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1 Introduction

We introduce a novel policy function, the nonlinear infinitemoving average, to perturbation analysis

in dynamic macroeconomics. This direct mapping from shocksto endogenous variables neatly dis-

sects the individual contributions of orders of nonlinearity and uncertainty to the IRFs and provides

a perturbation foundation for the ‘pruning mechanisms’ used to avoid specious explosive behavior in

simulations. For economists interested in studying the transmission of shocks in a nonlinear DSGE

model, our method offers insight hitherto unavailable.

Our nonlinear moving average policy function chooses as itsstate variable basis the infinite

history of past shocks.1 This infinite dimensional approach is longstanding in linear models and,

for this linear case, delivers the same solution as state space methods.2 In the nonlinear framework

we focus on, however, it provides a different solution. The nature of the policy function, mapping

from shocks to endogenous variables of interest, directly enables familiar impulse response analysis,

though introducing caveats into the analysis (such as history dependence, asymmetries, a breakdown

of superposition and scale invariance, as well as the potential for harmonic distortion).

We show that the stability from the first-order solution is passed on to all higher orders of ap-

proximation, producing non-explosive simulation and impulses at all orders of approximation with-

out needing to resort to ‘pruning.’3 Indeed, we show that our solution, up to a deterministic trend, is

identical to the ‘pruning’ procedure of Kim, Kim, Schaumburg, and Sims (2008), demonstrating that

their procedure has a solid basis in perturbation theory,4 just from a different perspective, perhaps.

1This is the “external” or “empirical” approach to system theory according to Kalman (1980), who lays out the
dichotomy to the ‘internal” or “state-variable” approach of the state-space methods, now more common to DSGE prac-
titioners. The nonlinear DSGE perturbation literature initiated by Gaspar and Judd (1997), Judd and Guu (1997), and
Judd (1998, ch. 13) has thus far operated solely with state-space methods, see Collard and Juillard (2001b), Collard and
Juillard (2001a), Jin and Judd (2002), Schmitt-Grohé and Uribe (2004), Lombardo and Sutherland (2007), Kim, Kim,
Schaumburg, and Sims (2008), and Anderson, Levin, and Swanson (2006).

2Compare, e.g., Uhlig (1999), Klein (2000), or Sims (2001) with the infinite moving-average representations of Muth
(1961), Whiteman (1983) or Taylor (1986). Meyer-Gohde (2010) draws this connection explicitly.

3Lombardo and Sutherland (2007) and Lombardo (2010) developa recursively linear higher-order perturbation state-
space method that is, in a sense, naturally pruned, and thus similar to the method we develop here.

4Den Haan and De Wind (2010) criticize ‘pruning’ mechanisms and emphasize that they can be distortive. In
Lombardo (2010, p. 9) assessment, pruning “is a work-aroundto an intrinsic problem of perturbation methods.” Our
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Contrary to their approach, however, our method extends straightforwardly out to higher orders and

we provide the associated endogenous third order ‘pruning’algorithm explicitly.

Our approach completes the result that terms linear in the perturbation parameter are zero (e.g.,

Schmitt-Grohé and Uribe (2004) theorem 1): the zero solution of the associated homogenous equa-

tions is the unique solution if the first order fundamental polynomial is saddle stability and free of

unit roots. We provide explicit calculations out to the third order, adapting Vetter’s (1973) multi-

variate calculus to extend Lombardo and Sutherland’s (2007) and Gomme and Klein’s (2011) use

of linear algebra out past the second order. We implement ourapproach numerically by providing

an add on for the popular Dynare package5 and show how the Volterra representation of the approx-

imated nonlinear infinite moving average solution allows for a decomposition of the contributing

components from all orders to the responses of variables to exogenous shocks. We develop Euler

equation error methods for our infinite dimensional policy function and confirm that our method

produces accurate approximations.

The rest of the paper is organized as follows. The model and the nonlinear infinite moving aver-

age policy function are presented in section2. In section3, we develop the numerical perturbation

solution of the nonlinear infinite moving average form of thepolicy function explicitly out to the

third order with a matrix calculus that avoids tensor notation. We then apply our method to various

incarnations of the stochastic growth model in section4, starting from the full depreciation and log

preferences case with a known analytical solution and finishing with a time-varying volatility version

that demonstrates the need for nonlinear methods. We reformulate our nonlinear moving average

solution into a traditional state-space solution in section 5, deriving a perturbation-based ‘pruning’

solution. In section6, we develop Euler-equation-error methods for our infinite-dimensional so-

lution form and use the model of Aruoba, Fernández-Villaverde, and Rubio-Ramı́rez (2006) for

comparability to quantify the accuracy of our method. Finally, section7 concludes.

method supports the argument that the problem is merely thatof the chosen policy function.
5See Adjemian, Bastani, Juillard, Mihoubi, Perendia, Ratto, and Villemot (2011).
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2 Problem Statement and Solution Form

In this section, we introduce the class of models we analyze and the form of the solution we seek.

Our class of models generally follows that used by Dynare.6 In contrast with the general practice in

the literature, the solution we seek is a policy function that is a direct mapping from realizations of

the exogenous variables to the the endogenous variables of interest. We will first present the model

class, then move on to the solution form, and then conclude this section with the approximated

solution that we will seek numerically and the matrix calculus necessary to follow the derivations.

2.1 Model Class

We analyze a family of discrete-time rational expectationsmodels given by

0= Et [ f (yt−1,yt ,yt+1,ut)](1)

whereut =
∞

∑
i=0

Niεt−i(2)

f is an (neq× 1) vector valued function, continuouslyn-times (the order of approximation to be

introduced subsequently) differentiable in all its arguments;yt is an(ny×1) vector of endogenous

variables; the vector of exogenous variablesut is of dimension(nu×1) and it is assumed that there

are as many equations as endogenous variables(neq= ny).

The eigenvalues ofN are assumed all inside the unit circle so thatut admits an infinite moving

average representation; andεt is a(ne×1) vector of exogenous shocks of equal dimension(nu=ne).

Our software add on forcesN = 0 to align with Dynare.7

Additionally, εt is assumed independently and identically distributed withthe distribution func-

tion Φ(z), such thatE [εt ] = 0 andE
[
εt
⊗[n]
]

exists and is finite for alln up to and including the

order of approximation to be introduced subsequently.8

6See Adjemian, Bastani, Juillard, Mihoubi, Perendia, Ratto, and Villemot (2011).
7See again Adjemian, Bastani, Juillard, Mihoubi, Perendia,Ratto, and Villemot (2011). Thus in practice, the

economist using Dynare must incorporate any serial correlation into the vectoryt . This choice is not made in the
exposition here primarily as the admissibility of serial correlation in the exogenous driving force brings our first order
derivation in line with earlier moving average approaches for linear models (e.g., Taylor (1986)).

8The notationεt
⊗[n] represents Kronecker powers,εt

⊗[n] is the n’th fold Kronecker product ofεt with itself:
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As is usual in perturbation methods, we introduce an auxiliary parameterσ ∈ [0, 1] to scale

the uncertainty in the model. The valueσ = 1 corresponds to the “true” stochastic model under

study andσ = 0 represents the deterministic version of the model. Following Anderson, Levin, and

Swanson (2006, p. 4), we do not scale the realizations of the exogenous variable up to (including)t

with σ, as the realizations of{εt,εt−1, . . .} are known att (hence, there is no uncertainty to scale).

2.2 Solution Form

The policy function, where we take the state vector to be the causal one-sided infinite sequence of

shocks, is assumed time invariant for allt, back at least one period, analytic and ergodic, following

Anderson, Levin, and Swanson (2006, p. 3).9 I.e.

yt = y(σ,εt ,εt−1, . . .)(3)

Note thatσ enters as a separate argument: the functiony is unknown and will itself generally depend

on the scaling on uncertainty in the model. Time invariance and scaling uncertainty gives us

yt−1 = y−(σ,εt−1,εt−2, . . .)(4)

yt+1 = y+(σ, ε̃t+1,εt,εt−1, . . .) wherẽεt+1 ≡ σεt+1(5)

Due to the assumption of time invariance,y, y−, andy+ are the same function, yet they differ in the

timing of their arguments. The termσεt+1 in (5) is the source of uncertainty, viaεt+1, that we are

perturbing withσ. The known functionu of the exogenous variable rewritten similarly

ut = u(σ,εt,εt−1, . . .) =
∞

∑
i=0

Niεt−i(6)

For notational ease in derivation, we will define the vector of total variablesxt

xt ≡
[
y′t−1 y′t y′t+1 u′t

]′
(7)

xt is of dimension(nx×1) with (nx= 3ny+ne). With the policy function of the form (3), (4) and

εt ⊗ εt · · · ⊗ εt . For simulations and the like, of course, more specific decisions regarding the distribution of the ex-
ogenous processes will have to be made. Note that Kim, Kim, Schaumburg, and Sims (2008, p. 3402) emphasize that
distributional assumptions like these are not entirely local assumptions. Note that Dynare (Adjemian, Bastani, Juillard,
Mihoubi, Perendia, Ratto, and Villemot 2011) assumes normality of the underlying shocks.

9Analyticity is required for the convergence of asymptotic expansion as the order of approximation becomes infinite
and ergodicity rules out explosive and nonfundamental solutions.

4



(5), plus the function of the exogenous variable (6), we can writext as

xt = x(σ, ε̃t+1,εt ,εt−1, . . .)(8)

Functionx is also assumed time invariant, analytic and ergodic.

2.3 Approximation: Taylor/Volterra Series Approximation

We will approximate the solution, (3), with a Taylor series approximation around a nonstochastic

steady state,y, which is the solution to the function

0= f (y,y,y,0) = f (x)(9)

that is, the functionf in (1) with all shocks, past and present, set to zero. Furthermore

y= y(0;0, . . .)(10)

represents the solution (3) evaluated at the nonstochastic steady state.

Following the general practice in the perturbation literature, we will pin down the approximation

of the unknown policy function (3) by successively differentiating (1) and solving the resulting

systems for the unknown coefficients. The method is detailedin section3. Notice that, sincef

is a vector valued function, successive differentiation off with respect to its arguments, which are

vectors in general, will generate a hypercube of partial derivatives. Unlike much of the previous work

in the literature, we will adapt the structure of matrix derivatives defined in Vetter (1970) and Vetter

(1973) to unfold the hypercube in accordance with the Kronecker product, so that partial derivatives

resulting successive differentiation of functionf can be collected in two dimensional matrices. This

avoids tensor notation and enables the use of standard linear algebra results in deriving our results.10

The formal definition of this matrix derivative structure isin appendixA.1.1. This structure will

make the presentation of the solution method more transparent—successive differentiation off to

10A similar approach can be found in Gomme and Klein (2011). They use the matrix derivative structure and the
associated chain rule of Magnus and Neudecker (2007, ch. 6),which is another way to unfold a second order tensor. The
approach, in contrast to ours, does not appear to be easily adapted to orders higher than two. Lombardo and Sutherland
(2007) also derive a second order solution without appealing to tensor notation. While their approach may benefit from
their use of the vech operator to eliminate redundant quadratic terms, the absence of a mechanical recipe that can be
applied to higher orders would appear to favor our methodology.
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the desired order of approximation is a mechanical application of the following theorem

Theorem 2.1.A Multidimensional Calculus

1. Matrix Product Rule:

D B
s×1

T

{
F

p×u
G

u×q

}
= FB

(
I

s×s
⊗G

)
+FGB

2. Matrix Chain Rule:

DBT

{
A

p×q
( C
u×1

(B))

}
= AC

(
CB⊗ I

q×q

)

3. Matrix Kronecker Product Rule:

DBT

{
F

p×q
⊗ G

u×v

}
= FB⊗G+(F ⊗GB)Kq,vs

(
I

s×s
⊗Kv,q

)

where Kq,vs and Kv,q are qvs×qvs and qv×qv commutation matrices.

4. Vector Chain Rule:

DBT

{
A

p×1
( C
u×1

(B))

}
= ACCB

Note that AB ≡ DBT A(B) etc. is abbreviated notation to minimize clutter—see appendix A.1.1.

