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Solving RBC Models by Second Order Approximation to the 

Policy Function 

 
Kang, Long 

MEMS 

Humboldt University of Berlin. 

 

Abstract 
This paper attempts to solve a benchmark real business cycle model by second order 

approximation to the policy function. After a brief summary of recent development in 

second order approximation in solving dynamic stochastic general equilibrium models, 

we choose Hansen’s real business cycle model as a standard model and follow the 

approach proposed by Schmitt-Grohe & Uribe (2002) to solve for the recursive law of 

motion at second order. Then we do the impulse response and simulation experiment 

with the second order recursive law of motion and find that the impulse response at 

second order converges to a new level and the difference between first order and second 

order is very small in the standard calibration but becomes larger for other values of 

relative risk aversion. The calculated second moments tend to be very close between 

first order and second order for all parameters tested. Moreover, we conduct a brief 

theoretical comparison of the approach of approximation to the policy function with the 

usual approach at first order. 
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1. Introduction 
 

It has been well established to solve dynamic stochastic general equilibrium (DSGE) 

models by first order approximation. And first order approximation is widely applied, as 

it is computationally more convenient. However, its validity for various models has not 

been carefully studied. We are aware of some cases in which first order approximation 

leads to spurious results. For example, when people compare welfare across alternative 

policies, non-linearity may matter, which makes first order approximation unreliable. 

Undoubtedly, when first order approximation is not sufficient to accurately approximate 

the model to the extent of our purposes, we need to resort to higher order approximation. 

We will generally deal with two main questions: the first is how higher order 

approximation should be accurately and effectively conducted and then what difference 

it makes when we apply higher order approximation. Clearly, this paper is far from 

sufficient to comprehensively answer all those questions. Instead we follow the 

approach proposed by Schmitt-Grohe & Uribe (2002) and apply the second order 

approximation to policy functions to solve the Hansen’s (1985) real business cycle 

model, and compare the numerical results with those by the first order approximation. 

 

Usually, we solve DSGE models by finding the decision rules from a nonlinear system 

of first order conditions and other conditions that in all characterize the equilibrium. 

One common way to pursue is to approximate the nonlinear system of equations around 

the non-stochastic steady state by Taylor’s expansion at a certain order and then to find 

the recursive law of motion from the approximated system. (In the following, we will 

call this approach the usual approach.) There is plenty of literature on this topic. In the 

case of first order approximation, Campbell (1994) and Uhlig (1995) employ the 

method of undetermined coefficients to solve the neoclassical growth model. Blanchard 

& Kahn (1980) and Sims (2000a) propose a general procedure to derive the stable 

solution for a system of first order difference equations. For the case of second order 

approximation, Kim et al. (2003) would be the reference showing the solution method 

by second order approximation.  
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As a different approach, Schmitt-Grohe & Uribe (2002) propose to solve DSGE models 

by approximating the policy function at steady states. The unknown coefficients in 

approximated policy functions are the gradients of the policy function evaluated at 

steady states. They can be solved for from the fact that the differentiated non-linear 

system at any order with the policy function plugged in is equal to zero.  

 

In this paper, we compare these two approaches in some depth and prove that in the case 

of first order approximation, the two approaches lead to the same equation-solving 

problem. Then we choose Hansen’s real business cycle model as a standard model and 

follow the approach proposed by Schmitt-Grohe & Uribe (2002) to solve for the 

recursive law of motion at second order. Then we do the impulse response and 

simulation experiment with the second order recursive law of motion and find that the 

impulse response at second order converges to a new level due to the property of the 

second order recursive law of motion and the difference of impulse response between 

first order and second order is very small in the standard calibration but becomes larger 

for other values of relative risk aversion. The calculated second moments tend to be 

very close between first order and second order for all parameters tested. 

 

The paper is organized as follows: In part 2, we have a brief review on some of the key 

articles on first order and second order approximation. We describe the settings of 

Hansen’s real business cycle (RBC) model in part 3. In part 4, we first describe in detail 

the approach of approximation to the policy function by Schmitt-Grohe & Uribe (2002).  

Then we make a brief comparison between the approach of approximation to the policy 

function and the usual approach and prove that at first order the two approaches lead to 

the same system of equations to be solved. In the third section of part 4, we specifically 

solve the Hansen’s RBC model. In part 5, we present the results. We test the model with 

different values of relative risk aversion in part 6. In part 7, we make some comments 

on the results and the two main general questions concerning second order 

approximation. Part 8 concludes.   
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2. Literature 
 

It is worth spending some paragraphs on first order approximation, as it is the necessary 

step for higher order approximation. As a usual representation, we solve DSGE models 

for the recursive law of motion in percentage deviations of level variables. To that end, 

loglinearization is a common way to linearize the model and express the model in 

percentage deviations. Uhlig (1995) mentions the general procedure of loglinearization 

as expressing the model directly in log deviations, and then linearizing the model in log 

deviations by first order Taylor’s expansion. As is known, log deviations are 

approximately percentage deviations. Besides, he proposes a simple procedure for 

loglinearization. That is to replace any variable tX  with tx
t eXX ˆ= , where X  is the 

steady state and XXx tt loglogˆ −=  is the log deviation, approximately the percentage 

deviation from the steady state. Then txe ˆ  can be replaced by tx̂1+ .  

 

Many authors loglinearize the model by first expressing the model in logs of the level 

variables and then linearizing the system of equations by Taylor’s expansion. The 

linearized model is in logs of the level variables. So is the derived the recursive law of 

motion. And you can very easily transform the recursive law of motion into the one in 

log deviations. In fact, when we linearize the model in logs of the level variables by 

Taylor expansion, we can directly achieve the model in log deviations. And then solve 

the system in log deviations instead. It is worth noting that taking logs, though 

convenient, is not the only way to transform the linearized models in level variables into 

the ones in percentage deviations. For any equation, we can linearize its both sides by 

applying first order Taylor’s expansion around steady states, and then for each variable 

tX  we can easily construct its percentage deviation as 
X
XX

x t
t

−
=ˆ . 
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After the linearization of the nonlinear model, we reach a dynamic system of linear 

equations, from which we have to solve for the recursive law of motion. A number of 

authors have developed the solution methods for solving this system of linear difference 

equations. Campbell (1994) and Uhlig (1995) employ the method of undetermined 

coefficients. Uhlig (1995) states the system of difference equations in matrix 

expressions. So is the assumed recursive law of motion. Plugging in the assumed 

recursive law of motion results in solving a matrix quadratic equation, which can be 

reduced to a generalized eigenvalue problem. With the same mathematical mechanism, 

Blanchard & Kahn (1980) and Sims (2000a) propose a general procedure to derive the 

stable solution for a system of first order difference equations. Generally, they first 

formulate the economic model in the form of systems of first order difference equations.  

Then through QZ decomposition, generalized eigenvales are calculated. The difference 

equations corresponding to the eigenvalues less than one are to be solved backwards. 

Those corresponding to the eigenvalues more than one are to be solved forwards. One 

thing worth noting is that these general solution methods for systems of first order 

difference equations are crucial in that we also resort to these methods for calculating 

coefficients on linear terms when we solve in the following the DSGE models by 

second order approximation to the policy function. 

 

Apart from Schmitt-Grohe & Uribe (2002), there are some other papers on second order 

approximation. For example, Kim et al (2003) also propose a solution algorithm to 

solve DSGE models by accurate second order approximation. They start to derive their 

solution methods from first applying second order Taylor’s expansion to the whole 

system of equations.  They also shed some light on forecasting and simulation, local 

accuracy of approximation and welfare comparison.  

 

As an example where linear approximation may be unreliable, Kim & Kim 

(forthcoming) compare the welfare based on an evaluation of the utility function using a 

linear approximation to the policy function in a simple two-agent economy. They find 
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that the linear approximation to the policy function may lead to the spurious result that 

welfare is higher under autarky than full risk sharing.  

 

Schmitt-Grohe & Uribe (2002) is the main reference which lays out a solution method 

for second order approximation to the policy function. We will present their approach in 

detail in part 4. 

 

 

3. The Model 
 

The RBC model to which we will apply second approximation is Hansen’s (1985) RBC 

model. In this section, we briefly explain the model.  

 

First, the social planner maximizes the representative agent’s utility as 

 




















−

−
−∑

∞

=

−

0

1

1
1

t
t

tt AN
C

E
η

β
η

          (1) 

 

subject to  

 

tttttt KNKZKC )1(1
1 δρρ −+=+ −
+             (2) 

ttt ZZZ εψψ ++−= −1loglog)1(log         (3) 

);0(...~ 2σε Ndiit , 

 

where E  is the expectation operator; tt NC ,,, ηβ  and A  are respectively the discount 

factor, consumption at time t , the coefficient of relative risk aversion, labor at time t , 

and the labor parameter; and δρ ,,, tt ZK and ψ are respectively the capital stock at time  

t , technology at time t , the capital share, the depreciation rate and the autocorrelation 
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of technology; tε  is the exogenous shock which is identically, independently normally 

distributed with standard deviation σ . Equation (2) is the budget constraint which also 

includes the production function, and equation (3) is the evolution of productivity. 

 

The relevant equilibrium conditions are: 

 

tttttt KNKZKC )1(1
1 δρρ −+=+ −
+            (2) 

[ ]))1(( 1
1

1
111 δρβ ρρηη −+= −

+
−
++

−
+

−
tttttt NKZCEC           (4) 

ρρη ρ −− −= tttt NKZCA )1(          (5) 

11 loglog)1(log ++ ++−= ttt ZZZ εψψ          (3) 

ρρ −= 1
tttt NKZY           (6) 

)1( δρ −+=
t

t
t K

YR           (7) 

 

In the above equations, (4) is the first order condition for capital and (5) is the first order 

condition for labor. (6) and (7) are the production function and the expression for the 

interest rate respectively. 

