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Abstract
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composition depends on the price reset hazard function. The derivation of the generalized
NKPC links those compostion e¤ects to the hazard function, so that only aggregate data is
needed to extract information about the price reset hazard function. The empirical hazard
function is generally increasing with the age of prices, but with spikes at the 1st and 4th
quarters. The implication of this �nding for sticky price modeling is that the pricing decision
has both time- and state-dependent aspects.
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1 Introduction

In the current generation of monetary models, e¤ects of monetary policy are closely related to
the speed of the aggregate price level reacting to a nominal disturbance. The adjustment of
aggregate price in turn depends on two factors. One is the optimal reset price an adjusting
�rm chooses, and the other is the fraction of �rms changing their prices. With the exception
of a few micro-founded state-dependent models1, the majority of research on sticky prices is
limited to addressing the optimal reset price decision, but leaving the adjustment timing to be
exogenously given by some simpli�ed assumptions, e.g. models incorporating the Calvo (1983) or
Taylor (1980) approaches. Put in more technical terms, it amounts to restricting the price reset
hazard function to a speci�c shape and studying other issues on the basis of this assumption.

Until recently, the aggregate price reset hazard function remains a largely ignored topic in the
macro literature. It begins, however, to draw more attention, because the competing theoretical
models of sticky prices deliver clear mappings between speci�c aggregate hazard functions and
implications for macro dynamics and monetary policy. Pioneer work by Wolman (1999) and
Kiley (2002) demonstrated that aggregate dynamics should be sensitive to the hazard function
underlying di¤erent pricing rules. For this reason, the aggregate hazard function provides a new
metric used to select theoretical models and identify most relevant propagation mechanisms for
monetary policy shocks.

Despite its uses, empirical studies of the aggregate hazard function are rare in the macro
literature. By contrast, fast growing evidence from micro data sets becomes available in the
recent years2. However, I want to argue that it is the aggregate hazard function that of great
interest to macroeconomists, and it is important to distinguish between the macro and micro
hazard function. The aggregate hazard is de�ned as the probability of the price adjustment
reacting to aggregate shocks. In the theoretical macro models, those hazard rates can be clearly
mapped into impulse responses of aggregate variables. By contrast, mapping between micro haz-
ard functions and macro dynamics is much trickier3. For example, Caplin and Spulber (1987)
demonstrated that, when the selection e¤ect is present, the aggregate economy is completely
immune to price stickiness at the micro level, and thereby has no real e¤ect of monetary policy.
Hazard functions estimated from the micro data are therefore not a perfect substitute for the ag-
gregate hazard function de�ned in the theoretical models. Besides this theoretical consideration,
there are also empirical pitfalls that cause for attention in interpreting micro hazard rates. First,
micro hazard rates are typically higher than aggregate hazard rates, because individual prices
react to both idiosyncratic and aggregate shocks. It is very di¢ cult to disentangle them with
a micro data set. Second, evidence of the shape of the hazard function from microeconometric
studies is not conclusive4. Micro data sets di¤er substantially in the range of goods included,

1See: e.g. Caplin and Spulber (1987), Dotsey et al. (1999), Caballero and Engel (2007) and Golosov and Lucas
(2007). The strength of those models is to endogenize both the optimal reset price decision and the adjustment
timing decision in the same framework. However, due to the complexity of this approach, few of them are actually
applied in the policy analysis.

2See: e.g. Bils and Klenow (2004), Alvarez et al. (2006) Midrigan (2007) and Nakamura and Steinsson (2008)
among others.

3See: Mackowiak and Smets (2008) for elaboration on this point.
4Some �nd strong support for increasing hazard functions (e.g.: Cecchetti, 1986 and Fougere et al., 2005),

while others �nd evidence in favour of decreasing hazards (e.g.: Campbell and Eden, 2005, Alvarez, 2007 and
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the countries and time periods covered, and thereby make it di¢ cult to compare their results;
and, even though comprehensive micro data sets have now become available, they are usually
short compared to aggregate time series data. Most of the CPI or PPI data sets for the U.S. or
Europe are only available from the late 80�s5. It is reasonable to think that the shape of hazard
functions could depend on the underlying economic conditions, and would therefore change over
the time periods of the collected data.

The objective of this paper is to estimate the aggregate price reset hazard function directly
from the time series data. To do that, I �rst construct a fully-speci�ed DSGE model featuring
nominal rigidity that allows for a �exible hazard function of price setting. I derive the generalized
New Keynesian Phillips curve (NKPC hereafter) and then estimate this model with the Bayesian
approach. The identi�cation of the aggregate hazard function is possible due to the fact that
in�ation rate can be decomposed into current and past reset prices and its composition is
determined by the aggregate hazard function. The derivation of the generalized NKPC links
those composition e¤ects to the hazard function, so that only aggregate data is needed to extract
information about the price reset hazard function. The advantages of this identi�cation method
is that, �rst, it is based on a generic assumption of the �rm�s level pricing behavior, making
the mapping between the hazard function and aggregate dynamics robust to the modeling of
sticky prices. In addition, this method identi�es aggregate hazard function from the �uctuations
of aggregate price level, so that e¤ects of idiosyncratic shocks are removed. However, this
method is not free from other typical identi�cation problems which prevail in the estimated
New Keynesian models6, e.g. observational equivalence of the labor supply elasticity. For those
poorly identi�ed structural parameters, I conduct various sensitivity tests to check the robustness
of hazard function estimates.

I estimate the hazard function using the U.S. quarterly data of in�ation, the growth rate of
real output and e¤ective federal funds rate from 1955 to 2008. The empirical aggregate hazard
function has a U-shape with a spike at the fourth quarter. The interpretation of this �nding
is that price setting is characterized by both time- and state-dependent aspects. For the time-
dependent pricing aspect, one quarter and 4-quarter seem to be the most important frequencies
of the aggregate price adjustment. About 34.2% of prices hold for less than one quarter, while,
12.4% of prices have the mean duration of four quarters. Besides the time-dependent pricing
pattern, the upward-sloping hazard function indicates that the state-dependent pricing also plays
an important role in price decisions, especially when a price becomes more outdated. In fact,
this generalized time-dependent model can be viewed as a tractable approximation for the more
microfounded state-dependent model, when we consider a relative stable economy. The hazard
function of the deviation from the optimum largely coincides with the hazard function of time-
since-last-adjustment. The longer a price is �xed, the more likely it deviates signi�cantly from
the optimum, and hence its probability of being adjusted rises. Since the annual in�ation rates
in my data set stay under 2% for most of the sample periods except for 1970�s, it is arguable
that the time elapsed since last adjustment is a good proxy for the deviation from the optimum,
therefore the increasing part of the hazard function gives the pricing decision a state-dependent
aspect.