Proof. See appendixA.1.1.

An M-th order Taylor approximation of the policy function (3) is then

Corollary 2.2. An M-th order Taylor Approximation of (3)

yt =
M

∑
m=0

1
m!

∞

∑
i1=0

∞

∑
i2=0

· · ·
∞

∑
im=0

[
M−m

∑
n=0

1
n!

yσni1i2···imσn

]
(εt−i1 ⊗ εt−i2 ⊗·· ·εt−im)(11)

Proof. See appendixA.1.3.

This infinite dimensional Taylor approximation, or Volterra series with kernels
[
∑M−m

n=0
1
n! yσni1···imσn

]
,11

directly maps the exogenous innovations to endogenous variables up theM-th order. Viewing terms

in powers of the perturbation parameterσ as corrections to the kernels of the Volterra series under

11See Priestly (1988, pp. 25–26) and Gourieroux and Jasiak (2005) for a representation theorem.
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certainty enables a useful classification of the contributions of uncertainty to the model. That is, with

the zeroth kernel being constants, the first kernel being linear in the product space of the history of

innovations, the second being quadratic in the same, etc.,yσn represents then’th order (inσ) constant

correction for uncertainty,yσni1 then’th order (inσ) time-varying correction for uncertainty,yσni1i2

then’th order (inσ) asymmetric time-varying correction for uncertainty, andso on.

As the notation in (11) is rather dense, consider the case ofM = 2. That is, the second-order

approximation, given by

yt = y+yσσ+
1
2

yσ2σ2+
∞

∑
i=0

(yi +yiσσ)εt−i +
1
2

∞

∑
j=0

∞

∑
i=0

y ji (εt− j ⊗ εt−i)(12)

Here,y, the deterministic steady state, represents the rest pointin the absence of uncertainty regard-

ing future shocks;∑∞
i=0yiεt−i and 1

2 ∑∞
j=0∑∞

i=0y ji (εt− j ⊗ εt−i) capture the first- and second-order

responses of the deterministic (i.e., without uncertaintyregarding future shocks) system;yσσ and

1
2yσ2σ2 are the first- and second-order (inσ) corrections due to the presence of uncertainty to the de-

terministic steady state (i.e., the second-order accuratestochastic steady state); and∑∞
i=0yiσσεt−i is

the first-order (inσ) correction for uncertainty concerning future shocks of the first-order response to

the history of shocks. The first-order (inσ) corrections will turn out to be zero in this case, a familiar

result from state-space analyses.12 For the case ofM = 2, the task at hand is to pin down numerical

values fory, yi , yσ, y ji , yiσ, andyσ2 using the information in (1). We will provide derivations out to

M = 3 in the next section, providing some additional novelty as explicit derivations of third-order

approximations are still rather rare in the literature.13

3 Numerical Solution of the Perturbation Approximation

It this section, we lay out the method for solving for the coefficients of the approximated solution.

We begin with the first-order approximation and proceed to second and higher-order terms. Solving

12See Jin and Judd (2002), Schmitt-Grohé and Uribe (2004), and Kim, Kim, Schaumburg, and Sims (2008).
13See Andreasen (forthcoming) for a notable extension of Schmitt-Grohé and Uribe’s (2004) method out to the third

order. The author’s appendix with third-order term occupying almost two pages highlights the advantage of our notation.
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for the first-order terms is primarily an application of methods well known in the literature and,

similarly to existing state-space methods, solving for higher-order terms operates successively on

terms from lower orders with linear methods. Specifically, underlying the expansion in present

and past shocks at all orders is a system of difference equations with an identical homogenous

component. In contrast to previous methods, we prove the uniqueness of the zero solution for terms

of first order in the perturbation parameter through our assumptions of the saddle stability of and rule

out unit roots in the fundamental equation of the first order approximation and relate the assumptions

to the less easily invertibility assumptions of state-space methods.

The method can be outlined as follows.14 The equilibrium condition of the model (1)

0= Et [ f (y
−(σ,εt−1,εt−2, . . .),y(σ,εt,εt−1, . . .),y

+(σ, ε̃t+1,εt ,εt−1, . . .),u(σ,εt,εt−1, . . .))](13)

f is a function with argumentsσ, εt , εt−1, . . .. At each order of approximation, we take the collection

of derivatives off from the previous order (for the first-order, start with the function f itself) and

1. differentiate each of the derivatives off from the previous order with respect to each of its

arguments (i.e.,σ, εt , εt−1, . . .)

2. evaluate the partial derivatives off and ofy at the nonstochastic steady state

3. apply the expectations operator and evaluate using the given moments

4. set the resulting expression to zero and solve for the unknown partial derivatives ofy.

Note, firstly, that the set off derivatives obtained in step (1) are symbolic and will be differentiated

in step (1) of the next higher order and, secondly, the partial derivatives ofy obtained in set (4) are

numeric, valid at the nonstochastic steady state, will be used (if necessary) in step (2) of the next

higher order, and—most importantly—constitute the necessary partial derivatives for the Taylor-

Volterra approximation of the policy functiony at the nonstochastic steady state.

14See Anderson, Levin, and Swanson (2006, p. 9) for a similar outline in their state-space context.
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3.1 First-Order Approximation

We proceed by, first, differentiatingf with respect to the series of present and past shocks and

solving for the resulting infinite-moving average coefficients of yt and, second, proceeding to the

perturbation parameterσ.

Even in the first-order case, the problem is infinite dimensional owing to the infinite moving

average representation of the solution. As explained by Taylor (1986, p. 2003) for the linear problem,

however, the original set of stochastic difference equations in yt become deterministic difference

equations in the moving-average coefficients ofyt . This motivates our choice of beginning with the

unknown terms in the history of shocks and then turning to those inσ, as the problem at higher-

orders of approximation will inherit a similar structure.

Differentiating f in (13) with respect to someεt−i yields

DεT
t−i

f = fxxi(14)

Evaluating at the nonstochastic steady state (y) and setting the resulting expression to zero yields

Et

[
DεT

t−i
f
]∣∣∣

y
= fy−yi−1+ fyyi + fy+yi+1+ fuui = 0(15)

for i = 0,1, . . . , with y−1 = 0

yielding a second order linear deterministic difference equation in the matricesyi—the derivatives of

the vector-valuedy function with respect to it’sk−1’th ε element. That is,yk contains the moving

average coefficients of the elements ofyt with respect to the elements ofεt−k. With appropriate

initial conditions, all equal to zero, this is an inhomogeneous version of Anderson and Moore’s

(1985) saddle-point problem, solved in detail by Anderson (2010).

We make two assumptions regarding the difference equation system (15): the system is saddle

stable (i.e., the Blanchard and Kahn (1980) conditions are fulfilled)

Assumption 3.1.Of the2ny z∈C with det
(

fy− + fyz+ fy+z2
)
= 0, there are exactly ny with|z|< 1.

it is hyperbolic (i.e., Klein’s (2000) Assumption 4.4 ruling out eigenvalues on the unit circle),
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Assumption 3.2.There is no z∈ C with |z|= 1 and det
(

fy− + fyz+ fy+z2
)
= 0

The first is standard and the second ensures the uniqueness ofterms homogenous inσ (as such,

this assumption will take on more relevance beginning with first-order term inσ later in this section).

The second is our analog to Jin and Judd’s (2002, pp. 12–13) solvability constraint and ensures that

any constants do not accumulate without bound as the system is solved in accordance with the

stability of the manifold. Intuitively from the state-space perspective, unit roots must be ruled out to

allow the state-space solution to be recursively solved (‘invertiblity’) to yield the nonlinear moving

average we work with. As in the case of an explosive state-space solution, the impact of an initial

condition on the endogenous variables would fail to vanish and constants (i.e., terms involving the

perturbation parameter) would fail to converge when solving out a unit-root state-space solution

back into the infinite past.15

Anderson’s (2010, p. 479) method can be applied under our assumptions3.1and3.2along with

the first-order linear autoregressiveut (i.e.,ui = Ni),16 delivering the stable solution to (15)

yi = αyi−1+β1ui , with y−1 = 0(16)

a convergent recursion from which we can recover the linear moving-average terms oryi ’s.17

Next we differentiatef in (13) with respect toσ

Dσ f = fxDσx(17)

whereDσx= xσ + x̃εεt+1(18)

Evaluating the foregoing aty and setting the resulting expression to zero yields

Et(Dσ f )
∣∣∣
y
= ( fy− + fy+ fy+)yσ = 0(19)

15 Note that Kim, Kim, Schaumburg, and Sims (2008) can provide astate-space solution in the presence of unit roots
and even under explosive conditions. Of course, it cannot be‘inverted’ to deliver an infinite moving average in the
unit-root/explosive case.

16Equivalently, Meyer-Gohde (2010) shows how to apply Klein’s (2000) QZ algorithm to this deterministic approach
to yield the solution above. Note, as discussed by Meyer-Gohde (2010, pp. 986-987), we are working on a deterministic
saddle-point problem in the moving-average coefficients and not on a stochastic saddle-point problem in the endogenous
variables themselves.

17We have tacitly assumed that this solution exists, see Anderson (2010, p. 483) for the details. In Klein’s (2000)
notation,Z11 of the QZ decomposition must be invertible, the added proviso of translatability.
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From assumption (3.2), it follows that

det( fy− + fy+ fy+) 6= 0(20)

and hence

yσ = 0(21)

This not only confirms Schmitt-Grohé and Uribe’s (2004) Theorem 1 and others, but also provides

the conditions under which it applies. Schmitt-Grohé and Uribe (2004, p. 761) note that their equiv-

alent to (19) “is linear and homogeneous” in their equivalent toyσ and “[t]hus, if a unique solution

exists” it must be zero. Our method improves on their conclusions, giving the condition (the absence

of unit roots of assumption3.2) under which this zero solution is indeed unique.

The first order approximation of the policy function (3) therefore takes the form

yt = y+
∞

∑
i=0

yiεt−i , i = 0,1,2, . . .(22)

trivially extending Muth (1961), Taylor (1986), and othersto formal perturbation methods. Note

that (22) is independent ofσ, emphasizing the certainty equivalent nature of the solution.

3.2 Second-Order Approximation

The only source for the second derivatives of they function with respect to the shocks,yi, j ’s, is

through differentiation of (14) with respect to someεt− j , which when evaluated at the nonstochas-

tic steady state yields a set of difference equations with homogenous components identical to the

homogenous component in (15). For terms involving the perturbation parameterσ, assumption3.2,

which rules out unit roots in the fundamental equation of thefirst-order approximation, again plays

a crucial role. This is natural: the constant correction foruncertainty induced by the potential for

future shocks that enters the solution at the second order becomes arbitrarily large as the system

approaches a unit-root system from below. We show that the invertibility condition assumed in the

solution package Dynare for the uniqueness of this correction for uncertainty is consistent with our

assumptions3.1 and3.2. Finally, crossterms,yσ,i ’s, are all equal to zero as a direct consequence
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of assumption (3.2), as the resulting equations are homogenous inyσ,i with coefficient matrices

fy− + fy+ fy+ after the resultyσ from the first order has been taken into account, reaffirming the

results of Schmitt-Grohé and Uribe (2004) and others.