 

 

4. Model Analysis 
 

4.1 The approach of approximation to the policy function 

 

To solve the model by second order approximation to the policy function, we follow the 

approach proposed by Schmitt-Grohe & Uribe (2002). We briefly repeat the main 

procedure and arguments of their approach. They formulate the set of equilibrium 

conditions of usual macroeconomic models as 
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0),,,( 11 =++ ttttt xxyyfE ,         (8) 

 

where tE  is the mathematical expectation operator conditional on information up to 

time t . ty  , of size 1×yn , is the vector of co-state variables and tx , of size 1×xn , is 

the vector of state variables which include predetermined state variables and exogenous 

state variables. It is defined that xy nnn += . The function f maps 

xxyy nnnn RRRR ××× into nR . tx  can be partitioned as  

 

[ ]′= 21; ttt xxx , 

 

where the vector 1
tx consists of endogenous predetermined state variables and the vector 

2
tx consists of exogenous state variables. 2

tx is assumed to follow the exogenous 

stochastic process given by 

 

1
22

1
~

++ +Λ= ttt xx σεθ ;                (9) 

),0(...~ INdiitε . 

 

The vector 2
tx  and the innovation tε  are both of size 1×εn . The vector tε  is 

independently, identically and normally distributed with mean zero and covariance 

matrix I . θ~  is of size εε nn ×  and consists of known parameters. 0≥σ and is in fact a 

scaling parameter which scales the variance of the innovation. All eigenvalues of the 

matrixΛ are assumed to be within the unit circle. 

 

Then the solution to the model, the so-called policy function, is specified as the 

following general form: 

 

),( σtt xgy =            (10) 



 11

11 ),( ++ += ttt xhx θσεσ ,         (11) 

 

where g  maps +× RR xn  into ynR  and h  maps +× RR xn  into xnR . θ  is a εnnx ×  

matrix and is given by  

 









=

θ
θ ~

0
. 

 

Since it is formidably difficult to derive the true form of the policy function, the best to 

do is to approximate the policy function at a certain order around the non-stochastic 

steady states xxt =  and 0=σ . That is the central idea of this approach. And the non-

stochastic steady states are defined as vectors ),( yx such that 

 

( ) 0,,, =xxyyf .          (12) 

  

By applying Taylor’s expansion, the policy functions are approximated at first order as 

follows: 

 

σσ σ )0,())(0,()0,(),( xgxxxgxgxg x +−+=        (13) 

σσ σ )0,())(0,()0,(),( xhxxxhxhxh x +−+= .      (14) 

 

From the above equations, we drop time subscripts and use a prime to indicate variables 

dated in time 1+t .  

 

At second order, the approximated policy function is given by 

 

[ ] [ ] [ ] [ ] [ ] [ ]σσ σ
i

a
i
ax

ii xgxxxgxgxg )0,()()0,()0,(),( +−+=       

[ ] [ ] [ ]ba
i
abxx xxxxxg )()()0,(

2
1

−−+                      
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[ ] [ ] [ ]σσ a
i
ax xxxg )()0,(

2
1

−+  

[ ] [ ] [ ] [ ] [ ][ ]σσσ σσσ
i

a
i
ax xgxxxg )0,(

2
1)()0,(

2
1

+−+      (15) 

 

[ ] [ ] [ ] [ ] [ ] [ ]σσ σ
j

a
j
ax

jj xhxxxhxhxh )0,()()0,()0,(),( +−+=          

[ ] [ ] [ ]ba
j
abxx xxxxxh )()()0,(

2
1

−−+  

[ ] [ ] [ ]σσ a
j
ax xxxh )()0,(

2
1

−+  

[ ] [ ] [ ] [ ] [ ][ ]σσσ σσσ
j

a
j
ax xhxxxh )0,(

2
1)()0,(

2
1

+−+ ,      (16) 

 

where yni ,...,1=  and xnjba ,...,1,, = . And here we use the same tenor notation as in 

Schmitt-Grohe & Uribe (2002). For example, [ ])0,(xgxx is an xxy nnn ×× matrix and 

[ ]iabxx xg )0,( is the ),,( bai element of the second derivative of g  with respect to x . 

 

So the next step is to get the values of the unknowns in the approximated policy 

functions, whether at first order or second order. We find that the unknowns are the 

gradients of the policy functions evaluated at steady states. To solve for these unknowns, 

we have to resort to the system of equilibrium conditions. After plugging the policy 

functions into the system, we define the new system as  

 

0),),(),,(),,),(((),( =′+′+≡ xxhxgxhgfExF t εθσσσσεθσσσ .    (17) 

 

Since ),( σxF  is equal to zero for any values of x  and σ , the derivatives of any order 

of ),( σxF with respect to x  and σ are equal to zero, which provides information for 

solving for the unknown coefficients in the approximated policy functions.  
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For the first order case, we have 0)0,( =xFx  and 0)0,( =xFσ . Specifically we have 

 

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]ijxjx
i

xjx
i

yjxx
i

y
i
jx fhfgfhgfxF +++= ′′

β
β

α
α

βα
βα

)0,(      

                  0= ;            (18) 

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]{ α
σα

α
σα

φβ
φ

α
βα

β
σ

α
βασ εθ gfgfgfhgfExF i

y
i

yx
i

yx
i

yt
i ++′+= ′′′)0,(    

[ ] [ ] [ ] [ ] [ ] }φβ
φβ

β
σβ εθ ′++ ′′

i
x

i
x fhf  

                 [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]ββ
α

σα
α

σα
β

σ
α
βα x

i
x

i
y

i
yx

i
y hfgfgfhgf ′′′ +++=  

                 0= ;                       (19) 

where ni ,...,1= ; xnj ,...,1, =β ; yn,...,1=α  and εφ n,...,1= . (18) is a system of xnn ×  

quadratic equations in the xnn ×  unknowns constructed by the elements of xg  and 

xh .(All the derivatives without apparent notation are also values evaluated at steady 

states.) A number of authors have developed methods to solve for xg  and xh  which 

lead to non-explosive paths for the state and control variables (e.g. Blanchard and Kahn 

(1980), Sims (2000a)). And σg and σh  can be solved for from equation (19). Since 

equation (19) is linear and homogeneous in σg and σh , if a unique solution exists, it 

must be true that  

 

,0=σh   

 

and  

 

0=σg . 

 

That is one of the main theoretical results of Schmitt-Grohe & Uribe (2002), which 

states that generally, the size of variance of the shocks has no effect on the constant 

term of the approximation to the policy function up to first order. It implies that in first 
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order approximation the expected values of tx and ty  are equal to their non-stochastic 

steady-state values x  and y . 

 

Now we turn to the second order case. From the expressions of second order 

approximation to policy functions (15) and (16), we see that the coefficients of first 

order part xg  and xh are already known from the first order case and the rest unknown 

coefficients are [ ]iabxx xg )0,( , [ ]iax xg )0,(σ , [ ]iax xg )0,(σ , [ ]ixg )0,(σσ , [ ] jabxx xh )0,( , 

[ ] jax xh )0,(σ , [ ] jax xh )0,(σ , [ ] jxh )0,(σσ . Those coefficients can be solved for by taking the 

derivative of ),( σxF  with respect to x  and σ  twice and evaluating them at 

)0,(),( xx =σ . First, from ),( σxF  we can calculate )0,(xg xx  and )0,(xhxx . We have 

[ ]ijkxx xF )0,(  as: 

 

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]( )[ ] [ ]βα
βα

δ

αδ

γ

αγ

δγ
δαγ jxx

i
kxykx

i
xykx

i
yykxx

i
yy

i
jkxx hgfhfgfhgfxF ′′′′′′ +++=)0,(  

                   [ ] [ ] [ ] [ ] [ ] [ ] [ ]βα
βα

βδα
βδα jkxxx

i
yjxkxxx

i
y hgfhhgf ′′ ++  

                   [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]( )[ ]α
α

δ

αδ

γ

αγ

δγ
δαγ jx

i
kyxkx

i
xykx

i
yykxx

i
yy gfhfgfhgf ++++ ′′  

                   [ ] [ ]α
α jkxx
i

y gf+  

                   [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]( )[ ]ββ
δ

βδ
γ

βγ

δγ
δβγ jx

i
kxxkx

i
xxkx

i
yxkxx

i
yx hfhfgfhgf ′′′′′′ ++++  

                   [ ] [ ]ββ jkxx
i

x hf ′+  

                   [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]ijkxxkx
i
jxxkx

i
jxykxx

i
jyx fhfgfhgf ++++ ′′

δ
δ

γ

γ

δγ
δγ

 

                   0= ,             (20) 

where ni ,...,1= ; xnkj ,...,1,,, =δβ ; and yn,...,1, =γα . 

The above expression is a system of xx nnn ×× linear equations in the 

xx nnn ×× unknowns which are the elements of xxg  and xxh . 

 

And from 0)0,( =xFσσ we can solve for σσg  and σσh . We have )0,(xFσσ as : 
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[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]φξβ
φ

α
β

δ
ξ

γ
δαγ

β
σσ

α
βασσ θθ IggfhgfxF xx

i
yyx

i
y

i
′′′ +=)0,(                 

[ ] [ ] [ ] [ ] [ ]φξβ
φ

α
β

δ
ξαδ

θθ Igf x
i

xy ′′+        

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]ασσα
α

σσα
φ
ξ

β
φ

δ
ξ

α
βδα

θθ gfgfIgf i
y

i
yx

i
y +++ ′′  

[ ] [ ]βσσβ hf i
x′+  

            [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]φξβ
φ

δ
ξβδ

φ
ξ

β
φ

δ
ξ

γ
δβγ

θθθθ IfIgf i
xxx

i
yx ′′′′ ++  

                      0= ,            (21) 

where ni ,...,1= ; xn,...,1, =δβ ; yn,...,1, =γα ; εξφ n,...,1, =  and I  is the covariance  

matrix of the innovation. It is a system of n linear equations in the n unknowns given by 

the elements of σσg  and σσh . 

