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Abstract

We derive a perturbation solution to nonlinear DSGE modsisgia nonlinear moving average as
an alternative to the standard state-space policy func@ur policy function is particularly suited
for impulse response analysis and simulations, being atdimapping from shocks to endogenous
variables up to the order of approximation. The policy fumtteliminates the need to artificially
‘prune’ simulations to remove specious explosive behaastigher-order approximations inherit
the stability from the first-order solution. Euler-equatibased error tests demonstrate that the

method possesses a high degree of accuracy.
JEL classificationC61, C63, E17

Keywords Perturbation; Nonlinear moving average; DSGE; Solutiathnads; Pruning

*We are grateful to Michael Burda and Lutz Weinke, as well atiggpants of research seminars at the HU Berlin
for useful comments, suggestions, and discussions. Theareh was supported by the DFG through the SFB 649
“Economic Risk”. Any and all errors are entirely our own.

THumboldt-Universitat zu Berlin, Institut filr Wirtschatheorie 1I, Spandauer StraRBe 1, 10178 Berlin, Germany;
Email: lanhong@cms.hu-berlin.de

SHumboldt-Universitat zu Berlin, Institut fiir Wirtschatheorie 1I, Spandauer StraBe 1, 10178 Berlin, Germany;
Tel.: +49-30-2093 5720; Fax: +49-30-2093 5696; E-Malexander.meyer-gohde@wiwi.hu-berlin.de


mailto:lanhong@cms.hu-berlin.de
mailto:alexander.meyer-gohde@wiwi.hu-berlin.de

1 Introduction

We introduce a novel policy function, the nonlinear infimteving average, to perturbation analysis
in dynamic macroeconomics. This direct mapping from shdclkshdogenous variables neatly dis-
sects the individual contributions of orders of nonlingaaind uncertainty to the IRFs and provides
a perturbation foundation for the ‘pruning mechanismsutseavoid specious explosive behavior in
simulations. For economists interested in studying thestrassion of shocks in a nonlinear DSGE
model, our method offers insight hitherto unavailable.

Our nonlinear moving average policy function chooses astdte variable basis the infinite
history of past shocks. This infinite dimensional approach is longstanding in lineedels and,
for this linear case, delivers the same solution as statsesp@thod$. In the nonlinear framework
we focus on, however, it provides a different solution. Th&ure of the policy function, mapping
from shocks to endogenous variables of interest, direciypkes familiar impulse response analysis,
though introducing caveats into the analysis (such ashyigEpendence, asymmetries, a breakdown
of superposition and scale invariance, as well as the pgatéot harmonic distortion).

We show that the stability from the first-order solution isged on to all higher orders of ap-
proximation, producing non-explosive simulation and isps at all orders of approximation with-
out needing to resort to ‘prunind.Indeed, we show that our solution, up to a deterministiodyén
identical to the ‘pruning’ procedure of Kim, Kim, Schaumguand Sims (2008), demonstrating that

their procedure has a solid basis in perturbation th&gugt from a different perspective, perhaps.

IThis is the “external” or “empirical” approach to system dhg according to Kalman (1980), who lays out the
dichotomy to the ‘internal” or “state-variable” approadttioe state-space methods, now more common to DSGE prac-
titioners. The nonlinear DSGE perturbation literatureiated by Gaspar and Judd (1997), Judd and Guu (1997), and
Judd (1998, ch. 13) has thus far operated solely with sfedeesmethods, see Collard and Juillard (2001b), Collard and
Juillard (2001a), Jin and Judd (2002), Schmitt-Grohé aridd2004), Lombardo and Sutherland (2007), Kim, Kim,
Schaumburg, and Sims (2008), and Anderson, Levin, and Swa2606).

2Compare, e.g., Uhlig (1999), Klein (2000), or Sims (2001jmie infinite moving-average representations of Muth
(1961), Whiteman (1983) or Taylor (1986). Meyer-Gohde (@draws this connection explicitly.

SLombardo and Sutherland (2007) and Lombardo (2010) dewetepursively linear higher-order perturbation state-
space method that is, in a sense, naturally pruned, andithilardo the method we develop here.

“Den Haan and De Wind (2010) criticize ‘pruning’ mechanisms @mphasize that they can be distortive. In
Lombardo (2010, p. 9) assessment, pruning “is a work-araarah intrinsic problem of perturbation methods.” Our



Contrary to their approach, however, our method extendsggstiforwardly out to higher orders and
we provide the associated endogenous third order ‘prumlygrithm explicitly.

Our approach completes the result that terms linear in thtenbation parameter are zero (e.g.,
Schmitt-Grohé and Uribe (2004) theorem 1): the zero swhubif the associated homogenous equa-
tions is the unique solution if the first order fundamentdiypomial is saddle stability and free of
unit roots. We provide explicit calculations out to the tharder, adapting Vetter’s (1973) multi-
variate calculus to extend Lombardo and Sutherland’s (88@ Gomme and Klein’s (2011) use
of linear algebra out past the second order. We implemenapproach numerically by providing
an add on for the popular Dynare packagad show how the Volterra representation of the approx-
imated nonlinear infinite moving average solution allows dodecomposition of the contributing
components from all orders to the responses of variablezdgemous shocks. We develop Euler
equation error methods for our infinite dimensional poliapdtion and confirm that our method
produces accurate approximations.

The rest of the paper is organized as follows. The model amdadhlinear infinite moving aver-
age policy function are presented in sectirin section3, we develop the numerical perturbation
solution of the nonlinear infinite moving average form of gwicy function explicitly out to the
third order with a matrix calculus that avoids tensor notatiWe then apply our method to various
incarnations of the stochastic growth model in sectipstarting from the full depreciation and log
preferences case with a known analytical solution and fimgsivith a time-varying volatility version
that demonstrates the need for nonlinear methods. We rafatenour nonlinear moving average
solution into a traditional state-space solution in secEpderiving a perturbation-based ‘pruning’
solution. In sectiorb, we develop Euler-equation-error methods for our infidit@ensional so-
lution form and use the model of Aruoba, Fernandez-Vilidee and Rubio-Ramirez (2006) for

comparability to quantify the accuracy of our method. Hinalection7 concludes.

method supports the argument that the problem is merelyftthe chosen policy function.
5See Adjemian, Bastani, Juillard, Mihoubi, Perendia, Rattml Villemot (2011).



2 Problem Statement and Solution Form

In this section, we introduce the class of models we analyzketiae form of the solution we seek.
Our class of models generally follows that used by Dyfarecontrast with the general practice in
the literature, the solution we seek is a policy functiort ta direct mapping from realizations of
the exogenous variables to the the endogenous variablateoést. We will first present the model
class, then move on to the solution form, and then concluestction with the approximated

solution that we will seek numerically and the matrix caluhecessary to follow the derivations.

2.1 Model Class

We analyze a family of discrete-time rational expectatimaglels given by
(1) O=Ee[f(Yt—1, ¥t Ytr1, Ut)]

_ [P
2) whereu; = i;N £ i
f is an(negx 1) vector valued function, continuoustytimes (the order of approximation to be
introduced subsequently) differentiable in all its argaisey; is an(ny x 1) vector of endogenous
variables; the vector of exogenous variahles of dimensionnux 1) and it is assumed that there
are as many equations as endogenous varighbgs= ny).

The eigenvalues dfl are assumed all inside the unit circle so thaadmits an infinite moving
average representation; aqids a(nex 1) vector of exogenous shocks of equal dimengiun= ne).
Our software add on forcé$ = 0 to align with Dynare'.

Additionally, & is assumed independently and identically distributed Withdistribution func-
tion ®(z), such thate [¢;] = 0 andE [et@’[”]] exists and is finite for alh up to and including the

order of approximation to be introduced subsequéhtly.

6See Adjemian, Bastani, Juillard, Mihoubi, Perendia, Rattal Villemot (2011).

’See again Adjemian, Bastani, Juillard, Mihoubi, Peren&atto, and Villemot (2011). Thus in practice, the
economist using Dynare must incorporate any serial cdioalanto the vectory. This choice is not made in the
exposition here primarily as the admissibility of seriafretation in the exogenous driving force brings our firstesrd
derivation in line with earlier moving average approactwedihear models (e.g., Taylor (1986)).

8The notationg®™ represents Kronecker powerg®" is the n'th fold Kronecker product of; with itself:
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As is usual in perturbation methods, we introduce an auyilgarametero < [0, 1] to scale
the uncertainty in the model. The valage= 1 corresponds to the “true” stochastic model under
study ando = 0 represents the deterministic version of the model. FafiguAnderson, Levin, and
Swanson (2006, p. 4), we do not scale the realizations ofxbgenous variable up to (including)

with o, as the realizations df, &1, ...} are known at (hence, there is no uncertainty to scale).
2.2 Solution Form

The policy function, where we take the state vector to be thesal one-sided infinite sequence of
shocks, is assumed time invariant fortalback at least one period, analytic and ergodic, following
Anderson, Levin, and Swanson (2006, p?3)e.

3) Yt =Y(0, &, &-1,...)

Note thato enters as a separate argument: the fungtisrunknown and will itself generally depend

on the scaling on uncertainty in the model. Time invarianu scaling uncertainty gives us

4) Vi-1=VY (0,&_1,&-2,...)

(5) Vi1 =Y (0,€.1,&, & 1,...) Whereg 1 = o0&, 1

Due to the assumption of time invariangey—, andy™ are the same function, yet they differ in the

timing of their arguments. The teroe;,; in (5) is the source of uncertainty, v&, 1, that we are

perturbing witho. The known functioru of the exogenous variable rewritten similarly

(6) U = U(0, &, &-1,...) = § N&_j
2,

For notational ease in derivation, we will define the vecfdotal variables«

) =1 % Y ul

X% is of dimension(nxx 1) with (nx= 3ny+ ne). With the policy function of the form3), (4) and

& ®E&---®&. For simulations and the like, of course, more specific d@assregarding the distribution of the ex-
ogenous processes will have to be made. Note that Kim, KitaSnburg, and Sims (2008, p. 3402) emphasize that
distributional assumptions like these are not entirelal@ssumptions. Note that Dynare (Adjemian, Bastani,alui)l
Mihoubi, Perendia, Ratto, and Villemot 2011) assumes nbityraf the underlying shocks.

9Analyticity is required for the convergence of asymptotipansion as the order of approximation becomes infinite
and ergodicity rules out explosive and nonfundamentatiuis.
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(5), plus the function of the exogenous varial®g (ve can writex; as
(8) % =X(0,€ 41,8, &-1,...)

Functionx is also assumed time invariant, analytic and ergodic.
2.3 Approximation: Taylor/\Volterra Series Approximation

We will approximate the solution3J, with a Taylor series approximation around a nonstocbasti
steady statey, which is the solution to the function

9) 0=1(y,y,y.0) = f(X)

that is, the functiorf in (1) with all shocks, past and present, set to zero. Furthermore

(20) y=y(0;0,...)

represents the solutioB)(evaluated at the nonstochastic steady state.

