

Solving RBC Models by Second Order Approximation

to the Policy Function

Master Thesis

In Pursuit of Master of Arts in Economics

Department of Economics

Humboldt University of Berlin

By

Kang, Long
MEMS

(Matrikel-Nr. 168292)

Examiners:

Prof. Harald Uhlig, Ph.D.

Mirko Wiederholt, Ph.D.
Berlin, August 15, 2003

 1

Declaration of Authorship

I hereby confirm that I have authored this master thesis independently and

without use of others than the indicated resources. All passages, which are

literally or in general matter taken out of publications or other resources,

are marked as such.

Kang, Long

Berlin, August 15, 2003

 2

Solving RBC Models by Second Order Approximation to the

Policy Function

Kang, Long

MEMS

Humboldt University of Berlin.

Abstract
This paper attempts to solve a benchmark real business cycle model by second order

approximation to the policy function. After a brief summary of recent development in

second order approximation in solving dynamic stochastic general equilibrium models,

we choose Hansen’s real business cycle model as a standard model and follow the

approach proposed by Schmitt-Grohe & Uribe (2002) to solve for the recursive law of

motion at second order. Then we do the impulse response and simulation experiment

with the second order recursive law of motion and find that the impulse response at

second order converges to a new level and the difference between first order and second

order is very small in the standard calibration but becomes larger for other values of

relative risk aversion. The calculated second moments tend to be very close between

first order and second order for all parameters tested. Moreover, we conduct a brief

theoretical comparison of the approach of approximation to the policy function with the

usual approach at first order.

 3

Contents
1. Introduction

2. Literature

3. The Model

4. Model Analysis

a. The Approach of Approximation to the policy function

b. Brief Comparison of Two Approaches

c. Solving RBC Model

5. Results

6. Variation

7. Discussion

8. Conclusion

9. Reference

10. Appendix

a. Proof

b. Matlab Codes

 4

1. Introduction

It has been well established to solve dynamic stochastic general equilibrium (DSGE)

models by first order approximation. And first order approximation is widely applied, as

it is computationally more convenient. However, its validity for various models has not

been carefully studied. We are aware of some cases in which first order approximation

leads to spurious results. For example, when people compare welfare across alternative

policies, non-linearity may matter, which makes first order approximation unreliable.

Undoubtedly, when first order approximation is not sufficient to accurately approximate

the model to the extent of our purposes, we need to resort to higher order approximation.

We will generally deal with two main questions: the first is how higher order

approximation should be accurately and effectively conducted and then what difference

it makes when we apply higher order approximation. Clearly, this paper is far from

sufficient to comprehensively answer all those questions. Instead we follow the

approach proposed by Schmitt-Grohe & Uribe (2002) and apply the second order

approximation to policy functions to solve the Hansen’s (1985) real business cycle

model, and compare the numerical results with those by the first order approximation.

Usually, we solve DSGE models by finding the decision rules from a nonlinear system

of first order conditions and other conditions that in all characterize the equilibrium.

One common way to pursue is to approximate the nonlinear system of equations around

the non-stochastic steady state by Taylor’s expansion at a certain order and then to find

the recursive law of motion from the approximated system. (In the following, we will

call this approach the usual approach.) There is plenty of literature on this topic. In the

case of first order approximation, Campbell (1994) and Uhlig (1995) employ the

method of undetermined coefficients to solve the neoclassical growth model. Blanchard

& Kahn (1980) and Sims (2000a) propose a general procedure to derive the stable

solution for a system of first order difference equations. For the case of second order

approximation, Kim et al. (2003) would be the reference showing the solution method

by second order approximation.

 5

As a different approach, Schmitt-Grohe & Uribe (2002) propose to solve DSGE models

by approximating the policy function at steady states. The unknown coefficients in

approximated policy functions are the gradients of the policy function evaluated at

steady states. They can be solved for from the fact that the differentiated non-linear

system at any order with the policy function plugged in is equal to zero.

In this paper, we compare these two approaches in some depth and prove that in the case

of first order approximation, the two approaches lead to the same equation-solving

problem. Then we choose Hansen’s real business cycle model as a standard model and

follow the approach proposed by Schmitt-Grohe & Uribe (2002) to solve for the

recursive law of motion at second order. Then we do the impulse response and

simulation experiment with the second order recursive law of motion and find that the

impulse response at second order converges to a new level due to the property of the

second order recursive law of motion and the difference of impulse response between

first order and second order is very small in the standard calibration but becomes larger

for other values of relative risk aversion. The calculated second moments tend to be

very close between first order and second order for all parameters tested.

The paper is organized as follows: In part 2, we have a brief review on some of the key

articles on first order and second order approximation. We describe the settings of

Hansen’s real business cycle (RBC) model in part 3. In part 4, we first describe in detail

the approach of approximation to the policy function by Schmitt-Grohe & Uribe (2002).

Then we make a brief comparison between the approach of approximation to the policy

function and the usual approach and prove that at first order the two approaches lead to

the same system of equations to be solved. In the third section of part 4, we specifically

solve the Hansen’s RBC model. In part 5, we present the results. We test the model with

different values of relative risk aversion in part 6. In part 7, we make some comments

on the results and the two main general questions concerning second order

approximation. Part 8 concludes.

 6

2. Literature

It is worth spending some paragraphs on first order approximation, as it is the necessary

step for higher order approximation. As a usual representation, we solve DSGE models

for the recursive law of motion in percentage deviations of level variables. To that end,

loglinearization is a common way to linearize the model and express the model in

percentage deviations. Uhlig (1995) mentions the general procedure of loglinearization

as expressing the model directly in log deviations, and then linearizing the model in log

deviations by first order Taylor’s expansion. As is known, log deviations are

approximately percentage deviations. Besides, he proposes a simple procedure for

loglinearization. That is to replace any variable tX with tx
t eXX ˆ= , where X is the

steady state and XXx tt loglogˆ −= is the log deviation, approximately the percentage

deviation from the steady state. Then txe ˆ can be replaced by tx̂1+ .

Many authors loglinearize the model by first expressing the model in logs of the level

variables and then linearizing the system of equations by Taylor’s expansion. The

linearized model is in logs of the level variables. So is the derived the recursive law of

motion. And you can very easily transform the recursive law of motion into the one in

log deviations. In fact, when we linearize the model in logs of the level variables by

Taylor expansion, we can directly achieve the model in log deviations. And then solve

the system in log deviations instead. It is worth noting that taking logs, though

convenient, is not the only way to transform the linearized models in level variables into

the ones in percentage deviations. For any equation, we can linearize its both sides by

applying first order Taylor’s expansion around steady states, and then for each variable

tX we can easily construct its percentage deviation as
X
XX

x t
t

−
=ˆ .

 7

After the linearization of the nonlinear model, we reach a dynamic system of linear

equations, from which we have to solve for the recursive law of motion. A number of

authors have developed the solution methods for solving this system of linear difference

equations. Campbell (1994) and Uhlig (1995) employ the method of undetermined

coefficients. Uhlig (1995) states the system of difference equations in matrix

expressions. So is the assumed recursive law of motion. Plugging in the assumed

recursive law of motion results in solving a matrix quadratic equation, which can be

reduced to a generalized eigenvalue problem. With the same mathematical mechanism,

Blanchard & Kahn (1980) and Sims (2000a) propose a general procedure to derive the

stable solution for a system of first order difference equations. Generally, they first

formulate the economic model in the form of systems of first order difference equations.

Then through QZ decomposition, generalized eigenvales are calculated. The difference

equations corresponding to the eigenvalues less than one are to be solved backwards.

Those corresponding to the eigenvalues more than one are to be solved forwards. One

thing worth noting is that these general solution methods for systems of first order

difference equations are crucial in that we also resort to these methods for calculating

coefficients on linear terms when we solve in the following the DSGE models by

second order approximation to the policy function.

Apart from Schmitt-Grohe & Uribe (2002), there are some other papers on second order

approximation. For example, Kim et al (2003) also propose a solution algorithm to

solve DSGE models by accurate second order approximation. They start to derive their

solution methods from first applying second order Taylor’s expansion to the whole

system of equations. They also shed some light on forecasting and simulation, local

accuracy of approximation and welfare comparison.

As an example where linear approximation may be unreliable, Kim & Kim

(forthcoming) compare the welfare based on an evaluation of the utility function using a

linear approximation to the policy function in a simple two-agent economy. They find

 8

that the linear approximation to the policy function may lead to the spurious result that

welfare is higher under autarky than full risk sharing.

Schmitt-Grohe & Uribe (2002) is the main reference which lays out a solution method

for second order approximation to the policy function. We will present their approach in

detail in part 4.

3. The Model

The RBC model to which we will apply second approximation is Hansen’s (1985) RBC

model. In this section, we briefly explain the model.

First, the social planner maximizes the representative agent’s utility as




















−

−
−∑

∞

=

−

0

1

1
1

t
t

tt AN
C

E
η

β
η

 (1)

subject to

tttttt KNKZKC)1(1
1 δρρ −+=+ −
+ (2)

ttt ZZZ εψψ ++−= −1loglog)1(log (3)

);0(...~ 2σε Ndiit ,

where E is the expectation operator; tt NC ,,, ηβ and A are respectively the discount

factor, consumption at time t , the coefficient of relative risk aversion, labor at time t ,

and the labor parameter; and δρ ,,, tt ZK and ψ are respectively the capital stock at time

t , technology at time t , the capital share, the depreciation rate and the autocorrelation

 9

of technology; tε is the exogenous shock which is identically, independently normally

distributed with standard deviation σ . Equation (2) is the budget constraint which also

includes the production function, and equation (3) is the evolution of productivity.

