examined. Further, to simulate real-time fore-
casting, all three steps, i.e. factor extraction, model selection, and forecasting, are repeated
at each month in the sample period so that the forecasting equation possibly changes from
period to period in terms of how many factors and how many lags are included. Using the
different estimation methodologies discussed below, Stock and Watson extract the factors
from two sets of variables, a balanced panel containing 170 monthly macroeconomic time
series for the US covering the period 1960:1 - 1997:9, and an unbalanced panel containing
an additional set of 54 time series variables that have not been observed over the entire
period. The variables are selected by the authors from the DRI/MacGraw Hill Basic
Economics database to represent the main categories of macroeconomic times series.30

It is important to notice that since their method is not appropriate to extract factors
from integrated variables,31 Stock and Watson preliminarily transform all non-stationary
to stationary series by taking first differences or logarithms or both. Further, after this
transformation, they standardize all series to have mean zero and unit variance.

Compared to multivariate leading indicator forecasts involving all or a subset of eleven
variables that are known to have some forecasting power for IP, the diffusion index forecasts
of industrial production exhibit considerably smaller mean squared errors. Interestingly,
Stock and Watson find that the forecasts are not improved by adding lagged values of IP
to the forecasting equation. That is, all information contained in past values of IP growth
and potentially useful for forecasts of future IP growth, is captured by the diffusion in-
dexes. This last observation does not hold for the inflation forecasts which the authors
show to be improved by including lagged values of CPI growth. Stock and Watson report
another two interesting differences concerning the results of the diffusion index forecasts
of IP and CPI. First, in forecasts of IP, the first two factors capture almost all of the
useful information while forecasts of CPI have minimal MSE when five to six factors are
included. Second, the IP forecasts based on a number of factors selected by BIC always
outperform the fixed-k forecasts, whereas in the case of CPI, the minimum MSE fixed-k
forecast always performs better than the BIC-selected. Finally, the Phillips-curve model
forecasts of CPI obtain results similar to the multivariate leading indicator forecasts (in-
cluding all or a subset of eight leading indicators that have proved useful for forecasting
inflation in the past) and are thus also outperformed by the diffusion index forecasts.

In summary, the diffusion index forecasts of US industrial production and inflation
clearly outperform benchmark methods in a real-time forecasting exercise. Stock and
Watson further find that the first six factors account for more than 40 % of the variation

30Since I use the data and programs provided by Mark Watson on his homepage, a more detailed
discussion of a closely related data set is given in section 5.

31Since Xt = Λ0Ft + et, this is a trivial implication of the fact that the factors are normalized to be
covariance-stationary, F ′F/T = Ik, and that the idiosyncratic error terms are assumed to be normally
distributed, eti ∼ i.i.d.N(0, σ2

e).
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of all series in the panel (see appendix B). These results indicate that the diffusion indexes
incorporate an important amount of valuable economic information. This is in line with
the way they are derived: the common dynamic factors in a large number of time series
are filtered out by minimizing the influence of idiosyncratic disturbances. Stock return
variations have been shown to be linked to the business cycle. Used as factors in pricing
models, a number of individual macroeconomic variables have been identified which seem
to account for the systematic risk underlying these variations. Since they summarize the
common variation in a large number of economic time series, the Stock-Watson diffusion
indexes might similarly capture sources of priced risk. Whether this is indeed the case can
be analyzed by testing their usefulness as factors in a pricing model.

4.6 The Diffusion Index Pricing Model (DIPM)

I employ diffusion indexes, extracted from a large panel of economic time series using
the methodology of Stock and Watson, as state variables in a factor pricing model. The
information criterion suggested by Stock and Watson exclusively applies to forecasting
exercises and is thus not well-suited for my empirical investigation. Consequently, I start
without making any a priori assumption about the number of factors that should enter the
model and compute a total of twelve factors from both the balanced and the unbalanced
panel.32 Then, I first estimate the diffusion index pricing model with the market return
and the twelve indexes from the balanced and unbalanced panel, respectively, as risk
factors. Letting the twelve factors denote f1, f2, . . . , f12, the diffusion index pricing model
has the expected return-beta representation,

E[Ri] = E[R0] + βi,RmλRm + βi,f1λf1 + βi,f2λf2 + . . . + βi,f12λf12 , (4.12)

where βi,Rm is the coefficient in a time series regression of Ri on the market return, Rm, and
where βi,fj denotes the coefficient in a linear regression of Ri on the j-th diffusion index. I
first report estimation results for models including twelve unbalanced and twelve balanced
panel diffusion indexes, respectively. From both models, I then choose the factors that
enter significantly, and re-estimate the diffusion index pricing model with the respective
set of significant factors.

4.7 Diffusion Indexes as Conditioning Variables

Investors price assets according to their expectation of discounted future payoffs condi-
tional on their time t information set. However, since we do not know the information
sets of investors in general, we have to model their expectations unconditionally. We have
seen in section 2.4 that unconditional models only have a testable expected return-beta
representation if the relationship between the discount factor and the state variables is
assumed to be time-invariant. Yet, there is a great deal of empirical evidence suggesting
that risk prices fluctuate over the business cycle which implies that the relationship is
in fact time-varying. An intuitive explanation for this finding is that investors are likely

32The decision to extract twelve factors has been judgmentally made. Stock and Watson show that the
first twelve factors capture about 50 % of the variation in all the series in the panel, with small marginal
contribution of any additional factor. I thus make the underlying assumption that a total of twelve factors
suffices to summarize the information that is most important for the pricing of stocks.
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to be more risk averse in “bad” times than in “good” times. We have further shown in
section 2.4 that a convenient method of accounting for the time-variability of parameters
in unconditional factor models consists in scaling the factors. If risk prices vary over the
business cycle, we should try to capture this effect by using some business-cycle related
quantity as a conditioning variable. The Stock-Watson factors are cross-sectional averages
of a large number of time series and thus summarize economic information. Hence, they
are closely related to the business cycle and therefore might be eligible candidates for the
conditioning variable we seek. To test this hypothesis, I investigate the performance of
diffusion indexes as instruments in a scaled factor pricing model. Adopting the conditional
consumption CAPM setting of Lettau and Ludvigson (2001b), I compare the usefulness
of other macroeconomic variables with that of diffusion indexes by running cross-sectional
regressions based on the expected return-beta model,

E[Ri] = E[R0] + βi,zλz + βi,∆cλ∆c + βi,z∆cλz∆c, (4.13)

where βi,z, βi,∆c, and βi,z∆c are the estimated coefficients in time series regressions of Ri

on z−1, ∆c, and z−1 · ∆c, respectively. z−1 denotes the one-period lagged value of the
scaling variable. To see why we have to use z−1, recall that according to the derivation
of scaled factor models in section 2.4, the instrumental variable has to be included in
the time t information set of investors whereas the returns and pricing factors are one-
step ahead expectations. In order to compare the performance of diffusion indexes and
standard macroeconomic variables as scaling variables, I carry out tests of the above model
using different instruments. A description of the set of benchmark scaling variables that
I have chosen for this purpose is given in section 5.9. Alternatively, controlling for a
particular conditioning variable, I also test specifications where two instruments jointly
enter a conditional factor pricing model. Thus, I run cross-sectional regressions of the
form

E[Ri] = E[R0] + βi,fjλfj + βi,fk
λfk

+ βi,∆cλ∆c + βi,fj∆cλfj∆c + βi,fk∆cλfk∆c, (4.14)

where βi,fj
, βi,fk

, βi,∆c, βi,fj∆c, and βi,fk∆c are the estimated coefficients in first-stage time
series regressions of Ri on fj,−1, fk,−1, ∆c, fj,−1 ·∆c, and fk,−1 ·∆c, respectively. Using
this specification, one can draw conclusions about the relative performance of fj and fk

as conditioning variables by comparing the significance levels of λfj∆c and λfk∆c.
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5 Econometric Methodology and Empirical Results

In this section I will present the results of my empirical investigation. I have tested whether
diffusion indexes, extracted from a large data set using the procedure proposed by Stock
and Watson (1998), can sensibly be used as factors in a pricing model and/or as instru-
ments in a conditional model. I begin with a discussion of the econometric methodology
employed and of the model comparison statistics reported. A brief description of the data
follows, before I finally turn to the main findings.

5.1 The Cross-Sectional Regression Approach of Fama and MacBeth

Most of the factor pricing models discussed in section 3 have originated from the objec-
tive to describe the cross-sectional variation of average returns better than the CAPM,
and thus to draw a more precise picture of the risk structure that causes these varia-
tions. Since the size effect and the value effect have been the first two CAPM anomalies
documented in the literature, a great deal of empirical asset pricing research has focused
on their explanation during the last two decades. Moreover, as the search for models
that parsimoniously describe the return patterns associated with these two effects has not
yet been accomplished, it remains a common practice to assess the performance of asset
pricing models with respect to their usefulness in explaining the cross-section of size and
book-to-market sorted portfolios. I follow this tradition and correspondingly investigate
whether the diffusion indexes of Stock and Watson capture sources of systematic risk that
affect the distribution of returns across size and book-to-market sorted assets.

There are several estimation strategies available for such purposes, and an exhaustive
analysis of their respective merits is certainly beyond the scope of this paper. Chen, Roll,
and Ross (1986), Fama and French (1992), Lettau and Ludvigson (2001b) and others apply
the cross-sectional regression procedure of Fama and MacBeth (1973). In order to stay in
line methodologically with the benchmark models, I follow these authors and likewise per-
form Fama-MacBeth cross-sectional regressions. Since it is intuitively appealing and easy
to implement, the method is an often used tool in empirical tests of asset pricing models.
However, the Fama-MacBeth algorithm exhibits some important drawbacks which I will
partially examine in sections 5.4 to 5.9. I will now briefly sketch the main ideas behind
the Fama-MacBeth approach.

As we have seen in section 2.2, for each factor pricing model that is represented by
the two equations m = a + b′f and 1 = E[mRi], there exists an equivalent expected
return-beta representation,

E[Ri] = γ + λ′βi,f ,

where βi,f is the vector of time series regression coefficients of Ri on the factors f , mea-
suring the exposure of Ri to risk associated with f , and where λ is a coefficient referred
to as the price of risk. Our purpose is to find out whether a certain risk factor is signifi-
cantly priced. Hence, we would like to know if λ is different from zero. As a method to
draw statistically sensible conclusions about λ, Fama and MacBeth propose the following
two-step procedure.
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First, the beta risk-factors are estimated by simple OLS time series regressions,

Ri
t = ai + f ′βi,f + εi

t i = 1, 2, . . . , N, (5.1)

i.e. for each individual asset in the cross-section one estimates the covariation with the
vector of pricing factors.33 Then, these beta estimates are used in the cross-sectional
regression,

Rt = γt + B̂λt + αt, (5.2)

which is estimated at each time period. Rt denotes the N × 1 vector of returns on all
assets in the cross-section at date t, γt is a constant, B̂ is the N × k matrix of estimated
betas, λt is the k×1 vector of factor risk prices to be estimated, and αt is the N×1 vector
of pricing errors. Fama and MacBeth suggest to estimate λ as the time series average of
the T cross-sectional estimates λ̂t,

λ̂ =
1
T

T∑

t=1

λ̂t =
1
T

T∑

t=1

[
(B̂′B̂)−1B̂′Rt

]
,

and to derive sampling errors from the standard deviations of the elements of λ̂. Consider
the j-th element of λ̂ representing the average estimated price of factor j. Under the
assumption that the individual λ estimates are independent, its empirical variance is given
by

Σ̂λ = V ar(λ̂j) =
1
T 2

V ar(
T∑

t=1

λ̂tj) =
1
T

V ar(λ̂tj) =
1
T 2

T∑

t=1

(λ̂tj − λ̂j)2,

and thus its standard deviation is

σ̂λ̂j
=

(
1
T 2

T∑

t=1

(λ̂tj − λ̂j)2
)1/2

.

Given the estimate and its standard error, Fama and MacBeth test whether the j-th factor
is significantly priced by computing its t-value,

tλ̂j
≡ λ̂j

σ̂λ̂j

∼ t (T − 1). (5.3)

Of course, the same applies to the regression constant,

tγ̂ ≡ γ̂

σ̂γ̂
∼ t (T − 1),

where

γ̂ =
1
T

T∑

t=1

γ̂t,

33Fama and MacBeth estimate the betas in 5-year rolling regressions, i.e. they recompute them annually
based on data covering the previous 60 months. This is to account for possible delisting of individual
assets in the portfolios. However, many authors estimate the betas once over the entire data sample thus
implicitly assuming them to be constant.
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and

σ̂γ̂ =

(
1
T 2

T∑

t=1

(γ̂t − γ̂)2
)1/2

.

Since the betas that are used as explanatory variables in the cross-sectional regressions
have previously been estimated, it is obvious that the method of Fama and MacBeth
exhibits an errors-in-variables problem. Fama and MacBeth argue that this problem is
substantially mitigated by using portfolio returns instead of returns on individual assets,
since this increases the precision of the beta-estimates. As they admit, however, this
requires that the errors in the individual betas be largely uncorrelated. Under the as-
sumption that given the realization of the factors, the asset returns have a conditionally
joint distribution with constant covariance matrix, i.e. assuming conditional homoskedas-
ticity, Shanken (1992) explicitly derives a correction term for the variance estimate that
is designed to adjust for the bias due to the errors-in-variables problem. In particular, he
shows that √

T (λ̂− λ) −→ N
(
0, (1 + λ̂′Σ−1

f λ̂) · Σ̂λ + Σf

)
,

where λ̂ is the estimated vector of pricing errors, Σf denotes the covariance matrix of the
pricing factors, and where Σ̂λ is the estimated covariance matrix of the Fama-MacBeth risk
price estimates. Since many authors report Shanken-adjusted t-statistics, I do also provide
them. As we will see, in some cases the corrections affect the t-statistics of individual fac-
tors and thus the inference about their significance quite considerably. Although Shanken-
adjusted t-statistics are often documented, there is still some disagreement whether this
correction is necessary. For example, Jagannathan and Wang (1998) show that when the
assumption of conditional homoskedasticity is violated, the standard errors from Fama
and MacBeth’s method do not necessarily overstate the precision of the risk price esti-
mates. As a consequence of these conflicting results, one correctly would have to test for
conditional homoskedasticity of the asset returns before running Fama-MacBeth regres-
sions. However, this exercise being beyond the scope of my study, I follow other authors
in taking into account both the Shanken-corrected and the uncorrected Fama-MacBeth
standard errors when drawing conclusions about the significance of pricing factors.

The intuition behind the Fama-MacBeth procedure is to split the entire sample into
as many as T subsamples, to estimate the pricing relation over the individual subsamples,
and then to look at the time series averages and variances of the estimates. Consequently,
a factor in a model will be reported as being significantly priced if the associated risk price
λj on average is different from zero, taken into account its variation over time. Cochrane
(2001) shows that in the absence of time variation in the cross-sectional regressors (i.e.
the betas in our case), the estimates and standard errors produced by the Fama-MacBeth
procedure are identical to those one would obtain when running a pooled OLS regression
and adjusting the variance estimate for cross-sectional heteroskedasticity.34 Hence, the
Fama-MacBeth method can be interpreted as an estimation procedure that corrects for
correlation of returns across assets, a situation one certainly faces quite often in finance
applications.

34Pooled OLS regression here means stacking time series and cross-sections of returns and beta estimates
and running a single OLS regression.
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5.2 Model Comparison Statistics

Although the t-statistics that one obtains from the Fama-MacBeth regressions are poten-
tially good measures of the significance of single factors, they are unsuited for comparing
the ability of entire models to explain the cross-section of asset returns. However, since
the main purpose of this study is to assess the diffusion index pricing model compared
to benchmark factor pricing models, we need some summary measure of the goodness of
fit. The first such measure to think of when running regressions is the coefficient of de-
termination, R2. Fama and MacBeth derive R2−statistics just as the risk price estimates,
i.e. for each cross-sectional regression they compute a value of R2, then they compute the
time series average and the standard deviation of these R2’s and report both.

Jagannathan and Wang (1996) adopt a slightly different approach. Instead of first
performing cross-sectional regressions at each point in time and then taking time series
averages of the estimated coefficients, they proceed inversely. That is, they first compute
time series averages of the cross-section of returns and then run a single cross-sectional
OLS regression of the vector of average returns on the betas. To see that the approach
of Jagannathan and Wang delivers estimates that are identical to those provided by the
Fama-MacBeth procedure, recall that the vector of risk price estimates according to Fama
and MacBeth’s method is given by

λ̂ =
1
T

T∑

t=1

λ̂t = (B̂′B̂)−1B̂′ 1
T

T∑

t=1

Rt = (B̂′B̂)−1B̂′R̄,

where R̄ is the N×1 vector of average returns, where B̂ is a N× (k+1) matrix containing
a column of ones and k columns of beta estimates, and where λ is the (k +1)×1 vector of
factor prices to be estimated including the regression constant. Jagannathan and Wang
first average the returns, and then perform the one-step cross-sectional regression,

R̄ = B̂λ + ᾱ,

where ᾱ is a N × 1 vector of pricing errors. Obviously, the OLS estimate of λ is given by,

λ̂ = (B̂′B̂)−1B̂′R̄,

and is thus identical to the Fama-MacBeth estimate. It is this regression from which
Jagannathan and Wang report the coefficient of determination,

R2 = 1− V arc(ᾱi)
V arc(R̄i)

= 1−
∑N

i=1(ᾱi − ᾱ)2∑N
i=1(R̄i − R̄)2

, (5.4)

where V arc denotes the cross-sectional variance, variables with subscripts and bars over
them denote time series averages of an individual cross-sectional unit, and variables with
just bars over them are the cross-sectional averages of time series averages. Lettau and
Ludvigson (2001b) also report this version of the R2 as a summary measure of model fit.
Following these authors I provide both the R2 as given in equation (5.4) and its degrees
of freedom-adjusted version, R̄2, for each model.
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Although R2 and R̄2 can be used to compare the ability of different models to explain
the cross-section of average returns, they do not provide us with an indication of how
good a model’s predictions are in terms of returns. This information is contained in the
residuals one obtains from the cross-sectional Fama-MacBeth regressions. Contrary to the
regression estimates of the factor risk prices, it may be somewhat misleading to consider
time series means of pricing errors, since large negative and large positive errors could
cancel out, hence erroneously suggesting a good model fit. I therefore report as a third
summary statistic for each model the average absolute pricing error,

µ|α̂| =
1

NT

N∑

i=1

T∑

t=1

|α̂ti|, (5.5)

which is a somewhat naive measure of fit, since there is no distributional theory for it
and thus cannot be used for statistical inference across samples. However, since I perform
model comparisons using the same return data, µ|α̂| gives a good indication of the ex-
planatory power of one model with respect to another for that particular panel of returns.
Moreover, it is an easy to interpret measure of how close a model comes to the true model
in terms of returns.

For each period in the sample, the Fama-MacBeth cross-sectional regression method pro-
duces an N × 1 vector of residuals,

α̂t = Rt − R̂t = Rt − B̂λ̂t =
(
IN − B̂(B̂′B̂)−1B̂′

)
Rt.

An intuitively appealing way of assessing a model’s performance would be to test whether
the average pricing errors of all assets in the cross-section are jointly zero. Adapted to the
Fama-MacBeth regression framework, Cochrane (2001) suggests a version of the JT -test
to explore this issue. He proposes to compute the sample covariance matrix of the average
pricing errors,

Cov(¯̂α) =
1
T 2

T∑

t=1

(α̂t − ¯̂α)(α̂t − ¯̂α)′,

where ¯̂α denotes the N × 1 vector of time series means of the estimated pricing errors,

¯̂α =
1
T

T∑

t=1

α̂t.