Following the general practice in the perturbation litaraf we will pin down the approximation
of the unknown policy function3) by successively differentiatingl and solving the resulting
systems for the unknown coefficients. The method is detaieskction3. Notice that, sincef
is a vector valued function, successive differentiatiorf @fith respect to its arguments, which are
vectors in general, will generate a hypercube of partiavedéves. Unlike much of the previous work
in the literature, we will adapt the structure of matrix datives defined in Vetter (1970) and Vetter
(1973) to unfold the hypercube in accordance with the Kr&kaeproduct, so that partial derivatives
resulting successive differentiation of functibrcan be collected in two dimensional matrices. This
avoids tensor notation and enables the use of standard &fgsbra results in deriving our results.

The formal definition of this matrix derivative structuremsappendixA.1.1. This structure will

make the presentation of the solution method more transpaiguccessive differentiation dfto

10A similar approach can be found in Gomme and Klein (2011). yTise the matrix derivative structure and the
associated chain rule of Magnus and Neudecker (2007, clwh@h is another way to unfold a second order tensor. The
approach, in contrast to ours, does not appear to be easiptedito orders higher than two. Lombardo and Sutherland
(2007) also derive a second order solution without appgatinensor notation. While their approach may benefit from
their use of the vech operator to eliminate redundant quiadeams, the absence of a mechanical recipe that can be
applied to higher orders would appear to favor our methagiplo



the desired order of approximation is a mechanical apjticatf the following theorem
Theorem 2.1. A Multidimensional Calculus

1. Matrix Product Rule:
@BT{ F G}:FB< I ®G)+FGB
s<1 | pxuuxq SXS
2. Matrix Chain Rule:

_@BT{ A(C (B))}:Ac<ca® | )

pxq ux1 axq

3. Matrix Kronecker Product Rule:

Pxq uxv SXS

where Kyvs and K,q are qvsx qvs and gw qv commutation matrices.

4. Vector Chain Rule:
Zor { ACLB) | = AcCe
Note that & = Zz7A(B) etc. is abbreviated notation to minimize clutter—see agpei.1.1
Proof. See appendiA.1.1 O

An M-th order Taylor approximation of the policy functio8) (s then

Corollary 2.2. An M-th order Taylor Approximation o8]

M 1 © @ 00 Mfml N
(11) Yt:ngoﬁ_z > YotisizinG | (Bt—iy @ Et—ip @ Et—in)

i1=0i=0 in=0| n=

Proof. See appendiA.1.3. O

This infinite dimensional Taylor approximation, or Volteseries with kernelfy M- ™ Ly, i 0], 1
directly maps the exogenous innovations to endogenoushblas up thé-th order. Viewing terms

in powers of the perturbation parameteas corrections to the kernels of the \Volterra series under

liSee Priestly (1988, pp. 25-26) and Gourieroux and Jasid@5)Z0r a representation theorem.



certainty enables a useful classification of the contrdngiof uncertainty to the model. That is, with
the zeroth kernel being constants, the first kernel beiregaliin the product space of the history of
innovations, the second being quadratic in the same ygtagpresents the'th order (ino) constant
correction for uncertaintyygni, then'th order (ino) time-varying correction for uncertaintygni,i,
then'th order (ino) asymmetric time-varying correction for uncertainty, aadon.

As the notation in 11) is rather dense, consider the casévbf= 2. That is, the second-order
approximation, given by
(12) Yt =Y+Yo0+ %yozoz + i (Vi +YioO) & —i + % _i_i)’ji (&r—j ® i)

1= =0I=

Here,y, the deterministic steady state, represents the restjipdinm absence of uncertainty regard-
ing future shocksy ;> ,yi&—i and % Z(fo:o S oVYiji(€t—j ® &—i) capture the first- and second-order
responses of the deterministic (i.e., without uncertaretyarding future shocks) systeyso and
%ycch2 are the first- and second-order @ipcorrections due to the presence of uncertainty to the de-
terministic steady state (i.e., the second-order accstathastic steady state); afél YicOg—; is
the first-order (iro) correction for uncertainty concerning future shocks effihst-order response to
the history of shocks. The first-order @) corrections will turn out to be zero in this case, a familiar
result from state-space analysédzor the case ofl = 2, the task at hand is to pin down numerical
values fory, yi, Ya, Vii: Yio, andyg2 using the information inX). We will provide derivations out to
M = 3 in the next section, providing some additional novelty xgdieit derivations of third-order

approximations are still rather rare in the literatife.

3 Numerical Solution of the Perturbation Approximation

It this section, we lay out the method for solving for the ¢oédnts of the approximated solution.

We begin with the first-order approximation and proceed tmsd and higher-order terms. Solving

12See Jin and Judd (2002), Schmitt-Grohé and Uribe (2004)Kém, Kim, Schaumburg, and Sims (2008).
135ee Andreasen (forthcoming) for a notable extension of &ti@nohé and Uribe’s (2004) method out to the third
order. The author’s appendix with third-order term occagyalmost two pages highlights the advantage of our notation



for the first-order terms is primarily an application of madls well known in the literature and,
similarly to existing state-space methods, solving forlelgorder terms operates successively on
terms from lower orders with linear methods. Specificallgderlying the expansion in present
and past shocks at all orders is a system of difference emsatvith an identical homogenous
component. In contrast to previous methods, we prove thepueniess of the zero solution for terms
of first order in the perturbation parameter through ouraggions of the saddle stability of and rule
out unitroots in the fundamental equation of the first orggaraximation and relate the assumptions
to the less easily invertibility assumptions of state-gpaethods.

The method can be outlined as followsThe equilibrium condition of the model)
(13) 0= Et[f(y_ (07 &-1,&-2,.. ->7y(07 &, &-1,.. ')7y+(0-7§t+17 &, &-1,.. ')7u(07 &,&-1,-- ))]
f is afunction with arguments, &, & _1, .... Ateach order of approximation, we take the collection

of derivatives off from the previous order (for the first-order, start with thadtion f itself) and

1. differentiate each of the derivatives bffrom the previous order with respect to each of its

arguments (i.eq, &, &1, ...)
2. evaluate the partial derivatives bind ofy at the nonstochastic steady state
3. apply the expectations operator and evaluate using ¥le@ gnoments
4. set the resulting expression to zero and solve for theawikrpartial derivatives oy.

Note, firstly, that the set of derivatives obtained in step (1) are symbolic and will béedéntiated
in step (1) of the next higher order and, secondly, the datéavatives ofy obtained in set (4) are
numeric, valid at the nonstochastic steady state, will kel necessary) in step (2) of the next
higher order, and—most importantly—constitute the nemgspartial derivatives for the Taylor-

\olterra approximation of the policy functionat the nonstochastic steady state.

l4see Anderson, Levin, and Swanson (2006, p. 9) for a simildineun their state-space context.



3.1 First-Order Approximation

We proceed by, first, differentiating with respect to the series of present and past shocks and
solving for the resulting infinite-moving average coeffite of y; and, second, proceeding to the
perturbation parameter.

Even in the first-order case, the problem is infinite dimemzio@wing to the infinite moving
average representation of the solution. As explained bioréy986, p. 2003) for the linear problem,
however, the original set of stochastic difference equatioy; become deterministic difference
equations in the moving-average coefficients;ofThis motivates our choice of beginning with the
unknown terms in the history of shocks and then turning te¢hio o, as the problem at higher-
orders of approximation will inherit a similar structure.

Differentiating f in (13) with respect to somg_; yields
(14) ZERER
Evaluating at the nonstochastic steady stgtaiid setting the resulting expression to zero yields
(15) E [%L f} )y = fy-Yi1+ fyyi + fye Y+ fuli = 0

fori=0,1,..., withy 1 =0
yielding a second order linear deterministic differenceatmpn in the matriceg—the derivatives of
the vector-valued function with respect to it'« — 1'th € element. That isy, contains the moving
average coefficients of the elementsypfwith respect to the elements ef . With appropriate
initial conditions, all equal to zero, this is an inhomogen version of Anderson and Moore’s
(1985) saddle-point problem, solved in detail by Anders2iilQ).
We make two assumptions regarding the difference equayisters (5): the system is saddle

stable (i.e., the Blanchard and Kahn (1980) conditions @féiéd)
Assumption 3.1.0f the2ny ze C with det( fy- + fyz+ f,-z%) =0, there are exactly ny witfz| < 1.

it is hyperbolic (i.e., Klein's (2000) Assumption 4.4 rujjiout eigenvalues on the unit circle),



Assumption 3.2. There is no z C with | = 1and det( f,- + f,z+ f,+2%) =0

The first is standard and the second ensures the uniquenesmsfhomogenous i (as such,
this assumption will take on more relevance beginning wiit-forder term iro later in this section).
The second is our analog to Jin and Judd’s (2002, pp. 12—h@)kslity constraint and ensures that
any constants do not accumulate without bound as the systemlved in accordance with the
stability of the manifold. Intuitively from the state-sgaperspective, unit roots must be ruled out to
allow the state-space solution to be recursively solveditiblity’) to yield the nonlinear moving
average we work with. As in the case of an explosive stateespalution, the impact of an initial
condition on the endogenous variables would fail to vanigh @nstants (i.e., terms involving the
perturbation parameter) would fail to converge when sgwt a unit-root state-space solution
back into the infinite past®

Anderson’s (2010, p. 479) method can be applied under oungstsons3.1and3.2along with

the first-order linear autoregressiue(i.e., u; = N'),1 delivering the stable solution td%)

(16) yi = ayi-1+ P, withy_;1 =0

a convergent recursion from which we can recover the lineasing-average terms of’s.1’
Next we differentiatef in (13) with respect ta

a7 Dot = 1xDsX

(18) whereZgx = Xg + X:€t+1

Evaluating the foregoing gtand setting the resulting expression to zero yields

(19) Et(‘@of)y:(fyf-l—fy-l—fyﬁyG:O

15 Note that Kim, Kim, Schaumburg, and Sims (2008) can provigiate-space solution in the presence of unit roots
and even under explosive conditions. Of course, it canndinberted’ to deliver an infinite moving average in the
unit-root/explosive case.

16Equivalently, Meyer-Gohde (2010) shows how to apply Kigi2000) QZ algorithm to this deterministic approach
to yield the solution above. Note, as discussed by Meyerd®¢2010, pp. 986-987), we are working on a deterministic
saddle-point problem in the moving-average coefficientsraot on a stochastic saddle-point problem in the endogenous
variables themselves.