The relevant equilibrium conditions are:

tttttt KNKZKC)1(1
1 δρρ −+=+ −
+ (2)

[]))1((1
1

1
111 δρβ ρρηη −+= −

+
−
++

−
+

−
tttttt NKZCEC (4)

ρρη ρ −− −= tttt NKZCA)1((5)

11 loglog)1(log ++ ++−= ttt ZZZ εψψ (3)

ρρ −= 1
tttt NKZY (6)

)1(δρ −+=
t

t
t K

YR (7)

In the above equations, (4) is the first order condition for capital and (5) is the first order

condition for labor. (6) and (7) are the production function and the expression for the

interest rate respectively.

4. Model Analysis

4.1 The approach of approximation to the policy function

To solve the model by second order approximation to the policy function, we follow the

approach proposed by Schmitt-Grohe & Uribe (2002). We briefly repeat the main

procedure and arguments of their approach. They formulate the set of equilibrium

conditions of usual macroeconomic models as

 10

0),,,(11 =++ ttttt xxyyfE , (8)

where tE is the mathematical expectation operator conditional on information up to

time t . ty , of size 1×yn , is the vector of co-state variables and tx , of size 1×xn , is

the vector of state variables which include predetermined state variables and exogenous

state variables. It is defined that xy nnn += . The function f maps

xxyy nnnn RRRR ××× into nR . tx can be partitioned as

[]′= 21; ttt xxx ,

where the vector 1
tx consists of endogenous predetermined state variables and the vector

2
tx consists of exogenous state variables. 2

tx is assumed to follow the exogenous

stochastic process given by

1
22

1
~

++ +Λ= ttt xx σεθ ; (9)

),0(...~ INdiitε .

The vector 2
tx and the innovation tε are both of size 1×εn . The vector tε is

independently, identically and normally distributed with mean zero and covariance

matrix I . θ~ is of size εε nn × and consists of known parameters. 0≥σ and is in fact a

scaling parameter which scales the variance of the innovation. All eigenvalues of the

matrixΛ are assumed to be within the unit circle.

Then the solution to the model, the so-called policy function, is specified as the

following general form:

),(σtt xgy = (10)

 11

11),(++ += ttt xhx θσεσ , (11)

where g maps +× RR xn into ynR and h maps +× RR xn into xnR . θ is a εnnx ×

matrix and is given by









=

θ
θ ~

0
.

Since it is formidably difficult to derive the true form of the policy function, the best to

do is to approximate the policy function at a certain order around the non-stochastic

steady states xxt = and 0=σ . That is the central idea of this approach. And the non-

stochastic steady states are defined as vectors),(yx such that

() 0,,, =xxyyf . (12)

By applying Taylor’s expansion, the policy functions are approximated at first order as

follows:

σσ σ)0,())(0,()0,(),(xgxxxgxgxg x +−+= (13)

σσ σ)0,())(0,()0,(),(xhxxxhxhxh x +−+= . (14)

From the above equations, we drop time subscripts and use a prime to indicate variables

dated in time 1+t .

At second order, the approximated policy function is given by

[] [] [] [] [] []σσ σ
i

a
i
ax

ii xgxxxgxgxg)0,()()0,()0,(),(+−+=

[] [] []ba
i
abxx xxxxxg)()()0,(

2
1

−−+

 12

[] [] []σσ a
i
ax xxxg)()0,(

2
1

−+

[] [] [] [] [][]σσσ σσσ
i

a
i
ax xgxxxg)0,(

2
1)()0,(

2
1

+−+ (15)

[] [] [] [] [] []σσ σ
j

a
j
ax

jj xhxxxhxhxh)0,()()0,()0,(),(+−+=

[] [] []ba
j
abxx xxxxxh)()()0,(

2
1

−−+

[] [] []σσ a
j
ax xxxh)()0,(

2
1

−+

[] [] [] [] [][]σσσ σσσ
j

a
j
ax xhxxxh)0,(

2
1)()0,(

2
1

+−+ , (16)

where yni ,...,1= and xnjba ,...,1,, = . And here we use the same tenor notation as in

Schmitt-Grohe & Uribe (2002). For example, [])0,(xgxx is an xxy nnn ×× matrix and

[]iabxx xg)0,(is the),,(bai element of the second derivative of g with respect to x .

So the next step is to get the values of the unknowns in the approximated policy

functions, whether at first order or second order. We find that the unknowns are the

gradients of the policy functions evaluated at steady states. To solve for these unknowns,

we have to resort to the system of equilibrium conditions. After plugging the policy

functions into the system, we define the new system as

0),),(),,(),,),(((),(=′+′+≡ xxhxgxhgfExF t εθσσσσεθσσσ . (17)

Since),(σxF is equal to zero for any values of x and σ , the derivatives of any order

of),(σxF with respect to x and σ are equal to zero, which provides information for

solving for the unknown coefficients in the approximated policy functions.

 13

For the first order case, we have 0)0,(=xFx and 0)0,(=xFσ . Specifically we have

[] [] [] [] [] [] [] [] []ijxjx
i

xjx
i

yjxx
i

y
i
jx fhfgfhgfxF +++= ′′

β
β

α
α

βα
βα

)0,(

 0= ; (18)

[] [] [] [] [] [] [] [] [] [] [] []{ α
σα

α
σα

φβ
φ

α
βα

β
σ

α
βασ εθ gfgfgfhgfExF i

y
i

yx
i

yx
i

yt
i ++′+= ′′′)0,(

[] [] [] [] [] }φβ
φβ

β
σβ εθ ′++ ′′

i
x

i
x fhf

 [] [] [] [] [] [] [] [] []ββ
α

σα
α

σα
β

σ
α
βα x

i
x

i
y

i
yx

i
y hfgfgfhgf ′′′ +++=

 0= ; (19)

where ni ,...,1= ; xnj ,...,1, =β ; yn,...,1=α and εφ n,...,1= . (18) is a system of xnn ×

quadratic equations in the xnn × unknowns constructed by the elements of xg and

xh .(All the derivatives without apparent notation are also values evaluated at steady

states.) A number of authors have developed methods to solve for xg and xh which

lead to non-explosive paths for the state and control variables (e.g. Blanchard and Kahn

(1980), Sims (2000a)). And σg and σh can be solved for from equation (19). Since

equation (19) is linear and homogeneous in σg and σh , if a unique solution exists, it

must be true that

,0=σh

and

0=σg .

That is one of the main theoretical results of Schmitt-Grohe & Uribe (2002), which

states that generally, the size of variance of the shocks has no effect on the constant

term of the approximation to the policy function up to first order. It implies that in first

 14

order approximation the expected values of tx and ty are equal to their non-stochastic

steady-state values x and y .

Now we turn to the second order case. From the expressions of second order

approximation to policy functions (15) and (16), we see that the coefficients of first

order part xg and xh are already known from the first order case and the rest unknown

coefficients are []iabxx xg)0,(, []iax xg)0,(σ , []iax xg)0,(σ , []ixg)0,(σσ , [] jabxx xh)0,(,

[] jax xh)0,(σ , [] jax xh)0,(σ , [] jxh)0,(σσ . Those coefficients can be solved for by taking the

derivative of),(σxF with respect to x and σ twice and evaluating them at

)0,(),(xx =σ . First, from),(σxF we can calculate)0,(xg xx and)0,(xhxx . We have

[]ijkxx xF)0,(as:

[] [] [] [] [] [] [] [] []()[] []βα
βα

δ

αδ

γ

αγ

δγ
δαγ jxx

i
kxykx

i
xykx

i
yykxx

i
yy

i
jkxx hgfhfgfhgfxF ′′′′′′ +++=)0,(

 [] [] [] [] [] [] []βα
βα

βδα
βδα jkxxx

i
yjxkxxx

i
y hgfhhgf ′′ ++

 [] [] [] [] [] [] [] []()[]α
α

δ

αδ

γ

αγ

δγ
δαγ jx

i
kyxkx

i
xykx

i
yykxx

i
yy gfhfgfhgf ++++ ′′

 [] []α
α jkxx
i

y gf+

 [] [] [] [] [] [] [] []()[]ββ
δ

βδ
γ

βγ

δγ
δβγ jx

i
kxxkx

i
xxkx

i
yxkxx

i
yx hfhfgfhgf ′′′′′′ ++++

 [] []ββ jkxx
i

x hf ′+

 [] [] [] [] [] [] [] []ijkxxkx
i
jxxkx

i
jxykxx

i
jyx fhfgfhgf ++++ ′′

δ
δ

γ

γ

δγ
δγ

 0= , (20)

where ni ,...,1= ; xnkj ,...,1,,, =δβ ; and yn,...,1, =γα .

The above expression is a system of xx nnn ×× linear equations in the

xx nnn ×× unknowns which are the elements of xxg and xxh .

And from 0)0,(=xFσσ we can solve for σσg and σσh . We have)0,(xFσσ as :

 15

[] [] [] [] [] [] [] [] [] []φξβ
φ

α
β

δ
ξ

γ
δαγ

β
σσ

α
βασσ θθ IggfhgfxF xx

i
yyx

i
y

i
′′′ +=)0,(

[] [] [] [] []φξβ
φ

α
β

δ
ξαδ

θθ Igf x
i

xy ′′+

[] [] [] [] [] [] [] [] []ασσα
α

σσα
φ
ξ

β
φ

δ
ξ

α
βδα

θθ gfgfIgf i
y

i
yx

i
y +++ ′′

[] []βσσβ hf i
x′+

 [] [] [] [] [] [] [] [] []φξβ
φ

δ
ξβδ

φ
ξ

β
φ

δ
ξ

γ
δβγ

θθθθ IfIgf i
xxx

i
yx ′′′′ ++

 0= , (21)

where ni ,...,1= ; xn,...,1, =δβ ; yn,...,1, =γα ; εξφ n,...,1, = and I is the covariance

matrix of the innovation. It is a system of n linear equations in the n unknowns given by

the elements of σσg and σσh .