We first differentiatef with respect to each and every pair of someεt−i andεt− j . As Judd (1998,

p. 477) points out, the resulting system of equations remains a linear system, only now in the second

derivatives that are being sought

D
2
εT
t− j ε

T
t−i

f = fx2(x j ⊗xi)+ fxx j ,i(23)

Evaluating at the nonstochastic steady state and setting the resulting expression to zero yields

Et(D
2
εT
t− jε

T
t−i

f )
∣∣∣
y
= fy−y j−1,i−1+ fyy j ,i + fy+y j+1,i+1+ fx2(x j ⊗xi) = 0(24)

for j, i = 0,1, . . . , with y j ,i = 0, for j, i < 0

a second order linear deterministic difference equation iny j ,i . The coefficients on the homogeneous

components of the forgoing and (15) are identical. The inhomogeneous components have a first

order Markov representation (see the shifting and transition matrices defined in appendixA.2) in the

Kronecker product of the first-order coefficients.18 The resulting expression is

fy−y j−1,i−1+ fyy j ,i + fy+y j+1,i+1+ fx2(γ1⊗ γ1)(Sj ⊗Si) = 0(25)

for j, i = 0,1, . . . , with y j ,i = 0, for j, i < 0

The solution of the forgoing, analogously to the first order,takes the form

y j ,i = αy j−1,i−1+β2(Sj ⊗Si), with y j ,i = 0,∀ j, i < 0(26)

Note thatα in this solution is known. It is the sameα as in the first order solution (16) due to the

fact that the system (24) and (15) have identical homogeneous components. To determineβ2, we

substitute (26) in (24), using the shifting matrices and matching coefficients

( fy+ fy+α)β2+ fy+β2(δ1⊗δ1) =− fx2(γ1⊗ γ1)(27)

This is a type of Sylvester equation studied in and solved in detail by Kamenik (2005).

18Thus, our nonlinear moving average solution parallels nonlinear state space solutions in a manner analogous to the
linear case, where the recursion is in the coefficients as opposed to the variables themselves. Instead of products of the
state-variables entering into the solution, we have products of the first-order coefficients.
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To determine the partial derivatives ofy that involving σ, we first differentiatef twice with

respect toσ and someεt−i . The resulting linear system is

D
2
σεT

t−i
f = fx2(Dσx⊗xi)+ fxDσxi(28)

whereDσxi = xσ,i + x̃ε,i(εt+1⊗ Ine)(29)

Note that the additional potential derivative,D2
εT
t−iσ

f , is simply equal to the derivative in the text,

D2
σεT

t−i
.19 Evaluating (28) at the nonstochastic steady state, taking into account that Etεt+1 and

yσ = 0 and setting the resulting expression to zero yields

Et(D
2
σεT

t−i
f )
∣∣∣
y
= fy−yσ,i−1+ fyyσ,i + fy+yσ,i+1 = 0(30)

for i = 0,1, . . . , with yσ,−1 = 0

The solution of the forgoing, analogously, takes the form

yσ,i = αyσ,i−1, for i = 0,1, . . . , with yσ,−1 = 0(31)

Combined with the initial conditionyσ,−1 = 0, the forgoing delivers

yσ,i = 0, for i = 0,1, . . .(32)

This result is analogous to Schmitt-Grohé and Uribe’s (2004) Theorem 1. Again, we have improved

upon their result by showing not only that the zero solution is a solution (the equation is homoge-

nous), but that it is also the unique solution.

19 Although the derivative operator works on Kronecker products (i.e.D2
σεT

t−i
= D2

σ⊗εT
t−i

) and although the Kronecker

product is not generally commutative,σ is a scalar and, thus, commutation is preserved. This resultcan be seen by
exploiting the properties of the commutation matrixKm,n as follows. Take the first term inD2

σεT
t−i

, for example, and

insert the identity matrix:fx2Inx2(Dσx⊗ xi). This can be rewritten asfx2Knx,nxKnx,nx(Dσx⊗ xi). Pre-multiplying the
Kronecker product of a matrix and a column vector (each withnx rows) withKnx,nx reverses their order (see Theorem
3.1.(ix) of Magnus and Neudecker (1979, p. 384)) and, thus,Knx,nx(Dσx⊗ xi) = xi ⊗Dσx. Now fx2 = D2

xT⊗xT f and
post-multiplying a Kronecker product of row vectors each ofdimensionnx with Knx,nx reverses their order. But the two
row vectors are identical, so reversing their order changesnothing: fx2 = D2

xT⊗xT f Knx,nx = D2
xT⊗xT f = fx2. Combining

the foregoing two yieldsfx2(Dσx⊗ xi) = fx2(xi ⊗Dσx). Proceeding likewise with the second term inD
2
σεT

t−i
completes

the argument. Accordingly for higher-order derivatives, the order in which derivatives with respect toσ appear is
inconsequential as it is a scalar and we choose to have theσ’s appear first.

13



Next we differentiatingf twice with respect toσ, the resulting linear system is

D
2
σ2 f = fx2(Dσx⊗Dσx)+ fxD

2
σ2x(33)

whereD
2
σ2x= xσ2 +2xσ,̃εεt+1+ x̃ε2(εt+1⊗ εt+1)(34)

Evaluating the foregoing aty and setting the resulting expression to zero yields

Et(D
2
σ2 f )

∣∣∣
y
= [ fy+y02 + fy+2(y0⊗y0)]Et(εt+1⊗ εt+1)+( fy− + fy+ fy+)yσ2 = 0(35)

therefore we can recoveryσ2 by

yσ2 =−( fy− + fy+ fy+)
−1[ fy+y02 + fy+2(y0⊗y0)]Et(εt+1⊗ εt+1)(36)

By assumption, the second moment of the exogeneous variableis known, hence so isEt(εt+1⊗εt+1).

As the model approaches a unit root from below, the effect of uncertainty becomes unbounded.

This result is novel, giving additional meaning to the invertibility condition of assumption3.2:

from a state-space perspective, the correction for uncertainty will be accumulated forward starting

from the nonstochastic steady state; if the state space contains a unit root, this accumulated correc-

tion will become unbounded and there will be no finite stochastic steady state to which the model

can converge. To recoveryσ2, Dynare20 requires instead the invertibility of

fy+ (I +α)+ fy(37)

This condition is not as easily interpretable as our no-unit-roots invertibility condition in assumption

3.2as explained above. Yet, the two are equivalent as can be seenfrom the following. Recall thatα

solvesfy+α2+ fyα+ fy− = 0 which can be rearranged as
(

fy+α+ fy
)

α =− fy− or

(
fy+ (I +α)+ fy

)
α = fy+α− fy−(38)

Adding fy+ + fy+ fy− to both sides gives

fy+ + fy+ fy− +
(

fy+ (I +α)+ fy
)

α = fy+ (I +α)+ fy(39)

solving for fy+ (I +α)+ fy yields

fy+ + fy+ fy− =
(

fy+ (I +α)+ fy
)
(I −α)(40)

20Seehttp://www.jourdan.ens.fr/ ˜ michel/presentations/first_second_order.pdf .
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and following from the stability ofα
(

fy+ + fy+ fy−
)
(I −α)−1 = fy+ (I +α)+ fy(41)

and thus the invertibility of the leading parenthetical term on the left hand side (our invertibility

condition from assumption3.2) is equivalent to the condition on the right hand side used byDynare.

The second order approximation of the policy function (3) therefore takes form

yt = y+
∞

∑
i=0

yiεt−i +
1
2

yσ2σ2+
1
2

∞

∑
j=0

∞

∑
i=0

y j ,i(εt− j ⊗ εt−i)(42)

In contrast to the first-order approximation, (42) does depend onσ, with the term1
2yσ2 correcting

the steady state for uncertainty regarding future shocks. As σ goes from 0 to 1 and we transition

from the certain to uncertain model, the rest point of the solution transitions from the nonstochastic

steady statey to the second-order approximation of the stochastic steadystatey+ 1
2yσ2σ2. As we are

interested in this uncertain version, settingσ to one in (42) gives the second order approximation

yt = y+
∞

∑
i=0

yiεt−i +
1
2

yσ2 +
1
2

∞

∑
j=0

∞

∑
i=0

y j ,i(εt− j ⊗ εt−i)(43)

3.3 Third-Order and Higher Approximations

Computing the third-order approximation largely resembles the computation of the second-order

approximation. We first differentiatef three times with respect to each and every triplet of the

shocks. The resulting system of equations still remains linear in the third derivatives

D
3
εT
t−kεT

t− jε
T
t−i

f = fx3(xk⊗x j ⊗xi)+ fx2(xk, j ⊗xi)

+ fx2[x j ⊗xk,i ]Kne,ne2(Ine⊗Kne,ne)+ fx2(xk⊗x j ,i)+ fxxk, j ,i(44)

Evaluating at the nonstochastic steady state and setting the resulting expression to zero yields

Et(D
3
εT
t−kεT

t− jε
T
t−i

f )
∣∣∣
y
= fy−yk−1, j−1,i−1+ fyyk, j ,i + fy+yk+1, j+1,i+1

+ fx3(xk⊗x j ⊗xi)+ fx2(xk, j ⊗xi)

+ fx2(x j ⊗xk,i)Kne,ne2(Ine⊗Kne,ne)+ fx2(xk⊗x j ,i)

=0, for k, j, i = 0,1, . . . , with yk, j ,i = 0, for k, j, i < 0(45)
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a linear deterministic second order difference equation inthe third derivativeyk, j ,i . The homoge-

neous components in (45) are identical to those in (15) and (24). The inhomogeneous components

can again be rearranged to have a first order Markov representation and by using the shifting and

transition matrices defined in appendixA.2, we can write

fy−yk−1, j−1,i−1+ fyyk, j ,i + fy+yk+1, j+1,i+1+
[

fx3 fx2 fx2 fx2

]
γ3Sk, j ,i = 0(46)

for k, j, i = 0,1, . . . , with yk, j ,i = 0, for k, j, i < 0

The solution of the forgoing, analogously to lower orders, takes the form

yk, j ,i = αyk−1, j−1,i−1+β3Sk, j ,i, with yk, j ,i = 0, for k, j, i < 0(47)

By recursively substituting (47) in (45), using the shifting matrices and matching coefficients, we

obtain the following Sylvester equation inβ3

( fy+ fy+α)β3+ fy+β3δ3 =−
[

fx3 fx2 fx2 fx2

]
γ3(48)

Now we move on to the partial derivatives ofy function involving the perturbation parameterσ.

To determineyσ, j ,i, we differentiatef with respect to someεt−i , εt− j andσ sequentially

D
3
σεT

t− jε
T
t−i

f = fx3(Dσx⊗x j ⊗xi)+ fx2(Dσx⊗x j ,i)+ fx2(Dσx j ⊗xi)

+ fx2(x j ⊗Dσxi)Kne,ne+ fxDσx j ,i(49)

whereDσx j ,i = xσ, j ,i + x̃ε, j ,i(εt+1⊗ Ine2)(50)

Evaluating aty, setting to zero, and noting the results from lower orders yields

Et(D
3
σεT

t− jε
T
t−i

f )
∣∣∣
y
= fy−yσ, j−1,i−1+ fyyσ, j ,i + fy+yσ, j+1,i+1 = 0(51)

for j, i = 0,1, . . . , with yσ, j ,i = 0, for j, i < 0

The solution of the forgoing, again analogously to lower ordes, takes the form

yσ, j ,i = αyσ, j−1,i−1, with yσ, j ,i = 0, for j, i < 0(52)

or

yσ, j ,i = 0, for j, i = 0,1, . . .(53)

confirming Schmitt-Grohé and Uribe’s (2004) conjectured generalization of their Theorem 1.
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To determineyσ2,i, we differentiatef with respect to someεt−i andσ twice sequentially

D
3
σ2εT

t−i
f = fx3(Dσx⊗Dσx⊗xi)+ fx2(Dσx⊗Dσxi)+ fx2(D2

σ2x⊗xi)+ fx2(Dσx⊗Dσxi)+ fxD
2
σ2xi

(54)

whereD
2
σ2xi = xσ2,i +2xσ,̃ε,i(εt+1⊗ Ine)+ x̃ε2,i(εt+1⊗ εt+1⊗ Ine)

(55)

Evaluating at the nonstochastic steady state (y) and setting the resulting expression to zero yields

Et(D
3
σ2εT

t−i
f )
∣∣∣
y
= fx3{[(x̃ε ⊗ x̃ε)Et(εt+1⊗ εt+1)]⊗xi}+2 fx2(x̃ε ⊗ x̃εi)[Et(εt+1⊗ εt+1)⊗ Ine]

+ fx2{(xσ2 ⊗xi)+([x̃ε2Et(εt+1⊗ εt+1)]⊗xi)}+ fx{xσ2,i + x̃ε2,i [Et(εt+1⊗ εt+1)⊗ Ine]}