 

The last step is to solve for the cross derivatives )0,(xg xσ  and )0,(xhxσ . From 0=σh  

and 0=σg , we can write [ ])0,(xF xσ  as: 

 

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]βσβ
α

σα
γα

γσα
β

σ
α
βασ jx

i
xjx

i
yjxx

i
yjxx

i
y

i
jx hfgfhgfhgfxF ′′′ +++=)0,(  

0= ,              (22) 

where ni ,...,1= ; xnj ,...,1,, =γβ ; and yn,...,1=α . 

 

It is a system of xnn ×  equations in the xnn ×  unknowns which are the elements of xgσ  

and xhσ . Since the system is homogenous in the unknowns, if a unique solution exists, it 

is given by  

 

0=xgσ , 

 

and 
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0=xhσ . 

 

Again, these equations are another main theoretical result of Schmitt-Grohe & Uribe 

(2002).  They imply that generally, up to second order, the size of the variance of the 

shocks does not affect the coefficients of the policy function on the terms that are linear 

in the state vector. 

 

 

4.2 Comparison of Two Approaches 

 
Before we proceed, it is worth making a comparison between the two approaches, as the 

above approach by Schmitt-Grohe & Uribe (2002) is quite different from the one people 

usually employ. We can see that at the first order approximation, the two approaches 

finally lead to the same system of equations to be solved.  

 

For first order approximation, by the usual approach, people first approximate the 

nonlinear system of equations around steady states by Taylor’s expansion at first order 

and then find the recursive law of motion from the approximated system. By the Uhlig 

(1995)’s method of undetermined coefficients, the linear recursive law of motion is 

assumed, it is plugged into the linearized system of equations and the unknown 

coefficients are solved for. Now by comparison, we can see these two approaches are 

virtually doing the same thing at first order case. By the approach by Schmitt-Grohe & 

Uribe (2002), we first approximated the policy function at first order. And approximated 

policy functions are the same as the assumed recursive law of motion in the usual 

approach, also with the same unknown coefficients when transformed in a proper way. 

Then by the approach of Schmitt-Grohe & Uribe (2002), we plug the policy function 

into the system and calculate the unknown coefficients by differentiating the system 

with respect to x  and σ . This step virtually functions the same as, by the usual 

approach, plugging the assumed recursive law of motion into the linearized system and 

solve for the unknown coefficients from setting the sums of coefficients of each variable 
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to zero. Finally, these two approaches result in the same equations to be solved. (Please 

see a brief proof in Appendix a). 

 

 

4.3 Solving the RBC model 

 

Now we specifically apply Schmitt-Grohe & Uribe (2002)’s method to solve Hansen 

(1985)’s model. First we define the vectors y  and x  for our model as: 

 

[ ] [ ]Ccy log==  

 

and  

 









=








=

Z
K

z
k

x
log
log

. 

 

We include only three variables in the dynamic system and express them in logs. c  , the 

consumption, is the control variable and belongs to the vector y . k , the capital stock, 

and z  , technology, are the predetermined state variable and the exogenous state 

variable respectively, and belong to the vector x .  And the system includes the 

following three equations: 

 

ρ
ρρη

ρ ρ −
−








 −
=′+ 1

1

))exp()exp()exp()1(()exp()exp()exp()exp(
A

kzckzkc     

)exp()1( kδ−+ ,          (24) 


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




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





 ′′′−′′′= −
−

−−− ρ
ρρη

ρηη ρρβ 1

1

1 ))exp()exp()exp()1(()exp()exp(()exp()exp(
A

kzckzcEc t     

]))1( δ−+ ,          (25) 
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εσψ ′+=′ zz .           (26) 

 

f consists of those three equations. Equations (24) and (25) are derived by plugging 

equation (5) into equations (2) and (4) and expressing level variables with their logs; 

equation (26) is equation (3) expressed in logs of level variables with 1=Z .  

 

We resort to a package of Matlab programs mainly by Schmitt-Grohe & Uribe (2002) to 

solve for the coefficients of the approximated policy function. In the program package, 

we specifiy the settings of our model mainly in the programs RBC_model_ss.m and 

RBC_model.m.  (Please see the Appendix b for detail). 

 

The advantage of expressing the system in logs is that the approximated policy 

functions we get are the same as the recursive law of motion in percentage deviations. 

When we obtain the recursive law of motion for c , k and z , all the other variables will 

be respectively calculated from the relevant equilibrium conditions. Specifically we 

have: 

 

ρρηρ
1

)1(







 −
=

−

A
ZKCN ,           (27) 

ρρ −= 1NZKY , 

)1( δρ −+=
K
YR . 

 

For computational convenience, especially in simulation, we linearize the above 

equations and express them in percentage deviations. 

 

zkcn ˆ1ˆˆˆ
ρρ

η
++−=           (28) 

zkny ˆˆˆ)1(ˆ ++−= ρρ ,         (29) 
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)ˆˆ(ˆ ky
RK
Yr −=

ρ .          (30) 

 

 

5. Results 
 

We follow the calibration in Hansen (1985), which sets 99.0=β , 

36.0=ρ , 0025.0=δ , 95.0=ψ , 1=η , ,00712.0=σ  1=Z  and 
3
1

=N . 

 

The coefficients of linear terms are  

 

[ ]4696.05315.0=xg   

 

 









−

=
9500.00000.0
1550.09420.0

xh . 

 

The coefficients of the quadratic terms are: 

 

[ ]1428.00593.0)1:,(:, −=xxg  

[ ]2487.01428.0)2:,(:, −=xxg  

 








 −
=

00
1186.00531.0

)1:,(:,xxh  








−
=

00
2661.01186.0

)2:,(:,xxh , 

where xxg  and xxh  are both three dimensional matrices.  
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The coefficients of the quadratic terms in σ are: 

 

3148.0−=σσg  









=

0
0771.0

σσh . 

 

So we have obtained the following recursive law of motion: 

 

At first order: 

 

zkc ˆ4696.0ˆ5315.0ˆ +=  

zkk ˆ1550.0ˆ9420.0ˆ +=′ . 

 

At second order: 

 

[ ]222 3148.0ˆ2487.0ˆˆ2856.0ˆ0593.0
2
1ˆ4696.0ˆ5315.0ˆ σ−+−++= zzkkzkc  

[ ]222 0771.0ˆ2661.0ˆˆ2372.0ˆ0531.0
2
1ˆ1550.0ˆ9420.0ˆ σ++−++=′ zzkkzkk . 

 

We see that the coefficients of linear terms are the same for both cases. And they are 

exactly the same as those calculated by Uhlig’s (1995) toolkit programs. Compared with 

first order approximation, second order approximation generates some quadratic terms 

and the additional constant term that is the quadratic term of scaling parameter, namely 

the standard deviation of the innovation. So we see that at first order approximation, the 

volatility of shocks does not matter for the decision rule, however, it does at second 

order approximation. That means at second order approximation, the economic agent 

will take into account the volatility of uncertainties when he makes decisions. 

 

Now we calculate and compare impulse responses of all variables to a one standard 
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deviation shock to technology at first order and second order. The number of time 

periods is 100. For consumption and capital, the impulse responses are to be calculated 

from above recursive laws of motion. Based on recursive laws of motion for capital and 

consumption, we calculate labor, output, and interest rate from equations (28)-(30). 

Figures 1&2 show, at first order and second order respectively, the impulse responses of 

all variables to a one standard deviation shock to technology at time 2.  Figure 1 shows 

the same impulse response as the one done by Uhlig’s (1995) toolkit programs except 

that the capital stock is shifted one time period forward in our graph due to its different 

time notation. We see Figures 1&2 are generally the same without any sharp difference.  

 

However, when we compare the individual series in details we can see the difference of 

their evolutions. Figures 3 to 7 individually show the impulse response of each variable-

- capital, consumption, output, labor and interest respectively. All graphs on the right 

hand in each figure show the evolutions of each variable both at first order and second 

order; all graphs on the left show their difference (second order minus first order). We 

can see that the difference for each variable is very small so that in all graphs on the 

right hand the two impulse response curves almost become one. Figure 1 shows that the 

capital stock in both cases has a hump shape response, however their difference does 

not converge to zero but to another very small number. That means that the capital stock 

at second order does not converge to zero, because we know the impulse response at 

first order converges to zero. This is the case for all the other variables in Figures 4-7. In 

Figure 4, the consumption also has a hump shape response and their difference goes 

down a bit in the negative value, and then rises up and converges to about 0.00005. 

Figure 5 shows that the difference in the output goes up and converges to about 

0.000016. And Figures 6&7, the difference in the labor and the interest rate converges to 

about 0.000006 and -0.0000006 respectively 

 

So we find that in our standard calibration, the difference of impulse responses between 

first order and second order is very small and at second order the impulse response does 

not converge to zero but to another value. We can see that in the second order recursive 
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Figure 1 
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Figure3 
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Figure5 
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Figure 7 
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Table 1 

 

First order Second order 

 

Standard 

Deviation 

Correlation 

with output 

Standard 

Deviation 

Correlation 

with output 

Technology 0.0217 0.9993 0.0218 0.9993 

Capital 0.0403 0.7021 0.0406 0.7043 

Consumption 0.0294 0.8641 0.0296 0.8648 

Labor 0.0234 0.7826 0.0235 0.7809 

Output 0.0438 1 0.0440 1 

Interest 0.0011 0.4714 0.0011 0.4677 

          

 

 



 26

law of motion, there is the quadratic term of scaling parameter, which is the constant 

term in the law of motion, and it enters the law of motion at each time and causes each 

variable to converge to another value rather than zero. 

 

Now let us turn to the second moments calculated from the simulated series. The time 

length is 600 and each variable is simulated for 1000 times. The variables are simulated 

directly from the recursive law of motion and the series are not filtered by HP filter 

before the second moments are calculated. Table 1 shows the standard deviation of each 

variable and its correlation with the output at first order and second order. We find that 

the second moments are very close between the two cases and some of them are even 

the same at our rounding level. 

