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Abstract

We introduce a Reversible Jump Markov Chain Monte Carlo (RINC) method to Bayesian
DSGE estimation. The method enables us to sample from arpystistribution spanning nonnested
models with parameter spaces offdient dimensionality. We use the method to jointly sam-
ple from an ARMA process of unknown order along with the agged parameters. We apply
the method to a canonical neoclassical growth model usisgwar US GDP data and find that
the posterior decisively rejects the standard AR(1) assiomjor the mean reverting technology
process in favor of higher order processes. While the postewntains significant uncertainty re-
garding the exact order, it provides tight posterior crexlgets over the impulse responses. At the
same time, the responses are hump-shaped. A negative sespidmours to a positive technology

shock is within the posterior credible set when non-inbéetMA representations are considered.
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1 Introduction

Despite recent advances in improving the fit of DSGE modedlsaaata, misspecification remains.
In his Nobel Prize Lecture, Sims (2012) observes that “DS¢itsd be made to fit better by adding
parameters allowing more dynamics in the disturbanceskéwise, Del Negro and Schorfheide
(2009) identify three approaches to deal with misspecibaain rational expectations models:
ignore it, generalize the stochastic driving forces, oaxehe cross-equation restrictions. Apart
from more or less ad hoc approaches, such as Smets and W(RQ6& who have the price-
markup disturbance follow an ARMA(1,1) process and Del iegrd Schorfheide (2009) who let
government expenditures follow an AR(2) instead of an AR{bcess, the literature has not yet
provided a systematic, Bayesian framework to address fnsoach to misspecification. We fill
this gap by providing a fully Bayesian approach to estingathre order as well as the parameters
of generalized (ARMA) representations of exogenous dgvarces within DSGE models.

To accomplish the task, we adapt the Reversible Jump MarkainMonte Carlo (RIMCMC)
methodology as pioneered by Green (1993IMCMC enables the sampling from a posterior
distribution spanning several, not necessarily nestedietsovith parameter spaces offdrent
dimensionality. In our case, each model is identified by &ifpeset of orders for the lag polyno-
mials of the autoregressive and moving average compongtiie disturbances, each leading to a
different parameter space. This approach provides a framewotkd systematic exploration of
the fit of DSGE models using fiierent structures for the shock processes which provides)ao
tationally feasible alternative to estimating alffdrent possible combinations of shock orders in-
dividually. Additionally, it allows us to quantify posten model uncertainty and its consequences
for impulse responses and correlation structures whilegoagnostic regarding the order of the
underlying shock processes. Finally, if multiple shockes legpt independent while generalizing
their individual autocorrelation patterns, the result@sgimations admit a structural interpretation
of the shocks that can guide the researcher in identifyingeaflimensions along which the model

requires the most additional internal propagation.

IMarkov Chain Monte Carlo methods have become increasingpular for the estimation of DSGE models in
recent years. See An and Schorfheide (2007) for a methoidalogview.

2]t may furthermore be possible to construct model seledtiiteria based on the comparison of the spectrum of
variables of interest derived from estimates of the posterith the spectrum using only pure white noise shocks
giving a measure of how much structure has to be added to tleloatside of economic theory, an idea along the
lines of Watson (1993).



The RIMCMC method rests on modifying the proposal ratiokéacceptance probability to
circumvent the dimensionality mismatch induced by sangpfor ARMA processes of dierent
orders. We find that the RIMCMC provides point estimates@®RMA orders with a reliability
comparable to traditional order selection criteria sucAks AICC, and BIC. Yet, RIMCMC is
of primary interest for its posterior distribution oveiffégrent ARMA orders and not for its point
estimates of the orders. After confirming that RIMCMC wouwd-ectly identify the ARMA order
using synthetic data generated from the AR(1) technologggss traditionally assumed in the
specification of the neoclassical growth model, we turn togdSt war GDP data and estimate the
order and parameters of the technology process. We findhbaddta prefers higher order—at
the mode, ARMA(3,0)—exogenous processes. The resultipglse responses are hump-shaped,
differing thus qualitatively from the responses to the trad#@lcAR(1) process. From a DSGE
likelihood perspective, there is, without a commensuraier gpecification, no reason to prefer
invertible or “fundamental”’ representations in the preseof MA terms; in sampling from the
covariance equivalent representations for draws of therongth nonzero MA order, we find a
downward shift in the amplitude of the impulse responses elt a8 an overall increase in the
posterior uncertainty regarding the impulse responsesiddgenous variables to a technology
shock. Interestingly, we cannot exclude the possibilitsg okgative response of hours to a positive
technology shock.