1"We have tacitly assumed that this solution exists, see Aotef2010, p. 483) for the details. In Klein's (2000)
notation,Z;; of the QZ decomposition must be invertible, the added pooefaranslatability.
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From assumption3(2), it follows that

(20) det( fy-+ fy+ fy+) #£0
and hence
(21) Yo =0

This not only confirms Schmitt-Grohé and Uribe’s (2004) diteen 1 and others, but also provides
the conditions under which it applies. Schmitt-Grohé amid&)(2004, p. 761) note that their equiv-
alent to @9) “is linear and homogeneous” in their equivalenytoand “[t]hus, if a unique solution
exists” it must be zero. Our method improves on their conchss giving the condition (the absence
of unit roots of assumptioB.2) under which this zero solution is indeed unique.

The first order approximation of the policy functia8) therefore takes the form

(22) Yt :y+ Z)Yiet—i, I 2071727"'
i=
trivially extending Muth (1961), Taylor (1986), and otheosformal perturbation methods. Note

that 22) is independent o, emphasizing the certainty equivalent nature of the smhuti
3.2 Second-Order Approximation

The only source for the second derivatives of hiinction with respect to the shockg,j’s, is
through differentiation of {4) with respect to some_j, which when evaluated at the nonstochas-
tic steady state yields a set of difference equations withdgenous components identical to the
homogenous component ih5). For terms involving the perturbation parameteassumptiorB.2,
which rules out unit roots in the fundamental equation offitst-order approximation, again plays
a crucial role. This is natural: the constant correctionuncertainty induced by the potential for
future shocks that enters the solution at the second ordemfies arbitrarily large as the system
approaches a unit-root system from below. We show that tregtibility condition assumed in the
solution package Dynare for the uniqueness of this comedtr uncertainty is consistent with our

assumptions8.1and3.2 Finally, crosstermsyi’'s, are all equal to zero as a direct consequence

11



of assumption 3.2), as the resulting equations are homogenougsinwith coefficient matrices
fy- + fy + fy+ after the resuly; from the first order has been taken into account, reaffirmingg t
results of Schmitt-Grohé and Uribe (2004) and others.

We first differentiatef with respect to each and every pair of sogng andg;_j. As Judd (1998,
p. 477) points out, the resulting system of equations resmimear system, only now in the second

derivatives that are being sought

(23) T e, [ = el @x) + fx;

Evaluating at the nonstochastic steady state and seteéng#ulting expression to zero yields
(24) B2 D), = T Yimtisat i fyyjsaina+ felg ©%) =0

for j,i=0,1,..., withy;; =0, for j,i <O
a second order linear deterministic difference equation inThe coefficients on the homogeneous
components of the forgoing and5) are identical. The inhomogeneous components have a first
order Markov representation (see the shifting and trasitiatrices defined in append®2) in the
Kronecker product of the first-order coefficieAsThe resulting expression is
(25) fy-yi—vica+ fyyji+ f i+ fe(i®@wn)(§§@S) =0

for j,i=0,1,..., withyj; =0, for j,i <0

The solution of the forgoing, analogously to the first ordekes the form
(26) yii=0ayj-1i-1+PB2(S®S), withyj i =0,Vj,i <0
Note thata in this solution is known. It is the santeas in the first order solutiorlf) due to the
fact that the systen@) and (L5) have identical homogeneous components. To deterfiiinee
substitute 26) in (24), using the shifting matrices and matching coefficients
(27) (fy+ fyra)Ba+ fy+B2(01 ®81) = —fa(Y1® V1)

This is a type of Sylvester equation studied in and solvecetaitby Kamenik (2005).

18Thus, our nonlinear moving average solution parallels inear state space solutions in a manner analogous to the
linear case, where the recursion is in the coefficients assgipto the variables themselves. Instead of products of the
state-variables entering into the solution, we have prtsdoicthe first-order coefficients.
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To determine the partial derivatives gfthat involving o, we first differentiatef twice with

respect ta and some;_;. The resulting linear system is

(28) Dor T = fe(Zox@%) + fx o
(29) whereZoX; = Xo,i + %, (€141 ® Ine)

Note that the additional potential derivativ@fT of’ Is simply equal to the derivative in the text,
t—i

2
Py .

Yo = 0 and setting the resulting expression to zero yields

19 Evaluating g8) at the nonstochastic steady state, taking into accountBisa 1 and

(30) Et(gggt[i f) ;o fy-Yo,-1+ fyYoi+ fy+¥o,ir1=0
fori=0,1,..., withys; 1 =0
The solution of the forgoing, analogously, takes the form
(31) Yo, =0Ygi-1, fori=0,1,..., withys 1 =0
Combined with the initial conditiog; —1 = O, the forgoing delivers
(32) Yoi=0,fori=0,1,...
This result is analogous to Schmitt-Grohé and Uribe’s @0heorem 1. Again, we have improved

upon their result by showing not only that the zero solut®a solution (the equation is homoge-

nous), but that it is also the unique solution.

19 Although the derivative operator works on Kronecker pras(ice. 72.; = ‘@(?@EIT ) and although the Kronecker
t—i FEt—i

product is not generally commutative,is a scalar and, thus, commutation is preserved. This reanltbe seen by
exploiting the properties of the commutation matix, as follows. Take the first term igﬁ&? , for example, and
—i

insert the identity matrix:f,2l 2 (ZoX®@ ). This can be rewritten a§2KnyxnxKnxnx(ZoXx® %). Pre-multiplying the
Kronecker product of a matrix and a column vector (each withows) with Kny nx reverses their order (see Theorem
3.1.(ix) of Magnus and Neudecker (1979, p. 384)) and, tKidgnx(ZoX®@ %) = X ® DoX. Now f2 = erwrf and
post-multiplying a Kronecker product of row vectors eacliioiensiomx with Knynx reverses their order. But the two

row vectors are identical, so reversing their order chamgésing: f,. = @%@J fKnxnx = @sz@xT f = f,2. Combining
the foregoing two yieldd,2 (Zox® %) = f,2(X ® ZoX). Proceeding likewise with the second term@ﬁST completes
t—i

the argument. Accordingly for higher-order derivativdse brder in which derivatives with respect ¢doappear is
inconsequential as it is a scalar and we choose to hav@stappear first.
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Next we differentiatingf twice with respect t@, the resulting linear system is
(33) D2 = f,0(Dox®@ DoX) + x D5
(34) WhEreZ2,x = Xg2 + 2Xq g€t+1 + X2 (€41 ® €41
Evaluating the foregoing gtand setting the resulting expression to zero yields
(35) Ei(Z51) - [fy+ Yoz + fyr2(Yo® Vo) |Et (€41 @ €rv1) + (fy- + fy+ fye )y =0
therefore we can recovgy. by
(36) Yoz = —(fy + fy+ fye) Ty yor + fyra(Yo @ o) |Ee (841 @ € 1)
By assumption, the second moment of the exogeneous vaisdtsiewn, hence so B (&1 ®¢€+1).
As the model approaches a unit root from below, the effechotuainty becomes unbounded.

This result is novel, giving additional meaning to the irilglity condition of assumptior8.2
from a state-space perspective, the correction for unogytavill be accumulated forward starting
from the nonstochastic steady state; if the state spacaiosrd unit root, this accumulated correc-
tion will become unbounded and there will be no finite stothadeady state to which the model
can converge. To recovgy., Dynaré® requires instead the invertibility of
(37) fyr (1 +0)+ fy
This condition is not as easily interpretable as our no-toots invertibility condition in assumption
3.2as explained above. Yet, the two are equivalent as can bdresehe following. Recall that
solvesf,.a2 + fya + f,- = 0 which can be rearranged é§+a + f,) a = —f,- or
(38) (fyr (1 +a)+ fy)a = fro—f,-
Adding fy+ + fy + fy- to both sides gives
(39) fyr +fy+fy- + (fyr (1 +a) +fy) o = e (1 +a) + fy
solving for fy+ (1 +a) + fy yields

(40) fyr + fy+fy- = (fyr (1 +a) + fy) (1 —a)

20seehttp://www.jourdan.ens. fr/ ~ michel/presentations/first_second_order.pdf
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and following from the stability ob

(41) (e +fy+fy ) (1) F= e (I +0) + y

and thus the invertibility of the leading parentheticahteon the left hand side (our invertibility

condition from assumptio®.2) is equivalent to the condition on the right hand side useD¥ayare.
The second order approximation of the policy functi@ptberefore takes form

(42) Y =y+ i;)’i &i + %yozo2 + % j;i;)’j,i (& @)

In contrast to the first-order approximatiod2j does depend oa, with the term%ycz correcting

the steady state for uncertainty regarding future shockso goes from 0 to 1 and we transition

from the certain to uncertain model, the rest point of thetsmh transitions from the nonstochastic

steady statg to the second-order approximation of the stochastic stetadgy -+ %yozoz. As we are

interested in this uncertain version, settmtp one in @2) gives the second order approximation

(43) Ve =Y+ Vig—i+ Y2 + 5 Yiji(&—j ® &)
i; i i 2o 2];”; N j i

3.3 Third-Order and Higher Approximations

Computing the third-order approximation largely reserslilee computation of the second-order
approximation. We first differentiaté three times with respect to each and every triplet of the

shocks. The resulting system of equations still remaireslirin the third derivatives

gngk‘c’tT*jSLi = (x®Xj ©%) + fio (X j @)
(44) + fe[Xj © %] Knanez(lne® Knene) + fre (X ®@Xj,i) + FxXc ji
Evaluating at the nonstochastic steady state and setng#ulting expression to zero yields

Et(ggtksl,-sli f) ; =fy-Ye-1j-vi-1+ fyyji+ fyr Vi j+aia
+ fe (@ X @ %) + fa (X j © %)
+ fxz(xj ®Xk,i)Knene2(|r1e® Knene) + fxz(xk@xjvi)

(45) =0, fork, j,i=0,1,..., withyy ;i =0, fork, j,i <0
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a linear deterministic second order difference equatiothenthird derivativeyy j ;. The homoge-
neous components id%) are identical to those irl) and @4). The inhomogeneous components
can again be rearranged to have a first order Markov repagamtand by using the shifting and
transition matrices defined in appendix2, we can write
(46) fo-Yeovj-vti-i+ v+ fp Vet jrsiva+ [fe fe fe fe]v3Sji=0
fork,j,i=0,1,..., withyji =0, fork,j,i<0

The solution of the forgoing, analogously to lower ordeakess the form
(47) Yicji = OYk—1,j—1i-1+B3S i, Withyiji =0, fork,j,i <0
By recursively substitutingd(7) in (45), using the shifting matrices and matching coefficients, we
obtain the following Sylvester equation [3
(48) (fy+ fro)Ba+ fyBa3dz=—[fs fe fo f] 3

Now we move on to the partial derivativesyfunction involving the perturbation parameter
To determingyg, j i, we differentiatef with respect to soma_j, &_j ando sequentially

‘Qgeljﬁlif =f3(ZoX@Xj %) + f2(DoX@X; i) + fra(DoXj @ %)

(49) + 2 (Xj @ ZoXi ) Knene+ fxZoXi,i
(50) whereZoXji = Xo.ji +% ji(€11® Ihe)

