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1 Introduction

What is the primary aim of optimal monetary policy? In the existing literature there are two

major views that deliver opposite recommendations for the optimal conduct of monetary

policy in the short and in the long run. The first branch goes back to Friedman (1969) and

evaluates monetary policy in the long run with fully flexible prices and under perfect com-

petition. In order to equate the private opportunity costs for holding money to the zero

social costs to produce it, the nominal interest rate should be zero. The other view con-

siders optimal monetary policy in the short run in the presence of nominal rigidities and

imperfect competition (e.g. Woodford, 2003a, ch.6-8; Benigno and Woodford, 2005; Khan

et al., 2003; Schmitt-Grohé and Uribe, 2004, 2005). A key feature of this literature is that

the authors consider small fluctuations around the (almost) zero inflation steady state,

implying that optimal policy nearly completely offsets the distortions due to price disper-

sion – even in the presence of a monetary friction. The predominant principle is inflation

stabilization, while the nominal interest rate should adjust relatively freely to support this

principle (Woodford, 2003a).

In this paper we revisit the issue of optimal monetary policy in a sticky price model

in the presence of a transaction friction. The foremost contribution is to challenge the

conventional view that the Friedman rule loses out to the goal of price stability once price

stickiness is introduced. We show that the widely used money-in-the utility function model

(MIU) implies that Friedman’s rule is optimal even when large amounts of price stickiness

are present. This is in contrast to the key message of papers such as Woodford (2003a),

Khan, King and Wolman (2003) and Schmitt-Grohé and Uribe (2004, 2005) and others.

Second, we find that the primary aim of optimal policy in the short run is to stabilize the

nominal interest rate instead of inflation.

Our analysis is set in a dynamic stochastic general equilibrium model with imperfect

competition and Calvo’s staggered price setting (1983) without indexation. A transaction
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friction is introduced via the textbook money-in-the-utility-function approach (Sidrauski,

1967; Woodford, 2003a; Walsh, 2003) with consumption and real money balances enter-

ing in a separable way. We abstract from interactions between fiscal and monetary policy

by assuming that that the government has access to lump-sum taxes. Since we assume

an output subsidy that offsets the steady state distortion created by monopolistic com-

petition, the policy maker faces two distortions: price dispersion due to staggered price

setting calls for an optimal inflation of zero, implying costs of money holdings. However,

the monetary distortion can only be offset by setting the nominal interest rate to zero.

We choose the long-run target of monetary policy to be the welfare-maximizing de-

terministic steady state. Remarkably, we find that even for very low values for the weight

of money in the utility function relative to consumption and leisure, it is optimal to fully

offset the monetary distortion and to allow for a small degree of price dispersion. I.e. the

Friedman rule is optimal even in the presence of Calvo-style staggered price setting. This

result holds for wide a range of parameter values including low weights for real money bal-

ances in the utility function. To understand this finding, note that the welfare cost of price

dispersion arising from long-run deflation required by the Friedman rule is small relative

to the loss from a positive nominal interest rate. While the welfare loss due to price disper-

sion hinges primarily on the frequency of price adjustment, the utility losses of a positive

interest rate crucially depends on the sensitivity of money demand to the nominal interest

rate. In an MIU framework, the latter increases strongly as interest rates fall. Thereby, the

taxation of money holdings via a positive interest rate becomes suboptimal.

We linearize the model around the optimal steady state and derive a quadratic approx-

imation to the utility of the representative household. This welfare based loss function

serves as the central bank’s objective, and it depends on three arguments: the uncondi-

tional variances of inflation, the output gap, and on the variance of the nominal interest

rate. While the weight for the variation in the output gap relative to inflation depends ex-
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clusively on structural parameters unrelated to policy, the relative weight for interest rate

variability also hinges on steady state values that are under control of policy in the long

run. Remarkably, the preference to stabilize fluctuations in the nominal interest rate in-

creases as optimal steady state inflation moves towards Friedman’s rule of deflation. This

increase is primarily driven by the rise in the interest elasticity of money demand. Cor-

respondingly, the importance to account for monetary frictions depends upon the steady

state chosen for approximation: The long-run optimal policy is key for optimal policy re-

actions in the short run. Since we approximate our model around a steady state implied

by the Friedman rule, the primary goal of optimal monetary policy is to stabilize variations

in the interest rate rather than in inflation. Given the high weight attached to interest rate

stabilization, optimal monetary policy requires abstaining from fluctuations in the nomi-

nal interest rate. Instead, the nominal interest rate is literally fixed in response to various

kinds of disturbances.

We show that choosing a long-run deflation target according to the Friedman rule does

not generally undermine the central banks ability to stabilize the welfare relevant fluctua-

tions around that target. On the contrary, the welfare loss arising from fluctuations around

the Friedman steady state can be lower than the loss arising from fluctuations around the

zero inflation steady state. Overall, we find support for the Friedman rule even in case

of a reasonable amount of nominal rigidity due to staggered price setting a la Calvo: The

Friedman rule yields higher steady state utility and can also improve welfare effects of

fluctuations around the steady state compared to price stability.

We address the issue of the zero bound constraint on the nominal interest rate in the

following way. First, we impose that the gross nominal interest rate exceeds unity in the

deterministic steady state by a small amount. This assumption does not exclude the pos-

sibility of an occasionally binding lower bound constraint in response to shocks. Second,

we approximate the probability of hitting the lower bound. We find that it is minor. To
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be more precise the standard deviation of the nominal interest rate under optimal policy

is so small relative to the buffer between the steady state nominal rate and unity, that the

likelihood of a binding lower bound is low.

Related Literature

We now turn to the related literature. Most closely related to our paper is the work by

Woodford (2003a, Chapter 6-7; Woodford, 2003b) and Schmitt-Grohé and Uribe (2005).

Woodford also studies optimal monetary policy in a money-in-the-utility function frame-

work with staggered price setting. In contrast to our analysis, the model is log-linearized

around the zero inflation steady state. This approximation point then implies very differ-

ent dynamics for the nominal interest rate. In his analysis, the nominal interest rate reacts

rather sharply to shocks while the optimal path of inflation is relatively smooth over the

cycle (see Woodford, 2003a: 504). Our contribution is to show that the optimal policy pre-

scriptions differ substantially once one takes into account the interactions between long

run and short run optimal policy.

Schmitt-Grohé and Uribe (2005) and Khan et al. (2003) also analyze optimal monetary

policy with nominal rigidities and a monetary friction. These papers adopt a transaction

technology approach to introducing money into the model. While Khan (2003) use a dif-

ferent time dependent pricing model than we do, the economic environment of Schmitt-

Grohé and Uribe (2005) is more similar to our framework. They analyze a medium scale

model with staggered price setting a la Calvo and various additional distortions. They

find that the central bank should aim at price stability and stabilization of inflation as

the main principle. The difference between their key finding and our results is explained

as follows. The money-in-the-utility function approach we employ has different implica-

tions for money demand at low interest rates compared to the transactions technology

in Schmitt-Grohé and Uribe. The MIU framework implies that the interest-elasticity of
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money demand increases by large amounts as the nominal interest rate approaches the

lower bound. Correspondingly, welfare costs of taxing money balances with positive in-

terest rates in the long run and varying the nominal interest rate in the short run increase

substantially. This is not the case for their transaction cost technology. Our contribution

is to show that both the degree of price dispersion, as well as the sensitivity of money de-

mand with respect to nominal interest rates at low levels, are decisive for the conduct of

optimal policy.