Nakamura and Steinsson, 2008).
5For more details see Table 2 in Alvarez (2007)
6For the recent discussion on this topic, see Canova and Sala (2009) and Rios-Rull et al. (2009).
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This paper is broadly related to progress in developing empirical models of sticky prices
based on the New Keynesian framework. The early empirical model of sticky prices was solely
based on the NKPC under the Calvo pricing assumption (See, e.g. Gali and Gertler, 1999, Gali
et al., 2001 and Sbordone, 2002). These authors estimated the NKPC with GMM, and found
a considerable degree of price rigidity in the aggregate data. The empirical price reset hazard
rate is around 20% per quarter for the U.S. and 10% for Europe. These results, however, are
at odds with micro evidence in two ways. First, recent micro studies generally conclude that
the average frequency of price adjustments at the �rm�s level is not only higher, but also di¤ers
substantially across sectors in the economy7. Second, the Calvo assumption implies a constant
hazard function, meaning that the probability of adjusting prices is independent of the length of
the time since the last price revision, and the �at hazard function has been largely rejected by
empirical evidence from micro level data (See, e.g.: Cecchetti, 1986, Campbell and Eden, 2005
and Nakamura and Steinsson, 2008). Given these discrepancies between the macro and micro
evidence, empirical models allowing for more �exible price durations or hazard functions have
become popular in the recent literature. Jadresic (1999) presented a staggered pricing model
featuring a �exible distribution over price durations and used VAR approach to demonstrate
that the dynamic behavior of aggregate data on in�ation and other macroeconomic variables
provide information about the disaggregated price dynamics underlying the data. More recently,
Sheedy (2007) constructed a generalized Calvo model and parameterized the hazard function
in such a way that the resulting NKPC implied intrinsic in�ation persistence when the hazard
function was upward sloping. Based on this hazard function speci�cation, he estimated the
NKPC using GMM and found evidence of an upward-sloping hazard function. Coenen et al.
(2007) developed a staggered nominal contracts model with both random and �xed durations,
and estimated the generalized NKPC with an indirect inference method. Their results showed
that price rigidity is characterized by a very high degree of real rigidity, as opposed to modest
nominal rigidity with an average duration of about 2-3 quarters. Carvalho and Dam (2008)
estimated a semi-structural multi-price-duration model with the Bayesian approach, and found
that allowing for prices to last longer than 4 quarters is crucial to avoid underestimating the
relative importance of nominal rigidity.

The remainder of the paper is organized as follows: in section 2, I present the model with
generalized time-dependent pricing and derive the New Keynesian Phillips curve; section 3
introduces the empirical method and the data I use to estimate the model. At the end, results
regarding the hazard function are presented and discussed; section 4 contains some concluding
remarks.

7See: e.g. Bils and Klenow (2004), Alvarez et al. (2006) Midrigan (2007) and Nakamura and Steinsson (2008)
among others.
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2 The Model

In this section, I present a DSGE model of sticky prices due to nominal rigidity. I introduce
nominal rigidity by means of a general form of hazard functions8. A hazard function of price
setting is de�ned as the probabilities of price adjustment conditional on the spell of time elapsed
since the last price change. In this model, the hazard function is a discrete function taking
values between zero and one on its time domain. Many well known models of price setting in
the literature can be shown to imply hazard functions of one form or another. For example, the
most prominent pricing assumption of Calvo (1983) implies a constant hazard function over the
in�nite horizon.

2.1 Representative Household

A representative, in�nitely-lived household derives utility from the composite consumption good
Ct, and its labor supply Lt, and it maximizes a discounted sum of utility of the form:

max
fCt;Lt;Btg

E0

" 1X
t=0

�t

 
C1��t

1� � � �H
L1+�t

1 + �

!#
:

Here Ct denotes an index of the household�s consumption of each of the individual goods, Ct(i);
following a constant-elasticity-of-substitution aggregator (Dixit and Stiglitz, 1977).

Ct �
�Z 1

0
Ct(i)

��1
� di

� �
��1

; (1)

where � > 1, and it follows that the corresponding cost-minimizing demand for Ct(i) and the
welfare-based price index, Pt; are given by

Ct(i) =

�
Pt(i)

Pt

���
Ct (2)

Pt =

�Z 1

0
Pt(i)

1��di

� 1
1��

: (3)

For simplicity, I assume that households supply homogeneous labor units (Lt) in an economy-
wide competitive labor market.

The �ow budget constraint of the household at the beginning of period t is

PtCt +
Bt
Rt
�WtLt +Bt�1 +

Z 1

0
�t(i)di: (4)

Where Bt is a one-period nominal bond and Rt denotes the gross nominal return on the bond.
�t(i) represents the nominal pro�ts of a �rm that sells good i. I assume that each household owns
an equal share of all �rms. Finally this sequence of period budget constraints is supplemented
with a transversality condition of the form lim

T!1
Et

h
BT

�Ts=1Rs

i
> 0.