Evaluating a¥, setting to zero, and noting the results from lower ordeetdgi

(51) Et(‘@geljg;lli f) - fy-Yo,j-1i-1+ fy¥o,ji+ fy+Yo,j41i+2=0

for j,i=0,1,..., withys ;i =0, for j,i <O

The solution of the forgoing, again analogously to loweres;dakes the form

(52) Yo,ji = QYg,j—1i-1, With yg j i =0, for j,i <O
or
(53) Yo,ji =0, for j,i=0,1,...

confirming Schmitt-Grohé and Uribe’s (2004) conjecturedeyalization of their Theorem 1.
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To determingy2 ;, we differentiatef with respect to soma_j ando twice sequentially
(54)
93253 f = f,0(DoX® DoX@ X)) + F2( DoX @ DoXi) + F2(D2x @ %) + f2( DX @ Doxi) + fxggzm

i o
(55)
WhereZ2,% = X2 + g 2. (€141 ® Ine) +Xez2 (€141 @ €141 ® Ine)

Evaluating at the nonstochastic steady st@teiid setting the resulting expression to zero yields
Et(-@(?zgt[i f) ;- fa{[( ©Xg) Bt (&1 @ &t11)| @ Xi } + 22 (X © %) [Et (€141 @ €141) ® Ine

+ fe{ (%2 @) + ([Xe2Ee (8t41 @ €141)] ©%1) } + B Xz + X2 [Et (€111 @ €t11) @ Inel}
(56) =0, fori=0,1,..., withy 1 =0
which is still a second order deterministic difference d@gum The homogeneous components are
packed inx;2 ;, and they are identical to those i) and @4). The inhomogeneous components can
again be rearranged to have a first order Markov representayi using the shifting and transition
matrices defined in appendi2, thus

Yo2i-1 + Yo2i + Yo2ii+1

+ { lfx?»(y4[31 @YaB1@ V1) + fe([yaB2(S® )] @ 1) +2f2(YaB1 @ [YaB2(So®1)])

(57) + fxYaBaYs(S @ S @1) | [Et (€t+1 @ €t+1) @ Inel + Fra(Xg2 @ Y1) }S =0
fori=0,1,..., withy 1 =0

The solution of the forgoing takes the form

(58) Yoz, = aYg2i_1+BoS, Withyse ;=0

Substituting $8) in (57) and matching coefficients, we obtain a Sylvester equati@y i
(59)

(fy+ T, @) + .+ Bods — —{ {fxe,(vmleawﬁl@yl) + to(VaBa(So® o)) @v)

+ 2f,2(YaPB1 @ [YaB2(So® 81)]) + TxyaBays(So® So® 01) | [Et (Et41 @ Er41) @ Inel + fra(Xg2 @ Y1) }
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To determinegy/z, we differentiatef with respect ta three times

(60)  Z3%f = f,3(DoX® DoX@ DoX) + 2T (DX ® D2X) + o (D2X D DoX) + Tx DX

o
(61)  WhereZ3sx = Xgz + 3oz 5811+ g 28111 D E141) + X2 (Bt 11 D Ery1 @ &t11)
Evaluating at the nonstochastic steady state and seteng#ulting expression to zero yields

Ei(Z21) ;o fra[(Xe @ X @ %) Ex (8141 ® €111 ® €111) ] + 20 [Er (€111 @ €111 @ €141) (X © Xg2)|

+ fro[(Xe2 @ %) Bt (E41 @ €111 @ €141)] + Vo3 + X3t (8141 ® €141 @ Er41)]

(62) =0
Note that, once the third moment&fis introducedE; (&r+1 ® &+1 ®&1) is known. Recoveringys
from the forgoing is straightforward under the assumpt®g)( In particular, wherg; is normally
distributed?! E¢(g; 11 ® €11 ® & 11) = 0. Hence
(63) Yo3 =0

Therefore, the third order approximation of the policy ftioc (3) takes the form

Ye =Y+ EYGZOZ + i; ()’i + EYGZ,iUZ) €—i+ > j;i;)/j,i (Et—j @& i)

o0 00

l (o]
(64) += Yij,i (Et—k @ &—j @& i)
6,20 202 R

Again in contrast to the first-order approximatio®4) does depend om, with the term%ycz correct-
ing the steady state for uncertainty as in the second-opf@oaimation 42), but now With%y027i02
correcting the first-order kernel for uncertainty; i.e.,cagoes from 0 to 1 and we transition from
the certain to uncertain model, we incorporate the additipnssibility of a time-varying correction
for uncertainty. As we are interested in the original, uteiarformulation, setting to one in 64)
gives the third-order approximation

Yt =Y+ éyoz + i; Yi + éyo%i €+ > j;i;y“ (Et—j @& i)

[Co R o]

1 [0
(65) += Vi ji (Et—k @& —j @& i)
6,2 202

21As is the case in Dynare, see Adjemian, Bastani, JuillarthoMbi, Perendia, Ratto, and Villemot (2011).
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Higher order approximations of the policy functiad) can be computed using the same steps.
Moving through higher-orders of approximation succedgjwbe undetermined partial derivatives
of the policy function will be terms of highest order yet cmlesed, ensuring that the leading co-
efficient matrix isfy. Thus, for all time varying components, the difference équs in these
components will have the same homogenous representatmmeiii time varying components (i.e.
derivatives with respect to only), the leading coefficient matrik along with assumptioB.2 en-
sure the unigueness of their solution. The inhomogenousegits of the difference equations in the
time varying components will be composed of terms of loweleorwhich are necessarily constants
(terms in the given moments and derivatives with respectdaly) or products of stable recursions
(time varying components of lower order). As the latter #ewise stable, we can conclude from
assumptior8.1that the difference equations in all time varying compogaemtl be saddle stable;

hence, the stability of the first order recursion is passetbafl higher orders.

4 Stochastic Neoclassical Growth Model

In this section, we examine the stochastic neoclassicaltgronodel in several incarnations to
demonstrate the techniques developed in the previousossctiThis well-studied model has been
used in numerous studies comparing numerical techniqugssarhus, the natural choice for a
benchmark. We will begin by presenting the general modeéltheompasses all the various specific
cases that we will examine subsequently. Then, startinig vg-preferences and full depreciation
case with a known solution, we will progress up to time vagywolatility version of model used in
Aruoba, Fernandez-Villaverde, and Rubio-Ramirez (2006

To that end, consider an infinitely lived representativedetiold seeks to maximize its expected

discounted lifetime utility given by

66 E S U (G, L
(66) o[t;B (G t)]
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with G; being consumptiori,; labor, and3 € (0, 1) the discount factor, subject to
(67) Ci+ Ky = AKE LY+ (1-8) Ky 1
wherekK; is the capital stock accumulated today for productive psegdomorrowZ; a stochastic
productivity processa € [0,1] the capital share, andl€ [0, 1] the depreciation rate. OutpMt is
given bye” Kto‘_lLtL“ and investment; by Ky — (1 — 9) K;_1. Productivity is described by
(68) Zi = pzZi_1+€%€zy, €24 ~ A (0,1)
with pz € (0,1) a persistence parametey,; the innovation to the process, aexo; the volatility
of the innovations. We allow for time-varying volatility the form of the following process
(69) 0t = (1—Pg) 0+ PoOt—1+TEgt, Eot ~ N (0,1)
Po € (0,1) a persistence parameteraverage (log) volatilityss; innovations to the process, and
the volatility of the innovations.

The first-order condition include the intertemporal Eul@ndition equalizing the expected present-
discounted utility value of postponing consumption oneaqekto its utility value today
(70) U (Co, L) = BE: [Uc (Gee, Liva) (0P tKkE 1 +1-5) |
whereUc (G, L) is the derivative ofJ (G, Lt) with respect taC;, and the intratemporal condition
equalizing the utility cost of marginally increasing latsupply to the utility value of the additional
consumption provided therewith
(71) —UL (G, L) = Ue (G, Lo) (L —a) €K L

whereU, (G, L) is the derivative ot (G, L;) with respect td.
4.1 Brock-Mirman Special Case

The first case we will examine is the simple stochastic nesial growth model with constant
volatility and without a labor-leisure choice under logferences and complete capital depreciation.
This model can be expressed in terms of one endogenous eagiabling a scalar version of the

method to be studied, and possesses a well-known closedsiolution for the state-space policy
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function. We show how our policy function relates to this Mkelown state-space version and use
our resulting closed-form policy function as a basis forrtial appraisal of our method.
Accordingly, letU (G, L) in (66) be given byln (C), normalizeL; = 1 and sed = 1 in (67),
finally seto; =@ in (68). Combining 67) with (70) in this case yields
(72) 0= E¢ [ (K, —K) "~ B —Kir)  (cePki Y]
This particular case has a well-known closed form solutanrtlie state-space policy function:
Ki = ape’ K? ;. However, we are interested in its infinite non-linear mowvéwerage representation
and guess that the logarithm of the solution is linear in tifi@ite history of technology innovations
(73) In(Ky) = In(K) + jibjsz,t,-

Inserting the guess and the infinite moving average reptaisen for Z;, (72) can be rewritten

1- exp(fj”zo (p) —bj+abj_1)ezi—j— (1—0a)In (K_)>
1=apE : -
1—exp( 370 () —bj+abj_1) ezes1- — (1-)In(K) )
(74) ><exp<i(pj —bj+abj_1) sz,t—(l—a)ln(K_)>]
i=

whereb_; = 0.

The value and recursion
(75) K = (aB)Ta, bj=abj_1+pl, withb_; =0
solve (74) and verify the guess7).

Not surprisingly, this solution can also be deduced diyetthm the known state-space solu-
tion. Take logs ofK; = aBe”K 4, yielding In(K¢) = In(aB) + Z +aln(Ki_1). Making use of
the lag operatorl, and definingp (L) = z‘j”zo(pL)j, the foregoing can be written dn (K;) =

(1—a) tIn(aB)+(1—aL) *p(L) €zt and restating in levels gives
(76) — (aB)=e exp((1—aL) "p(L)ez:) = (aB)wex @b,su J>
whereb(L) = (1—aL) *p(L) = 35 objLI as before.

This special case offers a simple check of the numericalcgmpr. We definé; = In(K¢) and
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useK; = expK;) to reexpressq2) as?

@7 0=F [(ezwm ) (e ) <aezt+1+(“1)'€t>]

With this reformulation, the first-order expansion is theetpolicy rule in this special case. That is
(77) can be rewritten as & Eq[f(yi—1, %t, Yt+1,Ut] wherey; = [K; Zt}' andU; = [ez¢]. To check
our method, we calculate the kernels of the third order ateuronlinear moving average solution
of (77) out 500 periods, following the parameterization of Hars€h985) for the remaining pa-
rameters by setting = 0.36, 1/ = 1.01,p = 0.95, ando = In(0.00712. Our method successfully
identifiesy; i, Yk j.i, andys2; as being zero and the largest absolute differengg from those im-
plied by the analytic solution was3B68x 1018, This simple check is far from comprehensive, in
this section and especially in secti6additional and potentially more meaningful measures vell b

examined. As a first check, this is promising.