This paper is organized as follows: We first introduce ourhradology and shortly illustrate
the method by constructing a sampler for a univariate agtessive model of unknown order.
Afterwards, we present the results of a small Monte Carldystiesigned to gauge the power of
the method for identifying univariate autoregressive mgvaverage models using synthetic data.
We then lay out the solution method for DSGE models with shardcesses of unknown order
and briefly discuss our approach to likelihood evaluatiamstly, we apply the method to post war

US data and the neoclassical growth model.



2 Reversible Jump MCMC for ARMA Processes
2.1 Reversible Jump Markov Chain Monte Carlo

In this paper, we adapt and apply the Reversible Jump Mark@irCMonte Carlo (RIMCMC)
methodology pioneered by Green (1995). RIMCMC generatizedvietropolis-Hastings algo-
rithm (Hastings 1970) to allow for moves between paramgpaceas of varying dimensionality
while maintaining detailed balam%.‘l’his transdimensionality allows for inference on a posteri
distribution spanning several, not necessarily nestedletso In the following, we will illustrate
the mechanics of RIMCMC starting with a short descriptionarfventional Metropolis-Hastings
samplers to fix ideas before turning to the construction adrafgder for univariate autoregressive

models of unknown order using an RIMCMC appraach.

2.2 Conventional Metropolis-Hastings Samplers

Markov Chain Monte Carlo (MCMC) methods in general provideples from some probability
distribution of interest by constructing a Markov chain whatationary distribution is this distri-
bution of interest. A Markov chain with the sequence of stgtesy, ... is specified in terms of
the distribution for the initial state; and the transition kernd{(-) that provides the conditional
distribution of a state;.; given the current statg. That is, the probability thag,,; is in some set

A c RY given that the current state of the chaimiss given by
(1) K(s, A) = P(si11 € Alsi = 5)

3A more extensive treatment of Metropolis-Hastings sansptan be found in Chib and Greenberg (1995). See
also Tierney (1998) for a comparison of RIMCMC and conveatidletropolis-Hastings kernels. Another popular
MCMC method is the Gibbs sampler which is a special case ofdygetis-Hastings samplers and ultimately RIMCMC
samplers. See Gelfand and Smith (1990) for a review and caosepaof Gibbs samplers as well as importance
samplers and stochastic substition. A Gibbs sampler has &gglied to the estimation of autoregressive models
in Troughton and Godsill (1998). For applications of Bagesinethods to the estimation of DSGE models see e.g.
Fernandez-Villaverde and Rubio-Ramirez (2004) or tmeesuin An and Schorfheide (2007). Geweke (1998) provides
an overview over Bayesian methods and their applicatioesdmomics.

4Several authors have applied RIMCMC to the problem of etitiganivariate autoregressive (moving average)
models, e.g., Brooks, Giudici, and Roberts (2003), BrookkEhlers (2004), and Ehlers and Brooks (2008).Relatedly,
different approaches to statistical models of varying dimeadity have emerged; such as birth-death Markov Chain
Monte Carlo, based on continuous time birth-death prosesse initiated by Stephens (2000) and applied to the
analysis of autoregressive moving-average models byppkil{2006). A summary and comparison of these methods
can be found in Cappé, Robert, and Rydén (2003).




A distributions is invariant for some Markov chain if the transition kernétlee chain satisfies

@ | K. mterds = [ atords

for all subsetsA of the state space. The task in MCI\j/I[C methods is to construetraeksuch that
the distribution of interest is invariant with respect to the Markov chain definedK§). The
expression in[{2), however, is not practically useful fag tonstruction of an appropriate kernel,
as the verification of{{2) would involve integration over tiknown distributiont being sought
with the MCMC method.