The last step is to solve for the cross derivatives)0,(xg xσ and)0,(xhxσ . From 0=σh

and 0=σg , we can write [])0,(xF xσ as:

[] [] [] [] [] [] [] [] [] [] []βσβ
α

σα
γα

γσα
β

σ
α
βασ jx

i
xjx

i
yjxx

i
yjxx

i
y

i
jx hfgfhgfhgfxF ′′′ +++=)0,(

0= , (22)

where ni ,...,1= ; xnj ,...,1,, =γβ ; and yn,...,1=α .

It is a system of xnn × equations in the xnn × unknowns which are the elements of xgσ

and xhσ . Since the system is homogenous in the unknowns, if a unique solution exists, it

is given by

0=xgσ ,

and

 16

0=xhσ .

Again, these equations are another main theoretical result of Schmitt-Grohe & Uribe

(2002). They imply that generally, up to second order, the size of the variance of the

shocks does not affect the coefficients of the policy function on the terms that are linear

in the state vector.

4.2 Comparison of Two Approaches

Before we proceed, it is worth making a comparison between the two approaches, as the

above approach by Schmitt-Grohe & Uribe (2002) is quite different from the one people

usually employ. We can see that at the first order approximation, the two approaches

finally lead to the same system of equations to be solved.

For first order approximation, by the usual approach, people first approximate the

nonlinear system of equations around steady states by Taylor’s expansion at first order

and then find the recursive law of motion from the approximated system. By the Uhlig

(1995)’s method of undetermined coefficients, the linear recursive law of motion is

assumed, it is plugged into the linearized system of equations and the unknown

coefficients are solved for. Now by comparison, we can see these two approaches are

virtually doing the same thing at first order case. By the approach by Schmitt-Grohe &

Uribe (2002), we first approximated the policy function at first order. And approximated

policy functions are the same as the assumed recursive law of motion in the usual

approach, also with the same unknown coefficients when transformed in a proper way.

Then by the approach of Schmitt-Grohe & Uribe (2002), we plug the policy function

into the system and calculate the unknown coefficients by differentiating the system

with respect to x and σ . This step virtually functions the same as, by the usual

approach, plugging the assumed recursive law of motion into the linearized system and

solve for the unknown coefficients from setting the sums of coefficients of each variable

 17

to zero. Finally, these two approaches result in the same equations to be solved. (Please

see a brief proof in Appendix a).

4.3 Solving the RBC model

Now we specifically apply Schmitt-Grohe & Uribe (2002)’s method to solve Hansen

(1985)’s model. First we define the vectors y and x for our model as:

[] []Ccy log==

and









=








=

Z
K

z
k

x
log
log

.

We include only three variables in the dynamic system and express them in logs. c , the

consumption, is the control variable and belongs to the vector y . k , the capital stock,

and z , technology, are the predetermined state variable and the exogenous state

variable respectively, and belong to the vector x . And the system includes the

following three equations:

ρ
ρρη

ρ ρ −
−








 −
=′+ 1

1

))exp()exp()exp()1(()exp()exp()exp()exp(
A

kzckzkc

)exp()1(kδ−+ , (24)
















 ′′′−′′′= −
−

−−− ρ
ρρη

ρηη ρρβ 1

1

1))exp()exp()exp()1(()exp()exp(()exp()exp(
A

kzckzcEc t

]))1(δ−+ , (25)

 18

εσψ ′+=′ zz . (26)

f consists of those three equations. Equations (24) and (25) are derived by plugging

equation (5) into equations (2) and (4) and expressing level variables with their logs;

equation (26) is equation (3) expressed in logs of level variables with 1=Z .

We resort to a package of Matlab programs mainly by Schmitt-Grohe & Uribe (2002) to

solve for the coefficients of the approximated policy function. In the program package,

we specifiy the settings of our model mainly in the programs RBC_model_ss.m and

RBC_model.m. (Please see the Appendix b for detail).

The advantage of expressing the system in logs is that the approximated policy

functions we get are the same as the recursive law of motion in percentage deviations.

When we obtain the recursive law of motion for c , k and z , all the other variables will

be respectively calculated from the relevant equilibrium conditions. Specifically we

have:

ρρηρ
1

)1(







 −
=

−

A
ZKCN , (27)

ρρ −= 1NZKY ,

)1(δρ −+=
K
YR .

For computational convenience, especially in simulation, we linearize the above

equations and express them in percentage deviations.

zkcn ˆ1ˆˆˆ
ρρ

η
++−= (28)

zkny ˆˆˆ)1(ˆ ++−= ρρ , (29)

 19

)ˆˆ(ˆ ky
RK
Yr −=

ρ . (30)

5. Results

We follow the calibration in Hansen (1985), which sets 99.0=β ,

36.0=ρ , 0025.0=δ , 95.0=ψ , 1=η , ,00712.0=σ 1=Z and
3
1

=N .

The coefficients of linear terms are

[]4696.05315.0=xg









−

=
9500.00000.0
1550.09420.0

xh .

The coefficients of the quadratic terms are:

[]1428.00593.0)1:,(:, −=xxg

[]2487.01428.0)2:,(:, −=xxg








 −
=

00
1186.00531.0

)1:,(:,xxh








−
=

00
2661.01186.0

)2:,(:,xxh ,

where xxg and xxh are both three dimensional matrices.

 20

The coefficients of the quadratic terms in σ are:

3148.0−=σσg









=

0
0771.0

σσh .

So we have obtained the following recursive law of motion:

At first order:

zkc ˆ4696.0ˆ5315.0ˆ +=

zkk ˆ1550.0ˆ9420.0ˆ +=′ .

At second order:

[]222 3148.0ˆ2487.0ˆˆ2856.0ˆ0593.0
2
1ˆ4696.0ˆ5315.0ˆ σ−+−++= zzkkzkc

[]222 0771.0ˆ2661.0ˆˆ2372.0ˆ0531.0
2
1ˆ1550.0ˆ9420.0ˆ σ++−++=′ zzkkzkk .

We see that the coefficients of linear terms are the same for both cases. And they are

exactly the same as those calculated by Uhlig’s (1995) toolkit programs. Compared with

first order approximation, second order approximation generates some quadratic terms

and the additional constant term that is the quadratic term of scaling parameter, namely

the standard deviation of the innovation. So we see that at first order approximation, the

volatility of shocks does not matter for the decision rule, however, it does at second

order approximation. That means at second order approximation, the economic agent

will take into account the volatility of uncertainties when he makes decisions.

Now we calculate and compare impulse responses of all variables to a one standard

 21

deviation shock to technology at first order and second order. The number of time

periods is 100. For consumption and capital, the impulse responses are to be calculated

from above recursive laws of motion. Based on recursive laws of motion for capital and

consumption, we calculate labor, output, and interest rate from equations (28)-(30).

Figures 1&2 show, at first order and second order respectively, the impulse responses of

all variables to a one standard deviation shock to technology at time 2. Figure 1 shows

the same impulse response as the one done by Uhlig’s (1995) toolkit programs except

that the capital stock is shifted one time period forward in our graph due to its different

time notation. We see Figures 1&2 are generally the same without any sharp difference.

However, when we compare the individual series in details we can see the difference of

their evolutions. Figures 3 to 7 individually show the impulse response of each variable-

- capital, consumption, output, labor and interest respectively. All graphs on the right

hand in each figure show the evolutions of each variable both at first order and second

order; all graphs on the left show their difference (second order minus first order). We

can see that the difference for each variable is very small so that in all graphs on the

right hand the two impulse response curves almost become one. Figure 1 shows that the

capital stock in both cases has a hump shape response, however their difference does

not converge to zero but to another very small number. That means that the capital stock

at second order does not converge to zero, because we know the impulse response at

first order converges to zero. This is the case for all the other variables in Figures 4-7. In

Figure 4, the consumption also has a hump shape response and their difference goes

down a bit in the negative value, and then rises up and converges to about 0.00005.

Figure 5 shows that the difference in the output goes up and converges to about

0.000016. And Figures 6&7, the difference in the labor and the interest rate converges to

about 0.000006 and -0.0000006 respectively

So we find that in our standard calibration, the difference of impulse responses between

first order and second order is very small and at second order the impulse response does

not converge to zero but to another value. We can see that in the second order recursive

 22

Figure 1

0 10 20 30 40 50 60 70 80 90 100
-2

0

2

4

6

8

10

12

14
x 10

-3

y

n

z

c

k

r

Figure 2

0 10 20 30 40 50 60 70 80 90 100
-2

0

2

4

6

8

10

12

14
x 10

-3

y

n

z

c

k

r

 23

Figure3

0 50 100
0

1

2

3

4

5

6

7

8
x 10

-3

0 50 100
0

0 .5

1

1 .5

2

2 .5

3

3 .5
x 10

-5
k 1& k 2 k 2 -k 1

Figure4

0 50 100
0

1

2

3

4

5

6
x 10

-3

0 50 100
-1

-0 .8

-0 .6

-0 .4

-0 .2

0

0 .2

0 .4

0 .6

0 .8

1
x 10

-5
c 1& c 2 c 2-c 1

 24

Figure5

0 50 100
0

0 .002

0 .004

0 .006

0 .008

0 .01

0 .012

0 .014

0 50 100
0 .2

0 .4

0 .6

0 .8

1

1 .2

1 .4

1 .6

1 .8
x 10

-5
y 1& y 2 y 2-y 1

Figure6

0 50 100
-2

0

2

4

6

8

10

12
x 10

-3

0 50 100
0

0 .5

1

1 .5

2

2 .5
x 10

-5
n1& n2 n2-n1

 25

Figure 7

0 50 100
-2

0

2

4

6
x 10

-4

0 50 100
-8

-6

-4

-2

0

2

4

6
x 10

-7
r1& r2 r2 -r1

Table 1

First order Second order

Standard

Deviation

Correlation

with output

Standard

Deviation

Correlation

with output

Technology 0.0217 0.9993 0.0218 0.9993

Capital 0.0403 0.7021 0.0406 0.7043

Consumption 0.0294 0.8641 0.0296 0.8648

Labor 0.0234 0.7826 0.0235 0.7809

Output 0.0438 1 0.0440 1

Interest 0.0011 0.4714 0.0011 0.4677

 26

law of motion, there is the quadratic term of scaling parameter, which is the constant

term in the law of motion, and it enters the law of motion at each time and causes each

variable to converge to another value rather than zero.