=0, for i = 0,1, . . . , with y−1 = 0(56)

which is still a second order deterministic difference equation. The homogeneous components are

packed inxσ2,i, and they are identical to those in (15) and (24). The inhomogeneous components can

again be rearranged to have a first order Markov representation by using the shifting and transition

matrices defined in appendixA.2, thus

yσ2,i−1+yσ2,i +yσ2,i+1

+

{[
fx3(γ4β1⊗ γ4β1⊗ γ1)+ fx2([γ4β2(S0⊗S0)]⊗ γ1)+2 fx2(γ4β1⊗ [γ4β2(S0⊗ I)])

+ fxγ4β3γ5(S0⊗S0⊗ I)

]
[Et(εt+1⊗ εt+1)⊗ Ine]+ fx2(xσ2 ⊗ γ1)

}
Si = 0(57)

for i = 0,1, . . . , with y−1 = 0

The solution of the forgoing takes the form

yσ2,i = αyσ2,i−1+βσSi, with yσ2,−1 = 0(58)

Substituting (58) in (57) and matching coefficients, we obtain a Sylvester equation in βσ

( fy+ fy+α)βσ + fy+βσδ1 =−

{[
fx3(γ4β1⊗ γ4β1⊗ γ1)+ fx2([γ4β2(S0⊗S0)]⊗ γ1)

(59)

+2 fx2(γ4β1⊗ [γ4β2(S0⊗δ1)])+ fxγ4β3γ5(S0⊗S0⊗δ1)

]
[Et(εt+1⊗ εt+1)⊗ Ine]+ fx2(xσ2 ⊗ γ1)

}
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To determineyσ3, we differentiatef with respect toσ three times

D
3
σ3 f = fx3(Dσx⊗Dσx⊗Dσx)+2 fx2(Dσx⊗D

2
σ2x)+ fx2(D2

σ2x⊗Dσx)+ fxD
3
σ3x(60)

whereD
3
σ3x= xσ3 +3xσ2,̃εεt+1+3xσ,̃ε2(εt+1⊗ εt+1)+ x̃ε3(εt+1⊗ εt+1⊗ εt+1)(61)

Evaluating at the nonstochastic steady state and setting the resulting expression to zero yields

Et(D
3
σ3 f )

∣∣∣
y
= fx3[(x̃ε ⊗ x̃ε ⊗ x̃ε)Et(εt+1⊗ εt+1⊗ εt+1)]+2 fx2[Et(εt+1⊗ εt+1⊗ εt+1)(x̃ε ⊗ x̃ε2)]

+ fx2[(x̃ε2 ⊗ x̃ε)Et(εt+1⊗ εt+1⊗ εt+1)]+ fx[yσ3 + x̃ε3Et(εt+1⊗ εt+1⊗ εt+1)]

=0(62)

Note that, once the third moment ofεt is introduced,Et(εt+1⊗εt+1⊗εt+1) is known. Recoveringyσ3

from the forgoing is straightforward under the assumption (3.2). In particular, whenεt is normally

distributed,21 Et(εt+1⊗ εt+1⊗ εt+1) = 0. Hence

yσ3 = 0(63)

Therefore, the third order approximation of the policy function (3) takes the form

yt =y+
1
2

yσ2σ2+
∞

∑
i=0

(
yi +

1
2

yσ2,iσ
2
)

εt−i +
1
2

∞

∑
j=0

∞

∑
i=0

y j ,i(εt− j ⊗ εt−i)

+
1
6

∞

∑
k=0

∞

∑
j=0

∞

∑
i=0

yk, j ,i(εt−k⊗ εt− j ⊗ εt−i)(64)

Again in contrast to the first-order approximation, (64) does depend onσ, with the term1
2yσ2 correct-

ing the steady state for uncertainty as in the second-order approximation (42), but now with1
2yσ2,iσ2

correcting the first-order kernel for uncertainty; i.e., asσ goes from 0 to 1 and we transition from

the certain to uncertain model, we incorporate the additional possibility of a time-varying correction

for uncertainty. As we are interested in the original, uncertain formulation, settingσ to one in (64)

gives the third-order approximation

yt =y+
1
2

yσ2 +
∞

∑
i=0

(
yi +

1
2

yσ2,i

)
εt−i +

1
2

∞

∑
j=0

∞

∑
i=0

y j ,i(εt− j ⊗ εt−i)

+
1
6

∞

∑
k=0

∞

∑
j=0

∞

∑
i=0

yk, j ,i(εt−k⊗ εt− j ⊗ εt−i)(65)

21As is the case in Dynare, see Adjemian, Bastani, Juillard, Mihoubi, Perendia, Ratto, and Villemot (2011).
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Higher order approximations of the policy function (3) can be computed using the same steps.

Moving through higher-orders of approximation successively, the undetermined partial derivatives

of the policy function will be terms of highest order yet considered, ensuring that the leading co-

efficient matrix is fx. Thus, for all time varying components, the difference equations in these

components will have the same homogenous representation—for non time varying components (i.e.

derivatives with respect toσ only), the leading coefficient matrixfx along with assumption3.2 en-

sure the uniqueness of their solution. The inhomogenous elements of the difference equations in the

time varying components will be composed of terms of lower order, which are necessarily constants

(terms in the given moments and derivatives with respect toσ only) or products of stable recursions

(time varying components of lower order). As the latter are likewise stable, we can conclude from

assumption3.1 that the difference equations in all time varying components will be saddle stable;

hence, the stability of the first order recursion is passed onto all higher orders.

4 Stochastic Neoclassical Growth Model

In this section, we examine the stochastic neoclassical growth model in several incarnations to

demonstrate the techniques developed in the previous sections. This well-studied model has been

used in numerous studies comparing numerical techniques and is, thus, the natural choice for a

benchmark. We will begin by presenting the general model that encompasses all the various specific

cases that we will examine subsequently. Then, starting with log-preferences and full depreciation

case with a known solution, we will progress up to time varying volatility version of model used in

Aruoba, Fernández-Villaverde, and Rubio-Ramı́rez (2006).

To that end, consider an infinitely lived representative household seeks to maximize its expected

discounted lifetime utility given by

E0

[
∞

∑
t=0

βtU (Ct ,Lt)

]
(66)
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with Ct being consumption,Lt labor, andβ ∈ (0,1) the discount factor, subject to

Ct +Kt = eZt Kα
t−1L1−α

t +(1−δ)Kt−1(67)

whereKt is the capital stock accumulated today for productive purposes tomorrow,Zt a stochastic

productivity process,α ∈ [0,1] the capital share, andδ ∈ [0,1] the depreciation rate. OutputYt is

given byeZt Kα
t−1L1−α

t and investmentIt by Kt − (1−δ)Kt−1. Productivity is described by

Zt = ρZZt−1+eσt εZ,t, εZ,t ∼ N (0,1)(68)

with ρZ ∈ (0,1) a persistence parameter,εZ,t the innovation to the process, andexpσt the volatility

of the innovations. We allow for time-varying volatility inthe form of the following process

σt = (1−ρσ)σ+ρσσt−1+ τεσ,t, εσ,t ∼ N (0,1)(69)

ρσ ∈ (0,1) a persistence parameter,σ average (log) volatility,εσ,t innovations to the process, andτ

the volatility of the innovations.

The first-order condition include the intertemporal Euler condition equalizing the expected present-

discounted utility value of postponing consumption one period to its utility value today

UC (Ct ,Lt) = βEt

[
UC (Ct+1,Lt+1)

(
αeZt+1Kα−1

t L1−α
t+1 +1−δ

)]
(70)

whereUC (Ct ,Lt) is the derivative ofU (Ct ,Lt) with respect toCt , and the intratemporal condition

equalizing the utility cost of marginally increasing laborsupply to the utility value of the additional

consumption provided therewith

−UL (Ct ,Lt) =UC (Ct ,Lt)(1−α)eZtKα
t−1L−α

t(71)

whereUL (Ct ,Lt) is the derivative ofU (Ct ,Lt) with respect toLt .

4.1 Brock-Mirman Special Case

The first case we will examine is the simple stochastic neoclassical growth model with constant

volatility and without a labor-leisure choice under log preferences and complete capital depreciation.

This model can be expressed in terms of one endogenous variable, enabling a scalar version of the

method to be studied, and possesses a well-known closed-form solution for the state-space policy

20



function. We show how our policy function relates to this well-known state-space version and use

our resulting closed-form policy function as a basis for an initial appraisal of our method.

Accordingly, letU (Ct ,Lt) in (66) be given byln(Ct), normalizeLt = 1 and setδ = 1 in (67),

finally setσt = σ in (68). Combining (67) with (70) in this case yields

0= Et

[(
eZtKα

t−1−Kt
)−1

−β
(
eZt+1Kα

t −Kt+1
)−1(αeZt+1Kα−1

t

)]
(72)

This particular case has a well-known closed form solution for the state-space policy function:

Kt = αβeZtKα
t−1. However, we are interested in its infinite non-linear moving average representation

and guess that the logarithm of the solution is linear in the infinite history of technology innovations

ln(Kt) = ln(K̄)+
∞

∑
j=0

b jεZ,t− j(73)

Inserting the guess and the infinite moving average representation forZt , (72) can be rewritten

1= αβEt




1−exp
(

∑∞
j=0

(
ρ j −b j +αb j−1

)
εZ,t− j − (1−α) ln(K̄)

)

1−exp
(

∑∞
j=0

(
ρ j −b j +αb j−1

)
εZ,t+1− j − (1−α) ln(K̄)

)

×exp

(
∞

∑
j=0

(
ρ j −b j +αb j−1

)
εZ,t − (1−α) ln(K̄)

)]
(74)

whereb−1 = 0.

The value and recursion

K̄ = (αβ)
1

1−α , b j = αb j−1+ρ j , with b−1 = 0(75)

solve (74) and verify the guess, (73).

Not surprisingly, this solution can also be deduced directly from the known state-space solu-

tion. Take logs ofKt = αβeZtKα
t−1, yielding ln(Kt) = ln(αβ)+Zt +αln(Kt−1). Making use of

the lag operator,L, and definingρ(L) = ∑∞
j=0(ρL) j , the foregoing can be written asln(Kt) =

(1−α)−1 ln(αβ)+(1−αL)−1 ρ(L)εZ,t and restating in levels gives

Kt = (αβ)
1

1−α exp
(
(1−αL)−1ρ(L)εZ,t

)
= (αβ)

1
1−α exp

(
∞

∑
j=0

b jεZ,t− j

)
(76)

whereb(L) = (1−αL)−1ρ(L) = ∑∞
j=0b jL j as before.

This special case offers a simple check of the numerical approach. We definêKt = ln(Kt) and
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useKt = exp(K̂t) to reexpress (72) as22

0= Et

[(
eZt+αK̂t−1 −eK̂t

)−1
−β
(

ezt+1+αK̂t −eK̂t+1

)−1(
αeZt+1+(α−1)K̂t

)]
(77)

With this reformulation, the first-order expansion is the true policy rule in this special case. That is

(77) can be rewritten as 0= Et [ f (yt−1,yt ,yt+1,Ut] whereyt =
[
Kt Zt

]′
andUt =

[
εZ,t
]
. To check

our method, we calculate the kernels of the third order accurate nonlinear moving average solution

of (77) out 500 periods, following the parameterization of Hansen’s (1985) for the remaining pa-

rameters by settingα = 0.36, 1/β = 1.01,ρ = 0.95, andσ = ln(0.00712). Our method successfully

identifiesy j ,i, yk, j ,i , andyσ2,i as being zero and the largest absolute difference inyi from those im-

plied by the analytic solution was 4.3368×10−18. This simple check is far from comprehensive, in

this section and especially in section6 additional and potentially more meaningful measures will be

examined. As a first check, this is promising.

4.2 CRRA-Incomplete Depreciation Case

In this case, we relax the complete depreciation and log preferences of the previous section, neces-

sitating an approximation, as no known closed-form solution exists.

Accordingly, letU (Ct ,Lt) in (66) be given byC1−γ
t −1
1−γ , normalizeLt = 1 and setσt = σ in (68).