One widely used approach to overcome this apparent hurelgoacalled Metropolis-Hastings
samplers, as laid out first in Metropolis, Rosenbluth, Rbkeh, Teller, and Teller (1953) and gen-
eralized in Hastings (1970). Metropolis-Hastings sangpsee accept-reject samplers for which
proposals for a new state of the chain are drawn from somelisony to be chosen by the re-
searcher and then accepted with an appropriately deriashpility . With Metropolis-Hastings
samplers, the stronger condition of reversibility or dethbalance is imposed, which guarantees
thatr is invariant for the Markov chain. This condition holds if egsience of two states;i(s;i,1)

has the same distribution as the reversed subckain{;) whenevek;, ¢i,1 ~ =, i.e. if

© [ r@KEB%= [ x6)KE M
for all subsetsA, B8 c RY. ﬂéondition 3) is moreB easily verified and can thus provideastisg
point for the construction of a sampler.

A general Metropolis-Hastings algorithm can be written@ks: Let agains denote a state
of the Markov chain, in the case of Bayesian inference in tmgext of model estimation, the state

is just the vector of model parameters and the distributfanterest is the posterior distribution

(4) n(s) o< L(c)p(s)
whereg denotes the vector of model parametefss the likelihood of the data given the model
and its parameters andis the prior over the model parameters. To obtdisamples from the
posterior distribution, the following algorithm is run:
1. Set the (arbitrary) initial statg of the Markov chain
2. Fori=1toN
(@) Sete=¢i1

(b) Propose a new state from some proposal distribut{ofi’)



(c) Accept draw with probability
a(s,¢’) = min(L, x)
with
L&) ple)  vle)

Likelihood Ratio  Prior Ratio Proposal Ratio

(d) If the draw is accepted sgt= ¢’. If the draw is rejected set = ¢

This algorithm defines a transition kernel such that the Markhain has the desired invariant
distribution. The sequence of states of the chain is themglgafrom this distribution of interest.
The acceptance probability corrects for diferences between the proposal distributyosnd the
distribution of interest.

The kernel in the above is given by
) K6 8) = [ #(65dal. )’ + 1= [ ¥(s'date )
B B

Probability of moving to seB Probability of rejecting the move an¢8
wherel, = 1 if ¢ € 8 and zero otherwise giving the probability of moving to sorabsets of

1

the parameter space conditional on the chain currentlygbaig. The crux when constructing
the kernel is to define the appropriate acceptance protabiind the proposal distributionso
as to satisfy the detailed balance condition and therebyagtee the convergence of the Markov
chain to the desired probability distribution. Indeed,qging in the formulation of the kernel
from () into (3) gives an expression from which, given thegmrsal distributiory the appropriate

acceptance probability can be readily derived using Peskun’s (1973) recipe.

2.3 Reversible Jump MCMC: AR(p) Order and Parameter Sampling

To fix ideas, we will derive our transdimensional random wsdknpler implementation of the
RIJMCMC for a univariate zero-mean normally distributed ARfiodels of unknown order. Our
derivation follows the exposition of Waagepetersen an@ssen (2001). Such an AB(model is

defined as

(6) yi =Py +PhYio+ ...+ Phyip+a &~N(0.07)

SNote, that in the case of a standard random walk Metropadistiigs sampler with symmetric proposals, i.e. a
Metropolis sampler, the proposal ratio reduces to one.



PP are the cofficients of the lag polynomial of ordgy associated with théth lag ande is a
zero-mean stochastic disturbance. DenotéPBy= (PP, PP, ..., Pp} the vector of parameters of
the AR(p) modeIH We would like to construct a posterior distribution over threlers, p, and
associated parameteR), given observations oy.