4.2 CRRA-Incomplete Depreciation Case

In this case, we relax the complete depreciation and logpates of the previous section, neces-

sitating an approximation, as no known closed-form sofuérists.

1—
Accordingly, letU (G, L;) in (66) be given byctll/;l, normalizel; = 1 and seti; = G in (69).

(78) C+Ki = 4K 1+ (1-8)Ki1
(79) GV = BB |G (0% Kt 1-3) |
(80) Zi = pzZi-1+€%€7;

Thus 0= E¢[f (i1, Y, Yt+1,Ut] wherey, =[G Kq Z(]' andU; = [ez:]. We reexpress the variables
in logs, commensurate with a loglinear approximation. \&kk maintaird = 0.025, we sety =5
indicating a substantial departure from log-preferen€esnparing our first-order solution with the
impulse response for capital from Uhlig’s (1999) exampl@oma one standard deviation shock, the

largest absolute difference is0B93x 10~1°, confirming the accuracy of the linear terms.

22Fernandez-Villaverde and Rubio-Ramirez (2006) exartfiiseand other change of variable techniques.
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For higher-order approximations, our policy functi@) (

(81) Vi = Y(0,&,&—1,&-2,...)
is particularly suited to enable impulse response analys$iat is, consider a shockiro an element
of &, one measuré for the response of; through time to this impulse is given by the sequence

vt = Y(0,&,0,0,0,...)

Vi+1 =Y(0,0,&,0,0,...)

Vi+2 =Y¥(0,0,0,&,0,...)

(82)
[Figure 1 about here.]

Figure 1 depicts the impulse responses and their contributing comms from the kernels of
different orders for capital and consumption to a positres standard deviation shocksiﬂt.24 The
upper panel displays the impulse responses at first, seaadahird order as deviations from their
respective (non)stochastic steady states (themselviee mitidle right panel) and the first feature to
notice is that they are indistinguishable to the eye. Thimissurprising, as it is well known that the
neoclassical growth model is nearly loglinear. In the maedathlumn of panels in the lower half of
each figure, the contributions to the total impulse respofreen the second and third-order kernels
yii andy; j i are displayed. Note that these components display multipfaps’ to either side of the

hump in the first-order component (upper-left panel), thidue at least in part to the phenomenon

23 Note that we are assuming that j = y(0,0,0,...), ¥j > 0. Fernandez-Villaverde, Guerron-Quintana, Rubio-
Ramirez, and Uribe (forthcoming), for example, examimertlsponses starting from the mean of the ergodic distabuti
as opposed to the stochastic steady state that we assunmeethidbin a nonlinear environment, variables will wander
away deterministically from the ergodic mean to the stotibateady state when the response to a single shock is
examined, as the maintenance of variables around the erguain requires the model to be constantly buffeted with
shocks. We argue for our measure as it eliminates such deistimtrends in impulse responses.

24n terms of the “conceptual difficulties” laid out in Koop, $&an, and Potter (1996), we are assuming a particular
history of shocks (namely the infinite absence thereof—snighaction will be addressed later), are examining a par-
ticular shock realization (positive, one standard deoiatdue to the nonlinearity, asymmetries and the absenczatd s
invariance are a potential confound) and ignore distringl composition issues by examining a realization of alsing
structural shock irrespective of its potential correlatwith other shocks (in this model there is only one shockhso t
is moot anyway).
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of harmonic distortion discussed in Priestly (1988, p. ZHat both second-order contributions are
positive reflects both the fact that, in a stochastic envivent, an overaccumulation of capital and,
hence, inefficiently high level of consumption is maint@ijg@ as can also be seen in the upward
correction of the steady states in the rightmost panelstlaatdhe technology shock passes through
the exponential function in the production functiefk? ,, adding an additional upward correction
to the effect on production of this shock. The lower left daaatains the contributions frogy.; the
second order (i) time-varying correction for risk, this demonstrates aitiahwealth effect with
consumption increasing and capital decreasing relatiaanonstochastic environmetftNonlinear
impulse responses are not scale invariant, as noted alserbgdez-Villaverde, Guerron-Quintana,
Rubio-Ramirez, and Uribe (forthcoming): for example, ithe first-order component scales lin-
early with the magnitude of the shock, the second-orderrardmponent scales quadratically. As
shocks become larger, a linear approximation would gelyemak suffice to characterize the dy-
namics of the model. This is precisely the effect of higheteo terms: as the magnitude of the
shock increases, these higher order terms begin to cotanibare significantly to the total impulse,
attempting to correct the responses for the greater depdrtum the steady state. For this model,
however, one would need to consider shocks of unreasonad@itunde to generate any notable
effects from the higher-order terms on the total impulsifoecing the conventional wisdom that

this model is nearly linear in the variables’ logarithms.
[Figure 2 about here.]

In figure2, the impulse responses to a technology shock with differgiies (1, 5, and 10) of the
CRRA parametey are overlayed. Note that for all three valueyahe first order components dom-
inate. While changes indo change the periodicity of the harmonic distortion as aslthe shape

and sign of the second and third order components, only thstant and time-varying corrections

250veraccumulation and inefficient from the perspective obastochastic environment that is.
26Fernandez-Villaverde and Rubio-Ramirez (2010) disesisise nonlinear impact of shocks in the production func-
tion and similar wealth effects.
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for risk display a significant change in magnitude. YAis increased, the stochastic steady state is
associated with higher constant precautionary stocksmfatand the time-varying component dis-
plays a magnified wealth effect. At values above 20 (not pacty the time-varying corrections for
risk begin to contribute noticeably to the total impulse gndas shocks several orders of magnitude

larger than a standard deviation are needed to propel tHeaankernels to significance.
[Figure 3 about here.]

Figures3 and4 draw the second and third order kerngis,andyx j i, as they depend on differing
time separation (potentially~ j # k) of shocks. As likewise discussed in Fernandez-Villagerd
Guerron-Quintana, Rubio-Ramirez, and Uribe (forthaughiimpulse responses are not invariant to
the history of shocks. The contributions (though not scededhe magnitude of the shock) from the
second and third-order kernels in the impulse responsegurefl can be found along the diagonals
of the kernelsi(= j = k) in 3 and4. The off diagonali(# j # k) elements ‘correct’ for the history
of shocks. That is, in addition to the individual secondesrdontribution that can be found along
the diagonals ir8, an off diagonal correction to the second order contributi@uld be needed for
shocks from the past. The deep valleys on either side of hetlkérnels that bottom out at about

fifty periods indicate a substantially persistent naturthefsecond order kernels.
[Figure 4 about here.]

Additionally, the harmonic distortion mentioned earli@ndoe seen in the kernels as well. The
shapes of the kernels perpendicular to the diagonal haeetdinalogs in polynomials: on either
side of the diagonal of figur8b, the shape is reminiscent of the parabola of a quadratictiegqua
and the ‘s’ shape of the cubic equation on either side of thgahal at lower horizons of figurb.
This bears a word of caution that not too much should be readhe shape itself of the kernels, as

they are dictated by the form of the underlying polynomials.

[Figure 5 about here.]
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Figure5 highlights a central component of higher-order impuls@oases: the break down of
superposition or history dependence of the transfer fanctihe nonlinear impulse to two shocks
at different points in time is not equal to the sum of the imndiial responses, even after having cor-
rected the individual responses for the higher order. Tinelsan the figure depict the second-order
contributions to the impulse responses of capital and gopsion to two positive, one standard de-
viation technology shocks, spaced 50 periods apart. THeeddse in the top of figure simply adds
the individual second order components from each shockhegéi.e., presents the total second-
order component if superposition were to hold), whereasstiigl line additionally contains the
second-order cross-component (i.e., presents the tralesextond-order component). Demonstrat-
ing this breakdown of superposition quite vividly, the @@®mponent overwhelms the individual
components shortly after the second shocks hits and thedewder contribution to the response of
consumption (lower panel) displays a prolonged downwatial tmrrection, despite the always pos-
itive individual second-order contributions. Althougletiwitch of sign is much briefer for capital
(upper panel), the difference from the sum of individualtcitmtions is just as stark and prolonged.
In a nonlinear environment, there is no single measure fomgulse respons#’ in starting from
the stochastic steady state, however, we remove any deistimitrends in our impulse measure
(e.g., starting from the ergodic mean introduces such atisse footnote3).

The standard RBC model is nearly linear and makes much ofrthkysis here moot. This is, of
course, not to be expected for every model and we will novathice fundamental nonlinearity into

the model making the nonlinear analysis essential in utal@igg the mechanisms at work.
4.3 Labor Margin and Time-Varying Volatility Case

We move on to a time-varying volatility version of Aruoba,rik&ndez-Villaverde, and Rubio-
Ramirez (2006). This is motivated by the application of euous solution techniques to the model

by Aruoba, Fernandez-Villaverde, and Rubio-RamireD@Q@o which we will return in sectiob

2’See, e.g., Gourieroux and Jasiak (2005), Potter (2000)<aad, Pesaran, and Potter (1996).
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when assessing the accuracy of our method. The incorporatiime-varying volatility introduces
a fundamental nonlinearity into the model, whose dynamitsequences we will demonstrate re-
quire a third-order approximation to be observed (see asodndez-Villaverde and Rubio-Ramirez

(2010) and Fernandez-Villaverde, Guerron-Quintandi®®Ramirez, and Uribe (forthcoming)).

C[e(lfL )179>1*V
LetU (G, L) in (66) now be given by(+y. The nonlinear system is now
(83) Ci+Ki=eAKS L%+ (1-8)Ki 1
—o\ 1Y 1\ 1Y

Co(1-Lo)*° CP 1 (1- L)

(84) ( c ) = BE; ( & c ) <aezt+th“—1Lt1+—f +1- 6)
1-6 6 _

(85) L :a(l—ooeth{’LlLt a
(86) Zi = pzZi—1+€%€740; = (1— pg) T+ PoOt—1+ T€ayt

or0=E[f(yi 1,% Y 11.U] wherey = [C K¢ Lt Z o] andU; = [ezc €oy] -

We use Aruoba, Fernandez-Villaverde, and Rubio-Rarisi{@906) baseline paramterization for
all parameters, except the volatility process (as it wapredent in their formulation), whose values
are taken from Fernandez-Villaverde and Rubio-Ram284.0).

We will begin with the responses to a technology shock befettegning to the impulse responses
to a volatility shock. The results for technology shocksehargely coincide with those of the sim-
pler model, but a few points are worth highlighting. The moahr manner in which the technology
shock enters into the production function is pictured intigg) the panel labeled as being in levels
gives the nonlinear responsessf to a technology shock, which contains positive first, secand
third-order components (note that the risk correction teane all zero, as this merely a transforma-
tion of the known stochastic process for productivity). S&@ositive nonlinear components carry
over to production, not pictured, expressed in levels, eieasentially eliminated when production
is expressed in logs. The time-varying risk correction tordsponse of labor, figue demonstrates

the wealth effect discussed in the previous section.