Assuming that they are mutually independent and normally distributed, Cochrane sug-
gests to test whether all pricing errors are jointly zero using the statistic,

JT = ¯̂α′(Cov(¯̂α))−1 ¯̂α ∼ χ2(N − k). (5.6)

Obviously, the errors-in-variables problem discussed above also applies to the pricing errors
of the Fama-MacBeth procedure. As for the t-statistics, one could thus be induced to
correct for the bias arising from the fact that the betas have been estimated in the first-
stage time series regressions. According to Cochrane (2001), the Shanken-corrected version
of the above test statistic, denoted Jc

T , is given by

Jc
T = (1 + λ̂′Σ−1

f λ̂) ¯̂α′(Cov(¯̂α))−1 ¯̂α ∼ χ2(N − k), (5.7)
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where λ̂ is the estimated vector of risk prices, and where Σf denotes the variance-covariance
matrix of the pricing factors. My empirical results show that Shanken’s correction term
in many cases exceeds unity quite substantially, thus completely changing the order of
magnitude of the JT -statistic. As has been argued above, the adjustment is only warranted
if there is conditional homoskedasticity in the return data. Since I do not test whether
the returns on the Fama-French portfolios are homoskedastic or not, I am reluctant to
draw conclusions based on any of the two test statistics. In addition and perhaps most
importantly, the use of the inverse of the variance-covariance matrix of the pricing errors
in the JT -test is a statistically questionable exercise. To see why, note that the pricing
errors are of relatively small order and show high cross-sectional correlation so that their
variance-covariance matrix is close to singularity in many cases. Hence, the inversion of
the variance-covariance matrix of the pricing errors may produce outcomes of the JT -test
statistic that are not useful for statistical inference.35

5.3 The Data

At least since the path-breaking work of Fama and French (1992, 1993), it has been a com-
mon practice in empirical asset pricing research to asses factor pricing models with respect
to their ability to explain the cross-section of returns on size and book-to-market sorted
stock portfolios. For matters of simplicity and in order to facilitate model comparisons,
many authors use exactly the same return data as Fama and French, provided by Kenneth
French on his internet page.36 I adopt the same strategy and perform model comparisons
on the basis of the Fama-French data. In addition to the return data, Kenneth French also
provides the average firm size and the average book-to-market ratio for each portfolio. I
use these data in my regressions including firm characteristics, described in section 5.8.

The Fama-French portfolios are constructed as follows (see Fama and French (1993)).
In June of each year t, all NYSE stocks are sorted independently by their market capi-
talization (ME) and by their BE/ME ratio, where BE is book common equity at t − 1,
and where ME is market equity at the end of December of t − 1. From these two NYSE
sorts, quintiles and deciles are formed, and the resulting breakpoints are used to allocate
all NYSE, Amex, and (after 1972) NASDAQ stocks into the five (ten) ME and BE/ME
quintiles (deciles). From the intersection of these quintiles (deciles), 25 (100) portfolios
are formed, and monthly value-weighted and equally-weighted returns are calculated from
July of t to June of t+1 when the sorting procedure is repeated based on refreshed values of
ME and BE/ME. Hence, four different data sets for size and book-to-market sorted stock
portfolio returns result from this procedure, all being available on Ken French’s website:
value-weighted returns on 25 ME and BE/ME-sorted portfolios, equally-weighted returns
on 25 ME and BE/ME-sorted portfolios, value-weighted returns on 100 ME and BE/ME-
sorted portfolios, and equally-weighted returns on 100 ME and BE/ME-sorted portfolios.

Although I also report results for the 25 portfolios in some cases, I use the value-
weighted returns on 100 ME and BE/ME-sorted portfolios for most of the model com-

35Lettau and Ludvigson (2001b) make a similar point referring to studies that have provided evidence
for the poor small-sample properties of estimates of the asymptotic variance-covariance matrix of pricing
errors.

36See http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/ for details.
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parisons. Since for some of the pricing factors I only have data from 1963 until 1998,
I restrict the sample to the period 1963:7 - 1998:12. Notice that in the intersections of
the highest size decile and the three upper BE/ME deciles, the Fama-French data exhibit
missing values in a number of subsamples. I therefore exclude these three portfolios from
the data set and perform regressions on the remaining 97 portfolios. Finally, in order to
demonstrate some interesting differences in the regression results for the benchmark mod-
els that arise when quarterly instead of monthly data is used, I also provide results for
quarterly data. These require preliminary transformations of the Fama-French portfolio
data from monthly to quarterly returns.

The data I employ for the construction of the pricing factors originate from different
sources. I use the growth rate of the S&P’s common composite stock price index included
in the Stock-Watson data set as a proxy for the return on the wealth portfolio, denoted
Rm.37 Rm is the only factor in the standard CAPM, and the first factor in all benchmark
models as well as in the different specifications of the diffusion index pricing model, ex-
cept for the conditional CCAPM. For the implementation of the conditional versions of
the consumption CAPM and the human capital CAPM, I use the data for consumption,
asset wealth, labor income, and the derived variable ĉay that Sydney Ludvigson provides
on her homepage.38

The diffusion indexes are extracted from both an unbalanced panel containing 201
monthly series for the US economy and a balanced panel containing 142 series.39 The
series have been selected by Stock and Watson from the MacGraw Hill database to repre-
sent the major categories of economic time series. The sample covers the period 1959:1-
1998:12. It has already been mentioned in section 4 that the series have been subject to
some prior manipulations. As Stock and Watson (2002) notice, the transformations were
the following. From most nonnegative series that were not already in rates or percent-
ages, logarithms were taken. Moreover, most series were first differenced. Then, all series
were screened for outliers. Finally, they were demeaned and standardized to have unit
variance. A list of all variables in the unbalanced panel is given in appendix B. Mark
Watson provides these data as well as GAUSS programs for the extraction of the factors
on his homepage.40 For matters of convenience, I use both the programs and the data

37I also performed regressions using the value-weighted return on all NYSE, AMEX, and NASDAQ
stocks, provided by Kenneth French on his website. However, my tests of the CAPM using this time series
produced values of R2 that do not correspond to other authors’ findings of almost no explanatory power
of the market return for the cross-section of size and BE/ME-sorted portfolios.

38http://www.econ.nyu.edu/user/ludvigsons/. These are the data used in the empirical tests of the
conditional CCAPM and HCCAPM in Lettau and Ludvigson (2001b). The monthly data I use have been
provided by Sydney Ludvigson until recently, but now only quarterly and annual series are available from
her website. We will see below that both the conditional CCAPM and HCCAPM perform much better
using quarterly data. As Martin Lettau pointed out to me, for the derivation of the monthly time series
of ĉay, some intrapolation had to be done since the asset wealth variable is only available in quarterly
frequency. According to him, this intrapolation diminishes the reliability of the estimate and thus explains
the relatively bad results using monthly data.

39There are 215 (149) series in the original unbalanced (balanced) panel used by Stock and Watson
(2002). However, in order to avoid data-snooping effects, I excluded the stock market data from the data
set, from which the smaller total number of series in the panels I use.

40See http://www.wws.princeton.edu/ mwatson/. Notice that for the programs to work, one has to
increase the workspace memory in “gauss.cfg” beyond the default setting.
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made available by Mark Watson for the computation of the diffusion indexes.

I also use the Stock-Watson data as the basis for the construction of the ICAPM
factors. ∆IP and ∆CPI are the monthly changes of total industrial production and of
the consumer price index, all items, respectively. Tspr is the difference between the 10-
year government bond and the federal funds rate, and Dspr is the difference between the
Moody’s Baa corporate bonds rate and the federal funds rate.

5.4 Testing the Benchmark Models

As noted above, the monthly time series of Lettau and Ludvigson’s scaling variable ĉay
has been constructed on the basis of intrapolated data points for the asset wealth variable
a which is only available in quarterly frequency. The authors thus caution the use of
the monthly time series of ĉay. However, since the diffusion indexes are only available
in monthly frequency, I have to rely on the monthly data versions of the the benchmark
models for comparisons with the diffusion index pricing model. In order to give some
indication of the “true” performance of Lettau and Ludvigson’s conditional CCAPM and
HCCAPM, I first provide results for Fama-MacBeth regressions of all benchmark models
using quarterly data in table 1.41

The results are largely consistent with what has been reported in the literature so
far. As noted, among others, by Fama and French (1992), the standard CAPM explains
literally none of the variation of average returns across stock portfolios sorted by size and
book-to-market equity ratio. This is confirmed by the results of the Fama-MacBeth re-
gressions that I obtain for the CAPM: the cross-sectional R2-statistic only amounts to 1
percent. Figure 1 provides a nice visualization of this failure. In fact, plotting average
returns of the 25 Fama-French portfolios against their CAPM predictions, one finds a
completely flat relationship suggesting that there is - if at all - only a weak dependence
between the portfolios’ betas and their expected returns, contrary to what theory tell us.
Compared to the other benchmark models, the CAPM further exhibits a considerably
larger µ|α̂| which confirms the finding that the CAPM completely fails in pricing the 25
Fama-French portfolios.

Table 1 further presents estimation results for the ICAPM, showing that in sharp con-
trast to the CAPM, this model explains more than 90 percent of the variation of average
returns across the Fama-French portfolios. In particular, I find that while the default
spread and the change in industrial production do not enter significantly, both the term
spread and the rate of inflation earn significant risk premiums even after correction for
the errors-in-variables bias. Although the latter finding is generally in line with the above
presented results of Chen, Roll, and Ross (1986), there is an interesting difference. In
fact, while Chen et al. report negative risk prices associated with the term spread, my
regression results indicate that these are positive. However, limiting the sample period to
the pre-1980’s period I do likewise obtain negative regression estimates. This suggests that
the relationship has been subject to a structural break. Obviously, negative risk prices are
consistent with Merton’s ICAPM theory which predicts that investors will demand more

41All estimation results documented in this paper have been obtained using a GAUSS program written
by the author. This program is available on request.
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Table 1: Benchmark Models - 25 FF portfolios, quarterly data

The table summarizes the results of Fama-MacBeth regressions that have been performed for the bench-
mark pricing models using the cross-section of the value-weighted returns on 25 Fama-French size and
book-to-market sorted stock portfolios as the variable to be explained. The sample period is 1963:Q3 -
1998:Q3. All models have the form

E[Ri] = E[R0] + βi,f1λf1 + . . . + βi,fkλfk ,

where βi,f1 , . . . , βi,fk denote the beta estimates of the pricing factors, preliminarily determined by re-
gressing Ri on the respective vector of factors. For each model, estimates of λfi , their t-values and
the associated p-value are reported. The “corrected t− and p-values” take into account the errors-
in-variables adjustment as suggested by Shanken (1992). R2 is the coefficient of determination in
a single cross-sectional regression of the average returns on the beta estimates, and R̄2 its degrees
of freedom-adjusted version. µ|α̂| is the average of the absolute values of all T · N pricing errors.

Model Constant Pricing Factors Summary Statistics

CAPM E[R0] Rm R2 R̄2 µ|α̂|
Estimate 3.86 0.03 0.01 -0.02 2.39

t-value 3.77 0.03

p-value 0.00 0.49

corrected-t 3.77 0.03

corrected-p 0.00 0.49

ICAPM E[R0] Rm TSpr DSpr ∆IP ∆CPI R2 R̄2 µ|α̂|
Estimate 4.08 -0.27 1.07 -0.31 0.01 -0.34 0.91 0.89 1.65

t-value 3.85 -0.23 4.25 -1.43 0.03 -1.96

p-value 0.00 0.41 0.00 0.08 0.49 0.03

corrected-t 2.31 -0.13 2.46 -0.85 0.01 -1.15

corrected-p 0.01 0.45 0.01 0.20 0.49 0.13

FF3F E[R0] Rm SMB HML R2 R̄2 µ|α̂|
Estimate 2.56 0.77 0.49 1.45 0.78 0.76 1.70

t-value 1.88 0.49 0.98 3.22

p-value 0.04 0.31 0.17 0.00

corrected-t 1.77 0.43 0.68 2.24

corrected-p 0.05 0.34 0.25 0.02

c. CCAPM E[R0] cay ∆c cay ·∆c R2 R̄2 µ|α̂|
Estimate 4.22 -0.11 0.03 0.01 0.70 0.67 1.84

t-value 6.00 -0.36 0.28 3.14

p-value 0.00 0.36 0.39 0.00

corrected-t 4.18 -0.25 0.19 2.12

corrected-p 0.00 0.40 0.43 0.02

c. HCCAPM E[R0] cay Rm cay ·Rm ∆y cay ·∆y R2 R̄2 µ|α̂|
Estimate 3.48 0.12 0.23 0.07 0.49 0.01 0.76 0.71 1.60

t-value 3.62 0.45 0.20 2.68 2.92 3.25

p-value 0.00 0.33 0.42 0.01 0.00 0.00

corrected-t 2.53 0.30 0.13 1.83 1.95 2.22

corrected-p 0.01 0.38 0.45 0.04 0.03 0.02
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Figure 1: CAPM - Fitted expected versus realized average quarterly returns.
Each scatter point in the graph represents one of the 25 size and book-to-market sorted Fama-French
portfolios. The fitted returns have been obtained using the Fama-MacBeth cross-sectional regression
methodology. The sample period is 1963:Q3-1998:Q3. The cross-sectional R2 of this regression is 1 %.

of an asset if its return is positively correlated with changes of a state variable that are
expected to result in less consumption. Indeed, a large yield spread is an indicator for
high future economic activity and is thus likely to announce future consumption growth.
Hence, investors who hedge against consumption risk might be induced to demand less
of those assets that are positively correlated with the term spread. Chen et al. offer an
alternative explanation. They argue that since the yield spread is a measure of changes
in the long-term real rate of interest, its decline implies lower real returns on any form
of capital. As a consequence, investors who seek to hedge against this source of risk
will attribute higher values to assets that are negatively correlated with the term spread.
Both interpretations are intuitively appealing, but do not seem to be confirmed by the
data in the post-1970’s period.42 Although it appears difficult to find a theory-consistent
explanation of this fact, one can make the following observations. First, the term spread
is slightly positively correlated with the return on the market portfolio over the entire
sample period. This may not be surprising since both have been shown to be positively
linked to future economic activity.43 Second, the returns on the 25 Fama-French portfolios
are highly positively correlated with Rm which is also not surprising since we know that
despite the observed CAPM anomalies there is a large common component in the time
series variation of stock returns across assets. Hence, given these correlation patterns, one
should indeed expect that the yield spread earns a positive risk premium. The question
whether there has been a structural break in the relationship between the yield spread
and average stock returns shall not be explored here and is thus left to future investigation.

42Note that Fama and French (1993) who perform time series regressions of the 25 size and book-to-
market sorted portfolios on different risk factors similarly report that the term spread earns a positive risk
premium. However, in contrast to the findings of Chen et al. and to my results, they state that the average
premiums for both the default spread and the term spread “are too small to explain much variation in the
cross-section of average stock returns.”

43Estrella and Mishkin (1998), for example, provide evidence that the term spread is a powerful forecaster
of recessions.
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Figure 2: ICAPM - Fitted expected versus realized average quarterly returns.
Each scatter point in the graph represents one of the 25 size and book-to-market sorted Fama-French
portfolios. The fitted returns have been obtained using the Fama-MacBeth cross-sectional regression
methodology. The sample period is 1963:Q3-1998:Q3. The cross-sectional R2 of this regression is 91 %.

The estimation results of the ICAPM reported in table 1 exhibit another interesting fea-
ture: the growth rate of CPI earns a significant negative risk premium. This is in line with
the results of Chen, Roll, and Ross (1986), but contradicts the finding of Chan, Karceski,
and Lakonishok (1997) who argue that inflation does not help explaining returns across
assets. Provided that the returns on the Fama-French portfolios are in nominal terms,
one could presume that ∆CPI earns a significant risk premium since there must be some
correlation between the rate of inflation and the portfolio returns. Two observations con-
fute this interpretation, however. First, ∆CPI earns a negative risk premium. Hence,
portfolio returns tend to be smaller when their inflation beta is high, i.e. when they are
positively correlated with the monthly change of CPI. Second, I have performed Fama-
MacBeth regressions on deflated portfolio returns in order to test whether the fact that
nominal returns are used explains the significance of ∆CPI. I find that although slightly
less significant, the growth rate of the consumer price index still earns a significant risk
premium when deflated returns are considered. Note that the sign of the estimate suggests
that investors hedge against the risk associated with high inflation. Indeed, a significantly
negative λ∆CPI shows that assets that are inversely linked to CPI growth earn higher
premiums than assets whose returns are positively correlated with inflation. All in all,
the significance of TSpr and ∆CPI in the cross-sectional regression tests of the ICAPM
demonstrates that the correlation of the size and BE/ME-sorted portfolios with these two
variables provides a better explanation for their returns than does the mere correlation
with the market portfolio. This view is also supported by the comparatively small value
of µ|α̂| indicating that the ICAPM produces considerably smaller pricing errors than the
CAPM. Figure 2 visualizes this result, showing that average returns as predicted by the
ICAPM are fairly close to the realized average returns.
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Turning to the estimation results of the Fama-French three-factor model, we can see that
the book-to-market factor HML earns a highly significant positive risk premium, while
the market return and the size-related factor SMB do not enter significantly. This result
is consistent with the findings of other authors who perform Fama-MacBeth regressions
of the Fama-French model (e.g. Lettau and Ludvigson (2001b), Menzly (2001)).44 The
Fama-French three-factor model explains about 80 percent of the variation of average re-
turns across the 25 ME and BE/ME-sorted portfolios. Further, its µ|α̂| is only slightly
larger than that of the ICAPM indicating that the pricing errors produced by the two
models are of the same order of magnitude even though there is a slight difference in the
R2-statistic. Notice that since HML is by construction positively related to firms’ book-
to-market equity ratio, the positive risk price associated with this factor is compatible
with the value effect, i.e. the fact that firms with high book-to-market equity ratios ex-
hibit higher average returns than firms with low book-to-market ratios. Equivalently, the
positive risk price associated with SMB provides evidence for the size effect, i.e. the fact
that small firms tend to have higher returns than firms with large market capitalization.

Finally considering the results obtained from Fama-MacBeth regressions of Lettau
and Ludvigson’s conditional versions of the consumption CAPM and the human capital
CAPM, we find that both perform about as well as the Fama-French three-factor model,
explaining 70 and 76 percent of the cross-sectional variation of average returns, respec-
tively. As in Lettau and Ludvigson (2001b), the growth rate of aggregate consumption
scaled by ĉay is highly significant, this even so after correction for the errors-in-variables
bias. The value of µ|α̂| obtained for the conditional CCAPM exceeds the values obtained
for the competing benchmark models. This indicates that although the CCAPM explains
the cross-sectional variation of average returns well, its overall model fit is slightly worse
than that of the other models (except for the CAPM, of course). The results of the Fama-
MacBeth regressions for the conditional human capital CAPM do also confirm Lettau and
Ludvigson’s findings. In particular, both aggregate labor income growth and aggregate
labor income growth scaled by ĉay earn significant risk premiums. Moreover, the scaled
return on the market portfolio is significantly priced. This might indicate that although
it does not explain the cross-sectional variation of average returns on the 25 FF portfolios
unconditionally, Rm represents a source of risk that investors hedge against conditional
on their expectations about future returns on the market portfolio.

I have also tested the quarterly data versions of the benchmark models running Fama-
MacBeth regressions on the cross-section of 100 size and book-to-market sorted portfolios.
The results of these regressions are given in appendix A. As for the 25 Fama-French
portfolios, the return on the market portfolio is not a statistically significant determinant
of the cross-section of average returns and consequently the CAPM has virtually no ex-
planatory power. The R2 statistics of the benchmark models range from 0.43 to 0.63,
confirming our expectation that the overall model fit is worse when a much larger cross-
section is tested. Except for aggregate consumption growth which is now significant, the
significance of single factors does not appear to depend on the number of portfolios in the

44Fama and French (1993) only test their three-factor model on the basis of time series regressions so
that their results cannot directly be compared with those presented here. Lettau and Ludvigson (2001b)
show that SMB and HML are jointly significant which justifies the inclusion of the factor SMB in the
model even though it is not individually significantly different from zero.
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Table 2: Benchmark Models - 100 FF portfolios, monthly data

The table summarizes the results of Fama-MacBeth regressions that have been performed for the bench-
mark pricing models using the cross-section of the value-weighted returns on 100 Fama-French size and
book-to-market sorted stock portfolios as the variable to be explained. The sample period is from 1963:07
to 1998:12. All models have the form

E[Ri] = E[R0] + βi,f1λf1 + . . . + βi,fkλfk ,

where βi,f1 , . . . , βi,fk denote the beta estimates of the pricing factors, preliminarily determined by
regressing Ri on the respective vector of factors. For each model, estimates of λfi , their t-
values and the associated p-value are reported. The “corrected t− and p-values” take into ac-
count the errors-in-variables adjustment as suggested by Shanken (1992). R2 is the coefficient of
determination in a single cross-sectional regression of the average returns on the beta estimates
and R̄2 its degrees of freedom-adjusted version. µ|α̂| is the average of all T · N pricing errors.