 

 

6. Variation  

 

In this section, we solve the model and calculate impulse responses and second 

moments with two different values of the coefficient of relative risk aversion. Rather 

than 1=η in our standard calibration, we test the model with 1.0=η and 10=η  

respectively. And we have the following calculated recursive law of motion for the 

consumption and the capital stock. 

 

1.0=η  

 

At first order: 

 

zkc ˆ8323.3ˆ4552.1ˆ −=  

zkk ˆ6131.0ˆ9420.0ˆ +=′ . 

 

At second order: 
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[ ]222 3524.248ˆ7820.11ˆˆ6670.2ˆ1943.0
2
1ˆ8323.3ˆ4552.1ˆ σ−−+−+−= zzkkzkc  

[ ]222 2291.22ˆ7813.0ˆˆ0896.0ˆ0056.0
2
1ˆ6131.0ˆ9420.0ˆ σ++−++=′ zzkkzkk . 

 
10=η  

 

At first order: 

 

zkc ˆ0894.0ˆ0723.0ˆ +=  

zkk ˆ1092.0ˆ9420.0ˆ +=′ . 

 

At second order: 

 

[ ]222 9719.0ˆ0027.0ˆˆ0544.0ˆ0123.0
2
1ˆ0894.0ˆ0723.0ˆ σ−+−++= zzkkzkc  

[ ]222 7500.1ˆ1201.0ˆˆ1748.0ˆ0732.0
2
1ˆ1092.0ˆ9420.0ˆ σ++−++=′ zzkkzkk . 

 
By the above calculated recursive law of motion, we calculated impulse responses and 

second moments from the simulated series. Figures 8-12 and Table 2 show the impulse 

responses and second moments for 1.0=η , and Figure 13-17 and Table 3 for 10=η . 

So when 1.0=η , we see that the difference of impulse responses of each variable 

between first order and second order becomes relatively large. In Figure 8, the capital 

stock at second order rise quite higher than at first order, and the difference converges to 

about 0.01. In Figure 9, the consumption at second order is first below the one at first 

order and then catches up and becomes higher, and the difference converges to about 

0.008. In Figures 10&11, the output and the labor at second order rise up quite higher 

than at first order and the difference converges to about 0.008 and 0.0075 respectively. 

However, in Figure 12, the interest rate at second order first stays higher and then goes 
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Figure 8 
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Figure 10 
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Figure 11 

0 50 100
0

0.005

0 .01

0.015

0 .02

0.025

0 .03

0.035

0 .04

0 50 100
2

3

4

5

6

7

8
x  10

-3
n1& n2 n2-n1  

 
 



 30

Figure 12 
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Figure14 
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Figure16 
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Table 2  ( 1.0=η ) 

First order Second order 

 

Standard 

Deviation 

Correlation 

with output 

Standard 

Deviation 

Correlation 

with output 

Technology 0.0216 0.8747 0.0218 0.8749 

Capital 0.1586 0.9480 0.1602 0.9483 

Consumption 0.1846 0.7853 0.1863 0.7870 

Labor 0.1631 0.9976 0.1646 0.9976 

Output 0.1774 1 0.1791 1 

Interest 0.0019 0.4811 0.0019 0.4807 

 

 

 

Table 3   ( 10=η ) 

First order Second order 

 

Standard 

Deviation 

Correlation 

with output 

Standard 

Deviation 

Correlation 

with output 

Technology 0.0217 0.9611 0.0217 0.9608 

Capital 0.0282 0.4476 0.0282 0.4458 

Consumption 0.0036 0.7653 0.0036 0.7642 

Labor 0.0246 -0.2649 0.0246 -0.2623 

Output 0.0210 1 0.0210 1 

Interest 9.2000e-004 0.3170 9.2176e-004 0.3185 
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below the one at first order and the difference converges to about-0.0045. When 10=η , 

we see the difference of impulse responses between first order and second order is 

generally smaller than in the case of 1.0=η  but still larger than 1=η .  

 

In Tables 2&3, we can see, like in the case of 1=η , the standard deviation and the 

correlation with the output of all variables are very close between first order and second 

order and some of the values are the same at our rounding level. 

 

 

7. Discussion 
 

Now we return to the two main questions we have asked at the beginning. The first one 

is how the higher approximation should be accurately conducted. As Schmitt-Grohe & 

Uribe (2002) state, spurious results arise in the common practice of evaluating a second 

order approximation to the objective function by using a first order approximation to the 

decision rule. In this case, some second order terms of the equilibrium welfare function 

are ignored while others not. And generally a correct second order approximation of the 

equilibrium welfare function requires a second order approximation to the policy 

function. So this example might be a justification for starting solving the model by 

second approximation to the policy function. In this paper, we apply this approach in a 

standard RBC model and find that the solution method works very well. It generates the 

same results at first order approximation as those by Uhlig’s (1995) toolkit programs.  

 

Moreover, when we compare the approach of approximation to the policy function with 

the usual approach, we find that when we apply these two approaches we choose the 

different starting points to approximate. In the case of first order, it has been shown that 

the two approaches lead to the same results. However, when we apply higher order 

approximation, the results might depend on what sort of equations we start to 

approximate and how we want to formulate the solutions.  
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The second question is what difference the second order approximation makes 

compared with first order approximation. In the examples mentioned above, we know in 

some cases, when we compare welfare across alternative policies, we will have to resort 

to second order approximation to the decision rule to avoid spurious results. And In this 

paper, we compare in some depth the numerical results of first order and second order 

approximations in a standard RBC model. In parts 5&6, we see that the numerical 

results from second order approximation are so often quite close to those from first 

order approximation, except that in second order approximation, the volatility enters the 

decision rules, which makes the second order decision rule different from the first order 

one. And we are always approximating the behaviors of the economic systems we build, 

and how well the approximation is done virtually depends on the question we ask. This 

paper did not build up specific scenarios to test what difference the second order 

approximation makes. Selecting some widely used models and their properties to test 

the second order approximation with regard to the first order approximation might be a 

further way to go. 

 

 

8. Conclusion 

 
In this paper, we have practiced the approach of second order approximation to the 

policy function in a standard RBC model. We have theoretically compared the approach 

of approximation to the policy function with the usual approach at the first order, and 

prove that they lead to the same system of equations to be solved for. And we have 

compared the impulse responses and calculated second moments from second order 

recursive law of motion with those from first order one. We find that the impulse 

response at second order converges to a new level due to the property of the second 

order recursive law of motion and the difference of impulse response between first order 

and second order is very small in the standard calibration but becomes larger for other 

values of relative risk aversion. The calculated second moments tend to be very close 

between first order and second order for all parameters tested. 
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Appendix 
 

a. Proof 

In this section, we briefly prove that at first order the two approaches lead to the same 

system of equations to be solved. For comparison convenience, we still use the Schmitt-

Grohe & Uribe (2002) notation, which formulates the general set of equilibrium 

conditions of usual macroeconomic models as 

 

0),,,( =′′ xxyyfEt ,          (8) 

 

First, by Schmitt-Grohe & Uribe (2002) approach, we have the general form of the 

policy functions and the first order approximated ones as follows: 

 

),( σxgy = ,            (10) 

εθσσ ′+=′ ),(xhx ,          (11) 

σσ σ )0,())(0,()0,(),( xgxxxgxgxg x +−+=        (13) 

σσ σ )0,())(0,()0,(),( xhxxxhxhxh x +−+= .       (14) 

 

And we solve for those coefficients )0,(xg x , )0,(xhx , )0,(xgσ  and )0,(xhσ from 

0)0,( =xFx  and 0)0,( =xFσ  as follows: 

 

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]ijxjx
i

xjx
i

yjxx
i

y
i
jx fhfgfhgfxF +++= ′′

β
β

α

α

βα
βα

)0,(  

                  0= ; 

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]{ α
σα

α
σα

φβ
φ

α
βα

β
σ

α
βασ εθ gfgfgfhgfExF i

y
i

yx
i

yx
i

yt
i ++′+= ′′′)0,(    

[ ] [ ] [ ] [ ] [ ] }φβ
φβ

β
σβ εθ ′++ ′′

i
x

i
x fhf  

                 [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]ββ
α

σα

α
σα

β
σ

α
βα x

i
x

i
y

i
yx

i
y hfgfgfhgf ′′′ +++=  

                 0= . 
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where ni ,...,1= ; xnj ,...,1, =β ; yn,...,1=α  and εφ n,...,1= . 

Now, we employ the usual approach. We first linearize the whole system (8), 

 

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] 0)( =+′++′ ′′
β

β
β

β
α

α
α

α
dxfxdfdyfydfE i

x
i

x
i

y
i

yt ;     (31) 

;,...,1 ni =  ;,...,1 yn=α  xn,...,1=β , 

where yyyd −′=′ , yydy −= , xxxd −′=′  and xxdx −= , and (31) is a system of n  

equations. 

 

Then we assume the recursive law of motion as  

 

σQPdxdy += ;          (32) 

εησσ ′++=′ NMdxxd .         (33) 

 

They are the same as the approximated policy function in the above approach and 

coefficient matrices P , M , Q , and N are respectively )0,(xg x , )0,(xhx , )0,(xgσ  and 

)0,(xhσ . Plugging equations (32) and  (33) into (31), we have 

 

[ ] [ ] [ ] [ ]α
α

α

α
σσεησσ QPdxfQPPNPMdxfE i

y
i

yt +++′++′(  

[ ] [ ] [ ] [ ] 0) =+′+++ ′
β

β
β

β εησσ dxfNMdxf i
x

i
x , 

 

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]( )[ ] ji
jxjx

i
xjx

i
yjxx

i
y dxfhfgfhgf +++ ′′

β
β

α

α

βα
βα

 

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]( )[ ] 0=++++ ′′′ σβ
β

α
σα

α
σα

β
σ

α
βα x

i
x

i
y

i
yx

i
y hfgfgfhgf . 