We are not the first in showing that the Friedman rule can be optimal in economies

with sticky prices. Adão, Correia, and Teles (2003) prove that the Friedman rule is optimal

in an economy with imperfect competition, a cash in advance constraint, and prices that

are set one period in advance. In contrast, our analysis assumes sticky prices a la Calvo,

which implies that there are costs to deflation due to the dispersion of relative prices.

Closer to our work is King and Wolman (1996). They show that setting the nominal in-

terest rate at a minuscule amount above zero maximizes steady state welfare in a model

with Calvo pricing and a transaction cost technology. We obtain the same result in an MIU

framework. While King and Wolman (1996) focus on a static analysis of optimal policy our

main contribution is dynamic: We derive the guiding principles for the optimal conduct

of policy in the short run that follow of choosing the Friedman rule as long run target.

Methodologically, this paper differs from Khan et al. (2003) and Schmitt-Grohé (2005)

by working with the linear-quadratic framework, rather than with the time invariant Ram-

sey approach. By showing that the weight on nominal interest stabilization in the loss

function depends on the steady state values under control of the central bank, this ap-

proach helps to point out intuitively how long run optimal policy and short run stabiliza-

tion policies are interrelated. In addition, the guiding principle of optimal monetary pol-

icy is directly transparent in the size of the relative weights to stabilize the nominal interest

rate, inflation, and the output gap.
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The remainder of this paper proceeds as follows: in section 2 we set up the model. In

section 3 we compute the optimal steady state under commitment and derive a quadratic

approximation of the utility of the representative household. In section 4 we derive the

optimal monetary policy responses in the short run for 2 policy regimes: the first one has

Friedman’s Rule, and the other one has zero inflation as its long-run target. The last section

concludes.

2 The model

We consider an economy that consists of a continuum of infinitely lived households in-

dexed with j ∈ [0,1]. It is assumed that households have identical initial asset endowments

and identical preferences. Household j acts as a monopolistic supplier of labor services

l j . Lower (upper) case letters denote real (nominal) variables. At the beginning of period

t , households’ financial wealth comprises money M j t−1, a portfolio of state contingent

claims on other households yielding a (random) payment Z j t , and one period nominally

non-state contingent government bonds B j t−1 carried over from the previous period. As-

suming complete financial markets let qt ,t+1 denote the period t price of one unit of cur-

rency in a particular state of period t + 1 normalized by the probability of occurrence of

that state, conditional on the information available in period t . Then, the price of a ran-

dom payoff Zt+1 in period t +1 is given by Et [qt ,t+1Z j t+1]. The budget constraint of the

representative household reads

M j t +B j t +Et [qt ,t+1Z j t+1]+Pt c j t ≤ Rt−1B j t−1+M j t−1+Z j t +Pt w j t l j t +
∫ 1

0
D j i t di −Pt Tt ,

(1)

where ct denotes a Dixit-Stiglitz aggregate of consumption with elasticity of substitutionθ,

Pt the aggregate price level, w j t the real wage rate for labor services l j t of type j , Tt a lump-
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sum tax, Rt the gross nominal interest rate on government bonds, and Di t dividends of

monopolistically competitive firms. Further, households have to fulfill the no-Ponzi game

condition, limi→∞ Et qt ,t+i (M j t+i +B j t+i +Z j t+1+i ) ≥ 0. The objective of the representative

household is

Et0

∞∑
t=t0

βt {u(c j t ,ζt )− v(l j t )+ z(M j t /Pt )}, β ∈ (0,1), (2)

whereβdenotes the subjective discount factor and M j t /Pt = m j t end-of-period real money

balances. Note that our specification of utility is consistent with recent findings by Andrés,

López-Salido and Vallés (2006) for the Euro area and by Ireland (2004) for the US. They es-

timate the role of money for the business cycle and find that preferences are separable

between consumption and real money balances.

We assume that households’ utility can be affected by a disturbance term ζt with mean

1 that can alter the utility of consumption. To avoid additional complexities, we set ucζ =

uc at the deterministic steady state. For each value of ζ, the instantaneous utility function

is assumed to be non-decreasing in consumption and real balances, decreasing in labor

time, strictly concave, twice continuously differentiable, and to fulfill the Inada conditions.

Households are wage-setters supplying differentiated types of labor l j which are trans-

formed into aggregate labor lt with l (εt−1)/εt
t = ∫ 1

0 l (εt−1)/εt
j t d j . We assume that the elasticity

of substitution between different types of labor, εt > 1, varies exogenously over time. The

time variation in this markup parameter introduces a so called cost-push shock into the

model that gives rise to a stabilization problem for the central bank. Cost minimization

implies that the demand for differentiated labor services l j t , is given by l j t = (w j t /wt )−εt lt ,

where the aggregate real wage rate wt is given by w 1−εt
t = ∫ 1

0 w1−εt
j t d j . Maximizing (2) sub-

ject to (1) and the no-Ponzi game condition for given initial values Mt0−1 > 0, Z0, Bt0−1,

and Rt0−1 ≥ 0 leads to the following first order conditions for consumption, money, the
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real wage rate for labor type j , government bonds, and contingent claims:

λ j t = uc (c j t ,ζt ), vl (l j t ) = w j tλ j t /µw
t , (3)

λ j t − zm(m j t ) =βEt
λ j t+1

π j t+1
, qt ,t+1 =

βλ j t+1

πt+1λ j t
, λ j t =βRt Et

λ j t+1

πt+1
(4)

where λ j t denotes a Lagrange multiplier, πt the inflation rate πt = Pt /Pt−1, and µw
t =

εt /(εt − 1) the stochastic wage mark-up with mean µ̄w > 1. The first order condition for

contingent claims holds for each state in period t +1, and determines the price of one unit

of currency for a particular state at time t +1 normalized by the conditional probability of

occurrence of that state in units of currency in period t . The absence of arbitrage oppor-

tunities between government bonds and contingent claims requires Rt = 1/Et qt ,t+1. The

optimum is further characterized by the budget constraint (1) holding with equality and

by the transversality condition limi→∞ Etβ
iλ j t+i (M j t+i +B j t+i +Z j t+1+i )/P j t+i = 0.

The final consumption good Yt is an aggregate of differentiated goods produced by

monopolistically competitive firms indexed with i ∈ [0,1] and defined as y
θ−1
θ

t = ∫ 1
0 y

θ−1
θ

i t di ,

with θ > 1. Let Pi t and Pt denote the price of good i set by firm i and the price index

for the final good. The demand for each differentiated good is yd
i t = (Pi t /Pt )−θ yt , with

P 1−θ
t = ∫ 1

0 P 1−θ
i t di . A firm i produces good yi using a technology that is linear in the labor

bundle li t = [
∫ 1

0 l (εt−1)/εt
j i t d j ]εt /(εt−1): yi t = at li t , where lt =

∫ 1
0 li t di and at is a productivity

shock with mean 1. Labor demand satisfies: mci t = wt /at , where mci t = mct denotes real

marginal cost independent of the quantity that is produced by the firm.