Model Constant Pricing Factors Summary Statistics

CAPM E[R0] Rm R2 R̄2 µ|α̂|
Estimate 1.50 -0.26 0.03 0.03 1.90

t-value 5.12 -0.73

p-value 0.00 0.23

corrected-t 5.11 -0.66

corrected-p 0.00 0.25

ICAPM E[R0] Rm TSpr DSpr ∆IP ∆CPI R2 R̄2 µ|α̂|
Estimate 1.55 -0.31 1.36 -0.11 -0.10 -0.09 0.22 0.18 1.78

t-value 5.41 -0.88 3.76 -1.36 -0.89 -2.03

p-value 0.00 0.19 0.00 0.09 0.19 0.02

corrected-t 3.93 -0.60 2.69 -0.95 -0.63 -1.43

corrected-p 0.00 0.27 0.00 0.17 0.27 0.08

FF3F E[R0] Rm SMB HML R2 R̄2 µ|α̂|
Estimate 1.71 -0.60 0.06 0.45 0.58 0.57 1.69

t-value 6.01 -1.71 0.43 3.34

p-value 0.00 0.05 0.33 0.00

corrected-t 5.89 -1.44 0.31 2.40

corrected-p 0.00 0.08 0.38 0.01

c. CCAPM E[R0] cay ∆c cay ·∆c R2 R̄2 µ|α̂|
Estimate 1.64 -0.61 -0.20 0.00 0.28 0.27 1.97

t-value 7.64 -1.61 -1.97 1.44

p-value 0.00 0.06 0.03 0.08

corrected-t 5.86 -1.22 -1.50 1.08

corrected-p 0.00 0.11 0.07 0.14

c. HCCAPM E[R0] cay Rm cay ·Rm ∆y cay ·∆y R2 R̄2 µ|α̂|
Estimate 1.73 -0.60 -0.35 -0.01 0.21 0.00 0.12 0.08 1.82

t-value 6.25 -2.78 -1.02 -0.99 1.51 0.15

p-value 0.00 0.00 0.16 0.16 0.07 0.44

corrected-t 5.52 -2.36 -0.83 -0.83 1.28 0.13

corrected-p 0.00 0.01 0.20 0.20 0.10 0.45
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cross-section. Interestingly, both in terms of the coefficient of determination and in terms
of the average absolute pricing error, the Fama-French three-factor model outperforms the
other benchmark models when a cross-section of 100 size and BE/ME-sorted portfolios is
considered.

Let us now turn to the results obtained from Fama-MacBeth regressions using monthly
data. Since I will mainly assess the diffusion index pricing model based on regressions using
a cross-section of 100 portfolios, I do also focus here on the performance of the benchmark
models in explaining the returns on this larger set of Fama-French portfolios. These results
are presented in table 2. Additional results obtained from regressions using monthly data
and the cross-section of 25 portfolios are provided in the appendix. Except for the Fama-
French three-factor model, the performance of all benchmark models in explaining the
cross-sectional variation of average returns strikingly falls behind the results obtained
using a cross-section of 25 portfolios and quarterly data. While the R2 statistics of the
ICAPM, the CCAPM and the HCCAPM have been in the range of 0.70 to 0.91 beforehand,
all these models now explain less than 30 percent of the variation of average returns on the
100 Fama-French portfolios. As already mentioned, the monthly time series of ĉay has been
constructed based on intrapolations of the asset wealth variable a. This problem of data
construction appears to matter a lot since none of the factors scaled by ĉay is significantly
priced when monthly data are being used. However, the weak performance of both the
conditional CCAPM and the conditional HCCAPM cannot entirely be attributed to this
problem. As indicated by the results I have obtained from regressions using quarterly
data and the cross-section of 100 Fama-French portfolios (see table 9 in the appendix),
the sharp decline in explanatory power is to some extent due to the use of the much
larger cross-section of 100 portfolios. This view is supported by the fact that the ICAPM,
although not subject to a problem of data construction, also performs considerably worse
compared to the regressions using 25 Fama-French portfolios.

5.5 Testing the Diffusion Index Pricing Model

With these results at hand, we are now in a position to compare the performance of the
diffusion index pricing model, henceforth denoted DIPM, with that of the benchmark
models. As mentioned above, Stock and Watson (1998) have developed algorithms for the
extraction of common dynamic factors from both balanced panels and unbalanced panels.
In the unbalanced panel I employ there are 59 time series which are not contained in the
balanced panel. The diffusion indexes extracted from the latter are thus based on consid-
erably less economic information. In order to find out whether the missing information
potentially improves the usefulness of diffusion indexes as factors in a pricing model, I
therefore test two different versions of the DIPM, one using the unbalanced panel and one
using the balanced panel factors.

Diffusion indexes are weighted cross-sectional averages of a large number of time series
variables. Hence, in contrast to the benchmark pricing models where the factors have
been chosen based on theoretical considerations, we do not have any a priori information
which of the factors - if at all - is likely to earn a risk premium. I therefore start with
a large-scale version of the DIPM, including a total of twelve diffusion indexes and the
return on the market portfolio as pricing factors.
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Figure 3: ubp DIPM - Fitted expected versus realized average monthly returns.
Each scatter point in the graph represents one of the 97 size and book-to-market sorted Fama-French
portfolios. The fitted returns have been obtained using the Fama-MacBeth cross-sectional regression
methodology. The sample period is 1963:07-1998:12. The cross-sectional R2 of this regression is 55 %.

Panels A.1. and B.1. of table 3 present results of Fama-MacBeth regressions per-
formed for the large-scale versions of both the unbalanced panel and the balanced panel
DIPM. One can see that with the inclusion of the diffusion indexes as pricing factors, the
R2-statistic jumps from 3 percent that I have obtained for the standard static CAPM to
60 and 58 percent for the unbalanced panel and the balanced panel DIPM, respectively.
Thus, comparing this result with the results documented in table 2, I find evidence that
the large-scale DIPM explains the cross-section of average monthly returns on 100 size
and BE/ME-sorted stock portfolios about as well as the Fama-French three-factor model.
Further, the regression results indicate that the diffusion index pricing model performs
considerably better than the other benchmark models. This view is confirmed by the
comparatively small values of µ|α̂| that I obtain: in terms of absolute pricing errors, both
versions of the large-scale DIPM outperform all considered benchmark models, including
the Fama-French three-factor model.

Since in both the unbalanced panel and the balanced panel DIPM only three to four
diffusion indexes enter significantly, I also test “trimmed” versions of the model, each
including the three factors that have been the most significant in the large-scale versions.
The results of Fama-MacBeth regressions for the unbalanced and balanced panel small-
scale DIPM are given in panels A.2. and B.2. of table 3. They show that compared to
the large-scale versions, the R2-statistics only decrease by some percentage points. Hence,
these three factors go a long way explaining the cross-section of average returns on the 100
Fama-French portfolios. All other diffusion indexes do not add much to the explanatory
power of the model. Figure 3 plots the realized average returns on 100 Fama-French
portfolios against their unbalanced panel three-factor DIPM predictions. In addition to
the estimation results presented above, this figure allows the complementary conclusion
that although this version of the DIPM seems to perform relatively well in the middle
range, it has some difficulties explaining very high and very low average returns. For
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comparison, I provide similar graphs for four of the benchmark models in appendix A.
These show that except for the Fama-French model, none of these models comes up to the
ability of the DIPM to capture the cross-sectional variation of average monthly returns on
100 size and BE/ME-sorted stock portfolios.

5.6 Model Comparisons

The results presented above indicate that except for the Fama-French three-factor model,
the DIPM explains the cross-section of returns on 100 size and book-to-market sorted
portfolios better than all considered benchmark models. However, the measures of fit this
conclusion is based on are unlikely to provide a complete picture of the relative perfor-
mance of each model. I have therefore carried out further statistical tests to compare the
benchmark pricing models with the DIPM. The results of these tests are briefly sketched
in the following section.

It is a common practice in linear regression tests to detect the statistically more sig-
nificant of several competing explanatory variables by estimating them jointly in a single
regression. If the DIPM factors performed worse than the pricing factors of the benchmark
models, they should in principle become insignificant in joint tests. In order to see if this
is the case I perform such “horse races”, testing the diffusion indexes together with the
factors of each of the benchmark models.

Table 4 reports the results of cross-sectional regressions of the returns on 100 Fama-
French portfolios on the beta estimates of the benchmark models, each augmented with
the betas of three unbalanced panel diffusion indexes. Basically, the following conclusions
can be drawn from these results. First, in none of the joint tests, the three unbalanced
panel diffusion indexes significantly lose their explanatory power. Second, the only ex-
ception being the term spread which turns out to lose some of its explanatory power, all
pricing factors of the benchmark models that have been significant in individual regres-
sions remain significant when tested jointly with the diffusion indexes. Third, except for
the Fama-French three-factor model, the inclusion of the diffusion indexes considerably
improves the overall fit of the pricing models: compared to the regression results of the
benchmark models summarized in table 2, the R2-statistics jump from values of 12, 22,
and 28 percent for the HCCAPM, the ICAPM and the CCAPM to 57, 58, and 60 percent,
respectively. Notice that similar tests which I have performed using the balanced panel
diffusion indexes have yielded analogous results.

It has been shown in section 5.4 that all benchmark models except for the standard
static CAPM go a long way explaining the cross-section of 25 Fama-French portfolios
when quarterly data is used. Since the diffusion indexes are only available in monthly fre-
quency, a direct comparison based on results obtained from quarterly data is impossible.
Yet, distributional theory allows us to contrast results of regressions based on different
data sets. In fact, in section 5.2 we have defined the JT statistic as the sum of squared
standardized average pricing errors. Under the assumption that the pricing errors are mu-
tually independent and standard normally distributed, JT obviously follows a χ2(N − k)
distribution where N denotes the number of assets in the cross-section and k the number
of pricing factors in the model. Hence, we can in principle compare JT statistics of the
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Table 4: “Horse Races” - 100 FF portfolios, monthly data

The table summarizes the results of Fama-MacBeth regressions that have have been performed for models
that simultaneously include as pricing factors the factors of the benchmark models and three unbalanced
panel diffusion indexes. The variable to be explained is the cross-section of the value-weighted returns on
100 Fama-French size and book-to-market sorted stock portfolios. The sample period is from 1963:07 to
1998:12. For each model, risk price estimates, their t-values and the associated p-values are reported. The
“corrected t− and p-values” take into account the errors-in-variables adjustment as suggested by Shanken
(1992). R2 is the coefficient of determination in a single cross-sectional regression of the average returns
on the beta estimates.

Model cst. Benchmark Model Factors DIPM Factors

ICAPM E[R0] Rm Tspr Dspr ∆IP ∆CPI f9 f10 f11 R2

Estimate 1.41 -0.13 0.49 -0.08 -0.13 -0.12 -2.68 0.90 -4.35 0.58

t-value 5.07 -0.39 1.84 -1.03 -1.17 -3.04 -4.16 1.72 -4.36

p-value 0.00 0.35 0.03 0.15 0.12 0.00 0.00 0.04 0.00

corrected-t 3.32 -0.24 1.18 -0.65 -0.75 -1.93 -2.66 1.09 -2.82

corrected-p 0.00 0.40 0.12 0.26 0.23 0.03 0.00 0.14 0.00

FF3F E[R0] Rm SMB HML f9 f10 f11 R2

Estimate 1.43 -0.33 0.11 0.42 -2.01 1.60 -1.15 0.65

t-value 4.75 -0.91 0.75 3.14 -3.38 3.02 -1.91

p-value 0.00 0.18 0.23 0.00 0.00 0.00 0.03

corrected-t 4.01 -0.69 0.49 2.07 -2.72 2.41 -1.54

corrected-p 0.00 0.25 0.31 0.02 0.00 0.01 0.06

c. CCAPM E[R0] cay ∆c cay ·∆c f9 f10 f11 R2

Estimate 1.36 -0.04 -0.06 0.00 -3.04 1.42 -3.19 0.60

t-value 6.44 -0.24 -0.90 1.79 -3.24 2.56 -3.27

p-value 0.00 0.41 0.19 0.04 0.00 0.01 0.00

corrected-t 4.32 -0.15 -0.59 1.17 -2.14 1.66 -2.17

corrected-p 0.00 0.44 0.28 0.12 0.02 0.05 0.02

c. HCCAPM E[R0] Rm cay cay ·Rm ∆y cay ·∆y f9 f10 f11 R2

Estimate 1.63 -0.03 -0.20 0.00 -0.04 -0.00 -2.61 1.54 -3.71 0.57

t-value 5.85 -0.16 -0.57 0.23 -0.31 -0.51 -4.22 3.02 -3.49

p-value 0.00 0.44 0.28 0.41 0.38 0.31 0.00 0.00 0.00

corrected-t 3.99 -0.10 -0.37 0.15 -0.20 -0.33 -2.79 1.97 -2.35

corrected-p 0.00 0.46 0.36 0.44 0.42 0.37 0.00 0.03 0.01

benchmark models and the DIPM that have been obtained from Fama-MacBeth regres-
sions using return data of different frequency. However, the aforementioned problem of
consistently estimating the variance-covariance matrix of the pricing errors persists and
thus inference based on the JT statistic and especially its Shanken-corrected version Jc

T

has to be cautioned.

Panels B and C of table 5 provide JT statistics computed from average pricing errors
that have been obtained from regressions using both monthly and quarterly returns of 25
size and BE/ME-sorted portfolios. The results summarized in panel B indicate that only
for the Fama-French three-factor model the hypothesis that all pricing errors are jointly
zero cannot be refused at the 5 percent significance level. The JT statistics obtained for
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the unbalanced and the balanced panel DIPM are larger than the one obtained for the
Fama-French model. However, since they are still exceeded by the values of the CAPM,
the scaled CCAPM, and the scaled HCCAPM, this might imply a better model fit of the
DIPM. In panel C, estimates of JT and Jc

T which I have obtained from quarterly data are
reported. As expected, the Lettau-Ludvigson scaled CCAPM and HCCAPM in this case
exhibit considerably smaller JT -statistics. Yet, the squared standardized average pricing
errors remain significantly different from zero even when quarterly data are used.45 The
extremely high JT statistic obtained for the Fama-French three-factor model can be inter-
preted as an example for the low power of the test. In fact, the regression results reported
in table 1 have shown that the Fama-French model performs at least about as well as the
other benchmark models when quarterly data are used. This suggests that its JT statis-
tic obtained from quarterly data is aberrant. The estimates obtained from monthly data
using the larger cross-section of 100 portfolios, presented in panel D, equally confirm this
view. Again, only for the Fama-French three-factor model can the Null that all pricing
errors are jointly different from zero be rejected at the 5 % level.

To summarize, among the pricing models considered, the Fama-French model is the
only that produces average pricing errors that are jointly statistically undistinguishable
from zero in some cases. In terms of JT test statistics obtained from monthly data, the
DIPM performs about as well as the ICAPM and better than the two scaled (C)CAPM
versions. However, these exhibit smaller JT statistics when quarterly data are being used.
The Shanken-corrected JT -statistics vary quite considerably from model to model. Hence,
a clear statement about the relative model fit based on these results is ruled out.

Let us finally have a brief look at the average pricing errors of all 25 individual port-
folios. These are provided in panel A of table 5. Each individual portfolio is represented
by a two-digit number, where the first digit refers to the size quintile (1 = small) and the
second to the book-to-market category (1 = low). An “eyeballing” analysis of the signs
of the pricing errors shows that all models overstate the returns on the portfolios in the
highest size quintile. Further, except for the biggest stocks, the pricing errors obtained for
high book-to-market portfolios in all size categories are positive across all models. This
shows that the tested pricing models uniformly underestimate the returns on stocks with
high book-to-market equity ratios. Hence, none of the considered models seems to be able
to entirely capture the size and the value effect.46

45Lettau and Ludvigson (2001b) find slightly lower values of JT than I do and thus reject the Null. I
attribute the discrepancy between our results to slight differences in the data used and to the documented
robustness problem inherent to the estimation of the JT statistic.

46Plots of the sum of squared pricing errors across portfolios for each period, not provided here, show
that over the entire sample there are a few months where all models equally exhibit considerable mispricing.
These “outliers” are likely to influence the outcomes of Fama-MacBeth regressions quite substantially. In
fact, Menzly (2001) shows that the variation of returns on Fama-French portfolios is largely determined
by some influential quarters that are concentrated around recession periods. He provides evidence that
pricing factors that load high on only one or two of these influential quarters earn significant risk premiums.
Hence, a detailed analysis of the overall economic conditions in such influential periods could provide us
with a more precise picture of the links between the stock market and macroeconomic variables.
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Table 5: Average Pricing Errors

This table reports estimation results obtained from Fama-MacBeth regressions in terms of pricing errors.
Panel A lists for each model the average monthly pricing errors (in %) for all 25 size and BE/ME-sorted
portfolios in the cross-section. The individual portfolios are represented by two-digit numbers that figure
in the first column. The first digit refers to the size quintile (1 = small) and the second to the book-to-
market category (1 = low). Panel B reports uncorrected and Shanken-corrected JT statistics that have
been computed from the average pricing errors in panel A. An asterisk behind a number indicates that
the respective statistic is not different from zero at the 5 % significance level. Panel C summarizes JT

statistics for the benchmark models obtained from Fama-MacBeth regressions using quarterly data. Panel
D reports JT statistics for monthly returns and a cross-section of 100 Fama-French portfolios.

Fama- scaled scaled DIPM DIPM

CAPM ICAPM French CCAPM HCCAPM unb.panel b.panel

A. Average Pricing Errors - 25 Fama-French Portfolios - Monthly Returns

11 -0.4200 -0.2549 -0.3576 -0.5691 -0.4959 -0.2769 -0.2230

12 0.0437 -0.0562 -0.0477 0.0102 -0.0063 -0.1415 -0.1134

13 0.0641 -0.0634 -0.0861 -0.0094 0.0029 -0.1164 -0.0741

14 0.2673 0.2408 0.0450 0.1125 0.1739 0.0856 0.1309

15 0.4170 0.0576 0.1038 0.2827 0.2648 0.0943 0.0929

21 -0.2222 0.1605 0.0348 -0.0990 -0.0892 0.0433 0.0629

22 -0.0483 -0.0350 -0.0336 -0.1232 0.0647 0.0469 0.0165

23 0.1919 -0.0549 0.0972 0.1210 0.1385 0.0899 0.0946

24 0.2565 0.0996 0.1118 0.2497 0.3048 0.1096 0.1317

25 0.3307 0.2344 0.1228 0.1554 0.2920 0.1520 0.0416

31 -0.2027 -0.0025 0.0959 -0.1008 -0.1428 0.0252 0.0383

32 0.0150 -0.1188 0.0725 0.1146 0.0869 0.0531 0.0123

33 0.0018 -0.0249 -0.0548 0.0602 0.0080 -0.1432 -0.1758

34 0.1546 -0.0421 0.0367 0.0670 0.1272 -0.0227 0.0467

35 0.2357 0.1347 0.0625 0.2305 0.2357 0.1276 0.0244

41 -0.1819 -0.0333 0.1459 0.1179 -0.1342 0.1598 0.1662

42 -0.2588 -0.2051 -0.1236 -0.0439 -0.1415 -0.2033 -0.2427

43 -0.0482 0.1488 -0.0249 -0.0987 0.1267 0.0009 -0.0839

44 0.0690 -0.0128 0.0066 -0.0372 0.0682 0.0729 0.0753

45 0.2135 0.1757 0.1099 0.0338 0.1448 0.2206 0.2103

51 -0.2075 -0.0412 0.1436 0.0020 -0.3096 -0.0162 0.0423

52 -0.2345 -0.1309 -0.0276 -0.0409 -0.2771 0.0580 0.0106

53 -0.2435 -0.1033 -0.1255 -0.0949 -0.2277 -0.1671 -0.1629

54 -0.1255 0.0913 -0.1257 -0.1685 -0.0888 -0.1781 -0.0878

55 -0.0678 -0.1640 -0.1817 -0.1719 -0.1258 -0.0743 -0.0338

B. JT Test Statistics - 25 FF Portfolios - Monthly Returns

JT 71.36 50.63 31.64* 64.76 85.85 56.35 55.72

Jc
T 71.68 332.39 33.12* 144.53 164.77 195.78 148.89

C. JT Test Statistics - 25 FF Portfolios - Quarterly Returns

JT 53.31 37.38 62.73 39.78 36.52

Jc
T 53.33 114.77 250.24 81.93 153.20

D. JT Test Statistics - 100 FF Portfolios - Monthly Returns

JT 209.74 166.52 114.68* 233.73 204.32 166.08 160.51

Jc
T 210.96 316.11 119.29 397.04 261.96 365.78 329.71
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5.7 Interpreting the DIPM Factors

Having shown that the diffusion index pricing model performs comparatively well, let us
now have a more detailed look at the significance patterns of the individual factors in the
DIPM. Interestingly, I find that the main contribution to the explanatory power of the
model cannot be attributed to those factors that correspond to the first principal compo-
nents of the cross-sectional covariance matrix of all series in the panel. Instead, in both the
unbalanced and the balanced panel version of the DIPM, diffusion indexes that represent
lower-order principal axes of the cross-section of the data set prove to be significantly
priced factors. This seems surprising since the lower-order principal components explain
less of the total variation of all series in the panel and thus summarize less economic
information than higher-order principal components. To see whether the significance of
the lower-order diffusion indexes in my pricing model can sensibly be interpreted as an
indication for the fact that they account for sources of risk that investors hedge against,
an investigation of the individual variables on which they load is warranted. Appendix B
provides a list of all series in the data set. More importantly, plots of the coefficients of
determination obtained from univariate regressions of all individual series on all dynamic
factors are given. Following Stock and Watson, I interpret these R2-statistics as factor
loadings of the diffusion indexes on the various time series variables in the data set. Let
us first investigate the correlation patterns observed for the unbalanced panel diffusion
indexes.