It is sensible to interpret the order of the lag polynonpads a model indicator. We will
use the terms model indicator and polynomial or lag ordesrafitangeably. The aim is now to
construct a sampler for the joint posterior distributiorothe diterent models indexed by and
their parameters. The strategy closely resembles that &rddolis-Hastings samplers. Indeed,
Metropolis-Hastings samplers are a special case in the RIM@amework. For expositional
purposes, it is convenient to express the state of the Mackain that we will construct in the

following manner

7) s=(p,P")
explicitly including the order of the autoregressive palygmal p in the state.

The detailed balance condition poses the main obstacleetdrémsdimensional sampling’s
construction of a joint posterior distribution over potatly nonnested models with parameter

spaces of varying dimensionality. Recall the detailedraacondition[(B),

®) [ @KEB%= [ x6)KE M

Unlike in the foregoing seg{ion, the dimensiorxogctan change. l.e., the state space of the Markov
chain spans parameter spaces witfieding dimensionality—for a sampler for AR models of
unknown order, whep changes so does the number of parameters. Here, the usitiedgtior the
derivation of the acceptance probability will fail. Gredr®95) proposed modifying the proposals
in such a way that the integrals on both sides of the detadé&xhioe condition are over spaces of the
same dimensionality by introducing an auxiliary proposaiableu together with a mapping,y

that maps the auxiliary proposabnd the current state of the chain to the new proposed stage. T
mappingg,y is chosen such that the dimensionality of the integrals dh binles of the equation

is inflated to some higher common dimensionality.

In order to be able to easily verify adherence to detailecri@ for a move from a state

(p, PP) to (p’, P¥) the vectors of Markov chain states and the random auxipaoposal variables

5The standard deviation of the disturbarger, will be taken as given in the exposition of this section, timtain
the focus on the ordep, and the associated part of the parameter vectors is lefigitp



(PP, u) and PP, ) must be of equal dimension. This dimension matching caminsures that
7(PPIp)ypp (PP, u) and n(P”|p")yyp(PP, u) are “joint densities on spaces of equal dimension,”
(Waagepetersen and Sorensen 2001) allowing an applic#taochange of variables in the detailed
balance equation to facilitate the construction of theditaon kernel of the Markov chain. Here,
Yop (PP, ) is the proposal density for the auxiliary variabigoing from an AR model of ordep

to one with ordep’ which may also depend on the current parameter vé&ttor he proposed new
orderp’ is drawn from some,(p’|p) and the joint proposal densityj&¢) = ypp (PP, U)yp(P'IP).

In our implementation of the method, we use the followingiestentiable bijection fog,y

pp’ _ p _ A(p’ p/)p’xp |p’><p’ pP
(9) [ u ] - gp[y(P ’ U) B [ |p><p Opxp’ u
where
[OIDXD ] ifp>p
(10) A(p, p/) — (P’ -p)xp

(1w Owxip-y| i P/ <P
[Ip’xp’] |f p, = p
This mapping leads to the transdimensional analog of asftélupdating random walk sampler.

Proposals for “newly born” parameters, i.e., thd%’éfor i=p+1,...,p, are centered around
zero. If p’ < p the parameter vector is truncated and proposals for thesenpters are centered
around their previous values. Fpr= p this mapping gives a standard random walk sampler.

The detailed balance condition holds if
(1) [ 7@0(s8)dP = [ 5) Qs ) aP”
for all subsetsA, andBp,p of the parameter spacep,s associated with autoregressiveopoials of
orderp andp’ respectively and where

Q(s.8y) = fB Y(s'Ip, PP)app (s, ¢7)ds’
o

is the first part of the kernel ink5), i.e. the part of the cdioghal distribution of¢” associated with
acceptance of the proposal.

Implementing the change of variables with the mapgpg, the detailed balance condition is

satisfied if

(12) 7(5) vp(P'IP)ppYpp (PP, U) = 7 (s") ¥p(PIP )y pYp p(Gpp (PP, W)

where the details of the derivation can be found in the append

’See also Waagepetersen and Sorensen (2001).