We allow for a nominal rigidity in form of a staggered price setting as developed by

Calvo (1983). Each period firms may reset their prices with the probability 1−α inde-

pendently of the time elapsed since the last price setting. The fraction α ∈ [0,1) of firms

are assumed to keep their previous period’s prices, Pi t = Pi t−1, i.e. indexation is absent.
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Firms are assumed to maximize their market value, which equals the expected sum of

discounted dividends Et
∑∞

T=t qt ,T Di T , where Di t ≡ Pi t yi t (1−τ)−Pt mct yi t and we used

that firms also have access to contingent claims. Here, τ denotes an exogenous sales tax

introduced to offset the inefficiency of steady state output due to markup pricing (Rotem-

berg and Woodford, 1999). In each period a measure 1−α of randomly selected firms set

new prices P̃i t as the solution to maxP̃i t
Et

∑∞
T=t α

T−t qt ,T (P̃i t yi T (1−τ)−PT mcT yi T ), s.t.

yi T = (P̃i t )−θPθ
T yT . The first order condition for the price of re-optimizing producers is

given by

P̃i t

Pt
= θ

θ−1

Ft

Kt
, (5)

where Kt and Ft are defined by the following expressions:

Ft = Et

∞∑
T=t

(αβ)T−t uc (cT ,ζ(1)
T )yT

(
PT

Pt

)θ
mcT (6)

and

Kt = Et

∞∑
T=t

(αβ)T−t uc (cT ,ζ(1)
T )(1−τ)yT

(
PT

Pt

)θ−1

. (7)

Aggregate output is given by yt = at lt /∆t , where∆t =
∫ 1

0 (Pi t /Pt )−θdi ≥ 1 and thus∆t =

(1−α)(P̃t /Pt )−θ +απθt ∆t−1. The dispersion measure ∆t captures the welfare decreasing

effects of staggered price setting. If prices are flexible, α= 0, then the first order condition

for the optimal price of the differentiated good reads: mct = (1−τ)θ−1
θ .

The public sector consists of a fiscal and a monetary authority. The central bank as

the monetary authority is assumed to control the short-term interest rate Rt as the single

instrument. The fiscal authority issues risk-free one period bonds, has to finance exoge-

nous government expenditures PtGt , receives lump-sum taxes from households, transfers

from the monetary authority, and tax-income from an exogenous given constant sales tax

τ, such that the consolidated budget constraint reads: Rt−1Bt−1+Mt−1+PtGt = Mt +Bt +
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Pt Tt +
∫ 1

0 Pi t yi tτdi . The exogenous government expenditures Gt evolve around a mean

Ḡ , which is restricted to be a constant fraction of output, Ḡ = ȳ(1−sc). We assume that tax

policy guarantees government solvency, i.e., ensures limi→∞ (Mt+i +Bt+i )
∏i

v=1 R−1
t+v = 0.

Due to the existence of the lump-sum tax, we consider only the demand effect of govern-

ment expenditures and focus exclusively on optimal monetary policy.

We collect the exogenous disturbances in the vector ξt = [ζt , at ,Gt ,µw
t ]. It is assumed

that the percentage deviation of each of the elements of the vector from their means evolve

according to autonomous AR(1)-processes with autocorrelation coefficientsρζ,ρa ,ρG ,ρµ ∈

[0,1). The innovations are assumed to be i.i.d..

The recursive equilibrium is defined as follows:

Definition 1 Given initial values, Mt0−1 > 0, Pt0−1 > 0 and∆t0−1 ≥ 1, a monetary policy and

a ricardian fiscal policy Tt ∀ t ≥ t0, a sales tax τ, a rational expectations equilibrium (REE)

for Rt ≥ 1, is a set of sequences {yt , ct , lt , mct , wt , ∆t , Pt , P̃t , mt , Rt }∞t=t0
satisfying the firms’

first order condition mct = wt /at , (5) with P̃i t = P̃t , and P 1−θ
t = αP 1−θ

t−1 + (1−α)P̃ 1−θ
t , the

households’ first order conditions uc (yt−Gt ,ζt )wt = vl (lt )µw
t , uc (yt−Gt ,ζt )/Pt =βRt Et uc (yt+1−

Gt+1,ζt+1)/Pt+1, zm(mt ) = uc (yt −Gt ,ζt )(Rt −1)/Rt , the aggregate resource constraint yt =

at lt /∆t , where ∆t = (1−α)(P̃t /Pt )−θ +α(Pt /Pt−1)θ∆t−1, clearing of the goods market ct +

Gt = yt and the transversality condition, for {ξt }∞t=t0
.

3 The linear-quadratic optimal policy problem

In a first step, we compute the optimal deterministic steady state of the economy as the

one that maximizes steady state utility. This steady state is our point of expansion for the

log-linear approximation of the model’s equilibrium conditions as well as for the deriva-

tion of the purely quadratic welfare measure. As we will see, long run and short run op-
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timal policy are closely interrelated. Throughout we assume that the steady state is ren-

dered efficient by an appropriate setting of the tax rate.

3.1 The optimal steady state

Our approach to optimal policy in the long run is to maximize steady state utility. Wol-

man (1999) shows that this criterion gives slightly different prescriptions to optimal policy

in the long-run than the time invariant Ramsey concept, but these differences are quan-

titatively very small. Both approaches differ in our case due to the presence of forward-

looking equations and one endogenous state variable, namely price dispersion.

The nonlinear optimization problem for the central bank is to choose steady state val-

ues for output, price dispersion, the denominator (K ) and the numerator (F ), the nominal

interest rate and inflation to maximize steady state utility of the representative household

maxL = u(y −G ,ζ)− v(∆y/a)+ z(m(R, y −G ,ζ)), (8)

subject to the firms’ optimal pricing condition, the recursive formulation of the functions

K and F , the evolution of the dispersion measures and the euler equation:

ρ(π)
1

1−θ K = θ

θ−1
F (9)

K = uc (y −G ,ζ)(1−τ)y +βαKπθ−1 (10)

F = vl (y∆/a)yµw +αβFπθ (11)

∆= (1−α)ρ(π)
θ
θ−1 +α∆πθ (12)

and

π=βR, (13)
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with ρ(π) ≡ (1−απθ−1)(1−α)−1.1

To simplify the analysis and to solve for the optimal steady numerically, we assume

that households’ utility is given by the usual CRRA specification:

c1−σc

1−σc
−a2

l 1+ω

1+ω +a1
m1−σm

1−σm
, (14)

σc , σm positive and ω non-negative. Here, a1 ≥ 0 denotes the weight for the utility

stemming from real money balances relative to the utility of consumption and a2 the cor-

responding relative weight for the disutility of labor.2 We assume that the zero bound on

the nominal interest rate is not binding in expectations. This is equivalent to assuming

that inflation in the deterministic steady state is at least π ≥ β+ ε for a small parameter

ε> 0. The reason for this assumption is twofold. Economically, the resulting buffer allows

the central bank to adjust its instrument downward in response to a shock (at least by a

small amount). Technically, the CRRA preferences do not display a satiation point for real

money balances at a finite level. However, by imposing a lower bound on the steady state

nominal interest, real money balances are still bounded – even if inflation equals β+ ε

(and R − 1 = β−1ε). Then all first and second partial derivatives of utility with respect to

c and m exhibit well defined finite limiting values (e.g. zmm < 0) as c,m approach their

corresponding finite values at the ε lower bound, cε,mε. In particular, this implies that

the interest elasticity of money demand, ηR (Rε) = zm(mε)[mεzmm(mε)(Rε− 1)]−1 is well-

defined and finite since Rε−1 =β−1ε is a small positive scalar.

σc σm ω β a1 a2 sc = c̄/ȳ µ̄w θ α ε

2 2.5 0.5 0.99 1/99 25 0.8 7/6 6 0.66 0.0001

Table 1: Baseline calibration

1To simplify the notation, steady state values in the following denoted without a time subscript.
2The first order conditions and the constraints of the Ramsey problem in the deterministic steady state

for the assumed CRRA preferences can be found in appendix 6.1.
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In our baseline calibration we set θ = 6 and α= 0.66, where the latter can be found for

example in Walsh (2005) or Woodford (2003a). The parameter a2 is set such that agents

work 1/3 of their available time in the steady state.