 

As the above equation has to be zero for any values of x  and σ , the sum of the 

coefficients of each variables has to be zero. Then we have 

 

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] 0=+++ ′′
i
jxjx

i
xjx

i
yjxx

i
y fhfgfhgf β

β
α

α

βα
βα

, 
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[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] 0=+++ ′′′
β

β
α

σα
α

σα
β

σ
α
βα x

i
x

i
y

i
yx

i
y hfgfgfhgf . 

 

It is the same system of equations as the one to be solved for unknown coefficients in 

the approximated policy function. 
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b. Matlab Codes 

1. RBC_model.m 

function 

[nfx,nfxp,nfy,nfyp,nfypyp,nfypy,nfypxp,nfypx,nfyyp,nfyy,nfyxp,nfyx,nfxpyp,nfxpy,nfx

pxp,nfxpx,nfxyp,nfxy,nfxxp,nfxx] = RBC_model 

%This program computes numerical first and second derivatives of the  function f for 

the simple neoclassical growth model described in section 2.1 of ``Solving Dynamic 

General Equilibrium Models Using a Second-Order Approximation to the Policy 

Function,'' by Stephanie Schmitt-Grohe and Martin Uribe, (2001). Unlike the example 

in section 2.1, here y and x are defined as log(c) and [log(k); log(A)] respectively.   The 

function f defines  the DSGE model: 

%  E_t f(yp,y,xp,x) =0. 

% 

%Inputs: none 

% 

%Output: Numerical first and second derivatives of f 

% 

%Calls: anal_deriv.m num_eval.m RBC_model_ss.m 

% 

%(c) Stephanie Schmitt-Grohe and Martin Uribe 

%Date July 17, 2001 

 

%Define parameters 

syms  SIG DELLTA ALFA BETTA RHO A 

 

%Define variables 

syms c cp k kp a ap 

 

%Write equations ei, i=1:3 

e1 = exp(c) + exp(kp) - (1-DELLTA) * exp(k) - exp(a) * exp(k)^ALFA*((A/(exp(c)^(-
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SIG)*(1-ALFA)*exp(a)*exp(k)^ALFA))^(-1/ALFA))^(1-ALFA); 

e2 = exp(c)^(-SIG) - BETTA * exp(cp)^(-SIG) * (exp(ap) * ALFA *((A/(exp(cp)^(-

SIG)*(1-ALFA)*exp(ap)*exp(kp)^ALFA))^(-1/ALFA))^(1-ALFA)* exp(kp)^(ALFA-1) 

+ 1 - DELLTA); 

e3 = ap - RHO * a; 

 

%Create function f 

f = [e1;e2;e3]; 

 

% Define the vector of controls, y, and states, x 

x = [k a]; 

y = [c]; 

xp = [kp ap]; 

yp = [cp]; 

nx = length(x); 

ny = length(y); 

 

%Compute analytical derivatives of f 

[fx,fxp,fy,fyp,fypyp,fypy,fypxp,fypx,fyyp,fyy,fyxp,fyx,fxpyp,fxpy,fxpxp,fxpx,fxyp,fxy,f

xxp,fxx]=anal_deriv(f,x,y,xp,yp); 

 

%Numerical Evaluation 

%Steady State and Parameter Values 

[SIG,DELLTA,ALFA,BETTA,RHO,A,c,cp,k,kp,a,ap,]=RBC_model_ss; 

%Order of approximation desired 

approx = 2; 

%Obtain numerical derivatives of f 

num_eval 

 

2. RBC_model_ss.m 
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function 

[nSIGMA,nDELTA,nALFA,nBETTA,nRHO,nA,nc,ncp,nk,nkp,na,nap,nn,nnp]=RBC_m

odel_ss 

%This program produces the the deep structural parameters and computes the steady 

state of the simple neoclassical growth model described in section 2.1 of ``Solving 

Dynamic General Equilibrium Models Using a Second-Order Approximation to the 

Policy Function,'' by Stephanie Schmitt-Grohe and Martin Uribe, (2001). 

% 

%(c) Stephanie Schmitt-Grohe and Martin Uribe 

%Date July 17, 2001 

 

nBETTA=1/1.01;      %discount rate 

nDELTA=0.025;       %depreciation rate 

nALFA=0.36;         %capital share 

nRHO=0.95;          %persistence of technology shock 

nSIGMA=10;           %intertemporal elasticity of substitution 

 

n = 1/3;            %labor share 

a = 1;              %steady-state value of technology shock 

k = ((1/nBETTA+nDELTA-1)/(nALFA*n^(1-nALFA)))^(1/(nALFA-1));    %steady-

state value of capital 

c = a * k^(nALFA)*n^(1-nALFA)-nDELTA*k;                         %steady-state value of 

consumption 

nA= c^(-nSIGMA)*(1-nALFA)*k^(nALFA)*n^(-nALFA);                 %labor parameter 

 

na = log(a); 

nk = log(k); 

nc = log(c); 

nn = log(n); 
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nap=na; 

nkp=nk; 

ncp=nc; 

nnp=nn; 

 

3. RBC_model_run.m 

 

%This program computes a second-order  approximation to the policy functions of a 

simple neoclassical model (see ``Solving Dynamic General Equilibrium Models Using a 

Second-Order Approximation to the Policy Function,'' by Stephanie Schmitt-Grohe and 

Martin Uribe, (2001). The reduced form of the model can be written as: 

%E_t[f(yp,y,xp,x)=0, 

%The solution is of the form 

%xp = h(x,sigma) + sigma* eta * ep 

%y = g(x,sigma) 

%The quadratic approximation to these functions are (in tensor notation) [Notation: x is 

x_t and xp is x_t+1, variables are expressed in log-deviations from their steady state 

value] 

%xp^i = hx^i_a x_a + 1/2 [hxx^i_ab x_a x_b + hss^i sigma^2] + sigma*  eta^i_c ep_c 

%y^i = gx^i_a x_a + 1/2 [gxx^i_ab x_a x_b + gss^i sigma^2] 

% 

%where 

% hx is nx by nx 

% gx is ny by nx 

% hxx is nx by nx by nx 

% gxx is ny by nx by nx 

% eta is nx by ne 

% gss is ny by 1 

% hss is nx by 1 

% sigma is a positive scalar 
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%Calls: neoclassical_model.m gx_hx.m gxx_hxx.m gss_hss.m 

% 

%(c) Stephanie Schmitt-Grohe and Martin Uribe 

%Date July 17, 2001 

 

[fx,fxp,fy,fyp,fypyp,fypy,fypxp,fypx,fyyp,fyy,fyxp,fyx,fxpyp,fxpy,fxpxp,fxpx,fxyp,fxy,f

xxp,fxx]=RBC_model; 

 

[gx,hx] = gx_hx(fy,fx,fyp,fxp) 

 

[gxx,hxx] = 

gxx_hxx(fx,fxp,fy,fyp,fypyp,fypy,fypxp,fypx,fyyp,fyy,fyxp,fyx,fxpyp,fxpy,fxpxp,fxpx,f

xyp,fxy,fxxp,fxx,hx,gx) 

 

eta=[0 1]'; 

 

[gss,hss] = 

gss_hss(fx,fxp,fy,fyp,fypyp,fypy,fypxp,fypx,fyyp,fyy,fyxp,fyx,fxpyp,fxpy,fxpxp,fxpx,fx

yp,fxy,fxxp,fxx,hx,gx,gxx,eta) 

 

4. RBC_impulse 

 

%calibration and steady states 

 

N_bar     = 1.0/3;      % Steady state employment is a third of total time endowment 

Z_bar     = 1;          % Normalization 

rho       = .36;        % Capital share 

delta     = .025;       % Depreciation rate for capital 

R_bar     = 1.01;       % One percent real interest per quarter 

eta       = 10          % constant of relative risk aversion = 1/(coeff. of intertemporal 
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substitution) 

psi       = .95;        % autocorrelation of technology shock 

 

% Calculating the steady state: 

 

betta   = 1.0/R_bar;                                    % Discount factor beta 

YK_bar  = (R_bar + delta - 1)/rho;                      % = Y_bar / K_bar 

K_bar   = (YK_bar / Z_bar)^(1.0/(rho-1)) * N_bar; 

I_bar   = delta * K_bar; 

Y_bar   = YK_bar * K_bar; 

C_bar   = Y_bar - delta*K_bar; 

A       =  C_bar^(-eta) * (1 - rho) * Y_bar/N_bar;      % Parameter in utility function 

 

%impulse response 

 

T=100;                  %time length 

 

%at first order 

 

z1=zeros(T,1); 

k1=zeros(T,1); 

c1=zeros(T,1); 

y1=zeros(T,1); 

n1=zeros(T,1); 

r1=zeros(T,1); 

esp=zeros(T,1); 

 

esp(2,1)=1;                 % 

sigma_eps=0.00712;                   %scaling parameter 
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for t=2:T 

z1(t)=hx(2,2)*z1(t-1)+sigma_eps*esp(t); 

k1(t)=hx(1,1)*k1(t-1)+hx(1,2)*z1(t-1); 

c1(t)=gx(1,1)*k1(t)+gx(1,2)*z1(t); 

n1(t)=-eta/rho*c1(t)+1/rho*z1(t)+k1(t); 

y1(t)=(1-rho)*n1(t)+z1(t)+rho*k1(t); 

r1(t)=rho*Y_bar/(K_bar*R_bar)*(y1(t)-k1(t)); 

end 

 

 

% at second order 

 

z2=zeros(T,1); 

k2=zeros(T,1); 

c2=zeros(T,1); 

y2=zeros(T,1); 

n2=zeros(T,1); 

i2=zeros(T,1); 

r2=zeros(T,1); 

 