Now let us turn to the second moments calculated from the simulated series. The time

length is 600 and each variable is simulated for 1000 times. The variables are simulated

directly from the recursive law of motion and the series are not filtered by HP filter

before the second moments are calculated. Table 1 shows the standard deviation of each

variable and its correlation with the output at first order and second order. We find that

the second moments are very close between the two cases and some of them are even

the same at our rounding level.

6. Variation

In this section, we solve the model and calculate impulse responses and second

moments with two different values of the coefficient of relative risk aversion. Rather

than 1=η in our standard calibration, we test the model with 1.0=η and 10=η

respectively. And we have the following calculated recursive law of motion for the

consumption and the capital stock.

1.0=η

At first order:

zkc ˆ8323.3ˆ4552.1ˆ −=

zkk ˆ6131.0ˆ9420.0ˆ +=′ .

At second order:

 27

[]222 3524.248ˆ7820.11ˆˆ6670.2ˆ1943.0
2
1ˆ8323.3ˆ4552.1ˆ σ−−+−+−= zzkkzkc

[]222 2291.22ˆ7813.0ˆˆ0896.0ˆ0056.0
2
1ˆ6131.0ˆ9420.0ˆ σ++−++=′ zzkkzkk .

10=η

At first order:

zkc ˆ0894.0ˆ0723.0ˆ +=

zkk ˆ1092.0ˆ9420.0ˆ +=′ .

At second order:

[]222 9719.0ˆ0027.0ˆˆ0544.0ˆ0123.0
2
1ˆ0894.0ˆ0723.0ˆ σ−+−++= zzkkzkc

[]222 7500.1ˆ1201.0ˆˆ1748.0ˆ0732.0
2
1ˆ1092.0ˆ9420.0ˆ σ++−++=′ zzkkzkk .

By the above calculated recursive law of motion, we calculated impulse responses and

second moments from the simulated series. Figures 8-12 and Table 2 show the impulse

responses and second moments for 1.0=η , and Figure 13-17 and Table 3 for 10=η .

So when 1.0=η , we see that the difference of impulse responses of each variable

between first order and second order becomes relatively large. In Figure 8, the capital

stock at second order rise quite higher than at first order, and the difference converges to

about 0.01. In Figure 9, the consumption at second order is first below the one at first

order and then catches up and becomes higher, and the difference converges to about

0.008. In Figures 10&11, the output and the labor at second order rise up quite higher

than at first order and the difference converges to about 0.008 and 0.0075 respectively.

However, in Figure 12, the interest rate at second order first stays higher and then goes

 28

Figure 8

0 50 100
0

0 .005

0 .01

0 .015

0 .02

0 .025

0 .03

0 .035

0 .04

0 50 100
0

0 .001

0 .002

0 .003

0 .004

0 .005

0 .006

0 .007

0 .008

0 .009

0 .01
k 1& k 2 k 2-k 1

Figure 9

0 50 100
-0 .04

-0 .03

-0 .02

-0 .01

0

0 .01

0 .02

0 .03

0 .04

0 50 100
-6

-4

-2

0

2

4

6

8
x 10

-3
c 1& c 2 c 2-c 1

 29

Figure 10

0 50 100
0

0 .005

0 .01

0 .015

0 .02

0 .025

0 .03

0 .035

0 .04

0 50 100
1

2

3

4

5

6

7

8

9
x 10

-3
y 1& y 2 y 2-y 1

Figure 11

0 50 100
0

0.005

0 .01

0.015

0 .02

0.025

0 .03

0.035

0 .04

0 50 100
2

3

4

5

6

7

8
x 10

-3
n1& n2 n2-n1

 30

Figure 12

0 50 100
-2

0

2

4

6

8

10
x 10

-4

0 50 100
-5

-4

-3

-2

-1

0

1

2

3

4
x 10

-5r1& r2 r2 -r1

Figure13

0 50 100
0

1

2

3

4

5

6
x 10

-3

0 50 100
0

2

4

6

8
x 10

-4
k 1& k 2 k 2 -k 1

 31

Figure14

0 50 100
0

2

4

6

8
x 10

-4

0 50 100
-3

-2

-1

0

1

2

3

4
x 10

-5
c 1& c 2 c 2-c 1

Figure15

0 50 100
-2

0

2

4

6

8

10
x 10

-3

0 50 100
2

2 .5

3

3 .5

4

4 .5

5
x 10

-4
y 1& y 2 y 2 -y 1

 32

Figure16

0 50 100
-5

-4

-3

-2

-1

0

1

2

3
x 10

-3

0 50 100
-1

0

1

2

3

4

5

6

7

8
x 10

-4
n1& n2 n2-n1

Figure17

0 50 100
-2

0

2

4
x 10

-4

0 50 100
-2

-1 .5

-1

-0 .5

0

0 .5

1

1 .5
x 10

-5r1& r2 r2 -r1

 33

Table 2 (1.0=η)

First order Second order

Standard

Deviation

Correlation

with output

Standard

Deviation

Correlation

with output

Technology 0.0216 0.8747 0.0218 0.8749

Capital 0.1586 0.9480 0.1602 0.9483

Consumption 0.1846 0.7853 0.1863 0.7870

Labor 0.1631 0.9976 0.1646 0.9976

Output 0.1774 1 0.1791 1

Interest 0.0019 0.4811 0.0019 0.4807

Table 3 (10=η)

First order Second order

Standard

Deviation

Correlation

with output

Standard

Deviation

Correlation

with output

Technology 0.0217 0.9611 0.0217 0.9608

Capital 0.0282 0.4476 0.0282 0.4458

Consumption 0.0036 0.7653 0.0036 0.7642

Labor 0.0246 -0.2649 0.0246 -0.2623

Output 0.0210 1 0.0210 1

Interest 9.2000e-004 0.3170 9.2176e-004 0.3185

 34

below the one at first order and the difference converges to about-0.0045. When 10=η ,

we see the difference of impulse responses between first order and second order is

generally smaller than in the case of 1.0=η but still larger than 1=η .

In Tables 2&3, we can see, like in the case of 1=η , the standard deviation and the

correlation with the output of all variables are very close between first order and second

order and some of the values are the same at our rounding level.

7. Discussion

Now we return to the two main questions we have asked at the beginning. The first one

is how the higher approximation should be accurately conducted. As Schmitt-Grohe &

Uribe (2002) state, spurious results arise in the common practice of evaluating a second

order approximation to the objective function by using a first order approximation to the

decision rule. In this case, some second order terms of the equilibrium welfare function

are ignored while others not. And generally a correct second order approximation of the

equilibrium welfare function requires a second order approximation to the policy

function. So this example might be a justification for starting solving the model by

second approximation to the policy function. In this paper, we apply this approach in a

standard RBC model and find that the solution method works very well. It generates the

same results at first order approximation as those by Uhlig’s (1995) toolkit programs.

Moreover, when we compare the approach of approximation to the policy function with

the usual approach, we find that when we apply these two approaches we choose the

different starting points to approximate. In the case of first order, it has been shown that

the two approaches lead to the same results. However, when we apply higher order

approximation, the results might depend on what sort of equations we start to

approximate and how we want to formulate the solutions.

 35

The second question is what difference the second order approximation makes

compared with first order approximation. In the examples mentioned above, we know in

some cases, when we compare welfare across alternative policies, we will have to resort

to second order approximation to the decision rule to avoid spurious results. And In this

paper, we compare in some depth the numerical results of first order and second order

approximations in a standard RBC model. In parts 5&6, we see that the numerical

results from second order approximation are so often quite close to those from first

order approximation, except that in second order approximation, the volatility enters the

decision rules, which makes the second order decision rule different from the first order

one. And we are always approximating the behaviors of the economic systems we build,

and how well the approximation is done virtually depends on the question we ask. This

paper did not build up specific scenarios to test what difference the second order

approximation makes. Selecting some widely used models and their properties to test

the second order approximation with regard to the first order approximation might be a

further way to go.

8. Conclusion

In this paper, we have practiced the approach of second order approximation to the

policy function in a standard RBC model. We have theoretically compared the approach

of approximation to the policy function with the usual approach at the first order, and

prove that they lead to the same system of equations to be solved for. And we have

compared the impulse responses and calculated second moments from second order

recursive law of motion with those from first order one. We find that the impulse

response at second order converges to a new level due to the property of the second

order recursive law of motion and the difference of impulse response between first order

and second order is very small in the standard calibration but becomes larger for other

values of relative risk aversion. The calculated second moments tend to be very close

between first order and second order for all parameters tested.

 36

Appendix

a. Proof

In this section, we briefly prove that at first order the two approaches lead to the same

system of equations to be solved. For comparison convenience, we still use the Schmitt-

Grohe & Uribe (2002) notation, which formulates the general set of equilibrium

conditions of usual macroeconomic models as

0),,,(=′′ xxyyfEt , (8)

First, by Schmitt-Grohe & Uribe (2002) approach, we have the general form of the

policy functions and the first order approximated ones as follows:

),(σxgy = , (10)

εθσσ ′+=′),(xhx , (11)

σσ σ)0,())(0,()0,(),(xgxxxgxgxg x +−+= (13)

σσ σ)0,())(0,()0,(),(xhxxxhxhxh x +−+= . (14)

And we solve for those coefficients)0,(xg x ,)0,(xhx ,)0,(xgσ and)0,(xhσ from

0)0,(=xFx and 0)0,(=xFσ as follows:

[] [] [] [] [] [] [] [] []ijxjx
i

xjx
i

yjxx
i

y
i
jx fhfgfhgfxF +++= ′′

β
β

α

α

βα
βα

)0,(

 0= ;

[] [] [] [] [] [] [] [] [] [] [] []{ α
σα

α
σα

φβ
φ

α
βα

β
σ

α
βασ εθ gfgfgfhgfExF i

y
i

yx
i

yx
i

yt
i ++′+= ′′′)0,(

[] [] [] [] [] }φβ
φβ

β
σβ εθ ′++ ′′

i
x

i
x fhf

 [] [] [] [] [] [] [] [] []ββ
α

σα

α
σα

β
σ

α
βα x

i
x

i
y

i
yx

i
y hfgfgfhgf ′′′ +++=

 0= .