8 In the theoretical literature, the general time-dependent pricing model has been �rst outlined in Wolman
(1999), who studied some simple examples and found that in�ation dynamics are sensitive to di¤erent pricing
rules. Similar models have also been studied by Mash (2004) and Yao (2009).
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The solution to the household�s optimization problem can be expressed in two �rst order
necessary conditions. First, optimal labor supply is related to the real wage:

�
H
L�t C

�
t =

Wt

Pt
: (5)

Second, the Euler equation gives the relationship between the optimal consumption path and
asset prices:

1 = �Et

"�
Ct
Ct+1

��

RtPt
Pt+1

#
: (6)

2.2 Firms in the Economy

2.2.1 Real Marginal Cost

The production side of the economy is composed of a continuum of monopolistic competitive
�rms, each producing one variety of product i by using labor. Each �rm maximizes real pro�ts,
subject to the production function

Yt(i) = ZtLt(i) (7)

where Zt denotes an aggregate productivity shock. Log deviations of the shock, ẑt; follow an
exogenous AR(1) process ẑt = �z ẑt�1 + "z;t, and "z;t is white noise with �z 2 [0; 1). Lt(i) is the
demand of labor by �rm i.

Following equation (2), demand for intermediate goods is given by

Yt(i) =

�
Pt(i)

Pt

���
Yt: (8)

In each period, �rms choose optimal demands for labor inputs to maximize their real pro�ts
given nominal wage, market demand (8) and the production technology (7):

max
Lt(i)

�t(i) =
Pt(i)

Pt
Yt(i)�

Wt

Pt
Lt(i) (9)

And real marginal cost can be derived from this maximization problem in the following form:

mct =
Wt=Pt
(1� a)Zt

:

Furthermore, using the production function (7), output demand equation (8), the labor supply
condition (5) and the fact that at the equilibrium Ct = Yt, I can express real marginal cost only
in terms of aggregate output and technology shock.

mct = Y
�+�
t Z

�(1+�)
t : (10)
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2.2.2 Pricing Decisions under Nominal Rigidity

In this section, I introduce a general form of nominal rigidity, which is characterized by a
set of hazard rates depending on the spell of the time since last price adjustment. I assume
that monopolistic competitive �rms cannot adjust their price whenever they want. Instead,
opportunities for re-optimizing prices are dictated by the hazard rates, hj , where j denotes the
time-since-last-adjustment and j 2 f0; Jg. J is the maximum number of periods in which a
�rm�s price can be �xed.

Dynamics of the Price-duration Distribution In the economy, �rms�prices are hetero-
geneous with respect to the time since their last price adjustment. Table 1 summarizes key
notations concerning the dynamics of the price-duration distribution.

Duration Hazard Rate Non-adj. Rate Survival Rate Distribution
j hj �j Sj �(j)

0 0 1 1 �(0)

1 h1 �1 = 1� h1 S1 = �1 �(1)
...

...
...

...
...

j hj �j = 1� hj Sj =
j

�
i=0
�i �(j)

...
...

...
...

...
J hJ = 1 �J = 0 SJ = 0 �(J)

Table 1: Notations of the Dynamics of Price-vintage-distribution.

Using the notation de�ned in Table 1, and also denoting the distribution of price durations
at the beginning of each period by �t = f�t(0); �t(1) � � � �t(J)g, we can derive the ex-post
distribution of �rms after price adjustments (~�t) as

~�t(j) =

8<:
JP
i=1
hi�t(i) , when j = 0

�j�t(j) , when j = 1 � � �J:
(11)

Firms reoptimizing their prices in period t are labeled with �Duration 0�, and the proportion
of those �rms is given by hazard rates of all duration groups multiplied by their corresponding
densities. The �rms left in each duration group are the �rms that do not adjust their prices.
When the period t is over, this ex-post distribution, ~�t; becomes the ex-ante distribution for
the new period, �t+1: All price duration groups move to the next one, because all prices age by
one period.

As long as the hazard rates lie between zero and one, dynamics of the price-duration distri-
bution can be viewed as a Markov process with an invariant distribution, �, and is obtained by
solving �t(j) = �t+1(j): It yields the stationary price-duration distribution �(j):

�(j) =
Sj

J�1
�
j=0
Sj

, for j = 0; 1 � � �J � 1: (12)
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In a simple example, when J = 3, the stationary price-duration distribution

� =

�
1

1 + �1 + �1�2
;

�1
1 + �1 + �1�2

;
�1�2

1 + �1 + �1�2

�
:

I assume the economy converges to this invariant distribution fairly quickly, so that regard-
less of the initial price-duration distribution, I only consider the economy with the invariant
distribution of price durations. This assumption makes aggregation problem of the economy
tractable.

The Optimal Pricing under the General Form of Nominal Rigidity Given the general
form of nominal rigidity introduced above, the only heterogeneity among �rms is the time when
they last reset their prices, j. Firms in price duration group j share the same probability of
adjusting their prices, hj , and the distribution of �rms across durations is given by �(j).

In a given period when a �rm is allowed to reoptimize its price, the optimal price chosen
should re�ect the possibility that it will not be re-adjusted in the near future. Consequently,
adjusting �rms choose optimal prices that maximize the discounted sum of real pro�ts over the
time horizon in which the new price is expected to be �xed. The probability that a new price
will be �xed at least for j periods is given by the survival function, Sj , de�ned in Table 1.

I setup the maximization problem of an adjuster as follows:

max
P �t

Et
J�1P
j=0

SjQt;t+j

�
Y dt+jjt

P �t
Pt+j

� TCt+j
Pt+j

�
:

Where Et denotes the conditional expectation based on the information set in period t, and
Qt;t+j is the stochastic discount factor appropriate for discounting real pro�ts from t to t + j.
An adjusting �rm maximizes the pro�ts subject to the demand for its intermediate good in
period t+ j given that the �rm resets the price in period t and can be expressed as.

Y dt+jjt =

�
P �t
Pt+j

���
Yt+j :

This yields the following �rst order necessary condition for the optimal price:

P �t =
�

� � 1

J�1P
j=0

SjEt[Qt;t+jYt+jP
��1
t+j MCt+j ]

J�1P
j=0

SjEt[Qt;t+jYt+jP
��1
t+j ]

; (13)

where MCt denotes the nominal marginal cost. The optimal price is equal to the markup
multiplied by a weighted sum of future marginal costs, whose weights depend on the survival
rates. In the Calvo case, where Sj = �j , this equation reduces to the Calvo optimal pricing
condition.