 

for t=2:T 

z2(t)=hx(2,2)*z2(t-1)+sigma_eps*esp(t); 

k2(t)=hx(1,1)*k2(t-1)+hx(1,2)*z2(t-1)+.5*hxx(1,1,1)*k2(t-1)^2+hxx(1,2,1)*k2(t-

1)*z2(t-1)+.5*hxx(2,2,2)*z2(t-1)^2+.5*hss(1,1)*sigma_eps^2; 

c2(t)=gx(1,1)*k2(t)+gx(1,2)*z2(t)+.5*gxx(1,1,1)*k2(t)^2+gxx(1,2,1)*k2(t)*z2(t)+.5*g

xx(1,2,2)*z2(t)^2+.5*gss*sigma_eps^2; 

n2(t)=-eta/rho*c2(t)+1/rho*z2(t)+k2(t); 

y2(t)=(1-rho)*n2(t)+z2(t)+rho*k2(t); 

r2(t)=rho*Y_bar/(K_bar*R_bar)*(y2(t)-k2(t)); 
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end 

 

 

%difference of series between first order and second order 

 

difk=k2-k1; 

difc=c2-c1; 

difn=n2-n1; 

dify=y2-y1; 

difr=r2-r1; 

 

 

%plot impulse response in one graph at first order 

plot(2:T,z1(2:T),2:T,k1(2:T),2:T,c1(2:T),2:T,y1(2:T),2:T,n1(2:T),2:T,r1(2:T)); 

figure; 

 

%plot impulse response in one graph at second order 

plot(2:T,z2(2:T),2:T,k2(2:T),2:T,c2(2:T),2:T,y2(2:T),2:T,n2(2:T),2:T,r2(2:T)); 

figure; 

 

%plot techonology 

plot(2:T,z1(2:T)); 

figure; 

 

%plot k1 & k2 & their difference 

subplot(1,2,1); 

plot(2:T,k1(2:T),2:T,k2(2:T)); 

 

subplot(1,2,2); 

plot(2:T,difk(2:T)); 
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figure; 

 

%plot c1 & c2 & their difference 

subplot(1,2,1); 

plot(2:T,c1(2:T),2:T,c2(2:T)); 

 

subplot(1,2,2); 

plot(2:T,difc(2:T)); 

figure; 

 

%plot y1 & y2 & their difference 

subplot(1,2,1); 

plot(2:T,y1(2:T),2:T,y2(2:T)); 

 

subplot(1,2,2); 

plot(2:T,dify(2:T)); 

figure; 

 

%plot n1 & n2 & their difference 

subplot(1,2,1); 

plot(2:T,n1(2:T),2:T,n2(2:T)); 

 

subplot(1,2,2); 

plot(2:T,difn(2:T)); 

figure; 

 

%plot r1 & r2 & their difference 

subplot(1,2,1); 

plot(2:T,r1(2:T),2:T,r2(2:T)); 
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subplot(1,2,2); 

plot(2:T,difr(2:T)); 

figure; 

 

5. RBC_model_simulation 

 

% Calculating the steady state: 

Z_bar     = 1;    % Normalization 

rho       = .36;  % Capital share 

delta     = .025; % Depreciation rate for capital 

R_bar     = 1.01; % One percent real interest per quarter 

eta       = 10;    % constant of relative risk aversion = 1/(coeff. of intertemporal 

substitution) 

psi       = .95;  % autocorrelation of technology shock 

N_bar     = 1.0/3;      % Steady state employment is a third of total time endowment 

 

betta   = 1.0/R_bar;                                    % Discount factor beta 

YK_bar  = (R_bar + delta - 1)/rho;                      % = Y_bar / K_bar 

K_bar   = (YK_bar / Z_bar)^(1.0/(rho-1)) * N_bar; 

I_bar   = delta * K_bar; 

Y_bar   = YK_bar * K_bar; 

C_bar   = Y_bar - delta*K_bar; 

A       = C_bar^(-eta) * (1 - rho) * Y_bar/N_bar;      % Parameter in utility function 

 

%simulation parameters 

 

sigma_eps=0.00712;    %scaling parameter 

T=600;                %time length 

U=1000;                 %times of simulation 
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%simulation of first order approximation 

 

z1=zeros(T,1); 

k1=zeros(T,1); 

c1=zeros(T,1); 

y1=zeros(T,1); 

n1=zeros(T,1); 

i1=zeros(T,1); 

r1=zeros(T,1); 

simuz1=zeros(U,T); 

simuk1=zeros(U,T); 

simuc1=zeros(U,T); 

simuy1=zeros(U,T); 

simun1=zeros(U,T); 

simui1=zeros(U,T); 

simur1=zeros(U,T); 

 

 

for s1=1:U 

esp=randn(T,1); 

for t=2:T 

z1(t)=hx(2,2)*z1(t-1)+sigma_eps*esp(t); 

k1(t)=hx(1,1)*k1(t-1)+hx(1,2)*z1(t-1); 

c1(t)=gx(1,1)*k1(t)+gx(1,2)*z1(t); 

n1(t)=-eta/rho*c1(t)+1/rho*z1(t)+k1(t); 

y1(t)=(1-rho)*n1(t)+z1(t)+rho*k1(t); 

r1(t)=rho*Y_bar/(K_bar*R_bar)*(y1(t)-k1(t)); 

end 

simuz1(s1,:)=z1'; 

simuk1(s1,:)=k1'; 
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simuc1(s1,:)=c1'; 

simun1(s1,:)=n1'; 

simuy1(s1,:)=y1'; 

simur1(s1,:)=r1'; 

end 

 

 

%calculation of std deviation 

 

stdz1=mean(std(simuz1')) 

stdk1=mean(std(simuk1')) 

stdc1=mean(std(simuc1')) 

stdn1=mean(std(simun1')) 

stdy1=mean(std(simuy1')) 

stdr1=mean(std(simur1')) 

 

%calculation of correlation 

corr_zy1=zeros(U,1); 

corr_ky1=zeros(U,1); 

corr_cy1=zeros(U,1); 

corr_yy1=zeros(U,1); 

corr_ny1=zeros(U,1); 

corr_ry1=zeros(U,1); 

 

for j1=1:U 

AA=corrcoef(simuz1(j1,:),simuy1(j1,:)); 

corr_zy1(j1)=AA(1,2); 

BB=corrcoef(simuk1(j1,:),simuy1(j1,:)); 

corr_ky1(j1)=BB(1,2); 

CC=corrcoef(simuc1(j1,:),simuy1(j1,:)); 



 51

corr_cy1(j1)=CC(1,2); 

DD=corrcoef(simuy1(j1,:),simuy1(j1,:)); 

corr_yy1(j1)=DD(1,2); 

EE=corrcoef(simun1(j1,:),simuy1(j1,:)); 

corr_ny1(j1)=EE(1,2); 

FF=corrcoef(simur1(j1,:),simuy1(j1,:)); 

corr_ry1(j1)=FF(1,2); 

end 

 

cor_zy1=mean(corr_zy1) 

cor_ky1=mean(corr_ky1) 

cor_cy1=mean(corr_cy1) 

cor_yy1=mean(corr_yy1) 

cor_ny1=mean(corr_ny1) 

cor_ry1=mean(corr_ry1) 

 

 

%simulation of second order approximation 

 

 

z2=zeros(T,1); 

k2=zeros(T,1); 

c2=zeros(T,1); 

y2=zeros(T,1); 

n2=zeros(T,1); 

r2=zeros(T,1); 

simuz2=zeros(U,T); 

simuk2=zeros(U,T); 

simuc2=zeros(U,T); 

simuy2=zeros(U,T); 
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simun2=zeros(U,T); 

simur2=zeros(U,T); 

 

for s2=1:U 

esp=randn(T,1); 

for t=2:T 

z2(t)=hx(2,2)*z2(t-1)+sigma_eps*esp(t); 

k2(t)=hx(1,1)*k2(t-1)+hx(1,2)*z2(t-1)+.5*hxx(1,1,1)*k2(t-1)^2+hxx(1,2,1)*k2(t-

1)*z2(t-1)+.5*hxx(2,2,2)*z2(t-1)^2+.5*hss(1,1)*sigma_eps^2; 

c2(t)=gx(1,1)*k2(t)+gx(1,2)*z2(t)+.5*gxx(1,1,1)*k2(t)^2+gxx(1,2,1)*k2(t)*z2(t)+.5*g

xx(1,2,2)*z2(t)^2+.5*gss*sigma_eps^2; 

n2(t)=-eta/rho*c2(t)+1/rho*z2(t)+k2(t); 

y2(t)=(1-rho)*n2(t)+z2(t)+rho*k2(t); 

r2(t)=rho*Y_bar/(K_bar*R_bar)*(y2(t)-k2(t)); 

end 

simuz2(s2,:)=z2'; 

simuk2(s2,:)=k2'; 

simuc2(s2,:)=c2'; 

simun2(s2,:)=n2'; 

simuy2(s2,:)=y2'; 

simur2(s2,:)=r2'; 

end 

 

%std deviation 

 

stdz2=mean(std(simuz2')) 

stdk2=mean(std(simuk2')) 

stdc2=mean(std(simuc2')) 

stdn2=mean(std(simun2')) 

stdy2=mean(std(simuy2')) 
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stdr2=mean(std(simur2')) 

 

 

corr_zy2=zeros(U,1); 

corr_ky2=zeros(U,1); 

corr_cy2=zeros(U,1); 

corr_yy2=zeros(U,1); 

corr_ny2=zeros(U,1); 

corr_ry2=zeros(U,1); 

 

for j2=1:U 

AA=corrcoef(simuz2(j2,:),simuy2(j2,:)); 

corr_zy2(j2)=AA(1,2); 

BB=corrcoef(simuk2(j2,:),simuy2(j2,:)); 

corr_ky2(j2)=BB(1,2); 

CC=corrcoef(simuc2(j2,:),simuy2(j2,:)); 

corr_cy2(j2)=CC(1,2); 

DD=corrcoef(simuy2(j2,:),simuy2(j2,:)); 

corr_yy2(j2)=DD(1,2); 

EE=corrcoef(simun2(j2,:),simuy2(j2,:)); 

corr_ny2(j2)=EE(1,2); 

FF=corrcoef(simur2(j2,:),simuy2(j2,:)); 

corr_ry2(j2)=FF(1,2); 

end 

 

cor_zy2=mean(corr_zy2) 

cor_ky2=mean(corr_ky2) 

cor_cy2=mean(corr_cy2) 

cor_yy2=mean(corr_yy2) 

cor_ny2=mean(corr_ny2) 
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cor_ry2=mean(corr_ry2) 

 

6. anal_deriv.m 

 

function 

[fx,fxp,fy,fyp,fypyp,fypy,fypxp,fypx,fyyp,fyy,fyxp,fyx,fxpyp,fxpy,fxpxp,fxpx,fxyp,fxy,f

xxp,fxx]=anal_deriv(f,x,y,xp,yp,approx); 

% This program copmutes analytical first and second (if approx=2) derivatives of the 

function f(yp,y,xp,x) with respect to x, y, xp, and yp.  For documentation, see the paper 

``Solving Dynamic General Equilibrium Models Using a Second-Order Approximation 

to the Policy Function,'' by Stephanie Schmitt-Grohe and Martin Uribe, 2001). 