As we have seen, the Fama-MacBeth regressions performed for the unbalanced panel
DIPM provide evidence that the factors f9, f10, and f11 earn significant risk premiums.
That is, the returns on the 100 size and BE/ME-sorted portfolios are strongly proportional
to their respective covariances with these three factors. Figure 8 in appendix B shows the
loadings of the unbalanced panel factors on all time series variables in the data set. The
following observations can be made: f9 on average explains about 3 percent of the vari-
ation of each individual time series in the unbalanced panel. Being largely uncorrelated
with most of the variables, it loads particularly high on the series of the category “Hous-
ing starts and sales” as well as on some variables of the two categories “Employment and
hours” and “Money and credit quantity aggregates”. f10 exhibits an average coefficient
of determination of 2.4 percent in univariate regressions against the individual time series
in the panel. It loads high on most of the variables of the category “Orders and unfilled
orders”. Further, it shows relatively strong correlations with some variables of the “Real
retail, manufacturing and trade sales” category as well as with some of the consumption
measures contained in the data set. Finally, f11 shows only weak occasional correlations
with some variables of the categories “Real retail, manufacturing and trade sales”, “Orders
and unfilled orders”, and “Money and credit quantity aggregates”. It has an average R2

of 2 percent in univariate regressions on the series in the data set.47

47Although not directly related to my problem, there is a feature of the unbalanced panel Stock-Watson
factors that deserves attention: the first unbalanced panel diffusion index on average explains only 6 percent
of the variation of the individual time series in the data set, whereas the second exhibits an average R2 of
14 percent. This appears to be some particularity of the EM algorithm and has been left uncommented
by the authors in their article. In fact, as one can see, the first diffusion index loads particularly high on
the series No. 213 and 214 in the data set, exhibiting univariate R2’s close to unity. These two series are
measures of the US trade balance and are only available from 1986 on. The first unbalanced panel diffusion
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Let us next consider the factors of the balanced panel DIPM. The Fama-MacBeth re-
gressions have identified the factors f7, f9, and f10 as being significantly priced. A quick
look on the correlations with the individual time series in the data set (see figure 11 in
appendix B) tells us that f7 on average explains 2.5 percent of the variation of each vari-
able in the panel, loading high on the category “Orders and unfilled orders”, further on
some retail trade and consumption variables, and on the inventory-sales ratios contained
in the balanced panel. f9 exhibits an average R2 of 2 percent and shows the highest cor-
relations with exchange rate variables. Further, it has small loadings on a variety of time
series of the categories “Real retail, manufacturing and trade sales”, “Consumption”, and
“Housing starts and sales”. Finally, f10 has an average coefficient of determination of 2.2
percent most of which is due to relatively high loadings on those variables in the panel
that are related to the money stock. Further, it shows some correlation with time series of
the categories “Employment and hours” and “Real retail, manufacturing and trade sales”.

All in all, the factor loading patterns summarized above unfortunately do not provide
us with a clear picture of the set of variables that determine the significant diffusion in-
dexes. We have seen that those Stock-Watson factors which capture the largest part of
the common variation of all series in the panel turn out to be insignificant in all tested
versions of the DIPM. On the other hand, those diffusion indexes that earn risk premiums
explain only a small portion of the total variation in the data set and load on a variety of
variables of different economic categories. More importantly, except for some consumption
measures, none of the state variables that have been documented in the literature as being
priced in cross-sectional regression tests, has been found to be strongly correlated with
the significant diffusion indexes. In particular, it is surprising that the dynamic factors
that load high on interest rates and on price level variables (factors No. 3 and No. 2 of
the unbalanced and balanced panel diffusion indexes, respectively) - somewhat contrary
to the findings of Chen et al. and to the results I have obtained from tests of the ICAPM
- do not earn significant risk premiums.

There are broadly two possible explanations for the significance of the lower-order
diffusion indexes in the cross-sectional regression tests. The first and admittedly rather
optimistic one is that using pricing factors that are weighted averages of various time
series variables, we have detected sources of systematic risk that have as yet been unno-
ticed by asset pricing theoreticians. Indeed, since financial markets and the real economy
are closely entangled, both stock returns and business cycle-related variables exhibit a
high degree of endogeneity. Thus, it does not seem unlikely that certain macroeconomic
variables, which from a theoretical viewpoint one might not directly associate with stock
returns, empirically be in fact determinants of these. For example, some of the significant

index is the eigenvector corresponding to the largest eigenvalue of the cross-sectional covariance matrix
of the complete data set where missing observations have been replaced by recursively estimated values.
For some unidentified reason, the recursive EM algorithm attributes a very large weight to the two trade
balance series from the first period of their availability on. Figure 9 in appendix B provides a plot of the
first unbalanced panel diffusion index showing that it remains almost constant from 1986 on. To complete
the picture, figure 10 shows the second factor whose time series behavior is clearly cyclical. The question
whether the observed feature is likely to arise when a different data set is used and whether it represents
a potential drawback of Stock and Watson’s method, shall not be discussed here and is thus left to future
research.
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diffusion indexes load on variables of the category “Orders and unfilled orders”. It is ob-
vious that these variables are closely related to the business prospects of firms, which in
turn are known to affect share prices. The same might hold for other time series that have
been shown to be correlated with the significant Stock-Watson factors, e.g. measures of
consumption, exchange rates, inventory-sales ratios, series related to real retail, manufac-
turing and trade sales etc. Hence, filtering the common variation in these variables, we
might have found diffusion indexes that are useful predictors for stock returns.48

Bernanke and Boivin (2001) show that the scope of the data set from which the Stock-
Watson factors are extracted considerably affects their forecasting power. As mentioned
above, I use the same set of macroeconomic variables as Stock and Watson (2002). They
have selected the time series in the panel set with the intention of forecasting output and
inflation. Accordingly, as Stock and Watson show, the first principal axes of the cross-
sectional covariance matrix are strongly correlated with measures of current economic
activity. However, an alternative selection of variables to include in the panel is likely
to produce diffusion indexes that exhibit completely different time series behaviors and
consequently forecast a different set of economic variables. That is, the fact that only
lower-order diffusion indexes have been found to be significantly priced in cross-sectional
tests of the DIPM might simply be due to the inappropriateness of the employed panel.
Indeed, using basically the same data set, Watson (2001) finds only little evidence that
forecasts of stock market variables based on diffusion indexes are better than alternative
forecasting methods. In view of my empirical results and of the findings of Bernanke
and Boivin (2001), I thus conjecture that carrying out an “informed pre-selection” of the
variables to include in the panel is likely to improve the predictive power of the extracted
diffusion indexes for stock returns in both the time and the cross-sectional dimension.
More generally, I see considerable scope for future research concerning the design of the
panel to be used in the Stock-Watson procedure.49

A second possible explanation of the good overall performance of the DIPM is that the
model is subject to misspecification bias. As Kan and Zhang (1999) show, inference about
the correctness of a pricing model based on Fama-MacBeth t-statistics is unwarranted since
these are likely to overstate the significance of pricing factors. They provide evidence that
“useless” factors may erroneously be detected as significant due to estimation errors of the
first-stage beta estimates.50 Kan and Zhang suggest a set of model diagnostics to avoid
the problem of misspecification bias. For example, they propose to perform a subperiod
joint test, i.e. to split the sample into two or more subperiods, and to run separate cross-
sectional regressions on all of the subsamples. Jagannathan and Wang (1998) show that
when a beta-pricing model is misspecified, the t-values for firm characteristics included as
additional factors converge to infinity in probability. Hence, in well-specified models, firm

48However, if this were indeed the case, I would presume that the relationship found is likely to hold
independently of size or book-to-market ratio.

49Depending on the particular objective of a certain diffusion index-based application, the selection of
variables to include in the data set should ideally rely on both theoretical and statistical considerations.
With respect to the latter, clustering algorithms in the frequency domain might be useful for a preliminary
identification of subsets of variables with similar time series properties.

50Kan and Zhang (1999) consider the extreme case of “useless” factors constructed to be statistically
independent of all asset returns in the cross-section.
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characteristics should not be significantly priced. This result can alternatively be used to
test for model misspecification bias. In order to test whether the DIPM is misspecified, I
perform both a subperiod joint test and regressions including firms characteristics. The
results are presented in the following section.

5.8 Testing for Model Misspecification

I start with cross-sectional regressions including firm characteristics. Jagannathan and
Wang (1998) provide a formal proof that a factor that is uncorrelated with the asset
returns, i.e. that has zero beta, “cannot stand up against a test with a cross-sectional
variable such as firm size”. Hence, joint tests of some firm-specific variable and the dif-
fusion indexes should in principle reveal whether the latter are useless pricing factors.
Lettau and Ludvigson (2001b) test for model misspecification by running Fama-MacBeth
regressions using either the time series average of the log of portfolio size or the time series
average of log book-to-market ratio as additional pricing factors.51 I follow Lettau and
Ludvigson in this respect and perform similar regressions.

Table 6 summarizes the results that I have obtained from Fama-MacBeth regressions
of the unbalanced and the balanced panel diffusion index pricing model, each augmented
with portfolio size (panel A) and the portfolio book-to-market ratio (panel B). Both firm
characteristics are shown to be significantly priced when tested jointly with the diffusion
indexes. In fact, with the exception of the Shanken-corrected t-values of the size factor
which are not significantly different from zero at the 5 % level, the risk price estimates of
the firm characteristics are statistically significant in either of the tested models. Hence,
according to the result of Jagannathan and Wang, this is a clear indication that the dif-
fusion index pricing model is subject to misspecification bias.52

Let us shed some more light on the issue of misspecification. Both, Kan and Zhang
(1997) and Jagannathan and Wang (1998), show that a misspecified factor, i.e. a factor
that is asymptotically uncorrelated with the asset returns, may have an arbitrarily large
t-statistic in cross-sectional regressions. Kan and Zhang provide the following explanation
for this characteristic: if the “true” betas of the assets in the cross-section with respect
to a useless factor are zero, then the associated “true” risk price is undefined.53 Conse-
quently, the estimated risk premium must go to infinity to account for the difference in
the expected returns. An analysis of the first-stage estimates of the diffusion index betas
shows that these are indeed small compared to those of some of the significantly priced

51Unlike the standard pricing factors, these variables are directly included as explanatory variables in
the second-stage estimation, i.e. without preliminarily determining beta estimates.

52I have carried out the same test for all benchmark models using quarterly data and the cross-section of
25 portfolios as the variable to be explained. The results indicate that the size factor indeed turns out to
become insignificant when tested jointly with the beta estimates of most of the benchmark pricing factors.
However, contrary to the results presented by Lettau and Ludvigson (2001b), my findings suggest that this
does not hold for the consumption CAPM scaled by ĉay. Since the authors report that in their tests the
factor ĉayt ·∆ct+1 makes size insignificant, I am reluctant to place emphasis on my finding. Differences
in the firm-specific data used might be one possible explanation for the contradictory results.

53To see this, recall that the estimated vector of risk prices is given by λ̂ = (B̂′B̂)−1B̂′R̄ where B̂ is the
matrix of beta estimates obtained from the first-stage time series regressions, and where R̄ denotes the
vector of average returns of all assets in the cross-section.
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Table 6: Fama-MacBeth Regressions Including Firm Characteristics

This table presents results of Fama-MacBeth regressions that have been performed for the unbalanced
panel and the balanced panel diffusion index pricing model, each augmented with a firm-specific cross-
sectional variable as an additional pricing factor. The cross-sectional regressions are based on models of
the form,

E[Ri] = E[R0] + βi,f1λf1 + . . . + βi,fkλfk + bΘi,

where βi,f1 , . . . , βi,fk denote the beta estimates of the pricing factors, preliminarily determined by regress-
ing Ri on the respective vector of factors. Θi is the time series average of the log of market capitalization
of the firms in portfolio i (size in Panel A) or the time series average of the log of the value-weighted
book-to-market equity ratio of the firms in portfolio i (be/me in Panel B). The sample period is 1963:07-
1998:12. The variable to be explained is the cross-section of the value-weighted returns on 100 Fama-
French size and book-to-market sorted stock portfolios. For each model, estimates of the λfi , their uncor-
rected and Shanken-corrected t-values, the associated p-values, and the cross-sectional R2 are reported.

Model Constant Pricing Factors Θi

A.1. ubp DIPM E[R0] Rm f9 f10 f11 size R2

Estimate 1.78 -0.42 -2.44 0.90 -3.63 -0.30 0.59

t-value 5.45 -1.16 -4.04 1.64 -3.57 -2.16

p-value 0.00 0.13 0.00 0.05 0.00 0.02

corrected-t 3.90 -0.79 -2.80 1.13 -2.52 -1.55

corrected-p 0.00 0.22 0.00 0.13 0.01 0.06

A.2. bp DIPM E[R0] Rm f7 f9 f10 size R2

Estimate 1.35 0.07 0.79 -4.01 1.08 -0.25 0.59

t-value 4.60 0.19 1.47 -3.57 1.57 -1.94

p-value 0.00 0.42 0.07 0.00 0.06 0.03

corrected-t 3.39 0.13 1.04 -2.61 1.12 -1.43

corrected-p 0.00 0.45 0.15 0.01 0.13 0.08

B.1. ubp DIPM E[R0] Rm f9 f10 f11 be/me R2

Estimate 1.30 -0.23 -1.69 1.97 -2.14 0.21 0.68

t-value 4.67 -0.64 -2.91 3.80 -2.33 3.26

p-value 0.00 0.26 0.00 0.00 0.01 0.00

corrected-t 3.75 -0.48 -2.23 2.89 -1.84 2.62

corrected-p 0.00 0.32 0.01 0.00 0.03 0.01

B.2. bp DIPM E[R0] Rm f7 f9 f10 be/me R2

Estimate 1.16 -0.02 1.77 -2.38 0.30 0.20 0.67

t-value 4.19 -0.05 3.36 -2.57 0.41 3.02

p-value 0.00 0.48 0.00 0.01 0.34 0.00

corrected-t 3.50 -0.04 2.65 -2.10 0.33 2.53

corrected-p 0.00 0.49 0.00 0.02 0.37 0.01

factors in the benchmark models. According to the results of Kan and Zhang (1999)
and Jagannathan and Wang (1998), this finding thus supports the view that the diffusion
index pricing model is subject to misspecification bias. As a suggestion for future work
in this field, the problem of misspecification of the type encountered here could possibly
be avoided by preliminarily testing whether the first-stage beta estimates are statistically
different from zero.
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In order to explore further whether the good overall performance of the diffusion index
pricing model in cross-sectional regression tests is really driven by some misspecification
bias that cannot be detected by the mere use of Fama-MacBeth t-statistics and the cross-
sectional R2, I confront the DIPM with a second test for misspecification. The subperiod
joint test suggested by Kan and Zhang (1999) is designed to examine whether a significant
relationship between the beta risk of a pricing factor and the cross-section of returns is
stable over time. Such a test can be performed very easily by splitting the entire sample
into two or more subperiods and to run cross-sectional regressions over all subsamples.
Kan and Zhang suggest to reject the Null hypothesis that a factor estimate is not statis-
tically different from zero only if both t-statistics are significant and have the same sign.
Obviously, the intuition behind this test is that if a factor proxies for some source of risk
that investors hedge against, then it should earn about the same premium in every instant.
Yet, this line of argumentation relies on the assumption that the betas of “true” factors
are constant over time. Thus, since there is empirical evidence that betas are in fact
time-varying, the subperiod joint test used alone might be unsuited for detecting model
misspecification. Nonetheless, as a complement to the findings above, I report results
obtained from this test in table 7.

I adopt the most basic version of the test, simply splitting the entire sample period
into two equally long subperiods, 1963:07-1981:03 and 1981:04-1998:12. Then I perform
separate Fama-MacBeth regressions over these two subsamples. The results of these re-
gressions also seem to support the view that the DIPM is subject to misspecification bias:
except for the balanced panel diffusion index f10, none of the diffusion indexes that have
been found to be significantly priced in the Fama-MacBeth regressions using the entire
sample period, earns a risk premium in both subperiods. The differences in significance
even turn out to be strikingly stark. The unbalanced panel diffusion index f9, for example,
is highly significant in the first subperiod, but highly insignificant in the second regression.
This indicates that the correlation between average returns and pricing factors can be sub-
ject to fundamental changes. Whether these changes reveal structural breaks in otherwise
valid economic relationships or rather demonstrate that the Fama-MacBeth t-statistics are
susceptible to falsely suggest the presence of non-existent economic interrelations, cannot
be decided at this stage of the investigation.

In order to analyze whether the poor performance of the DIPM in the subperiod joint
tests is particular to this model, I have also carried out such tests for three of the bench-
mark models. The results of these tests are summarized in table 11 in the appendix. They
show that with the only exception being the book-to-market factor HML in the Fama-
French model, the pricing factors of the benchmark models do all fail this test. Hence,
even the performance of models that are widely accepted as capturing well the return
spreads across size and BE/ME-sorted stock portfolios, strongly depends on the choice
of the sample period. Except for the Fama-French three-factor model, none of the tested
models thus seems to represent a stable economic relationship between stock returns and
pricing factors.

The results of the subperiod joint tests raise the question of how the sample period for
the first-stage estimation of the betas should optimally be chosen. In their seminal study,
Fama and MacBeth (1973) adopt a five-year rolling regression estimation to account for
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Table 7: Subperiod Joint Test

This table presents results of Fama-MacBeth regressions performed for the unbalanced panel
and the balanced panel diffusion index pricing model over the two subperiods 1963:07-
1981:03 (panel A) and 1981:04-1998:12 (panel B). The variable to be explained is the
cross-section of the value-weighted returns on 100 Fama-French size and book-to-market
sorted stock portfolios. For each regression, estimates of the λfi , their uncorrected and
Shanken-corrected t-values, the associated p-values, and the cross-sectional R2 are reported.