Following Peskun (1973), we set the acceptance probahility, as large as possikﬂe,

13) oy = Min (L xpp (s 5")
with

4 / / ’ Pp,
(14) Yo (o6 = 28l 7e(PIP) Y p(Gop (PP, 1)

2 &) aPIPypn (PP

Likelihood RatioPrior Ratio Proposal Ratio
Having chosen an appropriate acceptance probability totaiai detailed balanced, we can now

implement the procedure.
The RIMCMC algorithm for our AR{) model with unknown ordep is then as follows
1. Set the initial statey of the Markov chain
2. Fori=1toN
(@) sets =¢i1
(b) Propose a visit to mod@ with probabilityy,(p’|p)
(c) Sampleu fromy,y (PP, u)
(d) Set P, ) = gpy (PP, U)
(e) Accept draw with probability
a = min (1,)(pg(g‘, g"))
Xpp is defined as in (14)
() If the draw is accepted set = ¢’. If the draw is rejected set = ¢
The sequence of states of the resulting Markov chain theroappates the joint posterior over all
models indexed by their ordgrand the corresponding parameter vectors.
The application to moving average models follows by analagg the extension to autore-
gressive moving average (ARMA) models is straightforwal such an extension, one simply
defines the model indicator as a two-element vector, progasot only visits to some model with

autoregressive ordey but also for a new order for the MA-polynomigl.

2.4 Imposing Stationarity and Invertibility on ARMA( p,q) Sampling

For many applications, itis desirable to restrict the patmmspaces of ARMA processes to ensure

stationarity angbr invertibilityH In order to constrain sampling to these invertible and ity

8Which, as noted by Green (1995), is “optimal in the sensedaicing the autocorrelation of the chain.”
9For the DSGE application in sectiops 5 ddd 6, we will requiegisnarity of the exogenous driving forces. In
section[ 6, we will examine the consequences of imposing bimmposing invertibility on MA components, should



regions of the parameters spaces of each model, we repaimeibe AR (and MA) polynomial
in terms of its (inverse) partial autocorrelations (PAGs)awing Barndoft-Nielsen and Schou
(1973), Monahan (1984) and Jones (1987). If the (inverseijgbautocorrelations are between -1
and 1 the process is (invertible) stationary.

First, we generalize the AR] model to an ARMAp,q) as follows
(15)  yi =Pl s+ Phio+ ..+ PR+ 6+ Q%+ ...+ Qf%q, &~ N (0.07)

In order to recover the cdigcients of the AR polynomials, the following algorithm is tun

1. Introducep* = (p¥.....p¥).k=1.....p

2. Drawr =r4,...,ry, forr; € (0, 1) partial autocorrelations

3. Setpl! =1,

4. Run the recursion
p® = pD rplD = 1 for ... k-1

with p¥ = rfork=2,...,p

5. SetPP = p(P
The MA codficients are recovered analogously, where the inverse pauti@correlations substi-
tute for the partial autocorrelations, in the foregoing. Ultimately, instead of proposing AR(MA)
parameters directly, (inverse) partial autocorrelatiares proposed in their place from which the
parameters are then recovered. This will obviously netassihe formulation of priors over (in-

verse) partial autocorrelations instead of parameters.

3 RIMCMC ARMA Order and Parameter Estimation: Monte
Carlo Evidence

We examine the performance of the RIMCMC method for ARMA psses of unknown order
introduced in the foregoing section by carrying out a Monéel@€experiment. We generated 100

time series with 100 observations each from the following3,2) process:

Vi = —0.75yt_3 + & — 1561+ 0.5625%_5, & ~ N(O, 152)

they exist, on impulse responses.



For each time series, 1,500,000 draws were generated vatRIMCMC procedure. The first
1,000,000 draws were discarded as burn-in. The first stateeathain was set to white noise with
unit standard deviation, i.ep = g = 0 wherep denotes the autoregressive ordethe moving
average order, angd = 1. Our metric for model choice is in accordance with-a@ loss function,
selecting the model at the mode of the posterior distriloutieer (o, ). It should be noted that
one of the strengths of our method, of course, is the abityuantify posterior uncertainty over
models directly, such that model uncertainty can be inaafed in the calculation of posterior
credible sets over impulse responses, correlations ates;tor the like, providing more than just
a point estimate of the model order.