We calibrate the money demand block of our model to be in line with the existing liter-

ature and U.S. times series data. In particular, we set the annual interest semi-elasticity of

money demand, ∂ logm/∂R =−[R(R −1)σm]−1 equal to - 4.47 at an annual interest rate of

R = 1.083. This is in line with Lucas (2000) and Woodford (2003a). In calibrating this elas-

ticity we have assumed an average annual inflation rate of 4 per cent together with a real

interest rate of 4.3 per cent such that R = 1.083. It then follows thatσm = 2.5. Note that the

semi-elasticity and the elasticity of money demand, ηR (R) ≡ [(R −1)σm]−1 > 0, increases

(in absolute terms) as interest rates decrease. We assume a degree of relative risk aversion

σc = 2. This implies an output elasticity of money demand σc /(scσm) = 1. Furthermore,

we set the parameter a1 = 1/99 such that at a nominal interest rate of R = 1.083 the annual

ratio of M1 over nominal GDP equals 0.2. This value is consistent with postwar U.S. data

and similar to the one used by Schmitt-Grohé and Uribe (2004, 2005).

Then the following numerical result for the ε steady state holds:

Result 1 (Optimal Steady State) If a1 ≥ 1/3513 and the other parameters are given by the

baseline calibration, optimal inflation in the deterministic steady state π is β+ ε = 0.9901.

The associated optimal price dispersion ∆̄ is 1.0014, while the optimal nominal interest rate

R̄ is 1.0001 > 1.

Under the baseline calibration, we find that the optimal steady-state value for inflation is

the lower bound, π=β+ε, i.e. it involves deflation. Correspondingly, the nominal interest

rate is almost zero.

Since a1 is an unobserved preference parameter, it is difficult to assess whether the

critical value a1 = 1/3513 implies a large or small role for money in the utility function.

14



However, the annual steady state ratio of M1 over nominal GDP implied by this critical

value is 0.048. Hence, even if the importance of money in transactions - as measured by

this ratio - falls by 76% from its baseline value of 0.2, the Friedman rule would still be

optimal. Therefore, the Friedman rule is optimal in our model even when money provides

a very small flow of utility.

Why does the Friedman rule turn out to be optimal even when the importance of real

money balances in the utility function is very low? Optimal monetary policy seeks to min-

imize two distortions created by price dispersion and the transaction friction, since the

monopolistic distortion is eliminated in the steady state by an output subsidy.3 Price dis-

persion calls for an inflation rate of zero, while the monetary friction requires deflation.

Correspondingly, we expect our optimal gross inflation rate to be found between β and

unity. First, while studies such as Kiley (2002) and Ascari (2004) have shown that relatively

small amounts of trend inflation are associated with relatively large welfare costs under

Calvo pricing, this is not the case for long run deflation. Figure 4 in the appendix shows

that the price dispersion arising from long run deflation is relatively small. The second

reason for the optimality of Friedman’s rule is an adaption of a general principle of opti-

mal taxation in public finance. Since the interest rate acts like a tax on money holdings, it

should be low due to the fact that money demand is elastic with respect to interest under

price stability.

While the choice for ε is arbitrary, our results are not very sensitive to the magnitude

of ε (see Figure 1 ). The graph plots optimal annual inflation against the degree of price

dispersion α. Remarkably, our threshold levels for the optimality of Friedman’s rule dif-

fer substantially from the results obtained by Schmitt-Grohé and Uribe (2005, Figure 1).

3The output subsidy of τ = 1− (1−αβπθ−1)µwθρ(π)1/(θ−1)[(1−αβπθ)(θ− 1)]−1 < 0 depends on steady
state deflation. However, this feature does not favor the Friedman Rule in the steady state. If we were to
apply the subsidy under zero-inflation, τ = 1−µwθ/(θ−1), the Friedman Rule would be optimal for even
smaller relative weights of money in the utility function. The reason is as follows. First, note that steady state
output is lower when the subsidy does not depend on trend deflation. Note further that the utility loss that
households suffer due to a positive steady state price dispersion is weighted with the steady state output.
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Figure 1: Optimal annual inflation and Calvo parameter α. The vertical line denotes the
critical value in Schmitt-Grohe and Uribe (2005) for which the Friedman rule ceases to be
optimal.

While the Friedman rule in our model is optimal until the degree of price dispersion is

below 0.81, Schmitt-Grohé and Uribe find a considerably lower breaking point of approx-

imately 0.46 (see the vertical line in Figure 1), since the welfare costs of positive interest

rates are lower in their transaction costs specification. To be more precise the MIU frame-

work unlike theirs implies that the interest-elasticity of money demand increases by large

amounts as the nominal interest rate approaches the lower bound.4

Which parameters influence the lower bound on a1, i.e. the minimum weight for

money in the utility function that renders the Friedman rule optimal? Put differently,

which structural features work in favor for the Friedman rule and when does price dis-

persion become the main focus of monetary policy? To gain intuition for this question,

we compare the outcomes of the Friedman rule and a zero inflation policy and derive an

analytical expression of the threshold for which the former dominates the latter policy.

4While not uncontroversial this property is not special to our MIU formulation. It can be obtained in
non-separable MIU specifications as well as in MIU models with a satiation point for real money balances
and in transactions cost models.
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Proposition 1 (Friedman’s Rule and Zero Inflation) Assume that preferences are of the sep-

arable CRRA type and logarithmic,σm =σc = 1, and a2 = 1. Then the Friedman Rule steady

state, πF R =β+ε, yields higher utility than the zero inflation steady state, πZ ERO = 1, if and

only if

a1 > a1 ≡
∆F R−1

(1+ω)sc + ω
1+ω ln[∆F R ]

ln[RF RηR,F R (RZ EROηR,Z ERO)−1]−ω/(1+ω) ln[∆F R ]

with∆F R as the price dispersion associated withπ=β+ε and RF RηR,F R (RZ EROηR,Z ERO)−1 =

(1−β)(1+β−1ε)/β−1ε.

Proof see appendix 6.2.

RZ ERO = β−1 and RF R = 1+β−1ε denote the gross nominal interest rate under zero infla-

tion and Friedman’s rule. Evidently, the Friedman rule performs better than a zero infla-

tion regime, when the degree of price dispersion associated with the Friedman rule,∆F R is

small. But at least equally important is the sensitivity of money demand with respect to in-

terest rates under Friedman’s rule, ηR,F R , compared to the corresponding elasticity if zero

inflation applies, ηR,Z ERO . If these elasticities differ substantially, the amount and utility of

real money balances in both regimes differs too. As will become clear below, this elasticity

heavily influences the possible welfare losses due to positive interest rates. Furthermore,

a large fraction of private consumption, sc, favors the Friedman rule. The intuition is as

follows. Consider a value for a1 such that the Friedman rule delivers the same steady state

welfare as the zero inflation policy. If the fraction of government expenditures decreases,

people have to work less since less output has to be produced. Due to price dispersion,

people work more under the Friedman Rule, such that their marginal disutility of labor is

always higher than under the zero inflation regime. Correspondingly, a one percent de-

crease in labor in both regimes leads to relatively larger utility gains in the Friedman Rule

regime.

In the following subsection we consider optimal monetary policy in the short run, as-
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suming the baseline calibration, such that β+ε is the optimal inflation rate.