Model Constant Pricing Factors

A. Sample Period 1963:07 - 1981:03

ubp DIPM E[R0] Rm f9 f10 f11 R2

Estimate 0.20 0.53 -4.43 5.59 2.49 0.68

t-value 0.56 1.14 -3.42 2.29 1.14

p-value 0.29 0.13 0.00 0.02 0.13

corrected-t 0.34 0.66 -2.05 1.39 0.69

corrected-p 0.37 0.26 0.03 0.09 0.25

bp DIPM E[R0] Rm f7 f9 f10 R2

Estimate 0.39 0.39 -0.19 4.84 4.40 0.76

t-value 1.05 0.87 -0.14 2.83 2.20

p-value 0.15 0.20 0.44 0.00 0.02

corrected-t 0.72 0.56 -0.10 1.93 1.51

corrected-p 0.24 0.29 0.46 0.03 0.07

B. Sample Period 1981:04 - 1998:12

ubp DIPM E[R0] Rm f9 f10 f11 R2

Estimate 3.39 -2.00 0.14 2.37 -0.11 0.68

t-value 7.56 -3.86 0.12 1.77 -0.08

p-value 0.00 0.00 0.45 0.04 0.47

corrected-t 5.81 -2.80 0.09 1.34 -0.06

corrected-p 0.00 0.00 0.46 0.10 0.47

bp DIPM E[R0] Rm f7 f9 f10 R2

Estimate 3.23 -1.86 2.85 -0.03 3.86 0.73

t-value 7.78 -3.52 1.68 -0.02 2.71

p-value 0.00 0.00 0.05 0.49 0.01

corrected-t 4.76 -2.08 1.02 -0.01 1.65

corrected-p 0.00 0.02 0.16 0.50 0.06

the possibility of time-varying betas. Allowing for time-varying betas is likely to have
considerable effects on the performance of pricing models in general and on the signifi-
cance of individual pricing factors in particular. In order to investigate these effects for the
DIPM and the benchmark pricing models, I test rolling-regression versions of all models.
The setup I choose for these tests is the following. For each month in the sample, the
betas of all portfolios in the cross-section are re-estimated using the previous 60 months
as the estimation period. Then, a cross-sectional OLS regression is performed employing
these estimates as the regressors. Hence, in contrast to the cross-sectional regressions
documented above, the second-stage estimation of risk prices in a rolling regression uses
different beta estimates in every instant.
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I provide results of these rolling regressions in appendix A. Considering the rolling re-
gression results for the benchmark models in table 12, some interesting differences to the
total sample estimations stand out. First, in terms of Fama-MacBeth t-statistics, the risk
premiums associated with rolling regression beta estimates of most of the individual fac-
tors differ from their total sample counterparts. In the case of the ICAPM, this change
is particularly striking. Contrary to the total sample estimation where the term spread
and CPI growth have been identified as the state variables that earn a risk premium, the
change in industrial production is now detected to be the only significant pricing factor.
Second, employing the rolling regression approach, the factors scaled by ĉay in Lettau and
Ludvigson’s conditional CCAPM and HCCAPM exhibit t-statistics that are significantly
different from zero. This contrasts the results that I have obtained from the total sample
estimations using monthly data. However, the good overall performance of the quarterly
data versions of the two scaled models is still unattained in rolling regression estimations
using monthly data.

The rolling regression results of the diffusion index pricing model, reported in table 13
in the appendix, do also differ considerably from their total sample estimation counter-
parts. While in the unbalanced panel version of the DIPM more diffusion indexes of higher
order are now identified as significant, none of the balanced panel Stock-Watson factors
turns out to earn a significant risk premium. However, additional tests of these models
using different sample periods and different rolling regression intervals show that the per-
formance of the DIPM remains highly susceptible to modifications of these parameters.
Thus, the model does not provide reliable indications about the risk premiums associated
with certain diffusion indexes.

The results obtained from the subperiod joint tests and the rolling regressions show
that the choice of the sample period in the first-stage estimation of the betas can have
an important influence on the outcomes of Fama-MacBeth regressions. Hence, inference
based on this procedure calls for caution. Ideally, Fama-MacBeth regressions should be
carried out using different sample periods or different rolling regression intervals. Only in
the case of similar results, these should be interpreted in favor of the tested model. How-
ever, this is rarely done in praxis. Instead, some authors complement their presentation
with results obtained from alternative estimation methods such as GMM.

What can be concluded from the results presented in the previous sections? First, the
diffusion index pricing model performs well in cross-sectional regressions, but largely fails
the tests of model misspecification. This shows that although intuitively appealing and
widely used, the cross-sectional regression methodology suggested by Fama and MacBeth
(1973) appears to be unsuited to detect certain types of model misspecification. Second,
those diffusion indexes that are significantly priced in cross-sectional tests capture only
a small portion of the total variation of all series in the data set. However, the correla-
tion patterns between these factors and individual variables are broadly consistent with
economic intuition. It is argued that an “informed pre-selection” of the time series to
include in the data set from which the diffusion indexes are extracted is likely to result in
a better performance of the DIPM. Third, the benchmark models largely exhibit similar
weaknesses as the DIPM and thus cannot be considered as generally performing better.
The Fama-French three-factor model is shown to be the only model which yields good
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results in cross-sectional regression tests and which is robust to tests of misspecification.
Altogether, the results presented in this paper imply that there is at best mixed empirical
evidence for the existence of stable linear relationships between the cross-section of average
stock returns and the beta risk associated with macroeconomic factors.

5.9 Testing Diffusion Indexes as Conditioning Variables

Since diffusion indexes capture the common variation of a large number of business cycle-
related time series and furthermore exhibit outstanding forecasting power for different
economic variables, I have argued above that they are promising candidates for instru-
ments in conditional factor pricing models. To test this assumption empirically, I have
carried out Fama-MacBeth regressions for a conditional version of the consumption CAPM
similar to the one proposed by Lettau and Ludvigson (2001b).

Instead of searching for the diffusion indexes that perform best in the Fama-MacBeth
regressions, I now explicitly choose those Stock-Watson factors as conditioning variables
that capture the largest amount of common variation in the time series of the data set.
Appendix B shows that these are the second of the factors extracted from the unbalanced
panel and the first of the factors extracted from the balanced panel. As has been reported
above, the monthly time series of ĉay does a much poorer job as a scaling variable than its
quarterly counterpart, this being due to preliminary intrapolations of one of the variables
it is derived from. Since the diffusion indexes are solely available in monthly frequency,
a comparison with ĉay will not be very rich in content. In my tests, I thus compare the
performance of diffusion indexes as instruments in conditional pricing models with that
of alternative variables. I have argued in section 4.7 that the observed variation of risk
premiums over the business cycle might be well captured by using a business-cycle related
time series as the scaling variable. Several standard macroeconomic time series variables
present itself for such a purpose. The growth rate of industrial production, for example,
is a simple indicator of the current state of the economy. Further, interest rates have been
shown to be closely linked to the business cycle. For convenience I thus use ∆IP and
Tspr - two of the four ICAPM pricing factors - as benchmark conditioning variables in my
tests of the scaled CCAPM. In addition, based on Daniel and Titman’s (1997) finding that
stock return patterns in January are systematically different from those in non-January
months, I use as a third benchmark scaling variable a January dummy that takes the value
1 for each January and is zero otherwise.

Table 8 summarizes the results of Fama-MacBeth regressions that I have carried out to
test the conditional CCAPM using different instruments. According to these results, the
January dummy is the scaling variable that increases the explanatory power of aggregate
consumption growth the most considerably. Somehow surprisingly, neither the growth
rate of industrial production nor the term spread seem to capture well the variation of
risk prices over the business cycle.54 Although they turn out to work better than the term

54Lettau and Ludvigson (2001b) report that in their tests of the scaled CCAPM using quarterly data,
ĉay largely outperforms other instruments such as the term spread or the yield spread. However, since
they do not provide detailed results, it is difficult to say whether this is in line with my findings or not.
Somewhat contrary to my result, Hodrick and Zhang (2000) find that using the cyclical component of
industrial production as an instrument improves the performance of several models.

63



Table 8: Regression Results for the CCAPM Using Different Scaling Variables

This table presents results from Fama-MacBeth regressions of the conditional consumption CAPM where
different scaling variables have been used. All models are of the form

E[Ri] = E[R0] + βi,zλz + βi,∆cλ∆c + βi,z∆cλz∆c,

where βi,z, βi,∆c, and βi,z∆c denote the coefficients in time series regressions of Ri
t+1 on zt, ∆ct+1, and

zt ·∆ct+1, respectively. The variable to be explained is the cross-section of the value-weighted returns on
100 Fama-French portfolios. The sample period is 1963:07-1998:12. The different instruments used are
the growth rate of industrial production (panel A), the term spread (panel B), a January dummy (panel
C), the second diffusion index extracted from the unbalanced data set (panel D), and the first diffusion
index extracted from the balanced data set (panel E). For each regression, estimates of the risk prices of
all factors, their uncorrected and Shanken-corrected t-values, and the associated p-values are reported.
Further, the cross-sectional R2, its degrees-of-freedom adjusted version and the average absolute pricing
error, µ|α̂|, are provided.

A. E[R0,t] Tsprt ∆ct+1 Tsprt ·∆ct+1 R2 R̄2 µ|α̂|
Estimate 1.32 -0.35 -0.24 0.00 0.18 0.17 1.98

t-value 6.26 -0.69 -2.61 0.32

p-value 0.00 0.25 0.01 0.37

corrected-t 5.14 -0.56 -2.12 0.26

corrected-p 0.00 0.29 0.02 0.40

B. E[R0,t] ∆IPt ∆ct+1 ∆IPt ·∆ct+1 R2 R̄2 µ|α̂|
Estimate 1.42 0.12 -0.23 -0.00 0.17 0.15 2.01

t-value 5.73 0.88 -2.49 -0.21

p-value 0.00 0.19 0.01 0.42

corrected-t 4.80 0.72 -2.06 -0.17

corrected-p 0.00 0.24 0.02 0.43

C. E[R0,t] jant ∆ct+1 jant ·∆ct+1 R2 R̄2 µ|α̂|
Estimate 1.23 -0.01 -0.08 -0.00 0.37 0.36 1.89

t-value 5.76 -0.28 -1.23 -2.74

p-value 0.00 0.39 0.11 0.00

corrected-t 4.74 -0.22 -0.99 -2.22

corrected-p 0.00 0.41 0.16 0.01

D. E[R0,t] f2,t ∆ct+1 f2,t ·∆ct+1 R2 R̄2 µ|α̂|
Estimate 1.45 -0.98 -0.23 0.01 0.25 0.23 1.92

t-value 6.91 -0.97 -2.27 1.78

p-value 0.00 0.17 0.01 0.04

corrected-t 5.52 -0.76 -1.79 1.38

corrected-p 0.00 0.22 0.04 0.08

E. E[R0,t] f1,t ∆ct+1 f1,t ·∆ct+1 R2 R̄2 µ|α̂|
Estimate 1.48 -1.30 -0.21 0.00 0.25 0.23 1.92

t-value 6.05 -1.74 -2.21 0.73

p-value 0.00 0.04 0.01 0.23

corrected-t 4.93 -1.38 -1.78 0.58

corrected-p 0.00 0.09 0.04 0.28
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spread and the monthly change of industrial production, both diffusion indexes that I use
as instruments fall behind the January dummy in terms of their t-statistics. Accordingly,
among all five models considered, the CCAPM scaled by the January dummy exhibits the
largest cross-sectional R2 and the smallest average absolute pricing error. However, since
none of the macroeconomic variables is closely linked to calendar time and thus able to
capture the particular return characteristics that the size and book-to-market sorted stock
portfolios exhibit in January, this result does not necessarily discredit the use of diffusion
indexes as conditioning variables.

Whether the diffusion indexes do have predictive power as scaling variables that goes
beyond the January effect can be tested by controlling for the latter. Table 14 in appendix
A reports results from Fama-MacBeth regressions of the conditional CCAPM using the
January dummy and a second instrument as scaling variables. There is indeed some em-
pirical support for the view that the January dummy leaves explanatory power to the
other conditioning variables, indicating that these capture some of the variation of risk
prices over the business cycle. In particular, using either of the two diffusion indexes as
an additional instrument raises the cross-sectional R2 slightly from initial 37 percent to
42 percent and also slightly diminishes the average absolute pricing error. Further, the
growth rate of aggregate consumption scaled by the unbalanced panel diffusion index earns
a significant risk premium suggesting that investors care about consumption growth condi-
tional on their information about the current state of the economy. Notice that I have also
tested the conditional models for misspecification bias by running Fama-MacBeth regres-
sions including firm characteristics. The results of these tests which are not reported here,
provide evidence for misspecification bias in all tested versions of the model, including the
CCAPM scaled by the January dummy. Interestingly, this variable largely captures the
size effect (size becomes highly insignificant when tested jointly with jan), but is unable
to attenuate the significance of the portfolio book-to-market ratio. This might indicate
that the size effect is indeed a January effect. One possible explanation for such a finding
would be that many money managers reorganize their portfolios at the beginning of each
year with a tendency to invest in small stocks.

All in all, my results do not clearly support or reject the hypothesis that diffusion
indexes can be useful instruments in conditional factor pricing models. I have employed
those Stock-Watson factors as conditioning variables in a scaled version of the CCAPM
that capture the largest portion of the total variation in the unbalanced and balanced
panel, respectively. Although these diffusion indexes turn out to do a better job than the
monthly change of industrial production and the term spread, they are outperformed by a
January dummy. In terms of cross-sectional R2’s and average absolute pricing errors, none
of the scaled models comes close to the Fama-French three-factor model or the diffusion
index pricing model.
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6 Conclusion

There is a growing body of theoretical and empirical research suggesting that the variation
of stock returns across assets and across time is linked to fluctuations of macroeconomic
variables. During the last two decades, a number of stylized facts have been discovered
that do not match a classic result of asset pricing theory stating that the expected return
of an asset is linearly related to the covariance of its return with the return of the market
portfolio. For example, the observed return patterns of stocks which are sorted by size
and firms’ book-to-market equity ratio are not consistent with this view and thus have
attracted the attention of many researchers. One of the models that have been proposed
to explain these patterns is the widely recognized three-factor model of Fama and French
(1993). On the basis of stock-specific information, these authors construct two portfolios
the returns of which they show to capture a large portion of the cross-sectional variation
of average stock returns. Fama and French argue that these portfolios mimic unobservable
risk factors that are related to “financial distress” and thus to recessions. Another recent
contribution to the research dealing with cross-sectional patterns of stock returns has been
made by Lettau and Ludvigson (2001b). Starting from an investor’s intertemporal budget
constraint, they argue that expected future returns on asset wealth can be summarized by
the deviations of consumption, asset wealth and labor income from their shared common
trend. Based on this result, Lettau and Ludvigson show that the estimated residual from
the cointegrating relationship between these three variables has predictive power for stock
returns in both the time series and the cross-sectional dimension. Further studies have an-
alyzed the links between stock returns and the business cycle. The set of macroeconomic
variables that have so far been proposed as pricing factors includes, among others, inter-
est rate spreads, the innovations to inflation, output, and investment, and news related to
future GDP growth.

Since a variety of macroeconomic variables have been shown to be related to stock
returns, it seems reasonable to suppose that there exist summary measures of economic
activity that capture the different sources of systematic risk that investors are concerned
about. With the purpose of forecasting macroeconomic variables using many predictors,
Stock and Watson (1998) have recently proposed an estimation methodology for the ex-
traction of a small number of common factors from a large panel of time series variables.
Estimated on the basis of principal components analysis, these factors by construction
summarize the common variation of all variables in the data set. Empirical applications of
Stock and Watson’s method show that the extracted factors, labelled as diffusion indexes,
predict different measures of economic activity better than all considered benchmark fore-
casting methods. An extension of the estimation procedure allows for unbalanced panels,
i.e. panels that include time series variables with missing observations or of different fre-
quency.

In view of the way the Stock-Watson diffusion indexes are constructed, the central
hypothesis of this paper is that they may act as summary measures of different sources of
macroeconomic risk that are of concern to investors. Applied to the problem of explaining
the cross-section of average returns on size and book-to-market sorted stock portfolios,
this hypothesis has been tested empirically. The outcomes of the performed tests have
been compared with estimation results for the CAPM, a version of the ICAPM, the Fama-
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French three-factor model, and Lettau and Ludvigson’s conditional consumption CAPM
and human capital CAPM. It has further been examined whether diffusion indexes can
successfully be used as instruments in conditional factor models. All tests have been car-
ried out using the cross-sectional regression methodology of Fama and MacBeth (1973).
Several drawbacks of this procedure have been diagnosed and discussed in the text. Con-
sequently, the estimated models have been confronted with additional tests for model
misspecification.

The use of diffusion indexes as factors in a pricing model is novel to the literature and
therefore my investigation provides some new insights concerning two issues: the range of
potential uses of the Stock-Watson procedure, and the usefulness of summary measures
of economic activity as factors or scaling variables in pricing models. Since my empirical
results are mixed, I am reluctant to either reject the hypothesis that diffusion indexes are
useful factors or to strongly advocate this view. Standard test statistics and measures
of model fit related to the Fama-MacBeth methodology indicate that the diffusion index
pricing model performs well compared to the considered benchmark models. However,
tests for model misspecification display that the relationship found is at best unstable
over time. Yet, since the benchmark models also mainly fail these tests, a ready conclu-
sion about the relative performance of the diffusion indexes compared to standard pricing
factors is unwarranted. The tests of the usefulness of the Stock-Watson factors as condi-
tioning variables in scaled factor models similarly yield conflicting results. Although the
considered diffusion indexes perform better than other standard macroeconomic variables,
the overall fit of the tested conditional models is unsatisfactory.

The inconsistency of my empirical results gives ground for further investigation in this
field of study. Several potential lines of research present themselves. First, in order to rule
out erroneous inference due to methodological deficiencies, the investigation that has been
carried out in this paper could be repeated employing a different estimation methodology
such as the time series regression approach of Black, Jensen, and Scholes (1972) or GMM.
Second, as yet standard static principal components analysis has mostly been used to
extract common factors in the sense of Ross’(1976) arbitrage pricing theory (APT) from
a large number of asset returns. Since Stock and Watson’s method represents a dynamic
generalization of standard static factor models, it would be interesting to apply this pro-
cedure to a panel of asset returns and to compare the outcomes with those obtained from
the classic static analysis. As an alternative to the Stock-Watson methodology, one could
further employ the dynamic factor model approach of Forni et al. (2001a). Third, an in-
teresting way of studying the relationships between macroeconomic and financial variables
consists in the construction of economic “tracking” portfolios. Such tracking portfolios are
the linear projections of individual macroeconomic time series variables or their innova-
tions on a set of return data. Thus, by construction they capture all the common variation
in the return series and the macroeconomic variables. This approach has first been advo-
cated by Breeden, Gibbons, and Litzenberger (1989) and has recently been readopted by
Lamont (1999) and Vassalou (2002) to study the variation of risk premia across assets and
across time. Adopting this approach, one possible extension of the investigation carried
out in this paper would be to construct tracking portfolios for diffusion indexes and to ana-
lyze their time series behavior and correlation patterns in order to identify those variables
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that capture the largest part of the variation in asset returns. Fourth, money managers
often select assets either from a top-down or from a bottom-up perspective. While the
former consists in choosing stocks from a particular industry or country, the latter aims
at selecting individual stocks on the basis of firm-specific information. Since it is based on
aggregate data, the diffusion index pricing approach thus might be more promising when
used to uncover potential relationships between returns and economic variables that arise
due to top-down-based trading. Hence, it would be interesting to extract dynamic fac-
tors from a data set containing series from different industries or countries, and to study
whether these diffusion indexes are able to explain the variation of returns across the
same industries or countries. More generally, since the choice of the data set appears to
influence the outcome of the Stock-Watson procedure substantially, a method of suitably
pre-selecting the series to include in the panel should be developed.

The above suggestions are only a few examples of a wide range of potential applications
of dynamic factor models in asset pricing theory and praxis. Since financial markets and
the real side of the economy are tightly interwoven, it is unlikely that economists be able
to boil down all the interactions of financial and macroeconomic variables to a well-defined
set of easily interpretable relationships. Instead, they will have to base their analyses on
measures of common variation. Currently, dynamic factor models represent one of the
most promising approaches to the derivation of such measures.
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Appendix

A Additional Tables and Figures

Table 9: Benchmark Models - 100 FF portfolios, quarterly data

The table summarizes the results of the Fama-MacBeth regressions that have been performed for the
benchmark pricing models using the cross-section of the value-weighted returns on 100 Fama-French size
and book-to-market sorted stock portfolios as the variable to be explained. The sample period is from
1963:Q3 to 1998:Q3. For a description of the estimates and statistics reported see, for instance, table 2 in
the text.