 37

where ni ,...,1= ; xnj ,...,1, =β ; yn,...,1=α and εφ n,...,1= .

Now, we employ the usual approach. We first linearize the whole system (8),

[] [] [] [] [] [] [] [] 0)(=+′++′ ′′
β

β
β

β
α

α
α

α
dxfxdfdyfydfE i

x
i

x
i

y
i

yt ; (31)

;,...,1 ni = ;,...,1 yn=α xn,...,1=β ,

where yyyd −′=′ , yydy −= , xxxd −′=′ and xxdx −= , and (31) is a system of n

equations.

Then we assume the recursive law of motion as

σQPdxdy += ; (32)

εησσ ′++=′ NMdxxd . (33)

They are the same as the approximated policy function in the above approach and

coefficient matrices P , M , Q , and N are respectively)0,(xg x ,)0,(xhx ,)0,(xgσ and

)0,(xhσ . Plugging equations (32) and (33) into (31), we have

[] [] [] []α
α

α

α
σσεησσ QPdxfQPPNPMdxfE i

y
i

yt +++′++′(

[] [] [] [] 0) =+′+++ ′
β

β
β

β εησσ dxfNMdxf i
x

i
x ,

[] [] [] [] [] [] [] []()[] ji
jxjx

i
xjx

i
yjxx

i
y dxfhfgfhgf +++ ′′

β
β

α

α

βα
βα

[] [] [] [] [] [] [] [] []()[] 0=++++ ′′′ σβ
β

α
σα

α
σα

β
σ

α
βα x

i
x

i
y

i
yx

i
y hfgfgfhgf .

As the above equation has to be zero for any values of x and σ , the sum of the

coefficients of each variables has to be zero. Then we have

[] [] [] [] [] [] [] [] 0=+++ ′′
i
jxjx

i
xjx

i
yjxx

i
y fhfgfhgf β

β
α

α

βα
βα

,

 38

[] [] [] [] [] [] [] [] [] 0=+++ ′′′
β

β
α

σα
α

σα
β

σ
α
βα x

i
x

i
y

i
yx

i
y hfgfgfhgf .

It is the same system of equations as the one to be solved for unknown coefficients in

the approximated policy function.

 39

b. Matlab Codes

1. RBC_model.m

function

[nfx,nfxp,nfy,nfyp,nfypyp,nfypy,nfypxp,nfypx,nfyyp,nfyy,nfyxp,nfyx,nfxpyp,nfxpy,nfx

pxp,nfxpx,nfxyp,nfxy,nfxxp,nfxx] = RBC_model

%This program computes numerical first and second derivatives of the function f for

the simple neoclassical growth model described in section 2.1 of ``Solving Dynamic

General Equilibrium Models Using a Second-Order Approximation to the Policy

Function,'' by Stephanie Schmitt-Grohe and Martin Uribe, (2001). Unlike the example

in section 2.1, here y and x are defined as log(c) and [log(k); log(A)] respectively. The

function f defines the DSGE model:

% E_t f(yp,y,xp,x) =0.

%

%Inputs: none

%

%Output: Numerical first and second derivatives of f

%

%Calls: anal_deriv.m num_eval.m RBC_model_ss.m

%

%(c) Stephanie Schmitt-Grohe and Martin Uribe

%Date July 17, 2001

%Define parameters

syms SIG DELLTA ALFA BETTA RHO A

%Define variables

syms c cp k kp a ap

%Write equations ei, i=1:3

e1 = exp(c) + exp(kp) - (1-DELLTA) * exp(k) - exp(a) * exp(k)^ALFA*((A/(exp(c)^(-

 40

SIG)*(1-ALFA)*exp(a)*exp(k)^ALFA))^(-1/ALFA))^(1-ALFA);

e2 = exp(c)^(-SIG) - BETTA * exp(cp)^(-SIG) * (exp(ap) * ALFA *((A/(exp(cp)^(-

SIG)*(1-ALFA)*exp(ap)*exp(kp)^ALFA))^(-1/ALFA))^(1-ALFA)* exp(kp)^(ALFA-1)

+ 1 - DELLTA);

e3 = ap - RHO * a;

%Create function f

f = [e1;e2;e3];

% Define the vector of controls, y, and states, x

x = [k a];

y = [c];

xp = [kp ap];

yp = [cp];

nx = length(x);

ny = length(y);

%Compute analytical derivatives of f

[fx,fxp,fy,fyp,fypyp,fypy,fypxp,fypx,fyyp,fyy,fyxp,fyx,fxpyp,fxpy,fxpxp,fxpx,fxyp,fxy,f

xxp,fxx]=anal_deriv(f,x,y,xp,yp);

%Numerical Evaluation

%Steady State and Parameter Values

[SIG,DELLTA,ALFA,BETTA,RHO,A,c,cp,k,kp,a,ap,]=RBC_model_ss;

%Order of approximation desired

approx = 2;

%Obtain numerical derivatives of f

num_eval

2. RBC_model_ss.m

 41

function

[nSIGMA,nDELTA,nALFA,nBETTA,nRHO,nA,nc,ncp,nk,nkp,na,nap,nn,nnp]=RBC_m

odel_ss

%This program produces the the deep structural parameters and computes the steady

state of the simple neoclassical growth model described in section 2.1 of ``Solving

Dynamic General Equilibrium Models Using a Second-Order Approximation to the

Policy Function,'' by Stephanie Schmitt-Grohe and Martin Uribe, (2001).

%

%(c) Stephanie Schmitt-Grohe and Martin Uribe

%Date July 17, 2001

nBETTA=1/1.01; %discount rate

nDELTA=0.025; %depreciation rate

nALFA=0.36; %capital share

nRHO=0.95; %persistence of technology shock

nSIGMA=10; %intertemporal elasticity of substitution

n = 1/3; %labor share

a = 1; %steady-state value of technology shock

k = ((1/nBETTA+nDELTA-1)/(nALFA*n^(1-nALFA)))^(1/(nALFA-1)); %steady-

state value of capital

c = a * k^(nALFA)*n^(1-nALFA)-nDELTA*k; %steady-state value of

consumption

nA= c^(-nSIGMA)*(1-nALFA)*k^(nALFA)*n^(-nALFA); %labor parameter

na = log(a);

nk = log(k);

nc = log(c);

nn = log(n);

 42

nap=na;

nkp=nk;

ncp=nc;

nnp=nn;

3. RBC_model_run.m

%This program computes a second-order approximation to the policy functions of a

simple neoclassical model (see ``Solving Dynamic General Equilibrium Models Using a

Second-Order Approximation to the Policy Function,'' by Stephanie Schmitt-Grohe and

Martin Uribe, (2001). The reduced form of the model can be written as:

%E_t[f(yp,y,xp,x)=0,

%The solution is of the form

%xp = h(x,sigma) + sigma* eta * ep

%y = g(x,sigma)

%The quadratic approximation to these functions are (in tensor notation) [Notation: x is

x_t and xp is x_t+1, variables are expressed in log-deviations from their steady state

value]

%xp^i = hx^i_a x_a + 1/2 [hxx^i_ab x_a x_b + hss^i sigma^2] + sigma* eta^i_c ep_c

%y^i = gx^i_a x_a + 1/2 [gxx^i_ab x_a x_b + gss^i sigma^2]

%

%where

% hx is nx by nx

% gx is ny by nx

% hxx is nx by nx by nx

% gxx is ny by nx by nx

% eta is nx by ne

% gss is ny by 1

% hss is nx by 1

% sigma is a positive scalar

 43

%Calls: neoclassical_model.m gx_hx.m gxx_hxx.m gss_hss.m

%

%(c) Stephanie Schmitt-Grohe and Martin Uribe

%Date July 17, 2001

[fx,fxp,fy,fyp,fypyp,fypy,fypxp,fypx,fyyp,fyy,fyxp,fyx,fxpyp,fxpy,fxpxp,fxpx,fxyp,fxy,f

xxp,fxx]=RBC_model;

[gx,hx] = gx_hx(fy,fx,fyp,fxp)

[gxx,hxx] =

gxx_hxx(fx,fxp,fy,fyp,fypyp,fypy,fypxp,fypx,fyyp,fyy,fyxp,fyx,fxpyp,fxpy,fxpxp,fxpx,f

xyp,fxy,fxxp,fxx,hx,gx)

eta=[0 1]';

[gss,hss] =

gss_hss(fx,fxp,fy,fyp,fypyp,fypy,fypxp,fypx,fyyp,fyy,fyxp,fyx,fxpyp,fxpy,fxpxp,fxpx,fx

yp,fxy,fxxp,fxx,hx,gx,gxx,eta)

4. RBC_impulse

%calibration and steady states

N_bar = 1.0/3; % Steady state employment is a third of total time endowment

Z_bar = 1; % Normalization

rho = .36; % Capital share

delta = .025; % Depreciation rate for capital

R_bar = 1.01; % One percent real interest per quarter

eta = 10 % constant of relative risk aversion = 1/(coeff. of intertemporal

 44

substitution)

psi = .95; % autocorrelation of technology shock

% Calculating the steady state:

betta = 1.0/R_bar; % Discount factor beta

YK_bar = (R_bar + delta - 1)/rho; % = Y_bar / K_bar

K_bar = (YK_bar / Z_bar)^(1.0/(rho-1)) * N_bar;

I_bar = delta * K_bar;