3.2 Approximating the model around the optimal steady state

The model is log-linearized around the optimal deterministic steady stateπ=β+ε< 1, i.e.

under trend deflation and closely follows the approximation around trend inflation (As-

cari, 2004). The rational expectations equilibrium for the log-linear-approximate model is

then a set of sequences {ŷt , π̂t ,m̂t , R̂t , F̂t }∞t=t0
consistent with the following set of equilib-

rium conditions5

σ(Et ŷt+1 − ŷt + g t − g t+1) = R̂t − π̂t+1, (15)

m̂t =
σ

σm
(ŷt − g t )−ηR,F R R̂t , (16)

π̂t =βEt π̂t+1 +κ∗(ω+σ)(ŷt − ŷ z
t )+ κ∗(π̄−1)

1−αβπθ [(σ−1)ŷt + F̂t ] (17)

F̂t = (1−αβπθ)[(1+ω)ŷt + µ̂w
t − (1+ω)ât )]+αβπθEt (θπ̂t+1 + F̂t+1), (18)

where ηR,F R = [σm(RF R −1)]−1, sc = c/y , σc =−ucc c/uc c > 0, σ= σc sc−1, ω= vl l l/vl > 0,

g t = (Gt−G)/y+σ−1ζ̂t , κ∗ = (1−απθ−1)(1−βαπθ)/(απθ), disturbances are collected in ŷ z
t =

((1+ω)ât +σg t − µ̂w
t )/(ω+σ), σm =−zmm(m̄)m̄/zm(m̄) > 0, the transversality condition,

for a monetary policy, a sequence {ξ̂t }∞t=t0
, and given initial values Mt0−1 and Pt0−1. Further

ẑt denotes the percent deviation of a generic variable zt from its steady state value z. In

addition we assume that the bounds on the fluctuations of the shock vector ‖ logξt‖ are

sufficiently tight, such that ξt remains in the neighborhood of its steady state value.

5The derivation of the aggregate supply curve can be found in our working paper version.
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3.3 A quadratic policy objective

In this section we derive a purely quadratic welfare measure for the utility of the average

household as the relevant objective for optimal monetary policy in the short run.

We assume that the welfare-relevant objective is the expected and discounted average

utility level of all households, which is given by

Uto ≡ Et0

∞∑
t=t0

βt−t0 {u(ct ,ζt )−
∫ 1

0
v(l j t )d j + z(Mt /Pt )}. (19)

Our aim is to derive a quadratic loss function that yields an accurate second order ap-

proximation of the average utility of all households. We seek to evaluate the approximated

level of utility by using the log-linearized conditions (15)-(18) describing the competitive

equilibrium – that is, we set up the familiar linear-quadratic optimal policy problem. A

correct welfare ranking of alternative policies requires a second-order approximation of

utility that involves no linear terms – at least in expectations (see Woodford, 2003a, ch.6).

The existence of a non-zero linear term in the utility approximation crucially relies on

the distortions of the steady state output relative to the efficient output level as conse-

quences of price and wage-setting power, distortionary taxation and trend deflation that

are represented in φ:

1−φ= ρ(π)
1

1−θ (1−τ)
θ−1

µwθ

1−αβπθ
1−αβπθ−1

= vl

uc
. (20)

If this inefficiency gap is zero or only of first order in φ, the linear term in the second

order approximation vanishes. Following Rotemberg and Woodford (1997) we assume that

the sales tax plays a role of an output subsidy that offsets exactly the steady state output

distortion. Since we assume separability between consumption and real money balances,

this implies that real balance effects do not contribute to this inefficiency measure.
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As Carlstrom and Fuerst (2004) point out, the inclusion of money demand fundamen-

tally changes optimal monetary policy responses even in case if one assumes – as we do –

real balances do not effect the dynamic evolution of inflation and output in the compet-

itive equilibrium. The reason is that variations in the nominal interest rate contribute to

the relevant distortions the policy maker seeks to stabilize. As we will show below, the rela-

tive weight of variations in the interest rate that enters the welfare measure is substantially

increased if we approximate around the optimal steady state. In the following proposition

we derive a quadratic Taylor-series approximation to (19).

Proposition 2 (Quadratic Approximation to Utility) If the fluctuations in yt around y, Rt

around R, ξt around ξ, πt around π are small enough, π and ∆ are close enough to 1, and

if the steady state distortions φ vanish due to the existence of an appropriate subsidy τ, the

utility of the average household can be approximated by:

Ut0 =−ΩEt0

∞∑
t=t0

βt−t0 [λx(ŷt − ŷ∗
t )2 + π̂2

t +λR R̂2
t ]+ t .i .s.p.+O (‖ξ̂t ,ς‖3), (21)

where t .i .s.p. indicate terms independent of stabilization policy, κ = (1−α)(1−αβ)(ω+

σ)/α, Ω= uc yθ(ω+σ)
2κ ,

λx = κ

θ
, (22)

λR = ηR,F Rλx

v(ω+σ)
, (23)

and

ŷ∗
t = σg t + (1+ω)ât

ω+σ , (24)

where v = y/m > 0 and ηR,F R is the interest elasticity of money demand at the Friedman

rule steady state.

Proof see appendix 6.3.
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Under the conditions given in proposition 2, the relative weights of inflation, output

gap and the nominal interest rates correspond to the results in Woodford (2003a). Our

analysis differs from Woodford (2003a), because the steady state values relate to the lower

bound and no longer to price stability as in his analysis.

Remarkably, only the weight to stabilize fluctuations in the nominal interest rate de-

pends on steady state values, v and ηR,F R . Since we approximate our model around the

deterministic steady state consistent with the Friedman Rule, the value for the former is

small and the value for the latter is large, implying a high preference to stabilize variations

in the opportunity costs to hold money. To set up the optimal policy problem, we need to

rewrite the relevant constraints, i.e. the Euler-equation, the law of motion for F̂t and the

aggregate supply curve in terms of the welfare-relevant output gap, xt = ŷt − ŷ∗
t :

R̂t = π̂t+1 +σ(Et xt+1 −xt )+nt , (25)

F̂t = (1−αβπ̄θ)(1+ω)xt +ut +αβπ̄θEt (θπ̂t+1 + F̂t+1) (26)

and

π̂t =βEt π̂t+1 +η4xt +
κ∗(π̄−1)

1−αβπ̄θ F̂t + st . (27)

Here, nt , ut , st denote linear combinations of the elements of ξ̂t and η4 is a constant,

which are defined in appendix 6.4. Note, that the money demand condition does not enter

the set of relevant constraints of the policy problem. Nevertheless it influences the optimal

decision via the quadratic loss function, in which it plays an important role in determining

the relative weight of interest rate variations.
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4 Optimal monetary policy in the short run

Our approach to optimal policy in the short run is the timeless perspective. At t = t0 the

central bank respects prior commitments made in the infinite past (Woodford, 2003a).

Hence, the associated optimality conditions will be time invariant which marks the differ-

ence to a standard commitment approach. In particular, the optimality conditions in the

initial period do not differ from those in later periods. We showed that the optimal policy

in the long run is to follow the Friedman rule. In this section we consider the implications

for optimal policy in the short run, if deflation – instead of zero inflation – is chosen as the

optimal long run target. In particular, we consider the optimal reaction to various kinds of

disturbances and evaluate the resulting stabilization loss of both regimes.

4.1 Optimal response to shocks

Our impulse responses analysis distinguishes two cases. In the first case, our set of equi-

librium conditions is log-linearized around the optimal steady state in which the infla-

tion rate is equal to β+ ε. In the second case, we follow the conventional procedure and

approximate around a steady state of zero inflation. The choice of a point of expansion

for the log-linearization affects both the loss function and equilibrium conditions. Log-

linearizing round the Friedman rule increases the relative weight on the stabilization of

the nominal interest rate and affects the coefficients in the Phillips curve.