Finally, given the stationary distribution, �(j), aggregate price can be written as a distributed
sum of all optimal prices. I de�ne the optimal price which was set j periods ago as P �t�j .
Following the aggregate price index from equation (3), the aggregate price is then obtained by:

Pt =

 
J�1P
j=0

�(j)P �1��t�j

! 1
1��

: (14)
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2.3 New Keynesian Phillips Curve

In this section, I derive the New Keynesian Phillips curve for this generalized model. To do
that, I �rst log-linearize equation (13) around the �exible price steady state. The log-linearized
optimal price equations are obtained by

p̂�t = Et

"
J�1P
j=0

�jS(j)



(cmct+j + p̂t+j)# ; (15)

where :


 =
J�1X
j=0

�jS(j) and cmct = (� + �)ŷt � (1 + �) ẑt:
In a similar fashion, I derive the log deviation of the aggregate price by log linearizing equation
(14).

p̂t =
J�1P
k=0

�(k) p̂�t�k: (16)

After some algebraic manipulations on equations (15) and (16), I obtain the New Keynesian
Phillips curve as follows9

�̂t =
J�1P
k=0

�(k)

1� �(0)Et�k

 
J�1P
j=0

�jS(j)

	
cmct+j�k + J�1P

i=1

J�1P
j=i

�jS(j)

	
�̂t+i�k

!

�
J�1P
k=2

�(k)�̂t�k+1; where �(k) =

J�1P
j=k

S(j)

J�1P
j=1
S(j)

; 	 =
J�1P
k=0

�jS(j): (17)

At the �rst glance, this Phillips curve is quite di¤erent from the one in the Calvo model.
It involves not only lagged in�ation but also lagged expectations that were built into pricing
decisions in the past. All coe¢ cients in the NKPC are derived from structural parameters
which are either the hazard function parameters or the preference parameters. When J = 3, for
example, then the NKPC is of the following form

9The detailed derivation of the NKPC can be found in the technical Appendix (A).
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�̂t =
1

(�1 + �1�2)	
cmct + �1

(�1 + �1�2)	
cmct�1 + �1�2

(�1 + �1�2)	
cmct�2

+
1

�1 + �1�2
Et

�
��1
	
cmct+1 + �2�1�2

	
cmct+2 + ��1 + �2�1�2

	
�̂t+1 +

�2�1�2
	

�̂t+2

�
+

�1
�1 + �1�2

Et�1

�
��1
	
cmct + �2�1�2

	
cmct+1 + ��1 + �2�1�2

	
�̂t +

�2�1�2
	

�̂t+1

�
+

�1�2
�1 + �1�2

Et�2

�
��1
	
cmct�1 + �2�1�2

	
cmct + ��1 + �2�1�2

	
�̂t�1 +

�2�1�2
	

�̂t

�
� �1�2
�1 + �1�2

�̂t�1; (18)

where : 	 = 1 + ��1 + �
2�1�2:

As we can observe that all coe¢ cients in equation (18) are expressed in terms of non-
adjustment rates (�j = 1� hj) and the subjective discount factor, �; thereby the coe¢ cients in
the generalized NKPC link dynamic e¤ects of reset prices on in�ation to the hazard function.
As a result, information about the price reset hazard rates can be extracted from the aggregate
data through the dynamic structure of the Phillips curve.

The economic reason why those lagged dynamic components should appear in the generalized
NKPC but miss in the Calvo model is because they exert two opposing e¤ects on current in�ation
through p̂t and p̂t�1 respectively. The magnitudes of these e¤ects depend on the price reset
hazard function. In the general case, the e¤ect of past optimal prices on current aggregate
price p̂t should be di¤erent to those a¤ecting lagged aggregate price p̂t�1. As a result, lagged
expectations and lagged in�ations should appear in the generalized NKPC. Conversely, in the
Calvo case, the constant hazard function leads relevant reset prices to exert the exactly same
amount of impact on both p̂t and p̂t�1, and thereby it causes them to be cancelled out.

2.4 The Final System of Equations

The general equilibrium system consists of equilibrium conditions derived from the optimization
problems of economic agents, market clearing conditions and a monetary policy equation. Mar-
ket clearing conditions require real prices clear the factor and good markets, while monetary
policy determines nominal value of the real economy. I choose a Taylor rule to close the model.

It = I
�i
t�1

"�
Pt

Pt�1��

��� � Yt
Yt�1

��y#1��i
eqt : (19)

Equation (19) is motivated by the interest rate smoothing speci�cation for the Taylor rule10,
which speci�es a policy rule that the central bank uses to determine the nominal interest rate
in the economy, where �� and �y denote short-run responses of the monetary authority to log
deviations of in�ation and the output growth rate, and qt is a sequence of i:i:d: white noise with
zero mean and a �nite variance (0; �2q).

10See: the empirical work by Clarida et al. (2000)
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After log-linearizing those equilibrium equations around the �exible-price steady state, log-
linearized general equilibrium system consists of the generalized NKPC (20), real marginal
cost (21), the household�s intertemporal optimization condition (22), the Taylor rule (19) and
exogenous stochastic processes. In the IS curve, I add an exogenous shock, dt; to represent real
aggregate demand disturbances11

�̂t =
J�1P
k=0

W1(k)Et�k

 
J�1P
j=0

W2(j)cmct+j�k + J�1P
i=1

W3(i)�̂t+i�k

!
�
J�1P
k=2

W4(k)�̂t�k+1; (20)

cmct = (� + �)ŷt � (1 + �) ẑt; (21)

�Et [ŷt+1] = �ŷt + (̂{t � Et [�̂t+1]) + dt; (22)

{̂t = (1� �i)
�
���̂t + �y (ŷt � ŷt�1)

�
+ �i{̂t�1 + qt; (23)

ẑt = �z � ẑt�1 + �t where �t v N(0; �2z); (24)

dt = �d � dt�1 + "t where "t v N(0; �2d); (25)

qt v N(0; �2q); (26)

where weights (W1;W2;W3;W4) in the generalized NKPC are de�ned in equation (17). I
collect the structure parameters into a vector � =

�
�; �; �; �; ��; �y; �i; �js; �z; �d; �i; �

2
z; �

2
d; �

2
q

�
.