Ct +Kt = eZt Kα
t−1+(1−δ)Kt−1(78)

C−γ
t = βEt

[
C−γ

t+1

(
αeZt+1Kα−1

t +1−δ
)]

(79)

Zt = ρZZt−1+eσεZ,t(80)

Thus 0=Et [ f (yt−1,yt ,yt+1,Ut ] whereyt =
[
Ct Kt Zt

]′
andUt =

[
εZ,t
]
. We reexpress the variables

in logs, commensurate with a loglinear approximation. While we maintainδ = 0.025, we setγ = 5

indicating a substantial departure from log-preferences.Comparing our first-order solution with the

impulse response for capital from Uhlig’s (1999) exampl0.mfor a one standard deviation shock, the

largest absolute difference is 9.0093×10−15, confirming the accuracy of the linear terms.

22Fernández-Villaverde and Rubio-Ramı́rez (2006) examinethis and other change of variable techniques.
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For higher-order approximations, our policy function (3)

yt = y(σ,εt ,εt−1,εt−2, . . .)(81)

is particularly suited to enable impulse response analysis. That is, consider a shock int to an element

of εt , one measure23 for the response ofyt through time to this impulse is given by the sequence

yt = y(σ,εt ,0,0,0, . . .)

yt+1 = y(σ,0,εt,0,0, . . .)

yt+2 = y(σ,0,0,εt,0, . . .)

...(82)

[Figure 1 about here.]

Figure1 depicts the impulse responses and their contributing components from the kernels of

different orders for capital and consumption to a positive,one standard deviation shock inεZ,t.24 The

upper panel displays the impulse responses at first, second,and third order as deviations from their

respective (non)stochastic steady states (themselves in the middle right panel) and the first feature to

notice is that they are indistinguishable to the eye. This isnot surprising, as it is well known that the

neoclassical growth model is nearly loglinear. In the middle column of panels in the lower half of

each figure, the contributions to the total impulse responses from the second and third-order kernels

yi,i andyi,i,i are displayed. Note that these components display multiple‘humps’ to either side of the

hump in the first-order component (upper-left panel), this is due at least in part to the phenomenon

23 Note that we are assuming thatyt− j = y(σ,0,0, . . .), ∀ j > 0. Fernández-Villaverde, Guerrón-Quintana, Rubio-
Ramı́rez, and Uribe (forthcoming), for example, examine the responses starting from the mean of the ergodic distribution
as opposed to the stochastic steady state that we assume. Note that in a nonlinear environment, variables will wander
away deterministically from the ergodic mean to the stochastic steady state when the response to a single shock is
examined, as the maintenance of variables around the ergodic mean requires the model to be constantly buffeted with
shocks. We argue for our measure as it eliminates such deterministic trends in impulse responses.

24In terms of the “conceptual difficulties” laid out in Koop, Pesaran, and Potter (1996), we are assuming a particular
history of shocks (namely the infinite absence thereof—suchinteraction will be addressed later), are examining a par-
ticular shock realization (positive, one standard deviation: due to the nonlinearity, asymmetries and the absence of scale
invariance are a potential confound) and ignore distributional composition issues by examining a realization of a single
structural shock irrespective of its potential correlation with other shocks (in this model there is only one shock, so this
is moot anyway).
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of harmonic distortion discussed in Priestly (1988, p. 27).That both second-order contributions are

positive reflects both the fact that, in a stochastic environment, an overaccumulation of capital and,

hence, inefficiently high level of consumption is maintained,25 as can also be seen in the upward

correction of the steady states in the rightmost panels, andthat the technology shock passes through

the exponential function in the production functioneZt Kα
t−1, adding an additional upward correction

to the effect on production of this shock. The lower left panel contains the contributions fromyσ2i the

second order (inσ) time-varying correction for risk, this demonstrates an initial wealth effect with

consumption increasing and capital decreasing relative toa nonstochastic environment.26 Nonlinear

impulse responses are not scale invariant, as noted also by Fernández-Villaverde, Guerrón-Quintana,

Rubio-Ramı́rez, and Uribe (forthcoming): for example, while the first-order component scales lin-

early with the magnitude of the shock, the second-order order component scales quadratically. As

shocks become larger, a linear approximation would generally not suffice to characterize the dy-

namics of the model. This is precisely the effect of higher-order terms: as the magnitude of the

shock increases, these higher order terms begin to contribute more significantly to the total impulse,

attempting to correct the responses for the greater departure from the steady state. For this model,

however, one would need to consider shocks of unreasonable magnitude to generate any notable

effects from the higher-order terms on the total impulse, reinforcing the conventional wisdom that

this model is nearly linear in the variables’ logarithms.

[Figure 2 about here.]

In figure2, the impulse responses to a technology shock with differentvalues (1, 5, and 10) of the

CRRA parameterγ are overlayed. Note that for all three values ofγ, the first order components dom-

inate. While changes inγ do change the periodicity of the harmonic distortion as wellas the shape

and sign of the second and third order components, only the constant and time-varying corrections

25Overaccumulation and inefficient from the perspective of a nonstochastic environment that is.
26Fernández-Villaverde and Rubio-Ramı́rez (2010) discusses the nonlinear impact of shocks in the production func-

tion and similar wealth effects.
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for risk display a significant change in magnitude. Asγ is increased, the stochastic steady state is

associated with higher constant precautionary stocks of capital and the time-varying component dis-

plays a magnified wealth effect. At values above 20 (not pictured), the time-varying corrections for

risk begin to contribute noticeably to the total impulse, whereas shocks several orders of magnitude

larger than a standard deviation are needed to propel the nonlinear kernels to significance.

[Figure 3 about here.]

Figures3 and4 draw the second and third order kernels,y j ,i andyk, j ,i , as they depend on differing

time separation (potentiallyi 6= j 6= k) of shocks. As likewise discussed in Fernández-Villaverde,

Guerrón-Quintana, Rubio-Ramı́rez, and Uribe (forthcoming), impulse responses are not invariant to

the history of shocks. The contributions (though not scaledtop the magnitude of the shock) from the

second and third-order kernels in the impulse responses in figure1 can be found along the diagonals

of the kernels (i = j = k) in 3 and4. The off diagonal (i 6= j 6= k) elements ‘correct’ for the history

of shocks. That is, in addition to the individual second-order contribution that can be found along

the diagonals in3, an off diagonal correction to the second order contribution would be needed for

shocks from the past. The deep valleys on either side of both the kernels that bottom out at about

fifty periods indicate a substantially persistent nature ofthe second order kernels.

[Figure 4 about here.]

Additionally, the harmonic distortion mentioned earlier can be seen in the kernels as well. The

shapes of the kernels perpendicular to the diagonal have direct analogs in polynomials: on either

side of the diagonal of figure3b, the shape is reminiscent of the parabola of a quadratic equation

and the ‘s’ shape of the cubic equation on either side of the diagonal at lower horizons of figure4b.

This bears a word of caution that not too much should be read into the shape itself of the kernels, as

they are dictated by the form of the underlying polynomials.

[Figure 5 about here.]
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Figure5 highlights a central component of higher-order impulse responses: the break down of

superposition or history dependence of the transfer function. The nonlinear impulse to two shocks

at different points in time is not equal to the sum of the individual responses, even after having cor-

rected the individual responses for the higher order. The panels in the figure depict the second-order

contributions to the impulse responses of capital and consumption to two positive, one standard de-

viation technology shocks, spaced 50 periods apart. The dashed line in the top of figure simply adds

the individual second order components from each shock together (i.e., presents the total second-

order component if superposition were to hold), whereas thesolid line additionally contains the

second-order cross-component (i.e., presents the true total second-order component). Demonstrat-

ing this breakdown of superposition quite vividly, the cross component overwhelms the individual

components shortly after the second shocks hits and the second-order contribution to the response of

consumption (lower panel) displays a prolonged downward total correction, despite the always pos-

itive individual second-order contributions. Although the switch of sign is much briefer for capital

(upper panel), the difference from the sum of individual contributions is just as stark and prolonged.

In a nonlinear environment, there is no single measure for animpulse response;27 in starting from

the stochastic steady state, however, we remove any deterministic trends in our impulse measure

(e.g., starting from the ergodic mean introduces such a trend, see footnote23).

The standard RBC model is nearly linear and makes much of the analysis here moot. This is, of

course, not to be expected for every model and we will now introduce fundamental nonlinearity into

the model making the nonlinear analysis essential in understanding the mechanisms at work.

4.3 Labor Margin and Time-Varying Volatility Case

We move on to a time-varying volatility version of Aruoba, Fernández-Villaverde, and Rubio-

Ramı́rez (2006). This is motivated by the application of numerous solution techniques to the model

by Aruoba, Fernández-Villaverde, and Rubio-Ramı́rez (2006) to which we will return in section6

27See, e.g., Gourieroux and Jasiak (2005), Potter (2000), andKoop, Pesaran, and Potter (1996).
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when assessing the accuracy of our method. The incorporation of time-varying volatility introduces

a fundamental nonlinearity into the model, whose dynamic consequences we will demonstrate re-

quire a third-order approximation to be observed (see also Fernández-Villaverde and Rubio-Ramı́rez

(2010) and Fernández-Villaverde, Guerrón-Quintana, Rubio-Ramı́rez, and Uribe (forthcoming)).

Let U (Ct ,Lt) in (66) now be given by
(Cθ

t (1−Lt)
1−θ)

1−γ

1−γ . The nonlinear system is now

Ct +Kt = eZt Kα
t−1L1−α

t +(1−δ)Kt−1(83)
(
Cθ

t (1−Lt)
1−θ
)1−γ

Ct
= βEt




(
Cθ

t+1(1−Lt+1)
1−θ
)1−γ

Ct+1

(
αeZt+1Kα−1

t L1−α
t+1 +1−δ

)

(84)

1−θ
1−Lt

=
θ
Ct

(1−α)eZtKα
t−1L−α

t(85)

Zt = ρZZt−1+eσt εZ,tσt = (1−ρσ)σ+ρσσt−1+ τεσ,t(86)

or 0= Et [ f (yt−1,yt ,yt+1,Ut] whereyt =
[
Ct Kt Lt Zt σt

]′
andUt =

[
εZ,t εσ,t

]′
.

We use Aruoba, Fernández-Villaverde, and Rubio-Ramı́rez’s (2006) baseline paramterization for

all parameters, except the volatility process (as it was notpresent in their formulation), whose values

are taken from Fernández-Villaverde and Rubio-Ramı́rez (2010).

We will begin with the responses to a technology shock beforereturning to the impulse responses

to a volatility shock. The results for technology shocks here largely coincide with those of the sim-

pler model, but a few points are worth highlighting. The nonlinear manner in which the technology

shock enters into the production function is pictured in figure 7, the panel labeled as being in levels

gives the nonlinear response ofeZt to a technology shock, which contains positive first, second, and

third-order components (note that the risk correction terms are all zero, as this merely a transforma-

tion of the known stochastic process for productivity). These positive nonlinear components carry

over to production, not pictured, expressed in levels, but are essentially eliminated when production

is expressed in logs. The time-varying risk correction to the response of labor, figure6, demonstrates

the wealth effect discussed in the previous section.

[Figure 6 about here.]
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[Figure 7 about here.]

Figures8 through13 display the impulse responses of the model’s variables to a positive one

standard deviation shock in the volatility process. All variables are expressed in logs (the responses

for variables in levels are essentially identical, save forscale). Note that all components except for

the time-varying risk component are zero, consistent with the assessment of Fernández-Villaverde

and Rubio-Ramı́rez (2010) and Fernández-Villaverde, Guerrón-Quintana, Rubio-Ramı́rez, and Uribe

(forthcoming) that a third-order approximation is needed to calculate impulse responses to volatility

shocks. As a shock to the volatility process by itself affects only the distribution from which future

technology shocks will be drawn, any response is of a precautionary nature. Indeed, a precautionary

stock of capital, figure8, is accumulated by reducing consumption, figure9, and increasing pro-

duction, figure10, through increased labor input, figure12. As volatility subsides, figure13, and

technology shocks from this more highly dispersed distribution fail to materialize (by assumption,

we are looking at the response to the volatility shock by itself), the precautionary stock is drawn

down through an increase in consumption and reduction of labor. Agents are able to reduce their

labor efforts to levels below their stochastic steady statelevels while maintaining an elevated level

of production by the persistence of the accumulated stock ofcapital. Besides being consistent with

the precautionary behavior one would expect from risk-averse agents, the response of consumption

and production move initially in opposite directions, hinting that some of the excess (in standard

RBC models vis-vis post-war US data) correlation between output and consumption can be reduced

by simply introducing a time-varying distribution for productivity shocks.28

[Figure 8 about here.]