[Figure 6 about here.]
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[Figure 7 about here.]

Figures8 through13 display the impulse responses of the model’'s variables tos#ipe one
standard deviation shock in the volatility process. Allighles are expressed in logs (the responses
for variables in levels are essentially identical, savesfmale). Note that all components except for
the time-varying risk component are zero, consistent withdssessment of Fernandez-Villaverde
and Rubio-Ramirez (2010) and Fernandez-Villaverdey@GueQuintana, Rubio-Ramirez, and Uribe
(forthcoming) that a third-order approximation is need®edalculate impulse responses to volatility
shocks. As a shock to the volatility process by itself aBemtly the distribution from which future
technology shocks will be drawn, any response is of a prem@ary nature. Indeed, a precautionary
stock of capital, figures, is accumulated by reducing consumption, fig@reand increasing pro-
duction, figurelQ, through increased labor input, figut@. As volatility subsides, figur&3, and
technology shocks from this more highly dispersed distrisufail to materialize (by assumption,
we are looking at the response to the volatility shock byifitsthe precautionary stock is drawn
down through an increase in consumption and reduction afrlaBgents are able to reduce their
labor efforts to levels below their stochastic steady d&atels while maintaining an elevated level
of production by the persistence of the accumulated stodapital. Besides being consistent with
the precautionary behavior one would expect from risk-s&@gents, the response of consumption
and production move initially in opposite directions, Ilmigtthat some of the excess (in standard
RBC models vis-vis post-war US data) correlation betwedputiand consumption can be reduced

by simply introducing a time-varying distribution for proctivity shocks?®
[Figure 8 about here.]

[Figure 9 about here.]

28Though a quick comparison with the scales of the responsestmology shocks shows that technology shocks
will overwhelm the effects of volatility shocks, minimizirthe reduction in correlation between output and conswonpti
that could be gained from introducing time-varying volatil
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[Figure 10 about here.]

[Figure 11 about here.]

[Figure 12 about here.]

[Figure 13 about here.]

In figure 14, the second-order cross kernel of capital, in logs, withheesto both shocks is dis-
played. That is, the figure depicts the second order cooreédir a volatility shock and a technology
shock occurring at differing points in time. This portiontbe kernel to the right of the diagonal
displays the correction for the cross effects of a shock Iatilily having occurredafter a shock in
technology; the kernel here is, of course, zero as any chartge distribution of technology shocks
will have no effect on technology shocks that have alrea@ylvealized. To the left and on the diag-
onal, however, the kernel is not zero and is simply the firdeokernel with respect to a technology
shock scaled by associated change in volatility. This stiadnishes as the volatility shock wanders

further back into the past, following from the stable augpessive process describing volatility.

[Figure 14 about here.]

In sum, the introduction of fundamental nonlinearitiekelthe stochastic volatility examined
here or risk-sensitive preference as studied in RudebusdtSavanson (forthcoming), strains the
reliability of linear methods for assessing the transmissnechanism of shocks in a model econ-
omy. While our policy function enables a straight forware&@mock impulse response analysis, the
history dependence of the transfer function makes cleamot@amust be wary of relying solely on
this familiar tool. In the next section, we will examine silations, allowing for a history of shocks

to unfold through the endogenous variables.

29



5 Simulations and Pruning

This section serves two purposes. First, to demonstratetianfinite MA function is not subject
to the explosive behavior that has spurned interest in pguaigorithms and that our second-order
solution provides a perturbation basis for the pruningdigo of Kim, Kim, Schaumburg, and Sims
(2008). Second, then, to provide the literature with theraximated state-space policy function
implied by our approximation of our nonlinear infinite mogsaverage policy function. We use
our nonlinear moving average solution to then formulatei@tbrder pruning procedure, the first
explicit such formulation to our knowledge.

Perturbation methods with state space policy functionfgrtumately, have tendency of deliver-
ing spuriously explosive simulations is well establisB&éim, Kim, Schaumburg, and Sims (2008)
have offered a solution, termed ‘pruning’, to alleviatesttandency by removing the offending terms
of order higher than the approximation induced by the reeeisubstitution involved in simulations,
impulse responses, and the like. Likewise, the method ofiamo and Sutherland (2007), cast in
terms of perturbation by Lombardo (2010), avoids explosiweulations through the recursive lin-
earity of their solution. Both Den Haan and De Wind (2010) anchbardo (2010) have criticized
‘pruning’ as being ad hoc and not a valid perturbation apination.

To demonstrate, we simulate a slightly modifiédersion of the model of sectiof.3 for 500
periods and calculate the first, second, and third orderratzgimulations using our method, the
second and third order simulations from the standard sfaeesapproach, and the second-order
‘pruned’ solution of Kim, Kim, Schaumburg, and Sims (2008 modify the model of sectiofh.3
by scaling up the volatility of the model (increasing thenstard deviations of both the shocks by
factor of 5), following Lombardo (2010) for demonstratibparposes. The top panel of figurgs

through18, provide the simulated paths under the different methadshe figures for the endoge-

29See, e.g., Aruoba, Fernandez-Villaverde, and Rubio4Rem{2006), Kim, Kim, Schaumburg, and Sims (2008),
and Den Haan and De Wind (2010).

30%We add auxiliary equations for outpd = eZ‘KleLtl’“ and investment; = K; — (1—0)K;_1 and express all
variables but investment in logs.
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nous variables, figurek5 throughl7, an explosion under the second order state space method can
be observed towards the end of the simulafibmterestingly, the third order state space simulation
manages to return to the vicinity of the steady state neaerldeof the simulation, despite produc-
tion, figurel16, and investment, figurgé7, three-quarters of the way through the simulation having
decreased significantly more than under other methods (@ptders of magnitude for investment).
Our moving average solutions at both the second and thieterémain in the vicinity of the steady
state along with the first order and ‘pruned’ second ordartgnis. Due to the time-varying volatil-

ity, identical under all methods (see figur8b), the technology process is approximated, figlBa

but here all the methods (at a given order of approximatigng¢e on the approximated solution.
The likely culprit for the explosive behavior in the statese solutions is the increase in volatility

around the three-quarter mark and subsequent substaegiitive deviation of technology.
[Figure 15 about here.]
[Figure 16 about here.]
[Figure 17 about here.]
[Figure 18 about here.]

The middle panel of figures5throughl?7, removes the non-‘pruned’ state space solutions from
the graphs. As the magnitude of the drop in productivitye@ases with the order of approximation,
this is reflected by the depth of the ensuing decline of agtiill variables demonstrate a substantial
decline around the three-quarter mark, but of roughly thmesarder of decline in productivity,
but return along with the measure of technology back to tloaiy of the steady state. Thus
we can reasonably conclude that the substantial movemetite isecond and third order moving

average solution are not an artefact of the kind motivatpryining’ algorithms, but reflect the

31The simulations for consumption and labor (not pictured)samilar to those for capital and prodution respectively.

31



underlying movements of the model at their respective aradérapproximation. Conspicuously
absent from the middle panels is a discernable differentedss our second order moving average
solution and the ‘pruned’ second order state space soluTio@ lower panel of the figures plots the
differences between these two methods. Unlike the solsittdriombardo and Sutherland (2007)
and Lombardo (2010), the solution provided by our methodsdbifer from that of Kim, Kim,
Schaumburg, and Sims’s (2008) ‘pruned’ solution. Howetver difference is deterministic with the
two solutions trending smoothly towards each other durrggsimulation. To illustrate this point,
figure19displays a simulation for the stopck of capital under arraéite parameterization (standard
deviations are returned to their levels in secdoBany is increased to 50). Here the slow transition

of all the state space methods (upper panel) to our movinggeesolutions is clearly visible.
[Figure 19 about here.]

The observed incomplete similarity of our second order mgeaverage solution with the ‘pruned’
second order state space solution motivate the followionggsition, which reformulates our solu-
tion from section3.2in terms of a solution that is, in the words of Lombardo (20X8yursively

linear in the orders of approximation.

Proposition 5.1. The second-order infinite moving-average solution

1 (o] 1 (o] (o]
(87) “=Y+ Yozt ) Vi€t—i+ 35 Yii(€—j @ &)
270 i; ict—i Z%i; Ji ] [
can be written as the ‘pruned’ state-space solution
2
2 o 1 2 - 1 1o [ [y, -7
(88) Y oY= SYer | SO NT Y SYer | Btk + 5P t—ut
where
(89) W -y =a (v -y) + B
Proof. See appendiA.3. O

With some algebraic effort, we show that our ‘pruned’ or tresively linear’ solution is the same

as Kim, Kim, Schaumburg, and Sims’s (2008) ‘pruned’ statecssolution up to the constant term.
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Corollary 5.2. The second-order ‘pruned’ state-space soluti88) (can be rearranged to conform
with the second-order ‘pruned’ solution of Kim, Kim, Schawmg, and Sims (2008, p. 3409). The

two solutions differ only with respect to the constant tenra?.

Proof. See appendiA.3. O

The difference in the constant term can be explained asaslld he nonstochastic steady state is
not the rest point of the second order state space solutigtothe inclusion of the constant term in
o02. Starting from nonstochastic steady state, the state smhicons will gradually move towards
a new steady state, our stochastic steady yt&téy;z. Note that our stochastic steady state is the
rest point of our moving average and ‘prune88) solutions, a form of dynamic self consisteréy.

It is then straightforward to rearrange our solution frormtsa 3.3 to formulate a third-order
‘pruned’ solution. While an almost trivial extension, tlésa novel contribution in the literature,

offering some guidance that Lombardo (2010) stating wasingsrom pruning procedures.

Proposition 5.3. The third-order infinite moving-average solution

Y=Y+ Yoz + ) (y-+—y 2-) &-its > > Vii(e-j@ei)

100 00 00

(90) + 6 Z ;i;YkJ,i(st—k@Stq ®E—i)

K=0]
can be written as the ‘pruned’ state-space solution

3
@ - 1 @ - 1 1o |y -y, L vy, g
WY =9 Y020 | = (4 =V Yee0® ) +Batk SBo 1T e | Y

2 1) 2
N W21V e — (Y24 -V)
91 YiZ1—Y ®[2]
(91) +I33,4<[ " T>® . y(l)l_ﬂ
2w

where )?1) —y and )?2) —y— %yc,z are as given in propositiob.1 and 331 and 334 correspond to

the first(ny-+ne)® and last(ny-+ ne) ((ny-l— ne)” + ny) columns of3; respectively.