When we log-linearize around the optimal steady state corresponding to the Friedman

rule, we find that the central bank essentially keeps the nominal interest rate fixed in re-

sponse to any of the shocks present in our model. Consider first the optimal response to a

technology shock displayed in Figure 2. A Taylor expansion around zero inflation suggests

that the central bank should lower the annualized nominal rate by roughly 12 basis points

and then gradually return to the steady state. However, linearization around the Friedman
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Figure 2: Responses to technology shock

rule implies that the nominal rate is literally fixed. In line with this finding, the approxi-

mation around the Friedman rule implies more volatile response of inflation and the out-

put gap than what is suggested by linearization around the zero inflation steady state. A

stronger stabilization of the nominal interest rate necessarily implies that the other argu-

ments in the loss function can only be stabilized less.

Impulse responses to the other shocks deliver a similar message: Linearization around

the Friedman steady state implies that the nominal interest rate is literally fixed. To un-

derstand this, note that the interest elasticity of money demand, [σm(R −1)]−1 becomes

very large as R approaches its lower bound. For our baseline calibration this elasticity is

roughly -4000 at R = 1+β−1ε. Despite the fact that the marginal utility of real balances is

close to zero, this large elasticity explains why the central bank wishes to hold the nominal

rate constant under the Friedman rule.

When deriving the quadratic policy objective we need to assume that price dispersion

in the steady state was small. Does this assumption hold in our model? Note from Fig-
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Figure 3: Responses to wage markup shock

ure 4 in the appendix that the dispersion measure is lower for deflation than for inflation.

Hence, the condition is more likely to be fulfilled when the model is approximated around

a deflationary steady state.6 To further reassure the reader, we compare the impulse re-

sponse functions from the linear-quadratic approach to those obtained from linearizing

the first order conditions of the non-linear time invariant Ramsey problem (43)-(48), as

well as the constraints (49)-(53) and log-linearizes them around the optimal steady state

(see appendix 6.5). The results of this experiment are displayed in Figure 5 in the ap-

pendix. The impulse responses are remarkably similar indicating the accuracy of our lin-

ear quadratic approach.7

6This depends crucially on the absence of strategic complementarities in price setting (Levin, Lopez-
Salido and Yun, 2006).

7To induce the system of first-order conditions of the Ramsey planner to have the same steady state as the
one chosen for our expansion point of the linear-quadratic problem, we have to add a constant to the first-
order condition of the Ramsey planner for the nominal interest rate that is non-zero. This constant picks up
the steady state slack that arises because the Friedman rule steady state constitutes a corner solution. The
constant plays no further role for the dynamics.
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4.2 Welfare analysis

In this subsection we compare the welfare implications of the two policy regimes – the long

run deflation target according to the Friedman rule vs. zero inflation as the long run target.

Using (21) a second-order accurate approximation to the utility of the average household

is given by:

Ut0 = Et0

∞∑
t=t0

βt−t0Ut ≈
1

1−βŪ −ΩEt0

∞∑
t=t0

βt−t0λx(ŷt − ŷ∗
t )2 + π̂2

t +λR R̂2
t . (28)

The first part, the discounted steady state utility, is shown to be higher if the Friedman

rule is optimal. The second part, the stabilization loss, that relates to the optimal policy

reaction in the short run, is not necessarily lower under the Friedman rule regime than

under zero inflation. Which of those two parts dominates depends on the calibration of

the model, e.g. increasing the variances of the innovations amplifies the welfare loss due

to short run fluctuations. In line with the spirit of the timeless perspective, we do not

compute welfare conditional on a particular initial state vector at time t0. Our short run

stabilization loss is given by the discounted and weighted sum of unconditional variances:

SL =− 1

1−βΩ{var (π̂)+λx var (x)+λR var (R̂)} =− 1

1−βΩL, (29)

Here L is proportional to the unconditional expectation of period utility. In table 2

below we list the relative loss differences under the two policy regimes for a range of rela-

tive weights for the utility of real money balances given our baseline calibration for other

parameters. For this purpose we calibrate the stochastic shock processes to match the

standard deviations of real private consumption and government spending of U.S. data

during the post-Volcker period.8 All exogenous processes are assumed to be autocorre-

8The quarterly data is logged and detrended via the Hodrick-Prescott filter with a smoothing parameter
of 10,000. The obtained standard deviation of private consumption is 0.0123, for government expenditures
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lated with coefficient 0.9. We have chosen a standard deviation of the innovations to the

taste shock of 0.0001, for the markup shock 0.00015, for the government spending shock

0.0075 and for the technology shock 0.0096.

a1 λZ ERO
R λF R

R bcc Z ERO −bccF R dUC E σF R σZ ERO

1/20 2.3426 1472 0.0017% 1.3617% 317 41
1/50 1.6238 1020 0.0011% 0.8959% 220 31
1/99 1.2355 777 0.0005% 0.6423% 167 25

1/150 1.0463 658 0.0002% 0.5182% 142 23
1/189 0.9539 600 0.00% 0.4574% 129 21
1/250 0.8530 536 −0.0002% 0.3909% 116 20
1/500 0.6464 406 −0.0008% 0.2544% 88 17

1/1000 0.4899 308 −0.0014% 0.1506% 66 15

Table 2: Welfare Analysis: ε= 0.0001

The results in Table 2 shows that the larger the preference parameter a1 the larger is

the weight for interest rate stabilization in the loss function, λR . Here, λZ ERO
R denotes the

weight when the model is approximated around the zero inflation and λF R
R denotes the

weight for the approximation around the Friedman rule steady state.9 The fourth column

displays the difference in stabilization loss or business-cycle costs under both regimes. To

be more precise it depicts how much steady state consumption agents are willing to give

up permanently to compensate for short run fluctuations in the regime with zero infla-

tion as long run target, bcc Z ERO , relative to the Friedman rule regime, bccF R . Evidently,

this difference is small, e.g. 0.0005% under the baseline calibration with a1 = 1/99. The

resulting stabilization loss, when approximating around the Friedman rule steady state is

superior to the stabilization loss around zero inflation if a1 is large enough.

The (technical) intuition for this is a trade off effect between predictability and possi-

ble welfare losses in the neighborhood of the steady state of each regime. If the Friedman

we obtain 0.0172.
9Table 3 in the appendix gives the corresponding results for ε= .000001, i.e. if the assumed lower bound

is closer to the zero bound.
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rule is the expansion point, then the reduced form involves 4 jump variables, R̂t , xt , π̂t

and F̂t , as well as 3 endogenous state variables, the multipliers on the relevant constraints,

(25)-(27). If zero inflation is chosen as the approximation point, the reduced form does not

involve F̂t and exhibits only the two multipliers associated with the aggregate supply curve

and the euler equation as endogenous state variables. On the one hand, the fundamental

solution in the Friedman regime is characterized by an additional history dependent vari-

able. This tends to increase prediction power by reducing the forecast error variances of

inflation, output gap and the nominal interest rate.10 On the other hand, however, possi-

ble welfare losses in the neighborhood of the zero inflation steady state are lower, steady

state utility is "flatter" around π= 1 (see Figure 6 in the appendix). If the relative weight of

real money balances decreases, the additional state variable loses prediction power, while

possible welfare losses around the zero inflation steady state decrease.

While there is a cut-off value in terms of stabilization loss, overall utility composed of

steady state utility minus stabilization loss, is higher under the Friedman rule than under

zero inflation (dUC E ). The third but last column of Table 2 depicts this overall difference

in utility expressed in steady state consumption equivalents of the Friedman rule steady

state. Under the baseline calibration (a1 = 1/99) agents are willing to give up permanently

0.64% of their consumption in the Friedman rule steady state until they are indifferent

between the Friedman rule and the zero inflation regime.

We address the issue of the lower bound approximately in a way proposed originally by

Rotemberg and Woodford (1997) and more recently by Schmitt-Grohé and Uribe (2005).