We compare the model choice of our method with the choice$dhew from using the Akaike
Information Criterion (AIC), the corrected Akaike Infortnan Criterion (AICC), and the Bayesian

Information Criterion (BICE These are defined as

AIC = 2k-2In(£), AICC = AIC + %

with k being the number of model parameters anthe number of observations. denotes the

BIC = —2In(£) + kIn(n)

maximized likelihood value of a model, i.e., for given ARMAdersp andg.

All three standard information criteria penalize for themher of parameters in the model.
This feature is also present in the posterior of our RIMCMG@hwe with proper priors over the
(inverse) partial autocorrelations. Increasing the oadesay, an autoregressive model and setting
the new parameter to zero gives a model identical to the guevone with lower order; hence, does
not change the likelihood. Yet, the posterior with the addil parameter is penalized as the prior
probability assigned to the value of the new parameter idlenthan one, yielding a posterior

probability lower than with the original, lower order.

3.1 Priors and Proposals
Table[l summarizes the priors and proposals used in the MGarte study.
[Table 1 about here.]

We choose a uniform prior over the AR and MA orders, restiggthe highest allowed order to 10

for both the AR and MA polynomials. Proposals for the AR and Br8lers are taken to follow a

Ocalculations for the three standard measures were camuitagsing the R package auto.arima.

10



discretized Laplace distribution, LaplaceDi), with location parametey;, and shape parameter,

b, such that
(16) Yp(P'Ip) o« exg—blp — p’|) with p’, p€ [0, 1,...,10]
@ Yo(d'l0) < exp(—blg - q'[) with g’,q € [0, 1, ..., 10]

For the (inverse) partial autocorrelations, our prior isiatated normal distribution, TN(o, -1, 1),

with location parametey;, and dispersionr, and truncations at 1 and -1, imposing invertibility and
stationarity. For the proposal distributions, we center(ihverse) partial autocorrelations around
their previous values and new the (inverse) partial autetations are centered around zero, sam-

pling from a truncated normal distribution restricted te thvertibility and stationarity regions.

3.2 Likelihood

For the ARMA (p, g) model introduced in(15), we employ the Kalman filter to enzibd the log

likelihood, InL ({yt}tT:1 X g‘), as a sequence of conditional log likelihoods
T

T
T 2L 1

a9 nL(olaie)= Yl is) - 5 [lnwt + 2 in(en)

where the last equality follows from the assumption of ndmyl;athe sample sizei¥ = 100;v is

the innovation in the current observatian,= [ytl {y,} ] andw; the conditional variance

il

of this innovationw; = E
The innovation and its conditional variance are recoverenhfthe Kalman filter recursi@

where we follow Harvey (1993, p. 96) in setting up the recansor ARMA(p,q) processe@ The
state equation is
(19) W1 = AW + Re, & ~ N(0,0?)

and the observation equation is given by

(20) Yt =
where
(21)
Pr?ﬁl Im-1 p.q [eX¢ pa | P p.a]’
Z=[1 Opma|. A= o o 1 Pra, =[PP ... PR, R=[1 QM ... Qi

for m = max(, g+ 1).

HSee, e.g., Anderson and Moore (1979).
12See de Jong and Penzer (2004) for an overview of alterna¢esgtace formulations of ARMA models.

11



3.3 Results

We report the proportion of correctly identified models ibl&éd2. The performance of the RIM-
CMC method fits comfortably in the set of traditional infortiea criteria. An increase in the
number of the draws from the posterior could further imprtheeperformance of our implemen-

tation.
[Table 2 about here.]

Additionally, as the RIMCMC method provides a complete abi@rization of the posterior
distribution over models, we can explordfdrent measures of posterior uncertainty over models.
For example when the true model was not selected, figure ttsephistogram of the proportion of
posterior mass assigned to the true model relative to thepasmass at the mode of the posterior
over (p, g) for all cases in which the wrong model was selected. In a f@ses no posterior mass
at all was assigned to the true model. This might either bet@men-convergence or “bad luck”
in the sense that the realization of the observations etelilsitatistical properties far from those of

the true model.
[Figure 1 about here.]