32Evers (2010) uses the term “self consistent” to refer to éhation between the rest point of the approximation and
of the original problem, which is different in detail but slar in spirit to the consistency discussed in the text.
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Proof. See appendiA.3. O

Our nonlinear moving average solution avoids the expldsarevior of non ‘pruned’ state space
solutions without any appeal to ad hoc algorithms, beingectliperturbation approximation of a
simulation: a mapping from a history of shocks to endogenausbles. Higher order ‘pruning’
algorithms can be derived from our mapping, providing a fimsib in perturbation theory for the
indeterministic component of current ‘pruning’ algoritemvet, it is still unclear whether the non-

linear moving average provides accurate approximatiodstasto this question that we now turn.

6 Accuracy

In this section, we explore the accuracy of our solution méthsing Euler-equation-error meth-
ods3® Beside validating the accuracy of our solution method, we ad Euler-equation-error
method for assessing the accuracy of an impulse responablirenthe method to address our
infinite-dimensional state space.

We choose to examine our method using the model of AruobaaReez-Villaverde, and Rubio-
Ramirez (2006), the constant volatility version of the mloekamined in sectiod.3. From Judd
(1992), the idea of the Euler-equation accuracy test in#oelassical growth model is to find a unit-
free measure that expresses the one-period optimization iarrelation to current consumption.

Accordingly, 84) can be rearranged to deliver the Euler-equation errortiomas?

BEt (Cte+1(1* |—t+1)179)

1 Cit1
(92) EE()=1-§

1
1-y 81—y -1

R

(1— |_t>(1*9)(1*\/)

Deviations in ©2) from zero are interpreted by Judd (1992) and many othereeasetative opti-
mization error that results from using a particular appmadion. Expressed in absolute value and

in base 10 logarithms, an error efl implies a one dollar error for every ten dollars spent and an

33See, e.g., Judd (1992), Judd and Guu (1997), and Judd (1998)
34Cf. Aruoba, Fernandez-Villaverde, and Rubio-Ramir€0@ p. 2499).
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error of —6 implies a one dollar error for every million dollars spent.

The arguments oEE () depend on the state space postulated. Standard stateraptuads
would choose&E (Ki—1,7;) or EE(Ki-1,Z:—1,€z¢t). Our nonlinear moving average policy function
requiresEE(ezt,€z¢-1,...), rendering the Euler-equation error function an infinitmensional
measure. In line with our presentation of impulse respousetions, we examine the following set
of Euler-equation error functions, holding all be one shomkstant and moving back in time fram
essentially assessing the one-step optimizing error ededavith the impulse response functions.
(93) EE =EE(£24,0,0,...), EE_1 =EE(0,€2¢t-1,0,...), EE_ 2 =EE(0,0,€z¢t>,...),

We examine a range of shock valuesdgg_ j that covers 10 standard deviations in either direc-
tion. This is perhaps excessive given the assumption of alitymbut enables us to cover the same
range for the technology process examined in Aruoba, helewaVillaverde, and Rubio-Ramirez
(2006) from a single shock. Figu® plots EE; for first through third order approximations in lev-
els and in logs. The first observation is that higher ordeeuells performs uniformly better than
the preceding order—this result is reassuring, but not argiBAs Lombardo (2010, p. 22) remarks,
although within the radius of convergence the error in apipnation goes to zero as the order of ap-
proximation becomes infinite, this does not necessary appaotonically. Indeed, the difference
between the second and third order approximations in logs dot paint as clear a picture as in
levels. If we restrict our attention to three standard désieshocks £0.021), the third order level
and the second and third order log approximations make keistao greater than one dollar for
everyone ten million spent, hardly an unreasonable errbmd@pendent interest is the result that
the first order approximation in logs is uniformly superiotie first order approximation in levels,
standing in contrast to the result of Aruoba, Fernanddaxérde, and Rubio-Ramirez (2006). As
their focus was on the mapping from capital to errors and oarshocks to errors, it is possible that

the preferred approximation depends on the dimension siddy.

[Figure 20 about here.]
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In figure 21, plots of EE;_j for j = 0,1,...,100 for the first order approximations in both levels
and logs are provided. Comparing these two figures—Iet almw@porating the associated results
for the second and third order (not pictured)—is difficulbbast. Thus, to facilitate comparison of the
different approximations across the different horizon® measures that reduce to two dimensions

will be examined, namely maximal and average Euler equa&titors.
[Figure 21 about here.]

First, we plot the maximal Euler-equation errors over a sfa00 periods in figur@2a l.e.,

(94) _max _(EE-j), forj=0,1,...,100

—10e9<ezt <10
wheree® is the constant standard deviation of the technology sh®bk. figure tends to reinforce
the results from examining only shocks in pertodor the level approximations, moving to a higher
order uniformly improves the quality of approximation, afiorder approximation in logs is to be

preferred over a first-order in levels, and the evidencedsnlusive as to whether a third order in

level or a second or third order in logarithm approximati®toi be preferred.
[Figure 22 about here.]

In our final measure, we graph average Euler-equation esx@rsa span of 100 periods in figure
22h In contrast to state space analyses, this measure is/efyatiasy to calculate, as we merely
need to integrate with respect to the known distributiortlfia case normal) of the shocks
(95) /Eadeez_t].,forj:o,l,...,loo
Weighting the regions of shock realizations most likely éogmcountered as defined by the distribu-
tion of shocks, we are not forced to make a choice regardiegahge of shock values to consider.
Again, we note the uniform improvement with higher order ttoe level approximations, the su-
periority of the first order approximation in logs, and theléguity regarding third in levels and

second and third in logs. The average error using a first andewrel approximation is around one
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dollar for every ten thousand spent regardless of horizdre Second order approximations show
an improvement as the horizon increases, whereas the tiied approximations tend to be lower

at first, rise and then fall again. The third order approxiorain both levels and logs are associated
with an average error of about one dollar for every billioesfregardless of horizon.

We conclude that the nonlinear moving average policy fumctian provide competitive ap-
proximations of the mapping from shocks to endogenous msa As was the case with Aruoba,
Fernandez-Villaverde, and Rubio-Ramirez (2006), h@rethe perturbation methods here deteri-
orate (not reported) in their extreme parameterizationalhperturbations, our method remains a

local method and is subject to all the limitations and restons that face such methods.

7 Conclusion

We have derived an approximation of the nonlinear movingaye form of the policy function,
providing explicit derivations up to third order. Beside®abling familiar impulse response analy-
sis techniques, it passes the stability from the first orger@imation to higher orders, producing
non explosive simulations and thereby endogenizing thenipg procedure’. That is, our nonlin-
ear moving average method provides the direct mapping upeatder of approximation from
stochastic input to endogenous variables.

The nonlinear perturbation DSGE literature is still in amlyeatage of development and our
method provides a different, yet—from linear methods—f&miperspective. Standard state-space
perturbation methods provide insight into the nonlineappiiag between endogenous variables
through time. Yet when the researcher’s interest lies inremang the nonlinear mapping from

exogenous shocks to endogenous variables, our method ihsisexble insight to offer.
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A Appendices

A.1 Matrix Calculus and Taylor Expansion

A.1.1 Matrix Calculus Definition

Definition A.1. Matrix Derivative and Commutation Matrix

1. Matrix Derivative [See Vetter (1970), Vetter (1973) anmdwger (1978).]

0ayi oby oby
(A-1) Do A(B) = [ab—l} = : :
pxq K dap1 dapq
by ‘oby
76, AB) - _:_‘@_b;t'f‘(_B_) i
(A-2) QBAgB) = [%HA(B)} = : ! ! :
spxtg = |-=-==-—-=- U
o TogAB) - I, AB)
Structures of higher derivatives are thereby uniquely @efin
(A-3) IeAB) = Zs(Zs(-- (Z8A(B)) )
2. Abbreviated Notation
(A-4) Ag = ZgrA(B) and Agn = @FBT)nA( B)
spxtq
where' indicates transposition. Additionally,
(A-5) ACB = gcT (QBTA(B,C)) = .@CTBTA(B,C)

3. Commutation Matrix Ky [See Magnus and Neudecker’s (1979, p. 383) Theorem 3.1.]

(A-6) B ® A =Knn(A®B)Kis

mxt nxs

A.1.2 Proof of theorem2.1

1. Matrix Product Rule: Combine Vetter’'s (1973, p. 356) sfamse and product rules and exam-

ine the special case of an underlying vector variable.

2. Matrix Chain Rule: Combine Vetter’s (1973, p. 356) trassgp and chain rules and examine

the special case of an underlying vector variable.
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3. Matrix Kronecker Product Rule: Combine Vetter's (19733p6) transpose and Kronecker

rules with an underlying vector variable and adopt MagnusN@udecker’s (1979) notation.

4. Vector Chain Rule: The result follows from the Matrix Gin&ule, setting) to one.

A.1.3 Proof of corollary 2.2

From Vetter (1970, p. 243) and, especially, Vetter (1973,358—363), a multidimensional Taylor

expansion using the structure of derivatives (evaluat®) at appendixA.1.1is given by

_ N1 N _ — i _
(B M(B=ME S SogME) B8 Ru BB
— B
(a9) whereRu;1 (B.8) = i [ _INiEM(E) (1s (B-8)° ) a

Differentiating @) with respect to all its argumenks times, evaluating at the steady statand

noting permutations of the order of differentiation, a Taydpproximation is

1

11 1, 1
Vi = 0' y+ y00+zy020 +...+WyGM0

1 1 L 2 1 M—1
+F O|Y|1+ﬁ)/0i10+ zyozilG +‘“+WVGM*H10 & i,

1
Z Z <0|y'1'2+ 1|y0|1I20+2|y02|1|20 +...+ M—2)! yGM 2j,i,0 oM~ 2) €—i; @& i,

I1 Olz—

Z Z Z Oly'1|2 imEt—i; @ E—i, @ &,

|1 0i,=0 im=0

Writing the foregoing more compactly yield$1) in the text.

A.2 Auxiliary Matrices
A.2.1 Shifting Matrices

a B 01 R0 R0 0 0 0

i} _ | nyxny  nyxne _|@ B2 _ 0 0 ® 01 0 0

(A-9) 51[ 0 0 ] % [o 61®61] % 0 0 &®dp O
nexny nexne 0 0 0 5,555
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0

nyxny nyxne I 0
_ | a B1 | B2
(A-10) i=1 42 aBy + BN V2= 12 apB2+PB2(01®01)
0 | 0 0
Lnuxne nexne
- - O -
- 0 0 0 nyxny
_ B 0 voy O 0 = |y
A1) vs= | g 0 iy 0 [T
] 0 0 0 vy N
L nexny.|
[ I(nerne)3 |
0
XN | @ 1 (1 ney2
| (ny+ne)2
0
A-12 =
(A-12) ¥ l(nyenep © nyx(ny+ne>2] Kinyne),(ny+ne2(Ine® Knysne) (ny+ne))
|(ny+ne)2
0
l(ny+ne2 ® (g
I (ny+ne)2 .