First, we compute the optimal steady state under the assumption that the steady state

nominal interest rate is at least slightly positive, R − 1 = β−1ε > 0 in the Friedman rule

regime, and R = β−1 > 0 under zero inflation. However, this does not exclude an occa-

10E.g. Woodford (2003b) or Walsh (2003b) find that history-dependence can be beneficial for social welfare
in forward-looking models. Note however, that in our case the models are not structurally nested, since in
the Friedman regime more jump variables must be pinned down.
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sionally binding zero bound. The entries σF R and σZ ERO shed light on how likely it is that

the lower bound on the nominal interest rate binds if the economy fluctuates around the

Friedman rule ε steady state or around price stability. We calculate the standard devia-

tion of the nominal interest rate under the optimal policy implied by both policy regimes.

The term σF R then expresses the size of the interval from R = 1.0001 to the lower bound

R = 1 in terms of this standard deviation. The entry σZ ERO does the same, but now the

approximation is computed around a zero inflation steady state. Hence, larger values for

σF R or for σZ ERO imply that the lower bound is less likely to be binding. Note that our

results imply a low probability that the nominal interest rate hits the lower bound, i.e.

Rt = 1. Even for a small relative weight of real money balances, a1 = 1/1000, the resulting

standard deviation for the nominal interest rate is small relative to ε. A symmetric con-

fidence interval around R = 1.0001 of up to 66 standard deviations could be constructed

until the lower bound is included. If we decrease ε, i.e. if the assumed lower bound moves

closer to zero, the corresponding number of standard deviations increases to 418 (see ta-

ble 3 in the appendix). This implies that the effect to stabilize the nominal interest even

more (higher relative weight λF R
R ) dominates the effect of the smaller distance to the zero

bound. Correspondingly, if zero inflation is chosen as the expansion point, the probability

to hit the lower bound is even higher (see the last column). We stress that our attempt to

approximating the probability of lower bound violations ignores certain feedback chan-

nels.11 Nevertheless, computing the variance of the nominal interest rate is one way to

gauge the severity of the lower bound constraint in linear models.

11Recent work by Adam and Billi (2006) or Eggertsson and Woodford (2003) explicitly accounts for the non-
linear lower bound constraint and shows how the possibility of a binding constraint affects agents’ decisions.
They find, that the lower bound constraint may amplify the adverse effects of shocks and trigger a stronger
response of monetary policy.
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5 Conclusion

We study optimal monetary policy in an economy without capital, where firms set prices

in a staggered way without indexation and real money balances are assumed to provide

utility. Accounting for a sizeable degree of nominal rigidity, the optimal deterministic

steady state that maximizes steady state utility is to follow the Friedman rule, even if the

importance assigned to the utility of money is small relative to consumption and leisure.

We approximate the model around this optimal steady state as the long-run policy tar-

get and derive a second order approximation to households’ utility. Optimal interest rate

policy is shown to abstain from reacting sharply to changes in the state of the economy.

Instead of stabilizing inflation, the primary goal of the central bank is to stabilize fluctua-

tions in the nominal interest rate.

We stress that our model is not about direct and quantitative advice on optimal mon-

etary policy. It is too stylized for this purpose. The foremost contribution of this paper is

to challenge the conventional view that the Friedman rule loses out to the goal of price

stability once price stickiness is introduced. We show that a widely used money-in-the

utility function model implies that the Friedman rule is optimal even when large amounts

of price stickiness are present. When the economy fluctuates around the Friedman rule

steady state, central bankers should keep the nominal interest stable over the business cy-

cle. This result is explained by the large interest elasticity of money demand that obtains in

our MIU model when the nominal rate is close to zero. There is little empirical evidence on

the behavior of money demand in the major industrialized countries for very low interest

rates. This is unfortunate as the interest elasticity at low interest rates is a key difference

between our MIU framework and the transactions technology employed in other papers

that come to different policy prescriptions. Therefore, future research on optimal mone-

tary policy in sticky price models benefits from a better understanding of money demand.

Recent work by Ireland (2007) contributes to this issue and points towards a change in U.S.
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money demand at low rates in the post 1980 period.
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6 Appendix

6.1 Constraints and CRRA preferences in the steady state

Suppose that the utility function is of the CRRA form. Given an output subsidy that renders

the steady state efficient, constraints (9)-(13), and the money demand equation can be

combined to solve for ∆, y , c, l , R and m in terms of inflation.

∆= (1−α)ρ
θ
θ−1

1−απθ , (30)

with ρ = (1−απθ−1)/(1−α),

y = [
1

a2∆ωscσc
]

1
σc+ω , (31)

c = y sc, (32)

l = y∆ (33)

R = π

β
, (34)

m = [R/(R −1)yσc a1scσc ]1/σm . (35)

6.2 Proof proposition 1

Consider first the steady state utility if the inflation rate is zero. Correspondingly, gross in-

flation and price dispersion are 1, such that yZ ERO = lZ ERO . Using (31)-(35), one can com-

pute yZ ERO = 1/sc1/(1+ω) = lZ ERO , cZ ERO = scω/(1+ω) and mZ ERO = RZ EROηR,Z ERO a1scω/(1+ω).

Then the period steady state utility of the average household is given by

uZ ERO = (1+a1)
ω

1+ω ln(sc)− 1

(1+ω)sc
−a1 ln(1−β)+a1 ln(a1). (36)
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If π = β+ ε, then price dispersion is ∆F R > 1, and output equals yF R = 1/(sc∆ωF R )1/(1+ω) <

yZ ERO , while lF R = (∆F R /sc)1/(1+ω) > lZ ERO . Consumption and real money balances are

then given by cF R = (sc/∆F R )ω/(1+ω) < cZ ERO and mF R = RF RηR,F R a1(sc/∆F R )ω/(1+ω) >

mZ ERO . In this case, the period steady state utility is

uF R = (1+a1)
ω

1+ω ln(sc)− ω

1+ω (1+a1) ln(∆F R )− ∆F R

(1+ω)sc
+a1 ln(

1+β−1ε

β−1ε
)+a1 ln(a1).

(37)

Comparing (36) and (37), the Friedman rule yields higher utility as long as a1 > a1. ■

6.3 Proof proposition 2

The period utility function of the average household in equilibrium is given by:

∫ 1

0
[u(yt −Gt ,ζt )− v(l j t )+ z(mt )]d j = u(yt −Gt )+ z(mt )−

∫ 1

0
v(l j t )d j .

To derive (21) we need to impose that, in the optimal steady state, real money balances

are sufficiently close to being satiated (see Woodford, 2003a, Assumption 6.1), the price

dispersion associated with optimal inflation is sufficiently small, as well as that optimal

inflation is close enough to one.

The first summands can be approximated to second order by:

u(yt −Gt ,ζt ) = uc y[ŷt +
(1−σ)

2
ŷ2

t +σg t ŷt ]+ t .i .s.p.+O (‖ξ̂t , ŷt‖3), (38)

where we used that (xt −x) = x(x̂t +0.5x̂2
t )+O (‖x̂t‖3), t.i.s.p denotes terms independent of

stabilization policy, ucζ = uc , ζ = 1, σ = σc sc−1, Ĝt = (Gt −G)/y , and that g t = Ĝt +σ−1ζ̂t .

The utility of real money balances can be approximated by:

z(m) = uc y[
zmm

uc y
m̂t +0.5

zmm

uc y
(1−σm)m̂2

t ]+ t .i .s.p.+O (‖m̂t‖3).
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We treat (R −1)/R as an expansion parameter, implying that zm/uc −0 = (R −1)/R −0 is at

least of first order. Since we expand our model at a point near the zero bound, this means

that the marginal utility of real money balances is close to zero.