In the empirical study, I am interested in estimating values for those structural parameters by
using the Bayesian approach.

3 Estimation

In this section, I solve and estimate the New Keynesian model described above by using the
Bayesian approach. The full information Bayesian method has some appealing features in com-
parison to methods employed in the literature. As pointed out by An and Schorfheide (2007),
this method is system-based, meaning that it �ts the DSGE model to a vector of aggregate
time series. Through a full characterization of the data generating process, it provides a formal
framework for evaluating misspeci�ed models on the basis of the data density. In addition, the
Bayesian approach also provides a consistent method for dealing with rational expectations �
one of the central elements in the DSGE models.

3.1 Bayesian Inference

I apply the Bayesian approach, set forth by DeJong et al. (2000), Schorfheide (2000) and
Fernandez-Villaverde and Rubio-Ramirez (2004) among others, to estimate the structural para-
meters of the DSGE model. The Bayesian estimation is based on combining information gained
from maximizing likelihood of the data and additional information about the parameters (the
prior distribution). The main steps of this approach are as follows:

First, the linear rational expectation model is solved by using standard numerical methods
(See: e.g. Uhlig, 1998 and Sims, 2002) to obtain the reduced form equations in its predetermined
and exogenous variables.
11 Introducing this shock is not necessary for the theoretical model, but, in the Bayesian estimation, due to the

singularity problem I need three shocks for three observables.
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For example, the linearized DSGE model can be written as a rational expectations system
in the form

�0(�)St = �1(�)St�1 +��(�)�t +�!(�)!t: (27)

Here, St is a vector of all endogenous variables in the model, such as ŷt, �̂t, {̂t; etc: The
vector �t stacks the innovations of the exogenous processes and !t is composed of one-period-
ahead rational expectations forecast errors. Entries of �(�) matrices are functions of structural
parameters in the model. The solution to (27) can be expressed as

St = 	1(�)St�1 +	�(�)�t: (28)

The second step involves writing the model in state space form. This is to augment the
solution equation (28) with a measurement equation, which relates the theoretical variables to
a vector of observables Y_obst.

Y_obst = A(�) +BSt + CVt: (29)

Where A(�) is a vector of constants, capturing the mean of St; and Vt is a set of shocks to the
observables, including measurement errors.

Third, when we assume that all shocks in the state space form are normally distributed,
we can use the Kalman �lter (Sargent, 1989) to evaluate the likelihood function of the observ-
ables L(�jY_obsT ). In contrast to other maximum likelihood methods, the Bayesian approach
combines the likelihood function with prior densities p(�), which includes all extra informa-
tion about the parameters of interest. The posterior density p(�jY_obsT ) can be obtained by
applying Bayes�theorem

p(�jY_obsT ) _ L(�jY_obsT ) p(�): (30)

In the last step, � is estimated by maximizing the likelihood function given data L(�jY_obsT )
reweighted by the prior density p(�), in that numerical optimization methods are used to �nd
the posterior mode for � and the inverse Hessian matrix. Finally, the posterior distribution is
generated by using a random-walk Metropolis sampling algorithm12.

3.2 Data and Priors

According to the empirical framework and research questions to be addressed in this paper, I
choose the following three observables: growth rate of real GDP per capita, annualized in�ation
rate calculated from the consumer price index (CPI) and nominal interest rate for the U.S. over
the period 1955.Q1 - 2008.Q413. The output growth rate and in�ation are detrended by the
Hodrick-Prescott �lter. Based on the de�nition of the model�s variables and the observables,
the measurement equations are de�ned as follows:

12 I implement the Bayesian estimation procedure discussed above by using the MATLAB based package
DYNARE, which is available at: http://www.cepremap.cnrs.fr/dynare/
13Details on the construction of the data set are provided in Appendix (B).
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y_obs = ŷt � ŷt�1
�_obs = �̂t

i_obs = {̂t:

The priors I choose are in line with the mainstream values used in the Bayesian literature
(e.g. Smets and Wouters, 2007 and Lubik and Schorfheide, 2005). They are centered around
the average value of estimates of micro and macro data with fairly loose standard deviations.

I �x two parameters in advance. The discount factor � is equal to 0:99, implying an annual
steady state real interest rate of 4%. The elasticity of substitution between intermediate goods
is set to be 10, implying an average mark-up of around 11%. Both values are common in the
literature.

The key structural parameters in this model are the hazard rates or the non-adjustment rates
with respect to time-since-last-adjustment, �j . I choose the priors for the these parameters based
on micro evidence on the mean frequency of price adjustments, reported by Bils and Klenow
(2004). They �nd that the U.S. sectoral prices on average last only 2 quarters, which implies
the hazard rate is equal to 0.5. Because the main goal of this study is to �nd out what shape
of hazard function �ts best to the macro data, I set all non-adjustment rate with the same
mean of 2 quarters and a very loose standard deviation of 0.28. This prior leads to a 95%
inter-quantile-range basically covering the whole interval between 0 and 1 quite evenly, except
for the two extremes. In addition, same priors for all �j re�ect the view of a pricing model using
a constant-hazard assumption. By choosing a large standard deviation for the prior, I allow the
data to speak out quite freely about the shape of hazard rates over the time horizon, so that I
can evaluate theoretical models from the point of view of a hazard function.

Moving to the other structural parameters, the prior for the relative risk aversion, �, is set
to follow a gamma distribution with mean 1.5 and a standard error of 0.375. This prior covers a
wide range of values from the experimental and macro literature. The inverse elasticity of labour
supply, �; is di¢ cult to calibrate, because there is a wide range of evidence in the literature. I
choose the prior for this parameter to be normally distributed around the mean of 1.5. A mean
of 1.5 is commonly estimated in the micro-labor studies (See: e.g. Blundell and Macurdy, 1999).
I set a large standard error of 1.0. In the sensitivity analysis, I also check the robustness of my
result to the other values of the prior mean.