A.2.2 State Spaces for the Markov Representation

(A-13) = ViS. § = {y‘u—il}  andS.1 = 1§

(A-14) Xji =Y2Sji, Sji = [yj_l’i_l] , andSj;1i+1 = 025

S®3
SOS®S
Sj®S
<Sj ® Sﬁi)KneneZ(Ine@ Knene)
S®S

(A-15) Sji= andSei1 j4+1iv1 = 03,

A.3 Pruning Proofs
A.3.1 Proof of Proposition5.1

Denote the first-order solutior22), asyt(l)

@ _ O(yt(z)1 yields

(2) 1 c
Y y 2— > Yi&-i— Y, —5Y52— ) VYi&-i—1
o Z) ( t—1" 270 i;) )
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100 [ee]

(A-16) Zggyj. & j D& i) a[—%%yj. & j 1®E& i 1)]

Denote with LHS and RHS the left- and right-hand sidesfefl@). LHS can be rewritten as

(A-17) LHS= (W ~y) ~a (% -v) ~ (1 - a)%ycz - [i(yi - cxyu)sti]

asy; = 0 fori < 0. Using (6) and the linearity ofy gives

(a-18) LHS= (%2 ~) ~a (42, ) 1 — ) Syoe ~ Bau

RHS can be written as

(A-19) RHS= - [Z)Z)YH & DE—i) Z)Z)yj Li-1(&—j ®&—i)

asyji = Opyyne fori, j < 0. Bringing the sums together and applyi2§)

1 (o] [e¢]
(A-20) RHS=-p S®S) (e @i
B3 3 (559) ey oa)

which, using the mixed product ruf&,can be rewritten as
(A-21) RHS= Bzz Z) Sigr—j) @ (S&—i)
j=0i

Applying the definitions = [y_; u]]’

1 0 [ 0
RHS= 5[32 <[ nlﬁ;ne] €&+ Hﬂ €1+ %12} &2+ ) & <[ nlf;ne] & + [Kﬂ €1+ Rz] &2+ )

and from @2)
1 1
YY) o [ [Ma-Y
Ut Ut

Combining LHS with RHS yieldsgg) in the text.

(A-22) RHS= %Bz

A.3.2 Proof of Corollary 5.2

Note firstly that
®[2
Vv {Onyxl} V9] & {Onyxl} Vi~V
Ut U Onex1 Ut Onex1
WPy o | Y {Onyxl}
Onex 1 Onex 1 Onex 1 Ut
Onyxl yt( )1 y [Onyxl] [Onyxl]
+[ut} Ot | L w |7 u

35See, e.g., Brewer (1978, p. 773)
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(e ) ot ™) () o
c([o To Pl ) (s] o ) + ([] e [ol 1) (1 )

using commutation matrices, the final term in the foregoiag loe “commuted” as

(A-24) Knynenyneq ny ]® {O”VX”GD (| -y ®[u])

(A-23)

Onexny Ine
Thus
(1) =12 | ®[2] 9[2] 0 ®[2]
Yio1—Y _ ny (G- hyx ne ®[2]
] () ) b ) (] ) )
I Onyx
(A-25) + (Inyne+ Knynenyne) ([Onen:ny} ® [ nli,ene}) ([yt(i)l —y] ® [Ut})

As B, is symmetric with respect to the Kronecker operafor,

[2
(A-27) B2 [yt(l)at‘ﬂ R ([ 5] ™) + Baza (0] ) + 222 [y 5] o [u])

_ Iny =l _ Onyxne =l _ Iny Onyxne
wherefs 11 = B2 Onerny , B222=B2 - , B212=Be Onenny @

Equivalently to Kim, Kim, Schaumburg, and Sims (2008, p.®40 (88) can be written
(yt(z) —37) =a (y(i)l —)7) +(1— O()%yoz + Btk + %[32,11 ( [y(f)l - )7] ®[2])
(A-28) +B2,12 ( [y(f)l — y] ® [Lﬂ) + %[32,22 ( ] ®[2})
A.3.3 Proof of Proposition5.3
(1)

Denote the first-order solutiorR®), asy;™’; the second-order solutiorJ), yt(z); and the third-order

solution, 65), asyt(s). Evaluating and rearrangir)és) — O(yt(f)l yields

(3) . 1 0 1 0 0
Yo =Y —35Ye2— ) Vift-i— 5 Yji(&—j®@&_i)
t 2 o i; I [ Zj;i; K j i

36That is, B, = B2Knynenyne @lso solvesZ7): (recalling f,2Kany-+neany-+ne = f,2, see footnotd9.)

(fy+ fyﬂL a)B2Knynenynet fy+ B2(81 ® 81)Knynenyne= — fy2 (Y1 ® Y1) Knynenyne
(fy+ fy+ a)Bz+ fy+ B2Knynenynd 01 ® 81) = — f,2Kanyneanyt+ne(Y1 ® Y1)
(A-26) (fy+ fwd)Bz—i— fiB2(d1 &) = —fe(y1®@v1)

37Except for the absence of the accumulating térm o) modifying the termo? in their version.
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_ 1 e
—a<y§f)1—y—§yoz—_%y.et i 1——%%%. €t j-1 @8- 1)>

[oe]

1
y20 —UYg2,i 10)€t|+— Yiji — AYk—1,j-1,i— 1)(5t KQE— | DEj)
3 3, 0 PPBA

The left-hand side of the foregoing can be rewritten as

2]
1 1 m A°
(A-29) W —ay’ - (1-a) (v— éycz) ~Bik + 5B ([y‘ﬁt YT )

(1)
the first sum on right-hand side éﬁo ytat_ﬂ and the final term on the right-hand side as

100 00 00

%%[333(“ Sk D E—j Q&)
k—Oj

SRS ®S
_ D S ®S e
(A 30) = k_OJ%%BS SJ®Sk) ngneZ(lne®Knene> (St—k®8t—l®€t—l>
S®Sj;

which, noting the properties of the commutation matriceskmawritten
((S@t k) ® (Sjet ])) (Sét-i)
12 & o Sj(E—k @ E— j) ® (S&t—i)
A-31 = —
( ) 6 Z ;)i: Ps (Sjst |)®(S( €tk & Et—i )
(Scet—k) ® (S]I Et—j X E—j )
partitioning 3 comfortably, exploiting the commutation matrix, and ngtithe results from the

proof of propositiorb.1 at the beginning of this appendix

L
21[331 yt(*)l_y
6 Ut

(2)

_ 1 va
(A-32) += [[33 2Kny+(ny+ne)2 ny+ne T B33+ B3 4} [yt_lﬁt_)%l ®

®[2]
1 yt(i)l_y
2l

Finally, noting thai3z 2Ky, (ny+ne2,ny-+ne B33, andPz 4 all solve the same Sylvester equafidn

2 — 1 —

W=V 3o — (22— Y)

v
VY]

R
1 (Yio1Y
21w

NN b
A-33 e T R Rt
(A-33) 683’1 [ n T Baa

Putting all the pieces together yieldXly.

383ee footnot@6, the Sylvester equation f@3 2Kiy 1 (ny+ne)2.nyi ne €aN be rearranged analogously.
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Impulse Response of k to a 1 Std. Dev. Shock in e
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(b) Consumption

Figure 1: Impulse Responses to a Technology Shock, Modetctidh4.2, Variables in Logs
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Deviations

Impuise Response of k to a 1 Std. Dev. Shock in e
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Figure 2: Impulse Responses to a Technology Shock, Modetctich4.2
Blue:y=1, Redy =5, Greeny= 10
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Second-Order Component of ¢ at Time t

Second-Order Component of k at Time t

Second-Order Kernel of k with Respecttoe and e
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Shock in e at Time t 0 0 Shock in e at Time t-i

(a) Capital

Second-Order Kernel of ¢ with Respectto e and e
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Figure 3: Second-Order Kernels, Model of Sectdb
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Third-Order Kernel of k with Respect to e
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Figure 4: Third-Order Kernels, Model of Sectidr?
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Second-Order Contributions from Two 1 Standard Deviation Shocks, Spaced 50 Periods Apart
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Figure 5: Second-Order Contributions to Impulse Respottsadechnology Shock, Model of
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Figure 6: Impulse Response of Labor to a Technology Shock
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Figure 7: Impulse Response &f to a Technology Shock
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S Impulse Response of k o a 1 Std. Dev. Shock in sigma,

x 10
4 T T T
35 B
3 i
Third-Order Accurate
25 — — — Second-Order Accurat
g — — First-Order Accurate
g 2 i
H
3
o
15 B
1 i
05 B
0 ! I ! ! | I I
0 20 40 60 80 100 120 140 160
Periods since Shock Realization
First-Order Component Second-Order Component Steady-State and Constant
1 1 3.1417
05 05
2 2 31416[— — = = o
s S
g o g
H H
8 8 31416
-05 -05
plus Risk Adjustment
-1 -1 3.1415
0 50 100 150 0 50 100 150 0 50 100 150
Periods Periods
x 10 Risk Correction to First-Order Third-Order Component
4 1
3 05
2 2
S S
82 g
H H
3 3
o [=}
1 -05
0 -
0 5 100 150 0 50 100 150
Periods Periods

Figure 8: Impulse Response of Capital to a Volatility Shaok,ogs
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Figure 9: Impulse Response of Consumption to a Volatilitgc in Logs
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Impulse Response of y

to.a 1 Std. Dev. Shock in sigma,

160

x 10
25 T T T
2 i
Third-Order Accurate
15k — — — Second-Order Accurate|_|
g — - — - First-Order Accurate
2
H
a
1 i
05— B
0 ! I ! ! | I |
0 20 40 60 80 100 120 140
Periods since Shock Realization
First-Order Component Second-Order Component Steady-State and Constant
1 1 0555
05 05 osssf” T T T T T T T T
2 g 0555
s S
g o g 0.555
3 3
a a8 0.555
-05 -05
0.5549 plus Risk Adjustment
-1 -1
0 100 150 0 50 100 150 0 50 100 150
Periods Periods
x 10”" Risk Correction to First-Order Third-Order Component
3 1
05
22 2
S S
g g
3 3
a1 a
-05
0 -
0 5 100 150 0 50 100 150
Periods Periods

Figure 10: Impulse Response of Production to a Volatilitp&4 in Logs
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Figure 12: Impulse Response of Labor to a Volatility ShooK,ogs
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Figure 13: Impulse Response®to a Volatility Shock
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Second-Order Kernel of k- with Respect to sigma _ and e
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Figure 14: Second Order Cross Kernel of Capital to Volgtadihd Technology Shocks, in Logs
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Figure 16: Simulation of Production, Logarithms
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Figure 17: Simulation of Investment, Levels
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Figure 18: Simulation of Technology and Volatility, Logims
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Figure 19: High Risk Aversion and Low Volatility Simulatiari Capital, Logarithms
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Figure 21: Euler Equation Errors, First-Order ApproxiroatiAruoba, Fernandez-Villaverde, and
Rubio-Ramirez’s (2006) Baseline Case
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