Model Constant Pricing Factors Summary Statistics

CAPM E[R0] Rm R2 R̄2 µ|α̂|
Estimate 4.02 -0.05 0.01 -0.01 3.51

t-value 3.95 -0.05

p-value 0.00 0.48

corrected-t 3.95 -0.04

corrected-p 0.00 0.48

ICAPM E[R0] Rm TSpr DSpr ∆IP ∆CPI R2 R̄2 µ|α̂|
Estimate 3.97 -0.06 0.87 -0.19 0.12 -0.34 0.54 0.52 3.11

t-value 4.19 -0.06 3.95 -1.53 0.52 -3.01

p-value 0.00 0.48 0.00 0.06 0.30 0.00

corrected-t 3.02 -0.04 2.68 -1.05 0.35 -2.00

corrected-p 0.00 0.49 0.00 0.15 0.36 0.02

FF3F E[R0] Rm SMB HML R2 R̄2 µ|α̂|
Estimate 4.20 -0.79 0.45 1.40 0.63 0.63 2.99

t-value 4.91 -0.71 0.87 3.08

p-value 0.00 0.24 0.19 0.00

corrected-t 4.71 -0.58 0.61 2.18

corrected-p 0.00 0.28 0.27 0.02

c. CCAPM E[R0] cay ∆c cay ·∆c R2 R̄2 µ|α̂|
Estimate 3.29 -0.27 0.17 0.00 0.43 0.42 3.31

t-value 4.46 -0.95 1.94 1.74

p-value 0.00 0.17 0.03 0.04

corrected-t 3.36 -0.69 1.38 1.27

corrected-p 0.00 0.25 0.08 0.10

c. HCCAPM E[R0] cay Rm cay ·Rm ∆y cay ·∆y R2 R̄2 µ|α̂|
Estimate 3.81 0.05 0.09 0.04 0.42 0.01 0.50 0.48 3.09

t-value 3.93 0.27 0.08 2.60 2.77 2.78

p-value 0.00 0.39 0.47 0.01 0.00 0.00

corrected-t 3.17 0.20 0.06 1.93 2.07 2.13

corrected-p 0.00 0.42 0.48 0.03 0.02 0.02
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Table 10: Benchmark Models - 25 FF portfolios, monthly data

The table summarizes the results of Fama-MacBeth regressions that have been performed for the bench-
mark pricing models using the cross-section of the value-weighted returns on 25 Fama-French size and
book-to-market sorted stock portfolios as the variable to be explained. The sample period is 1963:07 -
1998:12. All models have the form

E[Ri] = E[R0] + βi,f1λf1 + . . . + βi,fkλfk ,

where βi,f1 , . . . , βi,fk denote the beta estimates of the pricing factors, preliminarily determined by re-
gressing Ri on the respective vector of factors. For each model, estimates of λfi , their t-values and the
associated p-value are reported. The “corrected t− and p-values” take into account the errors-in-variables
adjustment as suggested by Shanken (1992). R2 is the cross-sectional coefficient of determination and R̄2

its degrees of freedom-adjusted version. µ|α̂| is the average of the absolute values of all T ·N pricing errors.

Model Constant Pricing Factors Summary Statistics

CAPM E[R0] Rm R2 R̄2 µ|α̂|
Estimate 1.45 -0.22 0.03 0.03 1.26

t-value 5.02 -0.62

p-value 0.00 0.27

corrected-t 5.01 -0.56

corrected-p 0.00 0.29

ICAPM E[R0] Rm TSpr DSpr ∆IP ∆CPI R2 R̄2 µ|α̂|
Estimate 1.40 -0.26 3.30 -0.13 -0.47 -0.17 0.64 0.57 0.99

t-value 4.60 -0.70 4.92 -0.84 -2.49 -2.60

p-value 0.00 0.25 0.00 0.21 0.01 0.01

corrected-t 1.80 -0.27 1.92 -0.33 -0.97 -1.01

corrected-p 0.04 0.40 0.03 0.37 0.17 0.16

FF3F E[R0] Rm SMB HML R2 R̄2 µ|α̂|
Estimate 1.77 -0.68 0.08 0.46 0.70 0.68 0.97

t-value 4.88 -1.62 0.56 3.48

p-value 0.00 0.06 0.29 0.00

corrected-t 4.77 -1.42 0.40 2.48

corrected-p 0.00 0.08 0.35 0.01

c. CCAPM E[R0] cay ∆c cay ·∆c R2 R̄2 µ|α̂|
Estimate 1.75 -0.65 -0.33 0.00 0.38 0.33 1.17

t-value 5.50 -0.96 -2.20 0.72

p-value 0.00 0.17 0.02 0.24

corrected-t 3.68 -0.64 -1.47 0.48

corrected-p 0.00 0.26 0.08 0.32

c. HCCAPM E[R0] cay Rm cay ·Rm ∆y cay ·∆y R2 R̄2 µ|α̂|
Estimate 2.28 -1.58 -0.82 -0.05 0.08 -0.01 0.29 0.15 1.05

t-value 6.50 -3.00 -2.01 -2.85 0.33 -1.87

p-value 0.00 0.00 0.03 0.00 0.37 0.04

corrected-t 3.62 -1.67 -1.09 -1.58 0.18 -1.03

corrected-p 0.00 0.05 0.14 0.06 0.43 0.16
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Table 11: Subperiod Joint Test - Benchmark Models

This table presents results of Fama-MacBeth regressions performed for three benchmark models us-
ing quarterly data. The two subperiods are 1963:Q3-1980:Q4 (panel A) and 1981:Q1-1998:Q3 (panel
B). The variable to be explained is the cross-section of the value-weighted returns on 25 size
and book-to-market sorted stock portfolios. For each regression, risk price estimates, their uncor-
rected and Shanken-corrected t-values, the associated p-values,and the cross-sectional R2 are reported.

Model Constant Pricing Factors

A. Sample Period 1963:Q3 - 1980:Q4

FF3F E[R0] Rm SMB HML R2

Estimate 1.24 1.27 1.41 1.16 0.90

t-value 0.92 0.73 1.69 1.83

p-value 0.18 0.24 0.05 0.04

corrected-t 0.87 0.60 1.18 1.28

corrected-p 0.20 0.28 0.13 0.11

c. CCAPM E[R0] cay ∆c cay ·∆c R2

Estimate 1.70 0.35 0.11 0.01 0.84

t-value 1.58 0.82 0.73 2.73

p-value 0.06 0.21 0.24 0.01

corrected-t 1.14 0.58 0.51 1.91

corrected-p 0.13 0.28 0.31 0.03

ICAPM E[R0] Rm TSpr DSpr ∆IP ∆CPI R2

Estimate 2.55 -3.23 0.53 -0.11 1.00 -0.24 0.84

t-value 2.30 -1.37 1.09 -0.55 0.99 -1.28

p-value 0.02 0.09 0.14 0.29 0.17 0.11

corrected-t 1.75 -1.00 0.81 -0.40 0.74 -0.89

corrected-p 0.05 0.16 0.21 0.35 0.23 0.19

B. Sample Period 1981:Q1 - 1998:Q3

FF3F E[R0] Rm SMB HML R2

Estimate 9.87 -5.75 -0.60 1.96 0.63

t-value 7.88 -3.70 -1.05 3.11

p-value 0.00 0.00 0.15 0.00

corrected-t 6.17 -2.64 -0.66 1.93

corrected-p 0.00 0.01 0.26 0.03

c. CCAPM E[R0] cay ∆c cay ·∆c R2

Estimate 5.63 -0.48 0.11 0.00 0.71

t-value 7.28 -1.55 0.84 0.27

p-value 0.00 0.07 0.20 0.39

corrected-t 5.54 -1.13 0.62 0.20

corrected-p 0.00 0.14 0.27 0.42

ICAPM E[R0] Rm TSpr DSpr ∆IP ∆CPI R2

Estimate 9.64 -0.33 0.57 -0.18 -0.26 0.71 0.69

t-value 6.42 -0.12 2.22 -0.87 -0.85 2.97

p-value 0.00 0.45 0.02 0.20 0.20 0.00

corrected-t 3.13 -0.06 1.05 -0.42 -0.41 1.44

corrected-p 0.00 0.48 0.15 0.34 0.34 0.08
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Table 12: Benchmark Models - 100 FF portfolios, 5-Year Rolling Regressions

The table summarizes the results of 5-year rolling Fama-MacBeth regressions that have been performed
for the benchmark pricing models using the cross-section of the value-weighted returns on 100 Fama-
French size and book-to-market sorted stock portfolios as the variable to be explained. The sam-
ple period is 1968:07 - 1998:12. In every period, the betas are estimated by time series regressions
of each portfolio in the cross-section on the vector of pricing factors using the previous 60 months
as the sample period. For a description of the estimates and statistics reported see table 10 above.

Model Constant Pricing Factors Summary Statistics

CAPM E[R0] Rm R2 R̄2 µ|α̂|
Estimate 1.48 -0.35 0.35 0.35 1.94

t-value 6.29 -1.31

p-value 0.00 0.10

corrected-t 6.25 -1.09

corrected-p 0.00 0.14

ICAPM E[R0] Rm TSpr DSpr ∆IP ∆CPI R2 R̄2 µ|α̂|
Estimate 1.45 -0.27 0.07 -0.05 -0.15 0.00 0.52 0.50 1.80

t-value 6.30 -1.15 0.55 -1.36 -3.03 0.11

p-value 0.00 0.13 0.29 0.09 0.00 0.45

corrected-t 6.09 -0.90 0.43 -0.94 -2.26 0.09

corrected-p 0.00 0.19 0.33 0.17 0.01 0.47

FF3F E[R0] Rm SMB HML R2 R̄2 µ|α̂|
Estimate 1.42 -0.31 -0.07 0.40 0.60 0.59 1.72

t-value 6.56 -1.50 -0.50 3.02

p-value 0.00 0.07 0.31 0.00

corrected-t 6.49 -0.99 -0.34 2.09

corrected-p 0.00 0.16 0.37 0.02

c. CCAPM E[R0] cay ∆c cay ·∆c R2 R̄2 µ|α̂|
Estimate 1.20 0.23 -0.01 0.02 0.36 0.35 1.93

t-value 4.92 0.24 -0.38 3.06

p-value 0.00 0.40 0.35 0.00

corrected-t 4.74 0.19 -0.32 2.55

corrected-p 0.00 0.43 0.37 0.01

c. HCCAPM E[R0] cay Rm cay ·Rm ∆y cay ·∆y R2 R̄2 µ|α̂|
Estimate 1.39 -0.00 -0.29 -0.00 0.07 -2.42 0.55 0.53 1.83

t-value 6.01 -0.00 -1.17 -0.61 1.12 -2.37

p-value 0.00 0.50 0.12 0.27 0.13 0.01

corrected-t 5.91 -0.00 -0.94 -0.47 0.86 -1.87

corrected-p 0.00 0.50 0.17 0.32 0.20 0.03
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Table 14: Controlling for the January Effect

This table presents results from Fama-MacBeth regressions of the conditional consumption CAPM with
two instruments, the January dummy and an alternative scaling variables. Thus, all models are of the
form

E[Ri] = E[R0] + βi,JANλJAN + βi,∆cλ∆c + βi,JAN∆cλJAN∆c + βi,zλz + βi,z∆cλz∆c,

where βi,JAN , βi,∆c, βi,JAN∆c, βi,z, and βi,z∆c denote the coefficients in time series regressions of Ri
t+1

on jant, ∆ct+1, jant · ∆ct+1, zt, and zt · ∆ct+1, respectively. The variable to be explained is the cross-
section of the value-weighted returns on 100 Fama-French portfolios. The sample period is 1963:07-1998:12.
Panel A reports results using the growth rate of industrial production as the second scaling variable. The
other panels refer to the following additional instruments: the term spread (panel B), the second diffusion
index of the unbalanced data set (panel C), and the first diffusion index extracted from the balanced
data set (panel D). For each regression, estimates of the risk prices of all factors, their uncorrected and
Shanken-corrected t-values, and the associated p-values are reported. Further, the cross-sectional R2, its
degrees-of-freedom adjusted version and the average absolute pricing error, µ|α̂|, are provided.

A. E[R0,t] jant ∆ct+1 jant ·∆ct+1 ∆IPt ∆IPt ·∆ct+1 R2 R̄2 µ|α̂|
Estimate 1.23 -0.01 -0.08 -0.00 0.09 -0.00 0.39 0.36 1.84

t-value 6.22 -0.23 -1.20 -2.67 0.60 -1.38

p-value 0.00 0.41 0.12 0.00 0.28 0.09

corrected-t 4.92 -0.18 -0.93 -2.09 0.46 -1.06

corrected-p 0.00 0.43 0.18 0.02 0.32 0.15

B. E[R0,t] jant ∆ct+1 jant ·∆ct+1 Tsprt Tsprt ·∆ct+1 R2 R̄2 µ|α̂|
Estimate 1.26 -0.00 -0.09 -0.00 -0.36 0.00 0.39 0.36 1.84

t-value 5.82 -0.12 -1.17 -2.68 -0.87 0.47

p-value 0.00 0.45 0.12 0.00 0.19 0.32

corrected-t 4.74 -0.09 -0.94 -2.15 -0.70 0.37

corrected-p 0.00 0.46 0.18 0.02 0.24 0.35

C. E[R0,t] jant ∆ct+1 jant ·∆ct+1 f2,t f2,t ·∆ct+1 R2 R̄2 µ|α̂|
Estimate 1.31 -0.00 -0.07 -0.00 -0.82 0.01 0.42 0.40 1.76

t-value 6.51 -0.03 -1.06 -2.94 -0.86 1.76

p-value 0.00 0.49 0.15 0.00 0.20 0.04

corrected-t 5.29 -0.02 -0.83 -2.34 -0.69 1.38

corrected-p 0.00 0.49 0.20 0.01 0.25 0.09

D. E[R0,t] jant ∆ct+1 jant ·∆ct+1 f1,t f1,t ·∆ct+1 R2 R̄2 µ|α̂|
Estimate 1.30 -0.00 -0.06 -0.00 -0.81 0.00 0.42 0.40 1.77

t-value 6.60 -0.04 -1.03 -2.96 -1.01 1.36

p-value 0.00 0.49 0.15 0.00 0.16 0.09

corrected-t 5.41 -0.03 -0.82 -2.38 -0.81 1.09

corrected-p 0.00 0.49 0.21 0.01 0.21 0.14
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Figure 4: CAPM - Fitted expected versus realized average monthly returns. Each
scatter point in the graph represents one of the 97 size and book-to-market sorted Fama-French portfolios.
The fitted returns have been obtained using the Fama-MacBeth cross-sectional regression methodology.
The sample period is 1963:07-1998:12. Visibly, the CAPM explains almost none of the variation of average
monthly returns across the 97 Fama-French portfolios. The cross-sectional R2 of this regression is 3 percent.

Figure 5: ICAPM - Fitted expected versus realized average monthly returns. Each
scatter point in the graph represents one of the 97 size and book-to-market sorted Fama-French portfolios.
The fitted returns have been obtained using the Fama-MacBeth cross-sectional regression methodology.
The sample period is 1963:07-1998:12. Although less markedly than the CAPM, the ICAPM also largely
fails in explaining the cross-section of returns on 97 Fama-French portfolios.The cross-sectional R2 of this
regression is 22 percent.
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Figure 6: FF3F - Fitted expected versus realized average monthly returns. Each scatter
point in the graph represents one of the 97 size and book-to-market sorted Fama-French portfolios. The
fitted returns have been obtained using the Fama-MacBeth cross-sectional regression methodology. The
sample period is 1963:07-1998:12. The Fama-French three-factor model explains the cross-section of average
monthly returns on 97 ME and BE/ME-sorted stock portfolios visibly better than the other benchmark
models, but still has some difficulties predicting very high and very low average returns. The cross-sectional
R2 of this regression is 58 percent.

Figure 7: c. CCAPM - Fitted expected versus realized average monthly returns. Each
scatter point in the graph represents one of the 97 size and book-to-market sorted Fama-French portfolios.
The fitted returns have been obtained using the Fama-MacBeth cross-sectional regression methodology.
The sample period is 1963:07-1998:12. As reported in the text, the conditional CCAPM of Lettau and
Ludvigson largely fails in explaining the cross-section of average monthly returns on 97 ME and BE/ME-
sorted stock portfolios. This figure displays that the model in particular has severe problems explaining
low returns. The cross-sectional R2 of this regression is 28 percent.
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B The Stock-Watson Data Set
This appendix reports the data from which the diffusion indexes have been extracted. As noted
earlier, they are provided on Mark Watson’s homepage and were originally taken from the DBI-
McGraw Hill Basic Economics database. Some of the series have been produced by the authors’ own
calculations. In the first column, the mnemonic of each series is given. The second column indicates
the period over which the respective series is available. An asterisk after the date denotes a series
that is included in the unbalanced panel but not in the balanced panel. The third column reports
a transformation code indicating the manner in which a series has been manipulated preliminarily.
The transformation codes are: 1 = no transformation; 2 = first difference; 4 = logarithm; 5 =
first difference of logarithms; 6 = second difference of logarithms. The forth column gives a short
description of the series. For the extraction of the factors used in the DIPM, I have excluded all
series related to the stock market (series No. 118 - 131) in order to avoid data-snooping effects.
After elimination of the stock market data, the unbalanced panel contains a total of 201 time series
out of which 142 form the balanced panel.