Proceeding with priors for parameters in the Taylor rule, the priors for �� and �y are centered
at the values commonly associated with a Taylor rule. Following Smets and Wouters (2007),
I set a prior for the response coe¢ cient to deviation of annualized in�ation �� to be centered
around 1.5 with a standard error of 0.1, and a prior for response coe¢ cient to output growth
rate �y to be centered around 0.5 with a standard error of 0.1. This rule also allows for interest
rate smoothing with a prior mean of 0.5 and a standard deviation of 0.1.

Finally, I assume that the standard errors of the innovations follow an inverse-gamma dis-
tribution with a mean of 0.1 and two degrees of freedom. The persistence of the AR(1) process
of the productivity shock is beta-distributed with a mean of 0.8 and the standard deviation of
0.1, and the persistence of the AR(1) process of the aggregate demand shock is beta-distributed
with a mean of 0.5 and the standard deviation of 0.1.
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3.3 Results

By applying the methodology described above, I proceed to gauge the degree of nominal rigidity
in terms of the estimated structural parameters based on those prior distributions discussed
above. The posterior modes of parameters are calculated by maximizing the log likelihood
function of the data, and then the posterior distributions are simulated using the �Metropolis-
Hastings�algorithm. The results presented here are based on 500,000 out of 1 million total draws
and the average acceptance rate is around 0:31. With the simulation, I obtain convergence and
relative stability in all measures of the parameter moments. The posterior mode, mean and 5%,
95% quantiles of the 17 estimated parameters are reported in Table 2 and the prior-posterior
distributions are plotted in the �gure appendix. The data provides strong information about
most of the structural parameters, except for the inverse of the elasticity of labor supply and
one of Taylor rule parameters. In those cases, I conduct various sensitivity tests to check
the robustness of estimates of hazard function to changes in those poorly identi�ed structural
parameters.

Parameters Prior Posterior (M-H 500,000)

Dist. Mean S.D. Mode Mean 5% 95%

� gamma 1.5 0.375 4.311 4.149 3.379 4.994

� normal 1.5 1.0 1.459 1.282 -0.072 2.553

�� normal 1.5 0.1 1.914 1.938 1.796 2.083

�y normal 0.5 0.1 0.745 0.740 0.579 0.899

�i beta 0.5 0.1 0.634 0.622 0.572 0.674

�1 beta 0.5 0.28 0.403 0.454 0.334 0.571

�2 beta 0.5 0.28 0.941 0.855 0.717 0.998

�3 beta 0.5 0.28 0.991 0.931 0.848 0.999

�4 beta 0.5 0.28 0.663 0.676 0.431 0.962

�5 beta 0.5 0.28 0.978 0.833 0.648 0.995

�6 beta 0.5 0.28 0.975 0.801 0.620 0.983

�7 beta 0.5 0.28 0.641 0.590 0.247 0.994

�z beta 0.8 0.1 0.992 0.988 0.978 0.998

�d beta 0.5 0.1 0.850 0.849 0.811 0.887

�z invgam 0.1 2.0 1.663 1.859 1.142 2.602

�m invgam 0.1 2.0 1.176 1.211 1.069 1.347

�d invgam 0.1 2.0 0.721 0.735 0.591 0.873

Table 2: Posterior Distributions of Parameters (U.S.83-08)

Estimate for the relative risk aversion is high (4.149), but well in line with the benchmark
values for macroeconomic studies, while the inverse of the elasticity of labor supply is not well
identi�ed in this model. Prior and posterior distributions are very close to each other, indicating
that data does not provide information on this parameter under the current identi�cation scheme.

The estimated monetary policy reaction function is consistent with the common view of the
Taylor rule. Monetary policy responds strongly to the deviation of in�ation (1.938), but not
as much as to the output growth rate (0.74). There is a considerable degree of interest rate
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smoothing, as the posterior mean of �i is around 0.62. But the response of the nominal interest
rate to output growth rate is also not well identi�ed.

I turn now to the nominal rigidity that is represented by the estimates of non-adjustment
rates, �j . Contrary to the prior distributions, which are motivated by the Calvo model where
all hazard rates are constant over time, the estimates reveal that the hazard function changes
shape over time and the data strongly advocates a non-constant hazard function. The mean
frequency of price adjustment is 32% per quarter which implies a mean price duration of 9.2
months. This result is consist with �ndings by Nakamura and Steinsson (2008) using micro
data. More importantly, price reset hazards vary substantially around this mean, depending on
how long the price has been �xed. I will discuss the hazard function in more detail after the
sensitivity analysis.

3.4 Robustness Tests

In this section, I test the robustness of the structural parameter estimates, especially those
for the hazard function, to alternative priors, di¤erent model setups and data using di¤erent
detrending methods. Table (3) and (4) report results of the posterior modes. In Table (3), I
summarize results using the Hodrick-Prescott �lter detrended data. I conduct the sensitivity
analysis in the following steps: �rst, I check the prior sensitivity by altering the prior mean of
�; from 1.5 to 0.5. I choose to check this parameter because the estimation result shows that
the inverse of labor supply elasticity is poorly identi�ed. In addition, there is no consensus
about the calibration value for this parameter in the literature. The �rst three columns in the
table compare the results from the three alternative priors. 0.5 is a typical value motivated
in the macro literature, while � = 1:5 is commonly estimated in the micro-labor studies (See:
e.g. Blundell and Macurdy, 1999). I also check the value � = 1, which can be often found in
the RBC literature. I �nd that changing the prior for � mainly a¤ects the posterior mode of
� itself, leaving estimates of other parameters for preference and monetary policy qualitatively
unchanged. These results manifest an observational equivalence problem commonly found in
estimating DSGE models. The log likelihood function is mostly �at on the choices of priors for
�. Posterior estimates are mainly driven by the prior instead of data. As for the non-adjustment
rates, the choice of the prior for labor elasticity a¤ects magnitudes of non-adjustment rates at
all frequencies. Interestingly, it shows that making labor supply more elastic, decreasing in
the value of �, leads to more frequent price adjustments estimated. Non-adjustment rates are
signi�cantly lower at all frequencies except for the 7th. Despite changes in the magnitude, the
general pattern of the hazard function remains the same.