[Figure 9 about here.]

28Though a quick comparison with the scales of the responses totechnology shocks shows that technology shocks
will overwhelm the effects of volatility shocks, minimizing the reduction in correlation between output and consumption
that could be gained from introducing time-varying volatility.
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[Figure 10 about here.]

[Figure 11 about here.]

[Figure 12 about here.]

[Figure 13 about here.]

In figure14, the second-order cross kernel of capital, in logs, with respect to both shocks is dis-

played. That is, the figure depicts the second order correction for a volatility shock and a technology

shock occurring at differing points in time. This portion ofthe kernel to the right of the diagonal

displays the correction for the cross effects of a shock in volatility having occurredafter a shock in

technology; the kernel here is, of course, zero as any changein the distribution of technology shocks

will have no effect on technology shocks that have already been realized. To the left and on the diag-

onal, however, the kernel is not zero and is simply the first-order kernel with respect to a technology

shock scaled by associated change in volatility. This scalediminishes as the volatility shock wanders

further back into the past, following from the stable autoregressive process describing volatility.

[Figure 14 about here.]

In sum, the introduction of fundamental nonlinearities, like the stochastic volatility examined

here or risk-sensitive preference as studied in Rudebusch and Swanson (forthcoming), strains the

reliability of linear methods for assessing the transmission mechanism of shocks in a model econ-

omy. While our policy function enables a straight forward one shock impulse response analysis, the

history dependence of the transfer function makes clear that one must be wary of relying solely on

this familiar tool. In the next section, we will examine simulations, allowing for a history of shocks

to unfold through the endogenous variables.
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5 Simulations and Pruning

This section serves two purposes. First, to demonstrate that our infinite MA function is not subject

to the explosive behavior that has spurned interest in pruning algorithms and that our second-order

solution provides a perturbation basis for the pruning algorithm of Kim, Kim, Schaumburg, and Sims

(2008). Second, then, to provide the literature with the approximated state-space policy function

implied by our approximation of our nonlinear infinite moving-average policy function. We use

our nonlinear moving average solution to then formulate a third-order pruning procedure, the first

explicit such formulation to our knowledge.

Perturbation methods with state space policy functions, unfortunately, have tendency of deliver-

ing spuriously explosive simulations is well established.29 Kim, Kim, Schaumburg, and Sims (2008)

have offered a solution, termed ‘pruning’, to alleviate this tendency by removing the offending terms

of order higher than the approximation induced by the recursive substitution involved in simulations,

impulse responses, and the like. Likewise, the method of Lombardo and Sutherland (2007), cast in

terms of perturbation by Lombardo (2010), avoids explosivesimulations through the recursive lin-

earity of their solution. Both Den Haan and De Wind (2010) andLombardo (2010) have criticized

‘pruning’ as being ad hoc and not a valid perturbation approximation.

To demonstrate, we simulate a slightly modified30 version of the model of section4.3 for 500

periods and calculate the first, second, and third order accurate simulations using our method, the

second and third order simulations from the standard state space approach, and the second-order

‘pruned’ solution of Kim, Kim, Schaumburg, and Sims (2008).We modify the model of section4.3

by scaling up the volatility of the model (increasing the standard deviations of both the shocks by

factor of 5), following Lombardo (2010) for demonstrational purposes. The top panel of figures15

through18, provide the simulated paths under the different methods. In the figures for the endoge-

29See, e.g., Aruoba, Fernández-Villaverde, and Rubio-Ram´ırez (2006), Kim, Kim, Schaumburg, and Sims (2008),
and Den Haan and De Wind (2010).

30We add auxiliary equations for outputYt = eZt Kα
t−1L1−α

t and investmentIt = Kt − (1− δ)Kt−1 and express all
variables but investment in logs.
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nous variables, figures15 through17, an explosion under the second order state space method can

be observed towards the end of the simulation.31 Interestingly, the third order state space simulation

manages to return to the vicinity of the steady state near theend of the simulation, despite produc-

tion, figure16, and investment, figure17, three-quarters of the way through the simulation having

decreased significantly more than under other methods (by two orders of magnitude for investment).

Our moving average solutions at both the second and third orders remain in the vicinity of the steady

state along with the first order and ‘pruned’ second order solutions. Due to the time-varying volatil-

ity, identical under all methods (see figure18b), the technology process is approximated, figure18a,

but here all the methods (at a given order of approximation) agree on the approximated solution.

The likely culprit for the explosive behavior in the state space solutions is the increase in volatility

around the three-quarter mark and subsequent substantial negative deviation of technology.

[Figure 15 about here.]

[Figure 16 about here.]

[Figure 17 about here.]

[Figure 18 about here.]

The middle panel of figures15 through17, removes the non-‘pruned’ state space solutions from

the graphs. As the magnitude of the drop in productivity increases with the order of approximation,

this is reflected by the depth of the ensuing decline of activity. All variables demonstrate a substantial

decline around the three-quarter mark, but of roughly the same order of decline in productivity,

but return along with the measure of technology back to the vicinity of the steady state. Thus

we can reasonably conclude that the substantial movements in the second and third order moving

average solution are not an artefact of the kind motivating ‘pruning’ algorithms, but reflect the

31The simulations for consumption and labor (not pictured) are similar to those for capital and prodution respectively.
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underlying movements of the model at their respective orders of approximation. Conspicuously

absent from the middle panels is a discernable difference between our second order moving average

solution and the ‘pruned’ second order state space solution. The lower panel of the figures plots the

differences between these two methods. Unlike the solutions of Lombardo and Sutherland (2007)

and Lombardo (2010), the solution provided by our method does differ from that of Kim, Kim,

Schaumburg, and Sims’s (2008) ‘pruned’ solution. However,the difference is deterministic with the

two solutions trending smoothly towards each other during the simulation. To illustrate this point,

figure19displays a simulation for the stopck of capital under an alternate parameterization (standard

deviations are returned to their levels in section4.3anγ is increased to 50). Here the slow transition

of all the state space methods (upper panel) to our moving average solutions is clearly visible.

[Figure 19 about here.]

The observed incomplete similarity of our second order moving average solution with the ‘pruned’

second order state space solution motivate the following proposition, which reformulates our solu-

tion from section3.2 in terms of a solution that is, in the words of Lombardo (2010), recursively

linear in the orders of approximation.

Proposition 5.1. The second-order infinite moving-average solution

yt = y+
1
2

yσ2 +
∞

∑
i=0

yiεt−i +
1
2

∞

∑
j=0

∞

∑
i=0

y j ,i(εt− j ⊗ εt−i)(87)

can be written as the ‘pruned’ state-space solution
(

y(2)t − ȳ−
1
2

yσ2

)
= α

(
y(2)t−1− ȳ−

1
2

yσ2

)
+β1ut +

1
2

β2



[

y(1)t−1− ȳ
ut

]⊗[2]

(88)

where

y(1)t −y= α
(

y(1)t−1−y
)
+β1ut(89)

Proof. See appendixA.3.

With some algebraic effort, we show that our ‘pruned’ or ‘recursively linear’ solution is the same

as Kim, Kim, Schaumburg, and Sims’s (2008) ‘pruned’ state space solution up to the constant term.
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Corollary 5.2. The second-order ‘pruned’ state-space solution (88) can be rearranged to conform

with the second-order ‘pruned’ solution of Kim, Kim, Schaumburg, and Sims (2008, p. 3409). The

two solutions differ only with respect to the constant term in σ2.

Proof. See appendixA.3.

The difference in the constant term can be explained as follows. The nonstochastic steady state is

not the rest point of the second order state space solution, due to the inclusion of the constant term in

σ2. Starting from nonstochastic steady state, the state spacesolutions will gradually move towards

a new steady state, our stochastic steady state ¯y+ 1
2yσ2. Note that our stochastic steady state is the

rest point of our moving average and ‘pruned’ (88) solutions, a form of dynamic self consistency.32

It is then straightforward to rearrange our solution from section 3.3 to formulate a third-order

‘pruned’ solution. While an almost trivial extension, thisis a novel contribution in the literature,

offering some guidance that Lombardo (2010) stating was missing from pruning procedures.

Proposition 5.3. The third-order infinite moving-average solution

yt =y+
1
2

yσ2 +
∞

∑
i=0

(
yi +

1
2

yσ2,i

)
εt−i +

1
2

∞

∑
j=0

∞

∑
i=0

y j ,i(εt− j ⊗ εt−i)

+
1
6

∞

∑
k=0

∞

∑
j=0

∞

∑
i=0

yk, j ,i(εt−k⊗ εt− j ⊗ εt−i)(90)

can be written as the ‘pruned’ state-space solution
(

y(3)t − ȳ−
1
2

yσ2σ2
)
= α

(
y(3)t−1− ȳ−

1
2

yσ2σ2
)
+β1ut +

1
2

βσ

[
y(1)t−1− ȳ

ut

]
+

1
6

β3,1




[

y(1)t−1− ȳ
ut

]⊗[3]




+β3,4

([
y(1)t−1− ȳ

ut

])
⊗







y(2)t−1− ȳ− 1
2yσ2 −

(
y(1)t−1− ȳ

)

1
2

[
y(1)t−1− ȳ

ut

]⊗[2]





(91)

where y(1)t − y and y(2)t − ȳ− 1
2yσ2 are as given in proposition5.1 and β3,1 and β3,4 correspond to

the first(ny+ne)3 and last(ny+ne)
(
(ny+ne)2+ny

)
columns ofβ3 respectively.

32Evers (2010) uses the term “self consistent” to refer to the relation between the rest point of the approximation and
of the original problem, which is different in detail but similar in spirit to the consistency discussed in the text.
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Proof. See appendixA.3.

Our nonlinear moving average solution avoids the explosivebehavior of non ‘pruned’ state space

solutions without any appeal to ad hoc algorithms, being a direct perturbation approximation of a

simulation: a mapping from a history of shocks to endogenousvariables. Higher order ‘pruning’

algorithms can be derived from our mapping, providing a firm basis in perturbation theory for the

indeterministic component of current ‘pruning’ algorithms. Yet, it is still unclear whether the non-

linear moving average provides accurate approximations and it is to this question that we now turn.

6 Accuracy

In this section, we explore the accuracy of our solution method using Euler-equation-error meth-

ods.33 Beside validating the accuracy of our solution method, we add an Euler-equation-error

method for assessing the accuracy of an impulse response, enabling the method to address our

infinite-dimensional state space.

We choose to examine our method using the model of Aruoba, Fernández-Villaverde, and Rubio-

Ramı́rez (2006), the constant volatility version of the model examined in section4.3. From Judd

(1992), the idea of the Euler-equation accuracy test in the neoclassical growth model is to find a unit-

free measure that expresses the one-period optimization error in relation to current consumption.

Accordingly, (84) can be rearranged to deliver the Euler-equation error function as34

EE() = 1−
1
Ct




βEt

[
(Cθ

t+1(1−Lt+1)
1−θ)

1−γ

Ct+1

(
αeZt+1Kα−1

t L1−α
t+1 +1−δ

)]

(1−Lt)
(1−θ)(1−γ)




1
θ(1−γ)−1

(92)

Deviations in (92) from zero are interpreted by Judd (1992) and many others as the relative opti-

mization error that results from using a particular approximation. Expressed in absolute value and

in base 10 logarithms, an error of−1 implies a one dollar error for every ten dollars spent and an

33See, e.g., Judd (1992), Judd and Guu (1997), and Judd (1998)
34Cf. Aruoba, Fernández-Villaverde, and Rubio-Ramı́rez (2006, p. 2499).
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error of−6 implies a one dollar error for every million dollars spent.