Real output and income

1. IP 1959:01-1998:12 5 INDUSTRIAL PRODUCTION: TOTAL INDEX (1992=100,SA)

2. IPP 1959:01-1998:12 5 INDUSTRIAL PRODUCTION: PRODUCTS, TOTAL (1992=100,SA)

3. IPF 1959:01-1998:12 5 INDUSTRIAL PRODUCTION: FINAL PRODUCTS (1992=100,SA)

4. IPC 1959:01-1998:12 5 INDUSTRIAL PRODUCTION: CONSUMER GOODS (1992=100,SA)

5. IPCD 1959:01-1998:12 5 INDUSTRIAL PRODUCTION: DURABLE CONSUMER GOODS (1992=100,SA)

6. IPCN 1959:01-1998:12 5 INDUSTRIAL PRODUCTION: NONDURABLE CONSUMER GOODS (1992=100,SA)

7. IPE 1959:01-1998:12 5 INDUSTRIAL PRODUCTION: BUSINESS EQUIPMENT (1992=100,SA)

8. IPI 1959:01-1998:12 5 INDUSTRIAL PRODUCTION: INTERMEDIATE PRODUCTS (1992=100,SA)

9. IPM 1959:01-1998:12 5 INDUSTRIAL PRODUCTION: MATERIALS (1992=100,SA)

10. IPMD 1959:01-1998:12* 5 INDUSTRIAL PRODUCTION: DURABLE GOODS MATERIALS (1992=100,SA)

11. IPMND 1959:01-1998:12 5 INDUSTRIAL PRODUCTION: NONDURABLE GOODS MATERIALS (1992=100,SA)

12. IPMFG 1959:01-1998:12 5 INDUSTRIAL PRODUCTION: MANUFACTURING (1992=100,SA)

13. IPD 1959:01-1998:12 5 INDUSTRIAL PRODUCTION: DURABLE MANUFACTURING (1992=100,SA)

14. IPN 1959:01-1998:12 5 INDUSTRIAL PRODUCTION: NONDURABLE MANUFACTURING (1992=100,SA)

15. IPMIN 1959:01-1998:12 5 INDUSTRIAL PRODUCTION: MINING (1992=100,SA)

16. IPUT 1959:01-1998:12 5 INDUSTRIAL PRODUCTION: UTILITIES (1992-=100,SA)

17. IPX 1967:01-1998:12* 1 CAPACITY UTIL RATE: TOTAL INDUSTRY (% OF CAPACITY,SA)(FRB)

18. IPXMCA 1959:01-1998:12 1 CAPACITY UTIL RATE: MANUFACTURING,TOTAL(% OF CAPACITY,SA)(FRB)

19. IPXDCA 1967:01-1998:12* 1 CAPACITY UTIL RATE: DURABLE MFG (% OF CAPACITY,SA)(FRB)

20. IPXNCA 1967:01-1998:12* 1 CAPACITY UTIL RATE: NONDURABLE MFG (% OF CAPACITY,SA)(FRB)

21. IPXMIN 1967:01-1998:12* 1 CAPACITY UTIL RATE: MINING (% OF CAPACITY,SA)(FRB)

22. IPXUT 1967:01-1998:12* 1 CAPACITY UTIL RATE: UTILITIES (% OF CAPACITY,SA)(FRB)

23. PMI 1959:01-1998:12 1 PURCHASING MANAGERS’ INDEX (SA)

24. PMP 1959:01-1998:12 1 NAPM PRODUCTION INDEX (PERCENT)

25. GMPYQ 1959:01-1998:12* 5 PERSONAL INCOME (CHAINED) (SERIES #52) (BIL 92$,SAAR)

26. GMYXPQ 1959:01-1998:12 5 PERSONAL INCOME LESS TRANSFER PAYMENTS (CHAINED) (#51) (BIL 92$,SAAR)

Employment and hours

27. LHEL 1959:01-1998:12 5 INDEX OF HELP-WANTED ADVERTISING IN NEWSPAPERS (1967=100;SA)

28. LHELX 1959:01-1998:12 4 EMPLOYMENT: RATIO; HELP-WANTED ADS:NO. UNEMPLOYED CLF

29. LHEM 1959:01-1998:12 5 CIVILIAN LABOR FORCE: EMPLOYED, TOTAL (THOUS.,SA)

30. LHNAG 1959:01-1998:12 5 CIVILIAN LABOR FORCE: EMPLOYED, NONAGRIC.INDUSTRIES (THOUS.,SA)

31. LHUR 1959:01-1998:12 1 UNEMPLOYMENT RATE: ALL WORKERS, 16 YEARS & OVER (%,SA)

32. LHU680 1959:01-1998:12 1 UNEMPLOY.BY DURATION: AVERAGE(MEAN)DURATION IN WEEKS (SA)

33. LHU5 1959:01-1998:12 1 UNEMPLOY.BY DURATION: PERSONS UNEMPL.LESS THAN 5 WKS (THOUS.,SA)

34. LHU14 1959:01-1998:12 1 UNEMPLOY.BY DURATION: PERSONS UNEMPL.5 TO 14 WKS (THOUS.,SA)

35. LHU15 1959:01-1998:12 1 UNEMPLOY.BY DURATION: PERSONS UNEMPL.15 WKS + (THOUS.,SA)

36. LHU26 1959:01-1998:12 1 UNEMPLOY.BY DURATION: PERSONS UNEMPL.15 TO 26 WKS (THOUS.,SA)

37. LPNAG 1959:01-1998:12 5 EMPLOYEES ON NONAG. PAYROLLS: TOTAL (THOUS.,SA)

38. LP 1959:01-1998:12 5 EMPLOYEES ON NONAG PAYROLLS: TOTAL, PRIVATE (THOUS,SA)

39. LPGD 1959:01-1998:12 5 EMPLOYEES ON NONAG. PAYROLLS: GOODS-PRODUCING (THOUS.,SA)

40. LPMI 1959:01-1998:12* 5 EMPLOYEES ON NONAG. PAYROLLS: MINING (THOUS.,SA)

41. LPCC 1959:01-1998:12 5 EMPLOYEES ON NONAG. PAYROLLS: CONTRACT CONSTRUCTION (THOUS.,SA)

42. LPEM 1959:01-1998:12 5 EMPLOYEES ON NONAG. PAYROLLS: MANUFACTURING (THOUS.,SA)

43. LPED 1959:01-1998:12 5 EMPLOYEES ON NONAG. PAYROLLS: DURABLE GOODS (THOUS.,SA)

44. LPEN 1959:01-1998:12 5 EMPLOYEES ON NONAG. PAYROLLS: NONDURABLE GOODS (THOUS.,SA)

45. LPSP 1959:01-1998:12 5 EMPLOYEES ON NONAG. PAYROLLS: SERVICE-PRODUCING (THOUS.,SA)

46. LPTU 1959:01-1998:12* 5 EMPLOYEES ON NONAG. PAYROLLS: TRANS. & PUBLIC UTILITIES (THOUS.,SA)

47. LPT 1959:01-1998:12 5 EMPLOYEES ON NONAG. PAYROLLS: WHOLESALE & RETAIL TRADE (THOUS.,SA)

48. LPFR 1959:01-1998:12 5 EMPLOYEES ON NONAG. PAYROLLS: FINANCE,INSUR. & REAL ESTATE (THOUS.,SA

49. LPS 1959:01-1998:12 5 EMPLOYEES ON NONAG. PAYROLLS: SERVICES (THOUS.,SA)

50. LPGOV 1959:01-1998:12 5 EMPLOYEES ON NONAG. PAYROLLS: GOVERNMENT (THOUS.,SA)
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51. LW 1964:01-1998:12* 2 AVG. WEEKLY HRS. OF PROD. WKRS.: TOTAL PRIVATE (SA)

52. LPHRM 1959:01-1998:12 1 AVG. WEEKLY HRS. OF PRODUCTION WKRS.: MANUFACTURING (SA)

53. LPMOSA 1959:01-1998:12 1 AVG. WEEKLY HRS. OF PROD. WKRS.: MFG.,OVERTIME HRS. (SA)

54. PMEMP 1959:01-1998:12 1 NAPM EMPLOYMENT INDEX (PERCENT)

Real retail, manufacturing and trade sales

55. MSMTQ 1959:01-1998:12 5 MANUFACTURING & TRADE: TOTAL (MIL OF CHAINED 1992 $)(SA)

56. MSMQ 1959:01-1998:12 5 MANUFACTURING & TRADE:MANUFACTURING;TOTAL(MIL OF CHAINED 1992 $)(SA)

57. MSDQ 1959:01-1998:12 5 MANUFACTURING & TRADE:MFG; DURABLE GOODS (MIL OF CHAINED 1992 $)(SA)

58. MSNQ 1959:01-1998:12 5 MANUFACT. & TRADE:MFG;NONDURABLE GOODS (MIL OF CHAINED 1992 $)(SA)

59. WTQ 1959:01-1998:12 5 MERCHANT WHOLESALERS: TOTAL (MIL OF CHAINED 1992 $)(SA)

60. WTDQ 1959:01-1998:12 5 MERCHANT WHOLESALERS:DURABLE GOODS TOTAL (MIL OF CHAINED 1992 $)(SA)

61. WTNQ 1959:01-1998:12 5 MERCHANT WHOLESALERS:NONDURABLE GOODS (MIL OF CHAINED 1992 $)(SA)

62. RTQ 1959:01-1998:12 5 RETAIL TRADE: TOTAL (MIL OF CHAINED 1992 $)(SA)

63. RTNQ 1959:01-1998:12 5 RETAIL TRADE:NONDURABLE GOODS (MIL OF 1992 $)(SA)

Consumption

64. GMCQ 1959:01-1998:12 5 PERSONAL CONSUMPTION EXPEND (CHAINED)-TOTAL (BIL 92$,SAAR)

65. GMCDQ 1959:01-1998:12 5 PERSONAL CONSUMPTION EXPEND (CHAINED)-TOTAL DURABLES (BIL 92$,SAAR)

66. GMCNQ 1959:01-1998:12 5 PERSONAL CONSUMPTION EXPEND (CHAINED)-NONDURABLES (BIL 92$,SAAR)

67. GMCSQ 1959:01-1998:12 5 PERSONAL CONSUMPTION EXPEND (CHAINED)-SERVICES (BIL 92$,SAAR)

68. GMCANQ 1959:01-1998:12 5 PERSONAL CONS EXPEND (CHAINED)-NEW CARS (BIL 92$,SAAR)

Housing starts and sales

69. HSFR 1959:01-1998:12 4 HOUSING STARTS:NONFARM(1947-58);TOTAL FARM&NONFARM(1959-)(THOUS.,SA

70. HSNE 1959:01-1998:12 4 HOUSING STARTS:NORTHEAST (THOUS.U.)S.A.

71. HSMW 1959:01-1998:12 4 HOUSING STARTS:MIDWEST(THOUS.U.)S.A.

72. HSSOU 1959:01-1998:12 4 HOUSING STARTS:SOUTH (THOUS.U.)S.A.

73. HSWST 1959:01-1998:12 4 HOUSING STARTS:WEST (THOUS.U.)S.A.

74. HSBR 1959:01-1998:12 4 HOUSING AUTHORIZED: TOTAL NEW PRIV HOUSING UNITS (THOUS.,SAAR)

75. HSBNE 1960:01-1998:12* 4 HOUSES AUTHORIZED BY BUILD. PERMITS:NORTHEAST(THOU.U.)S.A

76. HSBMW 1960:01-1998:12* 4 HOUSES AUTHORIZED BY BUILD. PERMITS:MIDWEST(THOU.U.)S.A.

77. HSBSOU 1960:01-1998:12* 4 HOUSES AUTHORIZED BY BUILD. PERMITS:SOUTH(THOU.U.)S.A.

78. HSBWST 1960:01-1998:12* 4 HOUSES AUTHORIZED BY BUILD. PERMITS:WEST(THOU.U.)S.A.

79. HNS 1963:01-1998:12* 4 NEW 1-FAMILY HOUSES SOLD DURING MONTH (THOUS,SAAR)

80. HNSNE 1973:01-1998:12* 4 ONE-FAMILY HOUSES SOLD:NORTHEAST(THOU.U.,S.A.)

81. HNSMW 1973:01-1998:12* 4 ONE-FAMILY HOUSES SOLD:MIDWEST(THOU.U.,S.A.)

82. HNSSOU 1973:01-1998:12* 4 ONE-FAMILY HOUSES SOLD:SOUTH(THOU.U.,S.A.)

83. HNSWST 1973:01-1998:12* 4 ONE-FAMILY HOUSES SOLD:WEST(THOU.U.,S.A.)

84. HNR 1963:01-1998:12* 4 NEW 1-FAMILY HOUSES, MONTH’S SUPPLY @ CURRENT SALES RATE(RATIO)

85. HNIV 1963:01-1998:12* 4 NEW 1-FAMILY HOUSES FOR SALE AT END OF MONTH (THOUS,SA)

86. HMOB 1959:01-1998:12 4 MOBILE HOMES: MANUFACTURERS’ SHIPMENTS (THOUS.OF UNITS,SAAR)

87. CONTC 1964:01-1998:12* 4 CONSTRUCT.PUT IN PLACE:TOTAL PRIV & PUBLIC 1987$(MIL$,SAAR)

88. CONPC 1964:01-1998:12* 4 CONSTRUCT.PUT IN PLACE:TOTAL PRIVATE 1987$(MIL$,SAAR)

89. CONQC 1964:01-1998:12* 4 CONSTRUCT.PUT IN PLACE:PUBLIC CONSTRUCTION 87$(MIL$,SAAR)

90. CONDO9 1959:01-1998:10* 4 CONSTRUCT.CONTRACTS: COMM’L & INDUS.BLDGS(MIL.SQ.FT.FLOOR SP.;SA)

Real inventories and inventory-sales ratios

91. IVMTQ 1959:01-1998:12 5 MANUFACTURING & TRADE INVENTORIES:TOTAL (MIL OF CHAINED 1992)(SA)

92. IVMFGQ 1959:01-1998:12 5 INVENTORIES, BUSINESS, MFG (MIL OF CHAINED 1992 DOLLARS, SA)

93. IVMFDQ 1959:01-1998:12 5 INVENTORIES, BUSINESS DURABLES (MIL OF CHAINED 1992 DOLLARS, SA)

94. IVMFNQ 1959:01-1998:12 5 INVENTORIES, BUSINESS, NONDURABLES (MIL OF CHAINED 1992 DOLLARS, SA)

95. IVWRQ 1959:01-1998:12 5 MANUFACTURING & TRADE INV:MERCHANT WHOLESALERS (MIL OF CHAINED 1992)(SA)

96. IVRRQ 1959:01-1998:12 5 MANUFACTURING & TRADE INV:RETAIL TRADE (MIL OF CHAINED 1992 DOLLARS)(SA)

97. IVSRQ 1959:01-1998:12 2 RATIO FOR MFG & TRADE: INVENTORY/SALES (CHAINED 1992 DOLLARS, SA)

98. IVSRMQ 1959:01-1998:12 2 RATIO FOR MFG & TRADE:MFG;INVENTORY/SALES (87$)(S.A.)

99. IVSRWQ 1959:01-1998:12 2 RATIO FOR MFG & TRADE:WHOLESALER;INVENTORY/SALES(87$)(S.A.)

100. IVSRRQ 1959:01-1998:12 2 RATIO FOR MFG & TRADE:RETAIL TRADE;INVENTORY/SALES(87$)(S.A.)

101. PMNV 1959:01-1998:12 1 NAPM INVENTORIES INDEX (PERCENT)

Orders and unfilled orders

102. PMNO 1959:01-1998:12 1 NAPM NEW ORDERS INDEX (PERCENT)

103. PMDEL 1959:01-1998:12 1 NAPM VENDOR DELIVERIES INDEX (PERCENT)

104. MOCMQ 1959:01-1998:12 5 NEW ORDERS (NET)-CONSUMER GOODS & MATERIALS, 1992 DOLLARS (BCI)

105. MDOQ 1959:01-1998:12 5 NEW ORDERS, DURABLE GOODS INDUSTRIES, 1992 DOLLARS (BCI)

106. MSONDQ 1959:01-1998:12 5 NEW ORDERS, NONDEFENSE CAPITAL GOODS, IN 1992 DOLLARS (BCI)

107. MO 1959:01-1998:12 5 MFG NEW ORDERS: ALL MANUFACTURING INDUSTRIES, TOTAL (MIL$,SA)

108. MOWU 1959:01-1998:12 5 MFG NEW ORDERS: MFG INDUSTRIES WITH UNFILLED ORDERS(MIL$,SA)

109. MDO 1959:01-1998:12 5 MFG NEW ORDERS: DURABLE GOODS INDUSTRIES, TOTAL (MIL$,SA)
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110. MDUWU 1959:01-1998:12 5 MFG NEW ORDERS:DURABLE GOODS INDUST WITH UNFILLED ORDERS(MIL$,SA)

111. MNO 1959:01-1998:12 5 MFG NEW ORDERS: NONDURABLE GOODS INDUSTRIES, TOTAL (MIL$,SA)

112. MNOU 1959:01-1998:12 5 MFG NEW ORDERS: NONDURABLE GDS IND.WITH UNFILLED ORDERS(MIL$,SA)

113. MU 1959:01-1998:12 5 MFG UNFILLED ORDERS: ALL MANUFACTURING INDUSTRIES, TOTAL (MIL$,SA)

114. MDU 1959:01-1998:12 5 MFG UNFILLED ORDERS: DURABLE GOODS INDUSTRIES, TOTAL (MIL$,SA)

115. MNU 1959:01-1998:12 5 MFG UNFILLED ORDERS: NONDURABLE GOODS INDUSTRIES, TOTAL (MIL$,SA)

116. MPCON 1959:01-1998:12 5 CONTRACTS & ORDERS FOR PLANT & EQUIPMENT (BIL$,SA)

117. MPCONQ 1959:01-1998:12 5 CONTRACTS & ORDERS FOR PLANT & EQUIPMENT IN 1992 DOLLARS (BCI)

Stock prices (SPr)

118. FSNCOM 1959:01-1998:12 5 NYSE COMMON STOCK PRICE INDEX: COMPOSITE (12/31/65=50)

119. FSNIN 1966:01-1998:12* 5 NYSE COMMON STOCK PRICE INDEX: INDUSTRIAL (12/31/65=50)

120. FSNTR 1966:01-1998:12* 5 NYSE COMMON STOCK PRICE INDEX: TRANSPORTATION (12/31/65=50)

121. FSNUT 1966:01-1998:12* 5 NYSE COMMON STOCK PRICE INDEX: UTILITY (12/31/65=50)

122. FSNFI 1966:01-1998:12* 5 NYSE COMMON STOCK PRICE INDEX: FINANCE (12/31/65=50)

123. FSPCOM 1959:01-1998:12 5 S&P’S COMMON STOCK PRICE INDEX: COMPOSITE (1941-43=10)

124. FSPIN 1959:01-1998:12 5 S&P’S COMMON STOCK PRICE INDEX: INDUSTRIALS (1941-43=10)

125. FSPCAP 1959:01-1998:12 5 S&P’S COMMON STOCK PRICE INDEX: CAPITAL GOODS (1941-43=10)

126. FSPTR 1970:01-1998:12* 5 S&P’S COMMON STOCK PRICE INDEX: TRANSPORTATION (1970=10)

127. FSPUT 1959:01-1998:12 5 S&P’S COMMON STOCK PRICE INDEX: UTILITIES (1941-43=10)

128. FSPFI 1970:01-1998:12* 5 S&P’S COMMON STOCK PRICE INDEX: FINANCIAL (1970=10)

129. FSDXP 1959:01-1998:12 1 S&P’S COMPOSITE COMMON STOCK: DIVIDEND YIELD (% PER ANNUM)

130. FSPXE 1959:01-1998:12 1 S&P’S COMPOSITE COMMON STOCK: PRICE-EARNINGS RATIO (%,NSA)

131. FSNVV3 1974:01-1997:07* 5 NYSE MKT COMPOSITION:REPTD SHARE VOL BY SIZE,5000+ SHRS,%

Exchange rates

132. EXRUS 1959:01-1998:12 5 UNITED STATES;EFFECTIVE EXCHANGE RATE(MERM)(INDEX NO.)

133. EXRGER 1959:01-1998:12 5 FOREIGN EXCHANGE RATE: GERMANY (DEUTSCHE MARK PER U.S.$)

134. EXRSW 1959:01-1998:12 5 FOREIGN EXCHANGE RATE: SWITZERLAND (SWISS FRANC PER U.S.$)

135. EXRJAN 1959:01-1998:12 5 FOREIGN EXCHANGE RATE: JAPAN (YEN PER U.S.$)

136. EXRUK 1959:01-1998:12* 5 FOREIGN EXCHANGE RATE: UNITED KINGDOM (CENTS PER POUND)

137. EXRCAN 1959:01-1998:12 5 FOREIGN EXCHANGE RATE: CANADA (CANADIAN $ PER U.S.$)

Interest rates

138. FYFF 1959:01-1998:12* 2 INTEREST RATE: FEDERAL FUNDS (EFFECTIVE) (% PER ANNUM,NSA)

139. FYCP90 1959:01-1998:12* 2 INTEREST RATE: 90 DAY COMMERCIAL PAPER, (AC) (% PER ANN,NSA)

140. FYGM3 1959:01-1998:12* 2 INTEREST RATE: U.S.TREASURY BILLS,SEC MKT,3-MO.(% PER ANN,NSA)

141. FYGM6 1959:01-1998:12* 2 INTEREST RATE: U.S.TREASURY BILLS,SEC MKT,6-MO.(% PER ANN,NSA)

142. FYGT1 1959:01-1998:12* 2 INTEREST RATE: U.S.TREASURY CONST MATURITIES,1-YR.(% PER ANN,NSA)

143. FYGT5 1959:01-1998:12 2 INTEREST RATE: U.S.TREASURY CONST MATURITIES,5-YR.(% PER ANN,NSA)

144. FYGT10 1959:01-1998:12 2 INTEREST RATE: U.S.TREASURY CONST MATURITIES,10-YR.(% PER ANN,NSA)

145. FYAAAC 1959:01-1998:12 2 BOND YIELD: MOODY’S AAA CORPORATE (% PER ANNUM)

146. FYBAAC 1959:01-1998:12 2 BOND YIELD: MOODY’S BAA CORPORATE (% PER ANNUM)

147. FWAFIT 1973:01-1994:04* 1 WEIGHTED AVG FOREIGN INTEREST RATE(%,SA)

148. FYFHA 1959:01-1998:12 2 SECONDARY MARKET YIELDS ON FHA MORTGAGES (% PER ANNUM)

149. SFYCP 1959:01-1998:12 1 Spread FYCP - FYFF

150. SFYGM3 1959:01-1998:12 1 Spread FYGM3 - FYFF

151. SFYGM6 1959:01-1998:12 1 Spread FYGM6 - FYFF

152. SFYGT1 1959:01-1998:12 1 Spread FYGT1 - FYFF

153. SFYGT5 1959:01-1998:12 1 Spread FYGT5 - FYFF

154. SFYGT10 1959:01-1998:12 1 Spread FYGT10 - FYFF

155. SFYAAAC 1959:01-1998:12 1 Spread FYAAAC - FYFF

156. SFYBAAC 1959:01-1998:12 1 Spread FYBAAC - FYFF

157. SFYFHA 1959:01-1998:12 1 Spread FYFHA - FYFF

Money and credit quantity aggregates

158. FM1 1959:01-1998:12 6 MONEY STOCK: M1(CURR,TRAV.CKS,DEM DEP,OTHER CK’ABLE DEP)(BIL$,SA)

159. FM2 1959:01-1998:12 6 MONEY STOCK:M2(M1+O’NITE RPS,EURO$,G/P&B/D MMMFS&SAV&SM TIME DEP(BIL$,

160. FM3 1959:01-1998:12 6 MONEY STOCK: M3(M2+LG TIME DEP,TERM RP’S&INST ONLY MMMFS)(BIL$,SA)

161. FML 1959:01-1998:09* 6 MONEY STOCK:L(M3 + OTHER LIQUID ASSETS) (BIL$,SA)

162. FM2DQ 1959:01-1998:12 5 MONEY SUPPLY-M2 IN 1992 DOLLARS (BCI)

163. FMFBA 1959:01-1998:12 6 MONETARY BASE, ADJ FOR RESERVE REQUIREMENT CHANGES(MIL$,SA)

164. FMRRA 1959:01-1998:12 6 DEPOSITORY INST RESERVES:TOTAL,ADJ FOR RESERVE REQ CHGS(MIL$,SA)

165. FMRNBC 1959:01-1998:12 6 DEPOSITORY INST RESERVES:NONBORROW+EXT CR,ADJ RES REQ CGS(MIL$,SA)

166. FCLS 1973:01-1998:12* 5 LOANS & SEC @ ALL COML BANKS: TOTAL (BILS,SA)

167. FCSGV 1973:01-1998:12* 5 LOANS & SEC @ ALL COML BANKS: U.S.GOVT SECURITIES (BIL$,SA)

168. FCLRE 1973:01-1998:12* 5 LOANS & SEC @ ALL COML BANKS: REAL ESTATE LOANS (BIL$,SA)

169. FCLIN 1973:01-1998:12* 5 LOANS & SEC @ ALL COML BANKS: LOANS TO INDIVIDUALS (BIL$,SA)

170. FCLNBF 1973:01-1994:01* 5 LOANS & SEC @ ALL COML BANKS: LOANS TO NONBANK FIN INST(BIL$,SA)
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171. FCLNQ 1959:01-1998:12* 5 COMMERCIAL & INDUSTRIAL LOANS OUSTANDING IN 1992 DOLLARS (BCI)