In the next two columns, I change the model setup. When adopting the standard Taylor
rule with output gap instead of output growth rate, it results in a large change in the estimated
�y, which becomes very small, indicating that central bank reacts less to output gap in the
monetary policy decision making, because it is an unobservable in the economy. Estimates for
the non-adjustment rates, however, are almost identical as in the benchmark case. I also change
the model setup by �xing the hazard rates to the value of 0.5, implying an average duration
of 2 quarters14. As seen in the last column, �xing the hazard rates has implications for the

14 I call it the pseudo-Calvo model because, in this case, I truncate the hazard function at the 7th quarter. As
a result, it is not exactly equivalent to the Calvo model, which implies an in�nite horizon for the hazard function.

14



Tests H-P �lter Detrended Data
Parameter � = 1:5 � = 1 � = 0:5 TaylorRule Calvo

� 4:311
(0:322)

4:012
(0:062)

4:097
(0:063)

4:790
(0:332)

2:949
(0:247)

� 1:46
(0:867)

1:063
(0:647)

0:618
(0:918)

1:687
(0:433)

0:315
(0:309)

�� 1:914
(0:091)

1:864
(0:087)

1:859
(0:087)

1:956
(0:084)

2:052
(0:083)

�y 0:745
(0:097)

0:794
(0:097)

0:793
(0:097)

0:111
(0:069)

0:704
(0:097)

�1 0:403
(0:076)

0:050
(0:034)

0:051
(0:034)

0:469
(0:085)

0:5

�2 0:941
(0:138)

0:772
(0:148)

0:781
(0:148)

0:918
(0:126)

0:5

�3 0:991
(0:028)

0:968
(0:153)

0:968
(0:152)

0:992
(0:072)

0:5

�4 0:663
(0:151)

0:408
(0:157)

0:407
(0:156)

0:624
(0:145)

0:5

�5 0:980
(0:067)

0:914
(0:232)

0:916
(0:231)

0:973
(0:147)

0:5

�6 0:980
(0:064)

0:926
(0:242)

0:926
(0:241)

0:978
(0:137)

0:5

�7 0:641
(0:262)

0:737
(0:388)

0:741
(0:386)

0:586
(0:252)

0:5

Log Margin. Likeli. �907:32 �914:91 �912:63 �935:57 �918:04

Table 3: Sensitivity Check for H-P Detrended Data

Tests Linearly detrended Data
Parameter � = 1:5 � = 1 � = 0:5 TaylorRule Calvo

� 4:352
(0:640)

4:357
(0:627)

4:364
(0:621)

5:226
(0:473)

3:671
(0:489)

� 2:10
(0:886)

1:72
(0:854)

1:373
(0:816)

2:305
(0:878)

1:942
(0:797)

�� 1:912
(0:081)

1:911
(0:081)

1:911
(0:081)

1:908
(0:097)

1:952
(0:077)

�y 0:669
(0:099)

0:669
(0:099)

0:670
(0:099)

0:258
(0:395)

0:662
(0:098)

�1 0:504
(0:075)

0:493
(0:075)

0:482
(0:075)

0:5632
(0:077)

0:5

�2 0:716
(0:126)

0:710
(0:126)

0:705
(0:128)

0:789
(0:138)

0:5

�3 0:980
(0:063)

0:979
(0:064)

0:979
(0:065)

0:969
(0:187)

0:5

�4 0:143
(0:218)

0:124
(0:216)

0:106
(0:215)

0:397
(0:135)

0:5

�5 0:193
(0:645)

0:182
(0:604)

0:180
(0:608)

0:601
(0:389)

0:5

�6 0:462
(1:216)

0:446
(1:180)

0:437
(1:163)

0:785
(0:415)

0:5

�7 0:329
(1:149)

0:359
(1:147)

0:379
(1:147)

0:221
(0:460)

0:5

Log Margin. Likeli. �792:12 �792:44 �792:79 �837:09 �797:88

Table 4: Sensitivity Check for Linearly Detrended Data
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estimates of other structural parameter. For example, it leads to a much lower estimate for
the intertemporal elasticity of substitution and inverse of labor elasticity. In addition, in terms
of log marginal likelihood, both the output-gap-Taylor-rule model and the �xed-hazard setup
are clearly less favored by the data. In the last row of the table, I report the log marginal
likelihood of the data for each model. It shows that changing priors of � only marginally a¤ects
the data density, but the data gives strong support of the �exible hazard model as opposed to
the �xed-hazard model and the output gap Taylor rule. The Bayes factor in favor of the �exible
hazard model is approximately in the order of 105:

I conduct the same tests by using linearly detrended data again, which is reported in Table
(4). All results from previous exercises are con�rmed, but the drawback of using linearly de-
trended data is that they do not deliver accurate information about the hazard function. As seen
in the table, non-adjustment rates are much di¤erent to what we have from the HP-detrended
data and those after the 3rd quarter are all statistically insigni�cant. The reason for this could
be that the linearly detrending mixes macro dynamics at the business cycle frequencies with
those from other frequencies, so that it biases the estimates and reduces the e¢ ciency of the
estimation too.

3.5 Aggregate Hazard Function and Implications for Macro Modeling

In this part, I evaluate new evidence on the aggregate price reset hazard rates obtained from
my empirical analysis and also discuss its implication for macro modeling of sticky prices.

1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Hazard Function (U.S.55­08)

Quarter

Posterior Mean
10% Quantile
90% Quantile

Figure 1: The Price Reset Hazard Function

I plot the estimates of hazard rates in Figure (1). The hazard rate is high one quarter
after the last price adjustment (55%), and drops in the next two consecutive quarters to around
10% and rise again in the 4th quarter. Afterwards, hazard rates are largely increasing with

This pseudo-Calvo can be view as an approximation of the real Calvo model. I estimate also the pseudo-Calvo
model with longer horizons, but it does not change the main conclusion.
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the age of the price. Overall, the hazard function has a U-shape with a spike at the fourth
quarter. I also calculate the distribution of price durations from the estimated hazard rates by
using formula (12). It yields that around 34.2% of prices last for less than one quarter. From
micro data studies, we learn that prices of apparel, unprocessed food, energy and travel are the
most frequently adjusted prices, whose median durations last less than three months. Moreover,
12.4% of prices have the mean duration of four quarters. Examples for those prices are services,
such as hairdressers or public transportation.