Y_bar = YK_bar * K_bar;

C_bar = Y_bar - delta*K_bar;

A = C_bar^(-eta) * (1 - rho) * Y_bar/N_bar; % Parameter in utility function

%impulse response

T=100; %time length

%at first order

z1=zeros(T,1);

k1=zeros(T,1);

c1=zeros(T,1);

y1=zeros(T,1);

n1=zeros(T,1);

r1=zeros(T,1);

esp=zeros(T,1);

esp(2,1)=1; %

sigma_eps=0.00712; %scaling parameter

 45

for t=2:T

z1(t)=hx(2,2)*z1(t-1)+sigma_eps*esp(t);

k1(t)=hx(1,1)*k1(t-1)+hx(1,2)*z1(t-1);

c1(t)=gx(1,1)*k1(t)+gx(1,2)*z1(t);

n1(t)=-eta/rho*c1(t)+1/rho*z1(t)+k1(t);

y1(t)=(1-rho)*n1(t)+z1(t)+rho*k1(t);

r1(t)=rho*Y_bar/(K_bar*R_bar)*(y1(t)-k1(t));

end

% at second order

z2=zeros(T,1);

k2=zeros(T,1);

c2=zeros(T,1);

y2=zeros(T,1);

n2=zeros(T,1);

i2=zeros(T,1);

r2=zeros(T,1);

for t=2:T

z2(t)=hx(2,2)*z2(t-1)+sigma_eps*esp(t);

k2(t)=hx(1,1)*k2(t-1)+hx(1,2)*z2(t-1)+.5*hxx(1,1,1)*k2(t-1)^2+hxx(1,2,1)*k2(t-

1)*z2(t-1)+.5*hxx(2,2,2)*z2(t-1)^2+.5*hss(1,1)*sigma_eps^2;

c2(t)=gx(1,1)*k2(t)+gx(1,2)*z2(t)+.5*gxx(1,1,1)*k2(t)^2+gxx(1,2,1)*k2(t)*z2(t)+.5*g

xx(1,2,2)*z2(t)^2+.5*gss*sigma_eps^2;

n2(t)=-eta/rho*c2(t)+1/rho*z2(t)+k2(t);

y2(t)=(1-rho)*n2(t)+z2(t)+rho*k2(t);

r2(t)=rho*Y_bar/(K_bar*R_bar)*(y2(t)-k2(t));

 46

end

%difference of series between first order and second order

difk=k2-k1;

difc=c2-c1;

difn=n2-n1;

dify=y2-y1;

difr=r2-r1;

%plot impulse response in one graph at first order

plot(2:T,z1(2:T),2:T,k1(2:T),2:T,c1(2:T),2:T,y1(2:T),2:T,n1(2:T),2:T,r1(2:T));

figure;

%plot impulse response in one graph at second order

plot(2:T,z2(2:T),2:T,k2(2:T),2:T,c2(2:T),2:T,y2(2:T),2:T,n2(2:T),2:T,r2(2:T));

figure;

%plot techonology

plot(2:T,z1(2:T));

figure;

%plot k1 & k2 & their difference

subplot(1,2,1);

plot(2:T,k1(2:T),2:T,k2(2:T));

subplot(1,2,2);

plot(2:T,difk(2:T));

 47

figure;

%plot c1 & c2 & their difference

subplot(1,2,1);

plot(2:T,c1(2:T),2:T,c2(2:T));

subplot(1,2,2);

plot(2:T,difc(2:T));

figure;

%plot y1 & y2 & their difference

subplot(1,2,1);

plot(2:T,y1(2:T),2:T,y2(2:T));

subplot(1,2,2);

plot(2:T,dify(2:T));

figure;

%plot n1 & n2 & their difference

subplot(1,2,1);

plot(2:T,n1(2:T),2:T,n2(2:T));

subplot(1,2,2);

plot(2:T,difn(2:T));

figure;

%plot r1 & r2 & their difference

subplot(1,2,1);

plot(2:T,r1(2:T),2:T,r2(2:T));

 48

subplot(1,2,2);

plot(2:T,difr(2:T));

figure;

5. RBC_model_simulation

% Calculating the steady state:

Z_bar = 1; % Normalization

rho = .36; % Capital share

delta = .025; % Depreciation rate for capital

R_bar = 1.01; % One percent real interest per quarter

eta = 10; % constant of relative risk aversion = 1/(coeff. of intertemporal

substitution)

psi = .95; % autocorrelation of technology shock

N_bar = 1.0/3; % Steady state employment is a third of total time endowment

betta = 1.0/R_bar; % Discount factor beta

YK_bar = (R_bar + delta - 1)/rho; % = Y_bar / K_bar

K_bar = (YK_bar / Z_bar)^(1.0/(rho-1)) * N_bar;

I_bar = delta * K_bar;

Y_bar = YK_bar * K_bar;

C_bar = Y_bar - delta*K_bar;

A = C_bar^(-eta) * (1 - rho) * Y_bar/N_bar; % Parameter in utility function

%simulation parameters

sigma_eps=0.00712; %scaling parameter

T=600; %time length

U=1000; %times of simulation

 49

%simulation of first order approximation

z1=zeros(T,1);

k1=zeros(T,1);

c1=zeros(T,1);

y1=zeros(T,1);

n1=zeros(T,1);

i1=zeros(T,1);

r1=zeros(T,1);

simuz1=zeros(U,T);

simuk1=zeros(U,T);

simuc1=zeros(U,T);

simuy1=zeros(U,T);

simun1=zeros(U,T);

simui1=zeros(U,T);

simur1=zeros(U,T);

for s1=1:U

esp=randn(T,1);

for t=2:T

z1(t)=hx(2,2)*z1(t-1)+sigma_eps*esp(t);

k1(t)=hx(1,1)*k1(t-1)+hx(1,2)*z1(t-1);

c1(t)=gx(1,1)*k1(t)+gx(1,2)*z1(t);

n1(t)=-eta/rho*c1(t)+1/rho*z1(t)+k1(t);

y1(t)=(1-rho)*n1(t)+z1(t)+rho*k1(t);

r1(t)=rho*Y_bar/(K_bar*R_bar)*(y1(t)-k1(t));

end

simuz1(s1,:)=z1';

simuk1(s1,:)=k1';

 50

simuc1(s1,:)=c1';

simun1(s1,:)=n1';

simuy1(s1,:)=y1';

simur1(s1,:)=r1';

end

%calculation of std deviation

stdz1=mean(std(simuz1'))

stdk1=mean(std(simuk1'))

stdc1=mean(std(simuc1'))

stdn1=mean(std(simun1'))

stdy1=mean(std(simuy1'))

stdr1=mean(std(simur1'))

%calculation of correlation

corr_zy1=zeros(U,1);

corr_ky1=zeros(U,1);

corr_cy1=zeros(U,1);

corr_yy1=zeros(U,1);

corr_ny1=zeros(U,1);

corr_ry1=zeros(U,1);

for j1=1:U

AA=corrcoef(simuz1(j1,:),simuy1(j1,:));

corr_zy1(j1)=AA(1,2);

BB=corrcoef(simuk1(j1,:),simuy1(j1,:));

corr_ky1(j1)=BB(1,2);

CC=corrcoef(simuc1(j1,:),simuy1(j1,:));

 51

corr_cy1(j1)=CC(1,2);

DD=corrcoef(simuy1(j1,:),simuy1(j1,:));

corr_yy1(j1)=DD(1,2);

EE=corrcoef(simun1(j1,:),simuy1(j1,:));

corr_ny1(j1)=EE(1,2);

FF=corrcoef(simur1(j1,:),simuy1(j1,:));

corr_ry1(j1)=FF(1,2);

end

cor_zy1=mean(corr_zy1)

cor_ky1=mean(corr_ky1)

cor_cy1=mean(corr_cy1)

cor_yy1=mean(corr_yy1)

cor_ny1=mean(corr_ny1)

cor_ry1=mean(corr_ry1)

%simulation of second order approximation

z2=zeros(T,1);

k2=zeros(T,1);

c2=zeros(T,1);

y2=zeros(T,1);

n2=zeros(T,1);

r2=zeros(T,1);

simuz2=zeros(U,T);

simuk2=zeros(U,T);

simuc2=zeros(U,T);

simuy2=zeros(U,T);

 52

simun2=zeros(U,T);

simur2=zeros(U,T);

for s2=1:U

esp=randn(T,1);

for t=2:T

z2(t)=hx(2,2)*z2(t-1)+sigma_eps*esp(t);

k2(t)=hx(1,1)*k2(t-1)+hx(1,2)*z2(t-1)+.5*hxx(1,1,1)*k2(t-1)^2+hxx(1,2,1)*k2(t-

1)*z2(t-1)+.5*hxx(2,2,2)*z2(t-1)^2+.5*hss(1,1)*sigma_eps^2;

c2(t)=gx(1,1)*k2(t)+gx(1,2)*z2(t)+.5*gxx(1,1,1)*k2(t)^2+gxx(1,2,1)*k2(t)*z2(t)+.5*g

xx(1,2,2)*z2(t)^2+.5*gss*sigma_eps^2;

n2(t)=-eta/rho*c2(t)+1/rho*z2(t)+k2(t);

y2(t)=(1-rho)*n2(t)+z2(t)+rho*k2(t);

r2(t)=rho*Y_bar/(K_bar*R_bar)*(y2(t)-k2(t));

end

simuz2(s2,:)=z2';

simuk2(s2,:)=k2';

simuc2(s2,:)=c2';

simun2(s2,:)=n2';

simuy2(s2,:)=y2';

simur2(s2,:)=r2';

end

%std deviation

stdz2=mean(std(simuz2'))

stdk2=mean(std(simuk2'))

stdc2=mean(std(simuc2'))

stdn2=mean(std(simun2'))

stdy2=mean(std(simuy2'))