The arguments ofEE() depend on the state space postulated. Standard state-spacemethods

would chooseEE(Kt−1,Zt) or EE(Kt−1,Zt−1,εZ,t). Our nonlinear moving average policy function

requiresEE(εZ,t,εZ,t−1, . . .), rendering the Euler-equation error function an infinite dimensional

measure. In line with our presentation of impulse response functions, we examine the following set

of Euler-equation error functions, holding all be one shockconstant and moving back in time fromt,

essentially assessing the one-step optimizing error associated with the impulse response functions.

EEt = EE(εZ,t,0,0, . . .) , EEt−1 = EE(0,εZ,t−1,0, . . .) , EEt−2 = EE(0,0,εZ,t−2, . . .) , . . .(93)

We examine a range of shock values forεZ,t− j that covers 10 standard deviations in either direc-

tion. This is perhaps excessive given the assumption of normality, but enables us to cover the same

range for the technology process examined in Aruoba, Fernández-Villaverde, and Rubio-Ramı́rez

(2006) from a single shock. Figure20 plotsEEt for first through third order approximations in lev-

els and in logs. The first observation is that higher order in levels performs uniformly better than

the preceding order—this result is reassuring, but not a given. As Lombardo (2010, p. 22) remarks,

although within the radius of convergence the error in approximation goes to zero as the order of ap-

proximation becomes infinite, this does not necessary happen monotonically. Indeed, the difference

between the second and third order approximations in logs does not paint as clear a picture as in

levels. If we restrict our attention to three standard deviation shocks (±0.021), the third order level

and the second and third order log approximations make mistakes no greater than one dollar for

everyone ten million spent, hardly an unreasonable error. Of independent interest is the result that

the first order approximation in logs is uniformly superior to the first order approximation in levels,

standing in contrast to the result of Aruoba, Fernández-Villaverde, and Rubio-Ramı́rez (2006). As

their focus was on the mapping from capital to errors and ourson shocks to errors, it is possible that

the preferred approximation depends on the dimension understudy.

[Figure 20 about here.]
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In figure21, plots ofEEt− j for j = 0,1, . . . ,100 for the first order approximations in both levels

and logs are provided. Comparing these two figures—let aloneincorporating the associated results

for the second and third order (not pictured)—is difficult atbest. Thus, to facilitate comparison of the

different approximations across the different horizons, two measures that reduce to two dimensions

will be examined, namely maximal and average Euler equationerrors.

[Figure 21 about here.]

First, we plot the maximal Euler-equation errors over a spanof 100 periods in figure22a. I.e.,

max
−10eσ<εZ,t− j<10eσ

(
EEt− j

)
, for j = 0,1, . . . ,100(94)

whereeσ is the constant standard deviation of the technology shock.The figure tends to reinforce

the results from examining only shocks in periodt: for the level approximations, moving to a higher

order uniformly improves the quality of approximation, a first order approximation in logs is to be

preferred over a first-order in levels, and the evidence is inconclusive as to whether a third order in

level or a second or third order in logarithm approximation is to be preferred.

[Figure 22 about here.]

In our final measure, we graph average Euler-equation errorsover a span of 100 periods in figure

22b. In contrast to state space analyses, this measure is relatively easy to calculate, as we merely

need to integrate with respect to the known distribution (inthis case normal) of the shocks
∫

EEt− jdFεZ,t− j , for j = 0,1, . . . ,100(95)

Weighting the regions of shock realizations most likely to be encountered as defined by the distribu-

tion of shocks, we are not forced to make a choice regarding the range of shock values to consider.

Again, we note the uniform improvement with higher order forthe level approximations, the su-

periority of the first order approximation in logs, and the ambiguity regarding third in levels and

second and third in logs. The average error using a first orderin level approximation is around one
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dollar for every ten thousand spent regardless of horizon. The second order approximations show

an improvement as the horizon increases, whereas the third order approximations tend to be lower

at first, rise and then fall again. The third order approximation in both levels and logs are associated

with an average error of about one dollar for every billion spent regardless of horizon.

We conclude that the nonlinear moving average policy function can provide competitive ap-

proximations of the mapping from shocks to endogenous variables. As was the case with Aruoba,

Fernández-Villaverde, and Rubio-Ramı́rez (2006), however, the perturbation methods here deteri-

orate (not reported) in their extreme parameterization. Asall perturbations, our method remains a

local method and is subject to all the limitations and reservations that face such methods.

7 Conclusion

We have derived an approximation of the nonlinear moving average form of the policy function,

providing explicit derivations up to third order. Besides enabling familiar impulse response analy-

sis techniques, it passes the stability from the first order approximation to higher orders, producing

non explosive simulations and thereby endogenizing the ‘pruning procedure’. That is, our nonlin-

ear moving average method provides the direct mapping up to the order of approximation from

stochastic input to endogenous variables.

The nonlinear perturbation DSGE literature is still in an early stage of development and our

method provides a different, yet—from linear methods—familiar, perspective. Standard state-space

perturbation methods provide insight into the nonlinear mapping between endogenous variables

through time. Yet when the researcher’s interest lies in examining the nonlinear mapping from

exogenous shocks to endogenous variables, our method has considerable insight to offer.
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A Appendices

A.1 Matrix Calculus and Taylor Expansion

A.1.1 Matrix Calculus Definition

Definition A.1. Matrix Derivative and Commutation Matrix

1. Matrix Derivative [See Vetter (1970), Vetter (1973) and Brewer (1978).]

Dbkl A(B)
p×q

≡

[
∂ai j

∂bkl

]
=




∂a11
∂bkl

· · ·
∂a1q
∂bkl

...
...

∂ap1
∂bkl

· · ·
∂apq

∂bkl


(A-1)

DBA(B)
sp×tq

≡
[
DbklA(B)

]
=




Db11A(B) · · · Db1t A(B)
...

...
Dbs1A(B) · · · DbstA(B)


(A-2)

Structures of higher derivatives are thereby uniquely defined

D
n
BnA(B)≡ DB(DB(· · ·(DBA(B)) · · ·))(A-3)

2. Abbreviated Notation

AB
sp×tq

≡ DBT A(B) and ABn ≡ D
n
(BT)n

A(B)(A-4)

whereT indicates transposition. Additionally,

ACB ≡ DCT (DBT A(B,C)) = DCTBT A(B,C)(A-5)

3. Commutation Matrix Ka,b [See Magnus and Neudecker’s (1979, p. 383) Theorem 3.1.]

B
m×t

⊗ A
n×s

= Km,n(A⊗B)Kt,s(A-6)

A.1.2 Proof of theorem2.1

1. Matrix Product Rule: Combine Vetter’s (1973, p. 356) transpose and product rules and exam-

ine the special case of an underlying vector variable.

2. Matrix Chain Rule: Combine Vetter’s (1973, p. 356) transpose and chain rules and examine

the special case of an underlying vector variable.
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3. Matrix Kronecker Product Rule: Combine Vetter’s (1973, p. 356) transpose and Kronecker

rules with an underlying vector variable and adopt Magnus and Neudecker’s (1979) notation.

4. Vector Chain Rule: The result follows from the Matrix Chain Rule, settingq to one.

A.1.3 Proof of corollary 2.2

From Vetter (1970, p. 243) and, especially, Vetter (1973, pp. 358–363), a multidimensional Taylor

expansion using the structure of derivatives (evaluated atB̄) in appendixA.1.1 is given by

M
(p×1)

( B
(s×1)

) = M(B̄)+
N

∑
n=1

1
n!

D
n
BT nM(B̄)(B− B̄)⊗[n]

+RN+1(B̄,B)(A-7)

whereRN+1(B̄,B) =
1

N!

∫ B

ξ=B̄
D

N+1
BTN+1M(ξ)

(
Is⊗ (B−ξ)⊗[N]

)
dξ(A-8)

Differentiating (3) with respect to all its argumentsM times, evaluating at the steady statey, and

noting permutations of the order of differentiation, a Taylor approximation is

yt =
1
0!

(
1
0!

y+
1
1!

yσσ+
1
2!

yσ2σ2+ . . .+
1

M!
yσM σM

)

+
1
1! ∑

i1=0

(
1
0!

yi1 +
1
1!

yσi1σ+
1
2!

yσ2i1σ2+ . . .+
1

(M−1)!
yσM−1i1σM−1

)
εt−i1

+
1
2! ∑

i1=0
∑

i2=0

(
1
0!

yi1i2 +
1
1!

yσi1i2σ+
1
2!

yσ2i1i2σ2+ . . .+
1

(M−2)!
yσM−2i1i2σM−2

)
εt−i1 ⊗ εt−i2

...

+
1

M! ∑
i1=0

∑
i2=0

· · · ∑
im=0

1
0!

yi1i2···imεt−i1 ⊗ εt−i2 ⊗·· ·εt−im

Writing the foregoing more compactly yields (11) in the text.

A.2 Auxiliary Matrices

A.2.1 Shifting Matrices

δ1 =




α
ny×ny

β1
ny×ne

0
ne×ny

0
ne×ne


 δ2 =

[
α β2

0 δ1⊗δ1

]
δ3 =




δ1⊗δ1⊗δ1 0 0 0
0 δ2⊗δ1 0 0
0 0 δ1⊗δ2 0
0 0 0 δ1⊗δ2


(A-9)
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γ1 =




I
ny×ny

0
ny×ne

α β1

α2 αβ1+β1N
0

nu×ne
I

ne×ne


 γ2 =




I 0
α β2

α2 αβ2+β2(δ1⊗δ1)
0 0


(A-10)

γ3 =




γ1⊗ γ1⊗ γ1 0 0 0
0 γ2⊗ γ1 0 0
0 0 γ1⊗ γ2 0
0 0 0 γ1⊗ γ2


 γ4 =




0
ny×ny

0
ny×ny

I
ny×ny

0
ne×ny




(A-11)

γ5 =




I(ny+ne)3[
0

ny×(ny+ne)2

I(ny+ne)2

]
⊗ I(ny+ne)2

I(ny+ne)2 ⊗

[
0

ny×(ny+ne)2

I(ny+ne)2

]
K(ny+ne),(ny+ne)2(Ine⊗K(ny+ne),(ny+ne))

I(ny+ne)2 ⊗

[
0

ny×(ny+ne)2

I(ny+ne)2

]




(A-12)

A.2.2 State Spaces for the Markov Representation

xi = γ1Si , Si =

[
yi−1

ui

]
, andSi+1 = δ1Si(A-13)

x j ,i = γ2Sj ,i , Sj ,i =

[
y j−1,i−1

Sj ⊗Si

]
, andSj+1,i+1 = δ2Sj ,i(A-14)

Sk, j ,i =




Sk⊗Sj ⊗Si

Sk, j ⊗Si

(Sj ⊗Sk,i)Kne,ne2(Ine⊗Kne,ne)
Sk⊗Sj ,i


 andSk+1, j+1,i+1 = δ3Sk, j ,i(A-15)

A.3 Pruning Proofs

A.3.1 Proof of Proposition5.1

Denote the first-order solution, (22), asy(1)t and the second order solution, (43), y(2)t . Evaluating and

rearrangingy(2)t −αy(2)t−1 yields

y(2)t − ȳ−
1
2

yσ2 −
∞

∑
i=0

yiεt−i −α

(
y(2)t−1− ȳ−

1
2

yσ2 −
∞

∑
i=0

yiεt−i−1

)
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=
1
2

∞

∑
j=0

∞

∑
i=0

y j ,i(εt− j ⊗ εt−i)−α

[
1
2

∞

∑
j=0

∞

∑
i=0

y j ,i(εt− j−1⊗ εt−i−1)

]
(A-16)

Denote with LHS and RHS the left- and right-hand sides of (A-16). LHS can be rewritten as

LHS=
(

y(2)t − ȳ
)
−α

(
y(2)t−1− ȳ

)
− (I −α)

1
2

yσ2 −

[
∞

∑
i=0

(yi −αyi−1)εt−i

]
(A-17)

asyi = 0 for i < 0. Using (16) and the linearity ofut gives

LHS=
(

y(2)t − ȳ
)
−α

(
y(2)t−1− ȳ

)
− (I −α)

1
2

yσ2 −β1ut(A-18)

RHS can be written as

RHS=
1
2

[
∞

∑
j=0

∞

∑
i=0

y j ,i(εt− j ⊗ εt−i)−α
∞

∑
j=0

∞

∑
i=0

y j−1,i−1(εt− j ⊗ εt−i)

]
(A-19)

asy j ,i = 0ny×ne2 for i, j < 0. Bringing the sums together and applying (26)

RHS=
1
2

β2

∞

∑
j=0

∞

∑
i=0

(
Sj ⊗Si

)(
εt− j ⊗ εt−i

)
(A-20)

which, using the mixed product rule,35 can be rewritten as

RHS=
1
2

β2

∞

∑
j=0

∞

∑
i=0

(
Sjεt− j

)
⊗ (Siεt−i)(A-21)

Applying the definitionSi =
[
y′i−1 u′i

]′

RHS=
1
2

β2

([
0ny×ne

Ine

]
εt +

[
y0

N

]
εt−1+

[
y1

N2

]
εt−2+ · · ·

)
⊗

([
0ny×ne

Ine

]
εt +

[
y0

N

]
εt−1+

[
y1

N2

]
εt−2+ · · ·

)

and from (22)

RHS=
1
2

β2

([
y(1)t−1− ȳ

ut

])
⊗

([
y(1)t−1− ȳ

ut

])
(A-22)

Combining LHS with RHS yields (88) in the text.