Applying a first-order approximation to the money demand equation, and using that

the coefficients σ/σm = ucc sc y(R −1)/(Rzmmm) and sm = zmm/(uc y) are of first order in

(R −1)/R, we can approximate z(mt ) as:

z(mt ) =−uc y
1

2σm(R −1)v
R̂2

t + t .i .s.p.+O (‖ξ̂t , ŷt , R̂t‖3), (39)

where we assumed that (R−1)/R−0 is of second order, implying that the linear term drops

out in the quadratic approximation.

The third part of households’ period utility can be approximated by:

v(lt ) = vy y[ŷt +
1+ω

2
ŷ2

t − (1+ω)ât ŷt + ∆̂t ]+ t .i .s.p.+O (‖ξ̂t , ŷt ,∆̂0.5
t ,ς‖3), (40)

with vy y = v∆∆= vl l . This approximation is based on the assumption that

∫ 1

0
(Pi /P )−θdi = (P̆/P )−θ−1 =O (‖ς‖3) (41)

. Here P̆ denotes the average long-term individual price and we collect in ς the distortions

of the relative price due to price dispersion in the optimal steady state.12 It follows that

∆t −1 = θ

2
vari ln(Pi t )+O (‖p̂i t , ξ̂t ,ς‖3),

and correspondingly ∆̂t are of second order. Connecting (38),(39) and (40) by the relation-

12This assumption depends on the absence of strategic complementarities in price setting (Yun, Levin,
Lopez-Salido and Yun, 2006). Then, price dispersion in the steady state is lower for deflation than for infla-
tion (see Figure 4.)
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ship vy /uc = amc/µw = (1−φ), with

φ= 1−ρ(π)
1

1−θ (1−τ)
θ−1

µwθ

1−αβπθ
1−αβπθ−1

,

results in:

U (ct , lt ,mt ) = −uc y[−φŷt +
σ+ω−φ(1+ω)

2
ŷ2

t − ŷt (σg t + (1−φ)(1+ω)ât )

+ (1−φ)
θ

2
vari ln(Pi t )+ 1

2σm(R −1)v
R̂2

t ]+ t .i .s.p.+O (‖ξ̂t ,ς‖3).

Using the sales tax as a sales subsidy by setting

1−τ= [ρ(π)
1

1−θ
θ−1

µwθ

1−αβπθ
1−αβπθ−1

]−1,

the linear term in the welfare approximation above vanishes:

U (t ) =−uc y

2
[(σ+ω)(ŷt − ŷ∗

t )2+θvari ln(Pi t )+ 1

σm(R −1)v
R̂2

t ]+ t .i .s.p.+O (‖ξ̂t ,ς‖3). (42)

The variance of ln(Pt (i )) is given by

vari (lnPi t ) =αvari ln(Pi t−1)+ α

1−απ̂
2
t + t .i .s.p.+O (‖ξ̂t ,ς2/3‖3),

where we assumed that ln(π) = 0+O (‖ς‖2). Iterating the equation above forward starting

from any vari ln(Pi t0−1) in the period before policy applies, for t ≥ t0 results in :

vari ln(Pi t ) =
t∑

s=t0

αt−s α

1−απ̂
2
s + t .i .s.p.+O (‖ξ̂t ,ς2/3‖3),

where we used that the initial price dispersion vari ln(Pi t0−1) is t .i .s.p.

Discounting, summing up and substituting for vari ln(Pi t ) in (42) results in (21) in
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proposition 2. ■

6.4 Definition of the disturbances nt , ut and st

The exogenous fluctuations are defines as:

nt = η2Et (ât+1 − ât )−η1σEt (g t+1 − g t ),

ut = η3ât + (1−αβπ̄θ)µ̂w
t +η3σg t

and

st = η5ât +η6σg t +κ∗µ̂w
t .

The constants ηi , i = 1, ..6 are defined as:

η1 =
ω

ω+σ ,

η2 =
σ(1+ω)

ω+σ ,

η3 = (1−αβπ̄θ)(1+ω)
1−σ
ω+σ ,

η4 = κ∗[ω+σ+ (1− π̄)(1−σ)

1−αβπ̄θ ],

η5 =
η4(1+ω)

ω+σ −κ∗(1+ω)

and

η6 =
η4

ω+σ +κ∗(
1− π̄

1−αβπ̄θ −1).
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6.5 The optimal policy problem from a timeless perspective

Under the timeless perspective the first order necessary conditions with respect to yt , ∆t ,

Kt , Ft , Rt and πt for all t ≥ t0 are given by:

uc (t )−∆t vl (t )/at + zm(t )mc (t )+λ2t (1−τ)[ucc (t )yt +uc (t )]

+λ3tµ
w
t [vl l (t )∆t yt /at + vl (t )]−λ5t ucc (t )+λ5t−1

ucc (t )Rt−1

πt

.= 0 (43)

−yt vl (t )/at +λ3t vl l (t )y2
t µ

w
t +λ4t −λ4t+1βαπ

θ
t+1

.= 0 (44)

−λ1tρ(t )
1

1−θ − [λ2t −απθ−1
t λ2t−1]

.= 0 (45)

θ

θ−1
λ1t − [λ3t −απθt λ3t−1]

.= 0 (46)

zm(t )mR (t )+λ5tβ
uc (t +1)

πt+1
≤ 0, (47)

and

−λ1t Kt
α

1−απ
θ−2
t ρ(t )

θ
1−θ +λ2t−1αKt (θ−1)πθ−2

t +λ3t−1αFtθπ
θ−1
t

+λ4t [θαπθ−2
t ρ(t )

1
θ−1 −αθπθ−1

t ∆t−1]−λ5t−1Rt−1
uc (t )

π2
t

.= 0. (48)

Note that λ2t0−1, λ3t0 and λ5t0−1 are the multiplier requiring initial commitment. The mul-

tipliers λ1t −λ5t are associated with the following constraints:

ρ(πt )
1

1−θ Kt =
θ

θ−1
Ft (49)

Kt = uc (yt −Gt ,ζt )(1−τ)yt +βαEt Kt+1π
θ−1
t+1 (50)

Ft = vl (yt∆t /at )ytµ
w
t +αβEt Ft+1π

θ
t+1 (51)

∆t = (1−α)ρ(πt )
θ
θ−1 +α∆t−1π

θ
t (52)
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and

uc (yt −Gt ,ζt ) =βRt Et
uc (yt+1 −Gt+1,ζt+1)

πt+1
, (53)

with ρ(πt ) ≡ (1−απθ−1
t )(1−α)−1 for Rt ≥ 1.

Additional figures and tables
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Figure 4: Steady state price dispersion as a function of inflation.
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Figure 5: Impulse responses to a wage markup shock under optimal policy computed by
the linear quadratic approximation and by the time invariant Ramsey approach.
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Figure 6: Welfare and Inflation in the steady state
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a1 λZ ERO
R λF R

R bcc Z ERO −bccF R dUC E σ(FR) σ(Z ERO)

1/20 2.3426 928920 0.0017% 1.4543% 1999 41
1/50 1.6238 643870 0.0011% 0.9598% 1386 31
1/99 1.2355 488930 0.0005% 0.6904% 1054 25

1/150 1.0463 414910 0.0002% 0.5585 893 23
1/189 0.9539 378270 0.00% 0.4940% 814 21
1/250 0.8530 338230 −0.0002% 0.4233% 728 20
1/500 0.6464 256330 −0.0009% 0.2783% 552 17

1/1000 0.4899 19460 −0.0015% 0.1680% 418 15

Table 3: Welfare Analysis: ε= 0.000001
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