 53

stdr2=mean(std(simur2'))

corr_zy2=zeros(U,1);

corr_ky2=zeros(U,1);

corr_cy2=zeros(U,1);

corr_yy2=zeros(U,1);

corr_ny2=zeros(U,1);

corr_ry2=zeros(U,1);

for j2=1:U

AA=corrcoef(simuz2(j2,:),simuy2(j2,:));

corr_zy2(j2)=AA(1,2);

BB=corrcoef(simuk2(j2,:),simuy2(j2,:));

corr_ky2(j2)=BB(1,2);

CC=corrcoef(simuc2(j2,:),simuy2(j2,:));

corr_cy2(j2)=CC(1,2);

DD=corrcoef(simuy2(j2,:),simuy2(j2,:));

corr_yy2(j2)=DD(1,2);

EE=corrcoef(simun2(j2,:),simuy2(j2,:));

corr_ny2(j2)=EE(1,2);

FF=corrcoef(simur2(j2,:),simuy2(j2,:));

corr_ry2(j2)=FF(1,2);

end

cor_zy2=mean(corr_zy2)

cor_ky2=mean(corr_ky2)

cor_cy2=mean(corr_cy2)

cor_yy2=mean(corr_yy2)

cor_ny2=mean(corr_ny2)

 54

cor_ry2=mean(corr_ry2)

6. anal_deriv.m

function

[fx,fxp,fy,fyp,fypyp,fypy,fypxp,fypx,fyyp,fyy,fyxp,fyx,fxpyp,fxpy,fxpxp,fxpx,fxyp,fxy,f

xxp,fxx]=anal_deriv(f,x,y,xp,yp,approx);

% This program copmutes analytical first and second (if approx=2) derivatives of the

function f(yp,y,xp,x) with respect to x, y, xp, and yp. For documentation, see the paper

``Solving Dynamic General Equilibrium Models Using a Second-Order Approximation

to the Policy Function,'' by Stephanie Schmitt-Grohe and Martin Uribe, 2001).

%

%Inputs: f, x, y, xp, yp, approx

%

%Output: Analytical first and second derivatives of f.

%

%If approx is set at a value different from 2, the program delivers the first derivatives of

f and sets second derivatives at zero. If approx equals 2, the program returns first and

second derivatives of f. The default value of approx is 2.

%Note: This program requires MATLAB's Symbolic Math Toolbox

%

%(c) Stephanie Schmitt-Grohe and Martin Uribe

%Date July 17, 2001

if nargin==5

approx=2;

end

nx = size(x,2);

 55

ny = size(y,2);

nxp = size(xp,2);

nyp = size(yp,2);

n = size(f,1);

%Compute the first and second derivatives of f

fx = jacobian(f,x);

fxp = jacobian(f,xp);

fy = jacobian(f,y);

fyp = jacobian(f,yp);

if approx==2

fypyp = reshape(jacobian(fyp(:),yp),n,nyp,nyp);

fypy = reshape(jacobian(fyp(:),y),n,nyp,ny);

fypxp = reshape(jacobian(fyp(:),xp),n,nyp,nxp);

fypx = reshape(jacobian(fyp(:),x),n,nyp,nx);

fyyp = reshape(jacobian(fy(:),yp),n,ny,nyp);

fyy = reshape(jacobian(fy(:),y),n,ny,ny);

fyxp = reshape(jacobian(fy(:),xp),n,ny,nxp);

fyx = reshape(jacobian(fy(:),x),n,ny,nx);

 56

fxpyp = reshape(jacobian(fxp(:),yp),n,nxp,nyp);

fxpy = reshape(jacobian(fxp(:),y),n,nxp,ny);

fxpxp = reshape(jacobian(fxp(:),xp),n,nxp,nxp);

fxpx = reshape(jacobian(fxp(:),x),n,nxp,nx);

fxyp = reshape(jacobian(fx(:),yp),n,nx,nyp);

fxy = reshape(jacobian(fx(:),y),n,nx,ny);

fxxp = reshape(jacobian(fx(:),xp),n,nx,nxp);

fxx = reshape(jacobian(fx(:),x),n,nx,nx);

else

fypyp=0; fypy=0; fypxp=0; fypx=0; fyyp=0; fyy=0; fyxp=0; fyx=0; fxpyp=0; fxpy=0;

fxpxp=0; fxpx=0; fxyp=0; fxy=0; fxxp=0; fxx=0;

end

7. num_eval.m

%This program evaluates the analytical first and second (if approx=2) derivatives of f

numerically. The parameters and steady state values of the arguments of the function f

are assumed to be in the workspace. Also, the order of approximation must be in the

workspace.

%

 57

%(c) Stephanie Schmitt-Grohe and Martin Uribe

%Date July 17, 2001

%Changed on September 25, 2001 to replace subs with eval and make it no longer a

function.

nfx = zeros(size(fx));

nfx(:) = eval(fx(:));

nfxp = zeros(size(fxp));

nfxp(:)= eval(fxp(:));

nfy = zeros(size(fy));

nfy(:) = eval(fy(:));

nfyp = zeros(size(fyp));

nfyp(:)= eval(fyp(:));

nf = zeros(size(f));

nf(:)=eval(f(:));

if approx==1

%If only a first-order approximation is desired, set all second derivatives equal to zero

nfypyp=0; nfypy=0; nfypxp=0; nfypx=0; nfyyp=0; nfyy=0; nfyxp=0; nfyx=0; nfxpyp=0;

nfxpy=0; nfxpxp=0; nfxpx=0; nfxyp=0; nfxy=0; nfxxp=0; nfxx=0;

else

nfypyp=zeros(size(fypyp));

 58

nfypyp(:)=eval(fypyp(:));

nfypy=zeros(size(fypy));

nfypy(:)=eval(fypy(:));

nfypxp=zeros(size(fypxp));

nfypxp(:)=eval(fypxp(:));

nfypx=zeros(size(fypx));

nfypx(:)=eval(fypx(:));

nfyyp=zeros(size(fyyp));

nfyyp(:)=eval(fyyp(:));

nfyy=zeros(size(fyy));

nfyy(:)=eval(fyy(:));

nfyxp=zeros(size(fyxp));

nfyxp(:)=eval(fyxp(:));

nfyx=zeros(size(fyx));

nfyx(:)=eval(fyx(:));

nfxpyp=zeros(size(fxpyp));

nfxpyp(:)=eval(fxpyp(:));

nfxpy=zeros(size(fxpy));

nfxpy(:)=eval(fxpy(:));

nfxpxp=zeros(size(fxpxp));

 59

nfxpxp(:)=eval(fxpxp(:));

nfxpx=zeros(size(fxpx));

nfxpx(:)=eval(fxpx(:));

nfxyp=zeros(size(fxyp));

nfxyp(:)=eval(fxyp(:));

nfxy=zeros(size(fxy));

nfxy(:)=eval(fxy(:));

nfxxp=zeros(size(fxxp));

nfxxp(:)=eval(fxxp(:));

nfxx=zeros(size(fxx));

nfxx(:)=eval(fxx(:));

end

8. gx_hx.m

function [gx,hx] = gx_hx(fy,fx,fyp,fxp);

%This program computes the matrices gx and hx that define the first-order

approximation

%of the DSGE model. That is, if

%E_t[f(yp,y,xp,x)=0, then the solution is of the form

%xp = h(x,sigma) + sigma * eta * ep

%y = g(x,sigma).

%The first-order approximations to the functions g and h around the point

(x,sigma)=(xbar,0), where xbar=h(xbar,0), are:

 60

%h(x,sigma) = xbar + hx (x-xbar)

%and

%g(x,sigma) = ybar + gx * (x-xbar),

%where ybar=g(xbar,0).

%Inputs: fy fyp fx fxp

%Outputs: gx hx

%Calls solab.m (by Paul Klein)

%(c) Stephanie Schmitt-Grohe and Martin Uribe

%Date July 17, 2001

%old version

A = [-fxp -fyp];

B = [fx fy];

%newly changed!!

%A = [-fxp];

%B = [fx];

[gx,hx]=solab(A,B,size(fx,2));

9. gxx_hxx.m

function [gxx,hxx] =

gxx_hxx(fx,fxp,fy,fyp,fypyp,fypy,fypxp,fypx,fyyp,fyy,fyxp,fyx,fxpyp,fxpy,fxpxp,fxpx,f

xyp,fxy,fxxp,fxx,hx,gx)

%This program finds the 3-dimensional arrays gxx and hxx necessary to compute the

2nd order approximation to the decision rules of a DSGE model of the form

E_tf(yp,y,xp,x)=0, with solution xp=h(x,sigma) + sigma * eta * ep and y=g(x,sigma).

For documentation, see the paper ``Solving Dynamic General Equilibrium Models

Using a Second-Order Approximation to the Policy Function,'' by Stephanie Schmitt-

Grohe and Martin Uribe, 2001)

 61

%INPUTS: First and second derivatives of f and first-order approximation to the

functions g and h:

fx,fxp,fy,fyp,fypyp,fypy,fypxp,fypx,fyyp,fyy,fyxp,fyx,fxpyp,fxpy,fxpxp,fxpx,fxyp,fxy,f

xxp,fxx,hx,gx

%OUTPUTS: Second-order derivatives of the functions g and h with respect to x,

evaluated at (x,sigma)=(xbar,0), where xbar=h(xbar,0). That is, hxx gxx

% We solve a linear system of the type q = Q * x where x is a vector containing the

elements of gxx and hxx appropritely stacked and q and Q are, respectively, a vector

and a matrix whose elements are functions of the inputs of the program.