172. FCLBMC 1959:01-1998:12* 1 WKLY RP LG COM’L BANKS:NET CHANGE COM’L & INDUS LOANS(BIL$,SAAR)

173. CCI30M 1959:01-1995:09* 1 CONSUMER INSTAL.LOANS: DELINQUENCY RATE,30 DAYS & OVER, (%,SA)

174. CCINT 1975:01-1995:09* 1 NET CHANGE IN CONSUMER INSTAL CR: TOTAL (MIL$,SA)

175. CCINV 1975:01-1995:09* 1 NET CHANGE IN CONSUMER INSTAL CR: AUTOMOBILE (MIL$,SA)

176. CCINRV 1980:01-1995:09* 1 NET CHANGE IN CONSUMER INSTAL CR: REVOLVING(MIL$,SA)

Price indexes

177. PMCP 1959:01-1998:12 1 NAPM COMMODITY PRICES INDEX (PERCENT)

178. PWFSA 1959:01-1998:12 6 PRODUCER PRICE INDEX: FINISHED GOODS (82=100,SA)

179. PWFCSA 1959:01-1998:12 6 PRODUCER PRICE INDEX:FINISHED CONSUMER GOODS (82=100,SA)

180. PWIMSA 1959:01-1998:12* 6 PRODUCER PRICE INDEX:INTERMED MAT.SUPPLIES & COMPONENTS(82=100,SA)

181. PWCMSA 1959:01-1998:12* 6 PRODUCER PRICE INDEX:CRUDE MATERIALS (82=100,SA)

182. PWFXSA 1967:01-1998:12* 6 PRODUCER PRICE INDEX: FINISHED GOODS,EXCL. FOODS (82=100,SA)

183. PW160A 1974:01-1998:12* 6 PRODUCER PRICE INDEX: CRUDE MATERIALS LESS ENERGY (82=100,SA)

184. PW150A 1974:01-1998:12* 6 PRODUCER PRICE INDEX: CRUDE NONFOOD MAT LESS ENERGY (82=100,SA)

185. PSM99Q 1959:01-1998:12 6 INDEX OF SENSITIVE MATERIALS PRICES (1990=100)(BCI-99A)

186. PUNEW 1959:01-1998:12 6 CPI-U: ALL ITEMS (82-84=100,SA)

187. PU81 1967:01-1998:12* 6 CPI-U: FOOD & BEVERAGES (82-84=100,SA)

188. PUH 1967:01-1998:12* 6 CPI-U: HOUSING (82-84=100,SA)

189. PU83 1959:01-1998:12 6 CPI-U: APPAREL & upkeep (82-84=100,SA)

190. PU84 1959:01-1998:12 6 CPI-U: TRANSPORTATION (82-84=100,SA)

191. PU85 1959:01-1998:12 6 CPI-U: MEDICAL CARE (82-84=100,SA)

192. PUC 1959:01-1998:12 6 CPI-U: COMMODITIES (82-84=100,SA)

193. PUCD 1959:01-1998:12 6 CPI-U: DURABLES (82-84=100,SA)

194. PUS 1959:01-1998:12 6 CPI-U: SERVICES (82-84=100,SA)

195. PUXF 1959:01-1998:12 6 CPI-U: ALL ITEMS LESS FOOD (82-84=100,SA)

196. PUXHS 1959:01-1998:12 6 CPI-U: ALL ITEMS LESS SHELTER (82-84=100,SA)

197. PUXM 1959:01-1998:12 6 CPI-U: ALL ITEMS LESS MIDICAL CARE (82-84=100,SA)

198. PCGOLD 1975:01-1998:12* 6 COMMODITIES PRICE:GOLD,LONDON NOON FIX,AVG OF DAILY RATE,$ PER OZ

199. GMDC 1959:01-1998:12 6 PCE,IMPL PR DEFL:PCE (1987=100)

200. GMDCD 1959:01-1998:12 6 PCE,IMPL PR DEFL:PCE; DURABLES (1987=100)

201. GMDCN 1959:01-1998:12 6 PCE,IMPL PR DEFL:PCE; NONDURABLES (1987=100)

202. GMDCS 1959:01-1998:12 6 PCE,IMPL PR DEFL:PCE; SERVICES (1987=100)

Average hourly earnings

203. LEH 1964:01-1998:12* 6 AVG HR EARNINGS OF PROD WKRS: TOTAL PRIVATE NONAGRIC ($,SA)

204. LEHCC 1959:01-1998:12 6 AVG HR EARNINGS OF CONSTR WKRS: CONSTRUCTION ($,SA)

205. LEHM 1959:01-1998:12 6 AVG HR EARNINGS OF PROD WKRS: MANUFACTURING ($,SA)

206. LEHTU 1964:01-1998:12* 6 AVG HR EARNINGS OF NONSUPV WKRS: TRANS & PUBLIC UTIL($,SA)

207. LEHTT 1964:01-1998:12* 6 AVG HR EARNINGS OF PROD WKRS:WHOLESALE & RETAIL TRADE(SA)

208. LEHFR 1964:01-1998:12* 6 AVG HR EARNINGS OF NONSUPV WKRS: FINANCE,INSUR,REAL EST($,SA)

209. LEHS 1964:01-1998:12* 6 AVG HR EARNINGS OF NONSUPV WKRS: SERVICES ($,SA)

Miscellaneous

210. FSTE 1986:01-1998:12* 5 U.S.MDSE EXPORTS: TOTAL EXPORTS(F.A.S. VALUE)(MIL.$,S.A.)

211. FSTM 1986:01-1998:12* 5 U.S.MDSE IMPORTS: GENERAL IMPORTS(C.I.F. VALUE)(MIL.$,S.A.)

212. FTMD 1986:01-1998:12* 5 U.S.MDSE IMPORTS: GENERAL IMPORTS (CUSTOMS VALUE)(MIL$,S.A.)

213. FSTB 1986:01-1998:12* 2 U.S.MDSE TRADE BALANCE:EXPORTS LESS IMPORTS(FAS/CIF)(MIL$,S.A.)

214. FTB 1986:01-1998:12* 2 U.S.MDSE TRADE BALANCE:EXP.(FAS) LESS IMP.(CUSTOM)(MIL$,S.A.)

215. HHSNTN 1959:01-1998:12 1 U. OF MICH. INDEX OF CONSUMER EXPECTATIONS(BCD-83)
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Plots of the first two factors extracted from the unbalanced panel

Figure 9: This figure plots the first dynamic factor extracted from the unbalanced panel using
Stock and Watson’s method. As one can see, the first unbalanced panel diffusion index remains
almost constant from 1986 on when the series No. 210-214 become available.

Figure 10: This figure plots the second dynamic factor extracted from the unbalanced panel
using Stock and Watson’s method. Contrary to the first factor, the second diffusion index shows
a “normal” time series behavior.
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C Recent Papers on Diffusion Indexes : A Brief Overview

Since the appearance of Stock and Watson’s pioneering paper, there has been a growing
body of theoretical and empirical work on diffusion indexes in macroeconomic research.
In the following, I will briefly review the major recent contributions in this field.

Stock and Watson (2002) extend the forecasting exercise in Stock and Watson (1998) to
a set of eight major macroeconomic variables for the US, including measures of industrial
production, real personal income, manufacturing and trade sales, employment, and differ-
ent price indexes. Performing forecasts at horizons of 6, 12, and 24 months, they show that
with the exception of employment, diffusion indexes strongly outperform benchmark AR,
VAR, and leading indicator forecasts of the real variables at all horizons. Their results are
not as supportive for nominal variables, however. They report, for example, that diffusion
index forecasts of inflation are subject to substantial improvement when lagged values of
inflation are included. Perhaps most importantly, restricting the number of factors to one,
the unbalanced panel factor model augmented with lagged values of inflation performs
better than all alternatively tested versions. Hence, the authors conclude that the gains
to forecasting inflation come from a single factor. As will be discussed below, Watson
(2001) and Angelini et al. (2001b) obtain similar results.

Drawing on the model comparisons in Stock and Watson (2002), Watson (2001) sur-
veys the respective merits and shortcomings of different small-scale and a large-scale dif-
fusion index-based forecasting method. He finds evidence that in linear regressions using
a very large number of explanatory variables, an important portion of the regressors have
small but non-zero coefficients. From this observation, Watson concludes that since many
variables each have little explanatory power rather than few variables each have much,
a large-scale approach to macroeconomic forecasting is warranted. He then repeats the
forecasting comparison exercise of Stock and Watson (1998, 2002) for all series in his data
set, providing some additional model comparison statistics. Not surprisingly, his finding
is that the factor model forecasts largely outperform standard VAR and leading indicator
forecasts. However, comparing the forecasting power of all models across different sets of
dependent variables, he shows that factor model forecasts only negligibly improve predic-
tions of financial variables such as exchange rates or stock indexes. Similar to the result in
Stock and Watson (2002), an examination of the links between the estimated factors and
categories of variables further shows that the predictability of nominal variables is due to
only one factor.

Marcellino, Stock, and Watson (2001) compare different methods of forecasting macroe-
conomic variables for the Euro area using country-specific as well as aggregate data. They
find that while diffusion index forecasts outperform VAR forecasts based on either aggre-
gate or country-specific data, the best results are in general obtained by pooling country-
specific univariate autoregressive forecasts. Marcellino et al. offer two possible explana-
tions for this finding. First, they suggest that their data sample 1982-1997 covers a period
of great economic change in Europe implying that multivariate relations could have been
particularly unstable during this time. The second explanation is that the small sample
size counteracts forecasting models with a relatively large number of parameters as is the
case in the diffusion index model.
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A similar exercise has been performed in two studies of Angelini, Henry, and Mestre
(2001a, 2001b). In a first step, they try to uncover an implicit measure of Euro area
trend inflation by applying the Stock-Watson method to a set of (first-differenced) price
variables of all Euro area countries. They find that the first factor, explaining almost
60 % of the variation of all series in the sample, can be viewed as representing a com-
mon trend inherent to the different inflation measures of the Euro area. Since almost all
of the price variables the authors consider are non-stationary even after taking first dif-
ferences, the first factor, accounting for the largest portion of common variation in these
series, is likewise integrated. This, of course, raises the question whether the Stock-Watson
methodology is appropriate for the data set used, since it is designed to accommodate only
stationary variables. Angelini et al., without discussing the distributional implications of
adopting the Stock-Watson method to non-stationary series, investigate the time series
behavior of the factors and find some evidence that the first factor is indeed cointegrated
with other measures of aggregate Euro area inflation. The dispersion of inflation across
countries seems to be captured by the subsequent factors, although no direct link can be
found between a certain set of countries and one or more of the factors. In a companion
paper, Angelini, Henry, and Mestre (2001b) extend their analysis to three different data
sets containing exclusively nominal, exclusively real and both, nominal and real variables
for all of the Euro area countries. Investigating the time series behaviors and the leading-
indicator properties of the factors extracted from these data sets, they find that (i) price
variables are mainly driven by one single factor which is almost completely uncorrelated
with the other factors, (ii) real variables are represented by a more complex set of nominal
and non-nominal factors, and (iii) both, nominal and real factors have predictive power
for aggregate measures of Euro area inflation.

Camacho and Sancho (2001) apply the Stock-Watson factor extraction procedure to a
data set including a large number of Spanish economic time series that has only recently
been made accessible by Spain’s central bank. They report two major results. First, the
time series behavior of the first factor exhibits a striking similarity to an activity indicator
regularly published by the Spanish Ministry of Economy. Second, diffusion index forecasts
of output and prices outperform standard AR and VAR forecasting methods both in an
in-sample and simulated out-of-sample setting.

Bernanke and Boivin (2001) discuss the usefulness of the Stock-Watson diffusion in-
dex forecasts for both assessing and possibly improving the monetary policy conducted
by the Federal Reserve. They first show that while there is practically no difference in
using ”real-time” or fully revised data, the scope of the data set from which the factors
are extracted, i.e. the number and variety of series included, considerably affects the fore-
casting power of the diffusion indexes. Performing an ex-post comparison between Federal
Reserve forecasts and diffusion index forecasts, they find that the former perform slightly
better, but that averaging the two with equal weights obtains better results at almost
all forecasting horizons.55 Bernanke and Boivin further estimate a forward-looking policy

55Referring to Romer and Romer (2000) who find that the Federal Reserve “Greenbook” forecasts
clearly outperform any for-profit private-sector forecasts, the authors argue that this result is particularly
encouraging.
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reaction function for the Fed assuming that interest rates are set in response to the state
of the economy as measured by the Stock-Watson factors. More precisely, they estimate
a potential policy response to the economic information contained in the diffusion indexes
by simply regressing interest rates on the dynamic factors. Then, they use these estimated
optimal interest rates which they label excess policy response as an additional regressor
in a forward-looking Taylor-rule type policy reaction function with forecasts of output
and inflation as the other explanatory variables. This specification allows them to test
whether the excess policy response, i.e. the estimated reaction of the Fed to the infor-
mation contained in the common factors, adds significantly to the explanation of interest
rates through forecasts of output and inflation. Bernanke and Boivin report that this is
indeed the case in most of the regressions they have conducted using different data sets
and different sample periods. Finally, the authors discuss the possibility of developing a
monetary “expert system” on the basis of factor-extracting procedures similar to the one
of Stock and Watson. They argue that such a tool could accommodate the most recent
economic information in updated diffusion indexes. Based on these, policy reaction func-
tions of the type discussed above could then provide useful guidance to monetary policy
authorities.

In a recent article, Bai and Ng (2002) make an important contribution to the theory
of large-scale factor models of the type proposed by Stock and Watson. They criticize
the information criterion suggested by Stock and Watson (1998) to determine the optimal
number of factors as being too restrictive since it requires N >> T. Without requiring
any relative asymptotic behavior, simply assuming that both N and T diverge, Bai and
Ng develop a set of information criteria for finding the optimal number of factors in a
large-scale approximate factor model. According to the framework studied by Stock and
Watson, they allow for cross-sectional and serial dependence in the error terms as well
as for some weak correlation of factors and idiosyncratic disturbances. In addition, they
permit heteroskedasticity in the error terms in both the time and the cross-sectional di-
mension. Bai and Ng first provide a proof of convergence of the estimated to the true
factors that relies on less restrictive assumptions than Stock and Watson’s proof. Second,
they propose a set of information criteria based on penalty functions that take into account
the number of time series observations and the number of cross-sectional units, and show
that these information criteria consistently estimate the true number of factors. They also
perform some sort of Monte Carlo analysis and find that with a sufficiently large sample
size (min{N, T} > 40), their criteria precisely estimate the true number of factors. Fi-
nally applying their method to a data set containing a very large number of individual US
stocks, Bai and Ng find evidence that only two factors summarize the common variation
in these. However, since they do not analyze the properties of the estimated factors, their
findings do not allow to draw conclusions about the potential usefulness of dynamic factor
models in finance applications.

A somewhat separated although closely related strand of recent literature deals with
dynamic factor models akin to the one studied by Stock and Watson, but estimated using
principal components in the frequency domain. This research has been initiated by Forni
and Reichlin (1996, 1998) who develop a methodology for identifying common shocks in
a large cross-section of time series variables. Forni and Reichlin (1998) show that the
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number of common factors can be determined by applying principal components analysis
to the spectral density matrix of a vector of cross-sectional averages of all variables in the
panel. They then estimate the common shocks using a standard structural VAR technique.
Finally, they show that the parameters in the factor model can be consistently estimated
by applying OLS equation by equation.

In Forni, Hallin, Lippi, and Reichlin (2000), an alternative methodology is proposed
where the estimation of the common factors is based on principal components analysis.
Their model allows for infinite dynamics in the common factors and also permits some
weak cross-correlation of the idiosyncratic error terms.56 The authors thus label it a gen-
eralized dynamic factor model. Forni et al. first show that if the data take on a factor
model with q factors, then the first q eigenvalues of the spectral density matrix of the data
diverge while the subsequent eigenvalues are uniformly bounded. Second, they show that
the common factors can be identified by projecting the data onto the space spanned by
the first q dynamic principal components of the population spectral density matrix, and
that this projection converges in mean square to the true common components when the
number of observations in the cross-section goes to infinity. Third, they suggest to esti-
mate the common components correspondingly, i.e. they propose to estimate the sample
spectral density by using a Bartlett window estimator, to compute its first q eigenvectors,
then to project the data onto these eigenvectors, and to obtain two-sided filter estimates
as the inverse Fourier transforms of these projections. Finally, they show that applying
these filters to the data set yields estimates of the common components which converge
to the true factors in probability for some large N and T.

Since unboundedness of the eigenvalues cannot be examined in an empirical finite sam-
ple setting, Forni et al. argue that a formal method for finding the true number of factors
in empirical applications is impossible to derive. However, they provide some heuristic
observations that they assert to be good indicators of the true number of factors. The
authors use their method to determine a coincident business cycle indicator for the Euro
area by extracting the major common component from a large data set containing several
macroeconomic variables for each member country.57 Moreover, in a number of recent
articles, further applications of the method developed in Forni et al. (2000) are provided.
These comprise, among others, the identification of common shocks used to evaluate the
policy response of the Fed (Giannone, Reichlin, and Sala (2002)), the role of regional, na-
tional and over-national components in business cycle fluctuations of the US and the Euro
area (Forni and Reichlin (2001), the development of a core inflation index for the Euro
area (Cristadoro, Forni, Reichlin, and Veronese (2001)), and the role of financial variables
in forecasting Euro area industrial production and inflation (Forni et al. (2001b)).

56Notice that these assumptions are more general than the requirements in Stock and Watson’s model
that the factors admit a finite-order lag structure and that the idiosyncratic components be mutually
orthogonal. However, the factor loadings in the model of Forni et al. are assumed to be constant whereas
Stock and Watson explicitly model the factor loadings to be time-varying. Moreover, the methodology of
Forni et al. does not apply to unbalanced panels as is the case for Stock and Watson’s method. Hence,
neither of two model types can be thought of as a special case of the other.

57Since January 2002, the Centre for Economic Policy Research (CEPR) publishes a monthly update
of this indicator called EuroCOIN. It is calculated on the basis of more than 1000 time series for the six
major economies in the Euro area.
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The methodology of Forni et al. (2000) exhibits an important drawback. Since the fil-
ters they obtain are two-sided, the common factors that are derived from these filters are
infeasible for forecasting purposes. As a solution to this problem, Forni, Hallin, Lippi,
and Reichlin (2001a) suggest a forecasting method which is based on their generalized
dynamic factor model and which makes use of only one-sided filters. Their procedure
consists of two steps. First, from the Fourier transforms of the estimated spectral density
matrix of the data set, they derive the cross-covariances for common and idiosyncratic
components. More precisely, they propose to estimate the population spectral density
matrix using some Periodogram-smoothing or Bartlett window. Then, again exploiting
the unboundedness property of eigenvalues discussed above, they suggest to recover esti-
mates of the spectral density matrices of the common and idiosyncratic components from
the respective eigenvectors of the empirical spectral density matrix of the data set. Fi-
nally, they obtain cross-covariances of both common and idiosyncratic components as the
Fourier transforms of these estimated spectral density matrices. In the second step, Forni
et al. obtain one-sided filters as the solution to a generalized eigenvalue problem resulting
from the maximization of the common-to-idiosyncratic variance ratio. They show that
forecasts based on these filters are consistent for large T. In a Monte Carlo analysis, the
authors demonstrate that their method provides good forecasting results, this even so in
comparison to the Stock-Watson diffusion index forecasts.
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