A.3.2 Proof of Corollary 5.2

Note firstly that
[

y(1)t−1− ȳ
ut

]⊗[2]

=

([
0ny×1

ut

]
+

[
y(1)t−1− ȳ
0ne×1

])
⊗

([
0ny×1

ut

]
+

[
y(1)t−1− ȳ
0ne×1

])

=

[
y(1)t−1−y
0ne×1

]
⊗

[
y(1)t−1−y
0ne×1

]
+

[
y(1)t−1−y
0ne×1

]
⊗

[
0ny×1

ut

]

+

[
0ny×1

ut

]
⊗

[
y(1)t−1−y
0ne×1

]
+

[
0ny×1

ut

]
⊗

[
0ny×1

ut

]

35See, e.g., Brewer (1978, p. 773)

44



=

([
Iny

0ne×ny

]⊗[2]
)([

y(1)t−1−y
]⊗[2]

)
+

([
0ny×ne

Ine

]⊗[2]
)([

ut
]⊗[2]

)

+

([
Iny

0ne×ny

]
⊗

[
0ny×ne

Ine

])([
y(1)t−1−y

]
⊗
[
ut
])

+

([
0ny×ne

Ine

]
⊗

[
Iny

0ne×ny

])([
ut
]
⊗
[
y(1)t−1−y

])
(A-23)

using commutation matrices, the final term in the foregoing can be “commuted” as

Knyne,nyne

([
Iny

0ne×ny

]
⊗

[
0ny×ne

Ine

])([
y(1)t−1−y

]
⊗
[
ut
])

(A-24)

Thus [
y(1)t−1− ȳ

ut

]⊗[2]

=

([
Iny

0ne×ny

]⊗[2]
)([

y(1)t−1−y
]⊗[2]

)
+

([
0ny×ne

Ine

]⊗[2]
)([

ut
]⊗[2]

)

+(Inyne+Knyne,nyne)

([
Iny

0ne×ny

]
⊗

[
0ny×ne

Ine

])([
y(1)t−1−y

]
⊗
[
ut
])

(A-25)

As β2 is symmetric with respect to the Kronecker operator,36

β2

[
y(1)t−1− ȳ

ut

]⊗[2]

= β2,11

([
y(1)t−1−y

]⊗[2]
)
+β2,22

([
ut
]⊗[2]

)
+2β2,12

([
y(1)t−1−y

]
⊗
[
ut
])

(A-27)

whereβ2,11 ≡ β2

([
Iny

0ne×ny

]⊗[2]
)
, β2,22 ≡ β2

([
0ny×ne

Ine

]⊗[2]
)
, β2,12≡ β2

([
Iny

0ne×ny

]
⊗

[
0ny×ne

Ine

])

Equivalently to Kim, Kim, Schaumburg, and Sims (2008, p. 3409),37 (88) can be written
(

y(2)t − ȳ
)
= α

(
y(2)t−1− ȳ

)
+(I −α)

1
2

yσ2 +β1ut +
1
2

β2,11

([
y(1)t−1−y

]⊗[2]
)

+β2,12

([
y(1)t−1−y

]
⊗
[
ut
])

+
1
2

β2,22

([
ut
]⊗[2]

)
(A-28)

A.3.3 Proof of Proposition5.3

Denote the first-order solution, (22), asy(1)t ; the second-order solution, (43), y(2)t ; and the third-order

solution, (65), asy(3)t . Evaluating and rearrangingy(3)t −αy(3)t−1 yields

y(3)t − ȳ−
1
2

yσ2 −
∞

∑
i=0

yiεt−i −
1
2

∞

∑
j=0

∞

∑
i=0

y j ,i(εt− j ⊗ εt−i)

36That is,β̃2 ≡ β2Knyne,nynealso solves (27): (recalling fx2K3ny+ne,3ny+ne= fx2, see footnote19.)

( fy+ fy+α)β2Knyne,nyne+ fy+β2(δ1⊗ δ1)Knyne,nyne=− fx2(γ1⊗ γ1)Knyne,nyne

( fy+ fy+α)β̃2+ fy+β2Knyne,nyne(δ1⊗ δ1) =− fx2K3ny+ne,3ny+ne(γ1⊗ γ1)

( fy+ fy+α)β̃2+ fy+ β̃2(δ1⊗ δ1) =− fx2(γ1⊗ γ1)(A-26)

37Except for the absence of the accumulating term(I −α) modifying the termσ2 in their version.
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−α

(
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1
2
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∞

∑
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yiεt−i−1−
1
2

∞

∑
j=0

∞

∑
i=0

y j ,i(εt− j−1⊗ εt−i−1)

)

=
1
2

∞

∑
i=0

(
yσ2,iσ

2−αyσ2,i−1σ2)εt−i +
1
6

∞

∑
k=0

∞

∑
j=0

∞

∑
i=0

(
yk, j ,i −αyk−1, j−1,i−1

)
(εt−k⊗ εt− j ⊗ εt−i)

The left-hand side of the foregoing can be rewritten as

y(3)t −αy(3)t−1− (I −α)
(

y−
1
2

yσ2

)
−β1ut +

1
2

β2



[

y(1)t−1− ȳ
ut

]⊗[2]

(A-29)

the first sum on right-hand side as1
2βσ

[
y(1)t−1− ȳ

ut

]
and the final term on the right-hand side as

1
6

∞

∑
k=0

∞

∑
j=0

∞

∑
i=0

β3Sk, j ,i(εt−k⊗ εt− j ⊗ εt−i)

=
1
6

∞

∑
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∞

∑
j=0

∞

∑
i=0

β3




Sk⊗Sj ⊗Si

Sk, j ⊗Si

(Sj ⊗Sk,i)Kne,ne2(Ine⊗Kne,ne)
Sk⊗Sj ,i


 (εt−k⊗ εt− j ⊗ εt−i)(A-30)

which, noting the properties of the commutation matrices can be written

=
1
6

∞

∑
k=0

∞

∑
j=0

∞

∑
i=0

β3




(Skεt−k)⊗
(
Sjεt− j

)
⊗ (Siεt−i)(

Sk, j(εt−k⊗ εt− j)
)
⊗ (Siεt−i)(

Sjεt−i
)
⊗
(
Sk,i(εt−k⊗ εt−i)

)

(Skεt−k)⊗
(
Sj ,i(εt− j ⊗ εt−i)

)


(A-31)

partitioning β3 comfortably, exploiting the commutation matrix, and noting the results from the

proof of proposition5.1at the beginning of this appendix

=
1
6

β3,1

[
y(1)t−1− ȳ

ut

]⊗[3]

+
1
3

[
β3,2Kny+(ny+ne)2,ny+ne+β3,3+β3,4

][
y(1)t−1− ȳ

ut

]
⊗




y(2)t−1− ȳ− 1
2yσ2 −

(
y(1)t−1− ȳ

)

1
2

[
y(1)t−1− ȳ

ut

]⊗[2]


(A-32)

Finally, noting thatβ3,2Kny+(ny+ne)2,ny+ne, β3,3, andβ3,4 all solve the same Sylvester equation38

=
1
6

β3,1

[
y(1)t−1− ȳ

ut

]⊗[3]

+β3,4

[
y(1)t−1− ȳ

ut

]
⊗




y(2)t−1− ȳ− 1
2yσ2 −

(
y(1)t−1− ȳ

)

1
2

[
y(1)t−1− ȳ

ut

]⊗[2]


(A-33)

Putting all the pieces together yields (91).

38See footnote36, the Sylvester equation forβ3,2Kny+(ny+ne)2,ny+ne can be rearranged analogously.
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Steady−State
plus Risk Adjustment

(b) Consumption

Figure 1: Impulse Responses to a Technology Shock, Model of Section4.2, Variables in Logs
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Steady−State
plus Risk Adjustment

(a) Capital
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Steady−State
plus Risk Adjustment

(b) Consumption

Figure 2: Impulse Responses to a Technology Shock, Model of Section4.2
Blue: γ = 1, Redγ = 5, Greenγ = 10

48



(a) Capital

(b) Consumption

Figure 3: Second-Order Kernels, Model of Section4.2
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(a) Capital

(b) Consumption

Figure 4: Third-Order Kernels, Model of Section4.2
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Figure 5: Second-Order Contributions to Impulse Responsesto a Technology Shock, Model of
Section4.2
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Steady−State
plus Risk Adjustment

(a) In Levels
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Steady−State
plus Risk Adjustment

(b) In Logs

Figure 6: Impulse Response of Labor to a Technology Shock
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Steady−State
plus Risk Adjustment

(a) In Levels
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Steady−State
plus Risk Adjustment

(b) In Logs

Figure 7: Impulse Response ofezt to a Technology Shock
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Steady−State
plus Risk Adjustment

Figure 8: Impulse Response of Capital to a Volatility Shock,in Logs
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Steady−State
plus Risk Adjustment

Figure 9: Impulse Response of Consumption to a Volatility Shock, in Logs
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Steady−State
plus Risk Adjustment

Figure 10: Impulse Response of Production to a Volatility Shock, in Logs
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Steady−State
plus Risk Adjustment

Figure 11: Impulse Response of Investment to a Volatility Shock, in Logs
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Steady−State
plus Risk Adjustment

Figure 12: Impulse Response of Labor to a Volatility Shock, in Logs
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Steady−State
plus Risk Adjustment

Figure 13: Impulse Response ofσ to a Volatility Shock
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Figure 14: Second Order Cross Kernel of Capital to Volatility and Technology Shocks, in Logs
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Figure 15: Simulation of Capital, Logarithms
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Figure 16: Simulation of Production, Logarithms
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Figure 17: Simulation of Investment, Levels
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(a) Technology
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(b) Volatility

Figure 18: Simulation of Technology and Volatility, Logarithms
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Figure 19: High Risk Aversion and Low Volatility Simulationof Capital, Logarithms
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Figure 20: Euler Equation Errors, Shock at Timet, Aruoba, Fernández-Villaverde, and
Rubio-Ramı́rez’s (2006) Baseline Case
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Figure 21: Euler Equation Errors, First-Order Approximation, Aruoba, Fernández-Villaverde, and
Rubio-Ramı́rez’s (2006) Baseline Case
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(a) Maximum Euler Equation Errors
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(b) Average Euler Equation Errors

Figure 22: Maximum and Average Euler Equation Errors, Aruoba, Fernández-Villaverde, and
Rubio-Ramı́rez’s (2006) Baseline Case
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