% 

%Inputs: f, x, y, xp, yp, approx 

% 

%Output: Analytical first and second derivatives of f. 

% 

%If approx is set at a value different from 2, the program delivers the first derivatives of 

f and sets second derivatives at zero. If approx equals 2, the program returns first and 

second derivatives of f. The default value of approx is 2. 

%Note: This program requires MATLAB's Symbolic Math Toolbox 

% 

%(c) Stephanie Schmitt-Grohe and Martin Uribe 

%Date July 17, 2001 

 

 

if nargin==5 

approx=2; 

end 

 

nx = size(x,2); 
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ny = size(y,2); 

nxp = size(xp,2); 

nyp = size(yp,2); 

 

n = size(f,1); 

 

%Compute the first and second derivatives of f 

fx = jacobian(f,x); 

fxp = jacobian(f,xp); 

fy = jacobian(f,y); 

fyp = jacobian(f,yp); 

 

if approx==2 

 

fypyp = reshape(jacobian(fyp(:),yp),n,nyp,nyp); 

 

fypy = reshape(jacobian(fyp(:),y),n,nyp,ny); 

 

fypxp = reshape(jacobian(fyp(:),xp),n,nyp,nxp); 

 

fypx = reshape(jacobian(fyp(:),x),n,nyp,nx); 

 

fyyp = reshape(jacobian(fy(:),yp),n,ny,nyp); 

 

fyy = reshape(jacobian(fy(:),y),n,ny,ny); 

 

fyxp = reshape(jacobian(fy(:),xp),n,ny,nxp); 

 

fyx = reshape(jacobian(fy(:),x),n,ny,nx); 
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fxpyp = reshape(jacobian(fxp(:),yp),n,nxp,nyp); 

 

fxpy = reshape(jacobian(fxp(:),y),n,nxp,ny); 

 

fxpxp = reshape(jacobian(fxp(:),xp),n,nxp,nxp); 

 

fxpx = reshape(jacobian(fxp(:),x),n,nxp,nx); 

 

fxyp = reshape(jacobian(fx(:),yp),n,nx,nyp); 

 

fxy = reshape(jacobian(fx(:),y),n,nx,ny); 

 

fxxp = reshape(jacobian(fx(:),xp),n,nx,nxp); 

 

fxx = reshape(jacobian(fx(:),x),n,nx,nx); 

 

else 

 

fypyp=0; fypy=0; fypxp=0; fypx=0; fyyp=0; fyy=0; fyxp=0; fyx=0; fxpyp=0; fxpy=0; 

fxpxp=0; fxpx=0; fxyp=0; fxy=0; fxxp=0; fxx=0; 

 

end 

 

7. num_eval.m 

 

%This program evaluates the analytical first and second (if approx=2) derivatives of f 

numerically. The parameters and steady state values of the arguments of the function f 

are assumed to be in the workspace. Also, the order of approximation must be in the 

workspace. 

% 
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%(c) Stephanie Schmitt-Grohe and Martin Uribe 

%Date July 17, 2001 

%Changed on September 25, 2001 to replace subs with eval and make it no longer a 

function. 

 

 

nfx = zeros(size(fx)); 

nfx(:) = eval(fx(:)); 

 

nfxp = zeros(size(fxp)); 

nfxp(:)= eval(fxp(:)); 

 

nfy = zeros(size(fy)); 

nfy(:) = eval(fy(:)); 

 

nfyp = zeros(size(fyp)); 

nfyp(:)= eval(fyp(:)); 

 

nf = zeros(size(f)); 

nf(:)=eval(f(:)); 

 

if approx==1 

 

%If only a first-order approximation is desired, set all second derivatives equal to zero 

nfypyp=0; nfypy=0; nfypxp=0; nfypx=0; nfyyp=0; nfyy=0; nfyxp=0; nfyx=0; nfxpyp=0; 

nfxpy=0; nfxpxp=0; nfxpx=0; nfxyp=0; nfxy=0; nfxxp=0; nfxx=0; 

 

else 

 

nfypyp=zeros(size(fypyp)); 
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nfypyp(:)=eval(fypyp(:)); 

 

nfypy=zeros(size(fypy)); 

nfypy(:)=eval(fypy(:)); 

 

nfypxp=zeros(size(fypxp)); 

nfypxp(:)=eval(fypxp(:)); 

 

nfypx=zeros(size(fypx)); 

nfypx(:)=eval(fypx(:)); 

 

nfyyp=zeros(size(fyyp)); 

nfyyp(:)=eval(fyyp(:)); 

 

nfyy=zeros(size(fyy)); 

nfyy(:)=eval(fyy(:)); 

 

nfyxp=zeros(size(fyxp)); 

nfyxp(:)=eval(fyxp(:)); 

 

nfyx=zeros(size(fyx)); 

nfyx(:)=eval(fyx(:)); 

 

nfxpyp=zeros(size(fxpyp)); 

nfxpyp(:)=eval(fxpyp(:)); 

 

nfxpy=zeros(size(fxpy)); 

nfxpy(:)=eval(fxpy(:)); 

 

nfxpxp=zeros(size(fxpxp)); 
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nfxpxp(:)=eval(fxpxp(:)); 

 

nfxpx=zeros(size(fxpx)); 

nfxpx(:)=eval(fxpx(:)); 

 

nfxyp=zeros(size(fxyp)); 

nfxyp(:)=eval(fxyp(:)); 

 

nfxy=zeros(size(fxy)); 

nfxy(:)=eval(fxy(:)); 

 

nfxxp=zeros(size(fxxp)); 

nfxxp(:)=eval(fxxp(:)); 

 

nfxx=zeros(size(fxx)); 

nfxx(:)=eval(fxx(:)); 

 

 

end 

 

8. gx_hx.m 

function [gx,hx] = gx_hx(fy,fx,fyp,fxp); 

%This program computes the matrices gx and hx that define the first-order 

approximation 

%of the DSGE model. That is, if 

%E_t[f(yp,y,xp,x)=0, then the solution is of the form 

%xp = h(x,sigma) + sigma * eta * ep 

%y = g(x,sigma). 

%The first-order approximations to the functions g and h around the point 

(x,sigma)=(xbar,0), where xbar=h(xbar,0), are: 
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%h(x,sigma) = xbar + hx (x-xbar) 

%and 

%g(x,sigma) = ybar + gx * (x-xbar), 

%where ybar=g(xbar,0). 

%Inputs: fy fyp fx fxp 

%Outputs: gx hx 

%Calls solab.m (by Paul Klein) 

%(c) Stephanie Schmitt-Grohe and Martin Uribe 

%Date July 17, 2001 

%old version 

A = [-fxp -fyp]; 

B = [fx fy ]; 

%newly changed!! 

%A = [-fxp]; 

%B = [fx]; 

 

[gx,hx]=solab(A,B,size(fx,2)); 

 

9. gxx_hxx.m 

 

function [gxx,hxx] = 

gxx_hxx(fx,fxp,fy,fyp,fypyp,fypy,fypxp,fypx,fyyp,fyy,fyxp,fyx,fxpyp,fxpy,fxpxp,fxpx,f

xyp,fxy,fxxp,fxx,hx,gx) 

 

%This program finds the 3-dimensional arrays gxx and hxx necessary to compute the 

2nd order approximation to the decision rules of a DSGE model of the form 

E_tf(yp,y,xp,x)=0, with solution xp=h(x,sigma) + sigma * eta * ep and y=g(x,sigma). 

For documentation, see the paper ``Solving Dynamic General Equilibrium Models 

Using a Second-Order Approximation to the Policy Function,'' by Stephanie Schmitt-

Grohe and Martin Uribe, 2001) 
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%INPUTS: First and second derivatives of f and first-order approximation to the 

functions g and h: 

fx,fxp,fy,fyp,fypyp,fypy,fypxp,fypx,fyyp,fyy,fyxp,fyx,fxpyp,fxpy,fxpxp,fxpx,fxyp,fxy,f

xxp,fxx,hx,gx 

 

%OUTPUTS: Second-order derivatives of the functions g and h with respect to x, 

evaluated at (x,sigma)=(xbar,0), where xbar=h(xbar,0). That is, hxx gxx 

 

% We solve a linear system of the type q = Q * x where x is a vector containing the 

elements of gxx and hxx appropritely stacked and q and Q are, respectively, a vector 

and a matrix whose elements are functions of the inputs of the program. 