%(c) Stephanie Schmitt-Grohe and Martin Uribe

%Date July 17, 2001

m=0;

nx = size(hx,1); %rows of hx and hxx

ny = size(gx,1); %rows of gx and gxx

n = nx + ny; %length of f

ngxx = nx^2*ny; %elements of gxx

sg = [ny nx nx]; %size of gxx

sh = [nx nx nx]; %size of hxx

Q = zeros(n*nx*nx,n*nx*nx);

gxx=zeros(sg);

hxx=zeros(sh);

GXX=zeros(sg);

 62

HXX=zeros(sh);

for i=1:n

for j=1:nx

for k=1:nx

m = m+1;

%First Term

q(m,1) = (shiftdim(fypyp(i,:,:),1) * gx * hx(:,k) + shiftdim(fypy(i,:,:),1) * gx(:,k) +

shiftdim(fypxp(i,:,:),1) * hx(:,k) + shiftdim(fypx(i,:,k),1))' * gx * hx(:,j);

% Second term

GXX(:) = kron(ones(nx^2,1),fyp(i,:)');

pGXX = permute(GXX,[2 3 1]);

pGXX(:) = pGXX(:) .* kron(ones(nx*ny,1),hx(:,j));

GXX=ipermute(pGXX,[2 3 1]);

pGXX = permute(GXX,[3 1 2]);

pGXX(:) = pGXX(:) .* kron(ones(nx*ny,1),hx(:,k));

GXX=ipermute(pGXX,[3 1 2]);

Q(m,1:ngxx)=GXX(:)';

GXX=0*GXX;

%Third term

 63

HXX(:,j,k) = (fyp(i,:) * gx)';

Q(m,ngxx+1:end)=HXX(:)';

HXX = 0*HXX;

%Fourth Term

q(m,1) = q(m,1) + (shiftdim(fyyp(i,:,:),1) * gx * hx(:,k) + shiftdim(fyy(i,:,:),1) * gx(:,k)

+ shiftdim(fyxp(i,:,:),1) * hx(:,k) + shiftdim(fyx(i,:,k),1))' * gx(:,j);

%Fifth Term

GXX(:,j,k)=fy(i,:)';

Q(m,1:ngxx) = Q(m,1:ngxx) + GXX(:)';

GXX = 0*GXX;

%Sixth term

q(m,1) = q(m,1) + (shiftdim(fxpyp(i,:,:),1) * gx * hx(:,k) + shiftdim(fxpy(i,:,:),1) *

gx(:,k) + shiftdim(fxpxp(i,:,:),1) * hx(:,k) + fxpx(i,:,k)')' * hx(:,j);

%Seventh Term

HXX(:,j,k)=fxp(i,:)';

Q(m,ngxx+1:end) = Q(m,ngxx+1:end) + HXX(:)';

HXX = 0*HXX;

 64

%Eighth Term

q(m,1) = q(m,1) + shiftdim(fxyp(i,j,:),1) * gx * hx(:,k) + shiftdim(fxy(i,j,:),1) * gx(:,k)

+ shiftdim(fxxp(i,j,:),1) * hx(:,k) + fxx(i,j,k);

end %k

end %j

end %i

x=-inv(Q)*q;

gxx(:)=x(1:ngxx);

hxx(:) = x(ngxx+1:end);

10. gss_hss.m

function [gss,hss] =

gss_hss(fx,fxp,fy,fyp,fypyp,fypy,fypxp,fypx,fyyp,fyy,fyxp,fyx,fxpyp,fxpy,fxpxp,fxpx,fx

yp,fxy,fxxp,fxx,hx,gx,gxx,eta)

%Finds the vectors gss and hss necessary to compute the 2nd order approximation to

the decision rules of a DSGE model. For documentation, see the paper ``Solving

Dynamic General Equilibrium Models Using a Second-Order Approximation to the

Policy Function,'' by Stephanie Schmitt-Grohe and Martin Uribe, 2001)

%INPUTS:

fx,fxp,fy,fyp,fypyp,fypy,fypxp,fypx,fyyp,fyy,fyxp,fyx,fxpyp,fxpy,fxpxp,fxpx,fxyp,fxy,f

xxp,fxx,hx,gx,gxx,eta%OUTPUTS: hss gss

% We solve a linear system of the type q = Q * x where x=[gss; hss];

 65

%(c) Stephanie Schmitt-Grohe and Martin Uribe

%Date July 17, 2001

nx = size(hx,1); %rows of hx and hss

ny = size(gx,1); %rows of gx and gss

n = nx + ny;

ne = size(eta,2); %number of exogenous shocks (columns of eta)

for i=1:n

%First Term

Qh(i,:) = fyp(i,:) * gx;

%Second Term

q(i,1) = sum(diag((shiftdim(fypyp(i,:,:),1) * gx * eta)' * gx * eta));

%Third Term

q(i,1) = q(i,1) + sum(diag((shiftdim(fypxp(i,:,:),1) * eta)' * gx * eta));

%Fourth Term

fyp(i,:) * reshape(gxx,ny,nx^2);

q(i,1) = q(i,1) + sum(diag((reshape(ans,nx,nx) * eta)' * eta));

%Fifth Term

Qg(i,:) = fyp(i,:);

%Sixth Term

Qg(i,:) = Qg(i,:) + fy(i,:);

 66

%Seventh Term

Qh(i,:) = Qh(i,:) + fxp(i,:);

%Eighth Term

q(i,1) = q(i,1) + sum(diag((shiftdim(fxpyp(i,:,:),1) * gx * eta)' * eta));

%Nineth Term

q(i,1) = q(i,1) + sum(diag((shiftdim(fxpxp(i,:,:),1) * eta)' * eta));

end %i

x=-inv([Qg Qh])*q;

gss=x(1:ny);

hss = x(ny+1:end);

11.qzswitch.m

function [A,B,Q,Z] = qzswitch(i,A,B,Q,Z)

%function [A,B,Q,Z] = qzswitch(i,A,B,Q,Z)

% Written by Chris Sims

% Takes U.T. matrices A, B, orthonormal matrices Q,Z, interchanges

% diagonal elements i and i+1 of both A and B, while maintaining

% Q'AZ' and Q'BZ' unchanged. Does nothing if ratios of diagonal elements

% in A and B at i and i+1 are the same. Aborts if diagonal elements of

% both A and B are zero at either position.

%

 67

a = A(i,i); d = B(i,i); b = A(i,i+1); e = B(i,i+1);

c = A(i+1,i+1); f = B(i+1,i+1);

wz = [c*e-f*b, (c*d-f*a)'];

xy = [(b*d-e*a)', (c*d-f*a)'];

n = sqrt(wz*wz');

m = sqrt(xy*xy');

if n == 0

return

else

wz = n\wz;

xy = m\xy;

wz = [wz; -wz(2)', wz(1)'];

xy = [xy;-xy(2)', xy(1)'];

A(i:i+1,:) = xy*A(i:i+1,:);

B(i:i+1,:) = xy*B(i:i+1,:);

A(:,i:i+1) = A(:,i:i+1)*wz;

B(:,i:i+1) = B(:,i:i+1)*wz;

Z(:,i:i+1) = Z(:,i:i+1)*wz;

Q(i:i+1,:) = xy*Q(i:i+1,:);

End

12. solab.m

%

% Function: solab

%

% Purpose: Solves for the recursive representation of the stable solution to a system

% of linear difference equations.

%

% Inputs: Two square matrices a and b and a natural number nk

%

 68

% a and b are the coefficient matrices of the difference equation

%

% a*x(t+1) = b*x(t)

%

% where x(t) is arranged so that the state variables come first, and

%

% nk is the number of state variables.

%

% Outputs: the decision rule f and the law of motion p. If we write

%

% x(t) = [k(t);u(t)] where k(t) contains precisely the state variables, then

%

% u(t) = f*k(t) and

%

% k(t+1) = p*k(t).

%

% Calls: reorder

%

function [f,p] = solab(a,b,nk);

[s,t,q,z] = qz(a,b); % upper triangular factorization of the matrix pencil b-za

[s,t,q,z] = reorder(s,t,q,z); % reordering of generalized eigenvalues in ascending order

z21 = z(nk+1:end,1:nk);

z11 = z(1:nk,1:nk);

if rank(z11)<nk;

error('Invertibility condition violated')

end

 69

z11i = z11\eye(nk);

s11 = s(1:nk,1:nk);

t11 = t(1:nk,1:nk);

if abs(t(nk,nk))>abs(s(nk,nk)) | abs(t(nk+1,nk+1))<abs(s(nk+1,nk+1));

warning('Wrong number of stable eigenvalues.');

end

dyn = s11\t11;

f = real(z21*z11i); % The real function takes away very small imaginary parts of the

solution

p = real(z11*dyn*z11i);

13. reorder.m

function [s,t,q,z] = reordr(s,t,q,z)

n = size(s,1);

i = 1;

while i<=n-1;

if 1+abs(t(i,i)*s(i+1,i+1))>1+abs(s(i,i)*t(i+1,i+1));

[s,t,q,z] = qzswitch(i,s,t,q,z);

if ~(i==1);i = i-2;end

end

i=i+1;

end

 70

Reference

Blanchard, Olivier & Charles Kahn, “The Solution of Linear Difference Models under

Rational Expectations,” Econometrica 45, July 1985, 1305-1311.

Campbell J. “Inspecting the Mechanism: an Analytical Approach to the Stochastic

Growth Model,” Journal of Monetary Economics, Vol 33, No3, 463-506.

Hansen G.D., “Indivisible Labor and the Business Cycle,” Journal of Monetary

Economics, Vol.16, 309-327.

Kim, Jinnill & Sunghyun Henry Kim, “Spurious Welfare Reversals in International

Business Cycle Models,” Journal of International Economics, forthcoming.

Schmitt-Grohe, S., and M. Uribe,“Solving Dynamic General Equilibrium Models Using

a Second Order Approximation to the Policy Function,” Disscussion Paper,

Rutgers University and University of Pennsylvania, 2002.

Sims, Christopher, “Solving Linear Rational Expectations Models,” Manuscript.

Princeton: Princeton University, January 2000a (forthcoming Computational

Economics).

Uhlig, Harald, “A Toolkit for Analyzing Nonlinear Dynamic Stochastic Models Easily,”

1995.