This �nding has important bearing on the macro modeling of sticky prices. Overall, I �nd
new evidence can not be explained by any single theory of sticky prices. For the �rst half of
the hazard function (from the �rst to the fourth quarters), it appears that the pricing decision
is mainly characterized by either the �exible price setting or by a time-dependent aspect (e.g.
Taylor, 1980). The survey evidence has shown that many �rms conduct yearly price revisions
due to costly information. This kind of behavior can also be motivated by the theory of customer
markets, which indicates that long-term customer relationships are an important consideration
in pricing decisions (See: e.g. Rotemberg, 2005). On the other hand, the upward-sloping part
of the hazard function indicates that the state-dependent pricing also plays an important role
in the pricing decision, the more outdated a price becomes. In fact, this generalized time-
dependent model can be viewed as a proxy of the more microfounded state-dependent model.
More microfounded pricing models, such as Dotsey et al. (1999), show that the state-dependent
pricing behavior implies an increasing hazard function. If we consider a relative stable economy,
the hazard function of the deviation from the optimum largely coincides with the hazard function
of time-since-last-adjustment. The longer a price is �xed, the more likely it deviates signi�cantly
from the optimum, and hence its probability of being adjusted rises. Since in my data set, the
annual in�ation rates stay under 2% for most of the sample periods except for the turbulent
decade between early 1970s and early 1980s, it is arguable that the time elapsed since last
adjustment is a good proxy for the deviation from the optimum, therefore the increasing part
of the hazard function gives the pricing decision a state-dependent aspect.

To summarize these results, the new evidence of the aggregate hazard function reveals that,
for the less sticky prices ranging in duration from one to four quarters, time-depend pricing plays
a major role, while, for stickier prices with a duration longer than 4 quarters, the state-dependent
pricing dominates.
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Conclusion

In this paper, I document new evidence on the shape of the aggregate hazard function. I
construct a DSGE model featuring nominal rigidity that allows for a �exible hazard function
of price setting. The generalized NKPC possesses a richer dynamic structure, with which I can
infer the shape of the hazard function underlying aggregate dynamics. Identifying the hazard
function from aggregate data is a useful exercise, because, �rst, estimating hazard rates directly
from a DSGE model provides the most consistent way to compare the theoretical concept with
the empirical evidence. Second, it overcomes some weaknesses of estimates using micro data,
such as contamination by the idiosyncratic e¤ects and the limited availability of the long time
series data. As a result, this study delivers some useful insights for macroeconomists, which can
be readily used to guide macro modeling. At last, a caveat should be note that the identi�cation
method relies on scrutinizing e¤ects of past reset prices on current in�ation, and those e¤ects
decay over time. Consequently, the information contents of aggregate data for hazard rates
deteriorate fast with the length of the time since last adjustment. After the fourth quarter,
estimated hazard rates become imprecise.
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A Deviation of the New Keynesian Phillips Curve
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The last term can be further expressed in terms of future rates of in�ation
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The optimal price can be expressed in terms of in�ation rates, real marginal cost and aggre-
gate prices.
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Next, I derive the aggregate price equation as the sum of past optimal prices. I lag equation
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33 and substitute it for each p̂�t�j into equation 16
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Where Ft summarizes all current and lagged expectations formed at period t.
Finally, we derive the New Keynesian Phillips curve from equation 34.
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p̂t�J+1 � p̂t�1 +Qt

= W (0) �̂t + � � �+W (J � 2)�̂t�J+2 + p̂t�J+1 � p̂t�J+2| {z }
��̂t�J+2

+ p̂t�J+2 � � � �+ p̂t�2 � p̂t�1| {z }
��̂t�1

+Qt

(1�W (0))�̂t = �(1�W (2))�̂t�1 � � � � � (1�W (J � 1))�̂t�J+2 +Qt

�̂t = �
J�1X
k=2

1�W (k)
1� �(0) �̂t�k+1 +

J�1X
k=0

�(k)

1� �(0)Ft�k

The generalized New Keynesian Phillips curve is:
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�̂t =

J�1X
k=0

�(k)

1� �(0)Et�k

0@J�1X
j=0

�jSj
	

cmct+j�k + J�1X
i=1

J�1X
j=i

�jSj
	

�̂t+i�k

1A

�
J�1X
k=2

�(k)�̂t�k+1; where �(k) =

J�1P
j=k

Sj

J�1P
j=1
Sj

; 	 =

J�1X
j=0

�jSj (35)
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B Data

The data used in this paper is taken from the FRED (Federal Reserve Economic Data) main-
tained by the Federal Reserve Bank of St. Louis.

� Growth rate of real GDP per capita: is based on the Real Gross Domestic Product (Series:
GDPC1). They are in the unit of billions of chained 2005 dollars, quarterly frequency and
seasonally adjusted. To construct per capita GDP, I use the Civilian Noninstitutional Pop-
ulation (Series: CNP16OV) from the Bureau of Labor Statistics, U.S. Department of La-
bor. The monthly data is converted into quarterly frequency by arithmetic averaging. Per
capita real output growth is de�ned as: 100� [ln (GDPt=POPt)� ln (GDPt�1=POPt�1)] :
Finally the data is detrended by the Hodrick-Prescott �lter.

� In�ation rate: is calculated by using Consumer Price Index for all urban consumers: all
items (Series: CPIAUCSL), seasonally adjusted. The monthly data is converted into
quarterly frequency by arithmetic averaging. Annualized In�ation rate is de�ned as 400�
ln (Pt=Pt�1) : Finally the data is detrended by the Hodrick-Prescott �lter.

� Nominal interest rate: is the E¤ective Federal Funds Rate (Series: FEDFUNDS). The
monthly data is converted into quarterly frequency by arithmetic averaging. The data is
detrended with the trend in�ation calculated by using the Hodrick-Prescott �lter and then
mean adjusted.
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C Figure
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