 

%(c) Stephanie Schmitt-Grohe and Martin Uribe 

 

%Date July 17, 2001 

 

m=0; 

nx = size(hx,1); %rows of hx and hxx 

ny = size(gx,1); %rows of gx and gxx 

n = nx + ny; %length of f 

ngxx = nx^2*ny; %elements of gxx 

 

sg = [ny nx nx]; %size of gxx 

sh = [nx nx nx]; %size of hxx 

 

Q = zeros(n*nx*nx,n*nx*nx); 

gxx=zeros(sg); 

hxx=zeros(sh); 

GXX=zeros(sg); 
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HXX=zeros(sh); 

 

for i=1:n 

for j=1:nx 

for k=1:nx 

 

m = m+1; 

 

%First Term 

q(m,1) = ( shiftdim(fypyp(i,:,:),1) * gx * hx(:,k) + shiftdim(fypy(i,:,:),1) * gx(:,k) + 

shiftdim(fypxp(i,:,:),1) *  hx(:,k) + shiftdim(fypx(i,:,k),1) )' * gx * hx(:,j); 

 

% Second term 

 

GXX(:) = kron(ones(nx^2,1),fyp(i,:)'); 

 

pGXX = permute(GXX,[2 3 1]); 

pGXX(:) = pGXX(:) .* kron(ones(nx*ny,1),hx(:,j)); 

GXX=ipermute(pGXX,[2 3 1]); 

 

pGXX = permute(GXX,[3 1 2]); 

pGXX(:) = pGXX(:) .* kron(ones(nx*ny,1),hx(:,k)); 

GXX=ipermute(pGXX,[3 1 2]); 

 

Q(m,1:ngxx)=GXX(:)'; 

 

GXX=0*GXX; 

 

%Third term 
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HXX(:,j,k) = (fyp(i,:) * gx)'; 

 

Q(m,ngxx+1:end)=HXX(:)'; 

 

HXX = 0*HXX; 

 

%Fourth Term 

q(m,1) = q(m,1) + ( shiftdim(fyyp(i,:,:),1) * gx * hx(:,k) +  shiftdim(fyy(i,:,:),1) * gx(:,k) 

+ shiftdim(fyxp(i,:,:),1) * hx(:,k) +  shiftdim(fyx(i,:,k),1) )' * gx(:,j); 

 

%Fifth Term 

 

GXX(:,j,k)=fy(i,:)'; 

 

Q(m,1:ngxx) = Q(m,1:ngxx) + GXX(:)'; 

 

GXX = 0*GXX; 

 

%Sixth term 

q(m,1) = q(m,1) + ( shiftdim(fxpyp(i,:,:),1) * gx * hx(:,k) + shiftdim(fxpy(i,:,:),1) * 

gx(:,k) + shiftdim(fxpxp(i,:,:),1) * hx(:,k) + fxpx(i,:,k)')' * hx(:,j); 

 

 

%Seventh Term 

 

HXX(:,j,k)=fxp(i,:)'; 

 

Q(m,ngxx+1:end) = Q(m,ngxx+1:end) + HXX(:)'; 

 

HXX = 0*HXX; 
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%Eighth Term 

q(m,1) = q(m,1) +  shiftdim(fxyp(i,j,:),1) * gx * hx(:,k) +  shiftdim(fxy(i,j,:),1) * gx(:,k) 

+  shiftdim(fxxp(i,j,:),1) * hx(:,k) + fxx(i,j,k); 

 

end %k 

end %j 

end %i 

 

x=-inv(Q)*q; 

 

gxx(:)=x(1:ngxx); 

hxx(:) = x(ngxx+1:end); 

 

10. gss_hss.m 

 

function [gss,hss] = 

gss_hss(fx,fxp,fy,fyp,fypyp,fypy,fypxp,fypx,fyyp,fyy,fyxp,fyx,fxpyp,fxpy,fxpxp,fxpx,fx

yp,fxy,fxxp,fxx,hx,gx,gxx,eta) 

%Finds the vectors gss and hss necessary to compute the 2nd order approximation to 

the decision rules of a DSGE model. For documentation, see the paper ``Solving 

Dynamic General Equilibrium Models Using a Second-Order Approximation to the 

Policy Function,'' by Stephanie Schmitt-Grohe and Martin Uribe, 2001) 

 

%INPUTS: 

fx,fxp,fy,fyp,fypyp,fypy,fypxp,fypx,fyyp,fyy,fyxp,fyx,fxpyp,fxpy,fxpxp,fxpx,fxyp,fxy,f

xxp,fxx,hx,gx,gxx,eta%OUTPUTS: hss gss 

 

% We solve a linear system of the type q = Q * x where x=[gss; hss]; 
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%(c) Stephanie Schmitt-Grohe and Martin Uribe 

%Date July 17, 2001 

 

nx = size(hx,1); %rows of hx and hss 

ny = size(gx,1); %rows of gx and gss 

n = nx + ny; 

ne = size(eta,2); %number of exogenous shocks (columns of eta) 

 

for i=1:n 

 

%First Term 

Qh(i,:) = fyp(i,:) * gx; 

 

%Second Term 

q(i,1) = sum( diag( ( shiftdim(fypyp(i,:,:),1) * gx * eta)' * gx * eta )); 

 

%Third Term 

q(i,1) = q(i,1) + sum( diag(( shiftdim(fypxp(i,:,:),1) *  eta)' * gx * eta )); 

 

 

%Fourth Term 

fyp(i,:) * reshape(gxx,ny,nx^2); 

 

q(i,1) =  q(i,1) + sum( diag(( reshape(ans,nx,nx) * eta )' * eta )); 

 

%Fifth Term 

Qg(i,:) = fyp(i,:); 

 

%Sixth Term 

Qg(i,:) = Qg(i,:) + fy(i,:); 
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%Seventh Term 

Qh(i,:) = Qh(i,:) + fxp(i,:); 

 

%Eighth Term 

q(i,1) = q(i,1) + sum( diag( ( shiftdim(fxpyp(i,:,:),1) * gx * eta)' * eta )); 

 

%Nineth Term 

q(i,1) = q(i,1) + sum(diag( ( shiftdim(fxpxp(i,:,:),1) * eta)' * eta )); 

 

 

end %i 

 

x=-inv([Qg Qh])*q; 

 

gss=x(1:ny); 

 

hss = x(ny+1:end); 

 

11.qzswitch.m 

 

function [A,B,Q,Z] = qzswitch(i,A,B,Q,Z) 

%function [A,B,Q,Z] = qzswitch(i,A,B,Q,Z) 

% Written by Chris Sims 

% Takes U.T. matrices A, B, orthonormal matrices Q,Z, interchanges 

% diagonal elements i and i+1 of both A and B, while maintaining 

% Q'AZ' and Q'BZ' unchanged.  Does nothing if ratios of diagonal elements 

% in A and B at i and i+1 are the same.  Aborts if diagonal elements of 

% both A and B are zero at either position. 

% 
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a = A(i,i); d = B(i,i); b = A(i,i+1); e = B(i,i+1); 

c = A(i+1,i+1); f = B(i+1,i+1); 

wz = [c*e-f*b, (c*d-f*a)']; 

xy = [(b*d-e*a)', (c*d-f*a)']; 

n = sqrt(wz*wz'); 

m = sqrt(xy*xy'); 

if n == 0 

return 

else 

wz = n\wz; 

xy = m\xy; 

wz = [wz; -wz(2)', wz(1)']; 

xy = [xy;-xy(2)', xy(1)']; 

A(i:i+1,:) = xy*A(i:i+1,:); 

B(i:i+1,:) = xy*B(i:i+1,:); 

A(:,i:i+1) = A(:,i:i+1)*wz; 

B(:,i:i+1) = B(:,i:i+1)*wz; 

Z(:,i:i+1) = Z(:,i:i+1)*wz; 

Q(i:i+1,:) = xy*Q(i:i+1,:); 

End 

 

12. solab.m 

% 

% Function: solab 

% 

% Purpose: Solves for the recursive representation of the stable solution to a system 

% of linear difference equations. 

% 

% Inputs: Two square matrices a and b and a natural number nk 

% 
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% a and b are the coefficient matrices of the difference equation 

% 

% a*x(t+1) = b*x(t) 

% 

% where x(t) is arranged so that the state variables come first, and 

% 

% nk is the number of state variables. 

% 

% Outputs: the decision rule f and the law of motion p. If we write 

% 

% x(t) = [k(t);u(t)] where k(t) contains precisely the state variables, then 

% 

% u(t)   = f*k(t) and 

% 

% k(t+1) = p*k(t). 

% 

% Calls: reorder 

% 

 

function [f,p] = solab(a,b,nk); 

 

[s,t,q,z] = qz(a,b);            % upper triangular factorization of the matrix pencil b-za 

[s,t,q,z] = reorder(s,t,q,z);   % reordering of generalized eigenvalues in ascending order 

 

z21 = z(nk+1:end,1:nk); 

z11 = z(1:nk,1:nk); 

 

if rank(z11)<nk; 

error('Invertibility condition violated') 

end 
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z11i = z11\eye(nk); 

s11 = s(1:nk,1:nk); 

t11 = t(1:nk,1:nk); 

 

if abs(t(nk,nk))>abs(s(nk,nk)) | abs(t(nk+1,nk+1))<abs(s(nk+1,nk+1)); 

warning('Wrong number of stable eigenvalues.'); 

end 

 

dyn = s11\t11; 

 

f = real(z21*z11i);      % The real function takes away very small imaginary parts of the 

solution 

p = real(z11*dyn*z11i); 

 

13. reorder.m 

function [s,t,q,z] = reordr(s,t,q,z) 

n = size(s,1); 

i = 1; 

while i<=n-1; 

if 1+abs(t(i,i)*s(i+1,i+1))>1+abs(s(i,i)*t(i+1,i+1)); 

[s,t,q,z] = qzswitch(i,s,t,q,z); 

if ~(i==1);i = i-2;end 

end 

i=i+1; 

end 
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