Likewise, for when the true model was selected, we can egplar strength of the evidence in
favor of the mode selected. In figure 2, we show a typical pmstever (p, g) randomly selected
from the set of chains for which the posterior mode is at the tnodel. While there is some
posterior uncertainty regarding the orders of the polyradsnithe method clearly rejects lower

orders than the true ones.
[Figure 2 about here.]

Of course, the ability of the method to estimate the pararseibthe model along with the
order of the model is of importance. Figlide 3 reports thensee means of the parameter draws
of the model parameters conditional pn= 3 andq = 2. These values clearly converge close to

the values underlying the data generating process.

[Figure 3 about here.]

12



In conclusion, our method exhibits roughly the same perésroe as classical methods con-
cerning order identification while providing a complete fgo®r distribution over parameters and
model orders that can be used for the posterior analysisatétsts of interest. We are interested
in posterior statistics of DSGE models such as impulse resggand correlation structures and

will now turn to a DSGE setting and apply the RIMCMC methodehe

4 DSGE Models with Generalized Exogenous Processes
4.1 Class of Linear DSGE Models

We will consider linear(ized) DSGE models that can be exqgdsompactly as

(22) 0=E|AX1+BX+CX_1+DZ

Nyx1 nzx1
where the vectok; collects the endogenous variables and the vegttine exogenous variables.
Instead of the standard assumption of independent AR(Xegees for the elements of the vector
Zt we shall allow each element & to be driven by an independent ARMA(p,q) process, whose
ordersp and q along with whose parameters we shall estimate using the RI®I@lgorithm

developed in sectidn 2.

4.2 Multiple ARMA(p,q) Processes

The method laid out in sectidn 2 extends straigthforwardlgnultiple autoregressive moving av-
erages of finite ord@ Specifically, we assume that each exogenous process caprbsested as

a finite order ARM

(23)  Zi=pirZa+pi2hi2. .-+ Pipdip Yot Yil61- .- T Yighig, 6t~ N(O, o_iz)

3Notable exceptions are Clrdia and Reis (2010) and Chahip&eand McGrattan (2007), who let their vector of
disturbances follow a vector AR(1) process, and Del NegbSchorfheide (2009) and Smets and Wouters (2007),
who let two of their seven disturbances follow ARMA(1,1).

4We will examine multiple ARMA processes instead of VARMA ¢¥er autoregressive moving averages) both to
maintain the structural interpretation of the shock andrtidathe proliferation of parameters and reparametennati
see Monahan (1984), needed to guarantee stationarity ionfgocesses.

15 We adopt the convention that sums that terminate with anxisdealler than that with which they began are
empty sets. For example,if = 0 in (23) for some; Zj‘flpi,,-zt_,- = ( such thatz in this case would be

Zit = 7Yi0€it T Vil€it-1... T Yig6€it-q

13



We assume that the processes[in (23) are stationary andilitl@ens we summarize in the
following
Assumption 4.1. The roots of the polynomial
(24) i (A) = AP = p AP+ 0 A2+ i
are all inside the unit circle. That is, there exists isuch thaf; (1) = 0 where|1| > 1.

Expressed in vector form, the exogenous processes canlbetedlas

(25) Zi = P11+ Plip. ..+ Pplip+ Inzei1 + Q€. ..+ Qg & ~ N(0,X)

wherepis the highest autoregressive orde= max({p;})) andqthe highest moving average order
(g = max({g;})) among the exogenous processes. The covariance magidiagonal, collecting
the variances of the individual processes along the didgeBa= diag(a-f, 5. ,a-ﬁz). The
stationarity and invertibility of the individual processm assumptiof 411 transfers to the vector
process[(25), as we state formally as

Lemma 4.2. The latent roots of tha matrix

(26) In, AP — P1AP L+ PAP 2+ P,

That is, there exists no such thatdet(P (1)) = 0 where|| > 1.

Proof. Follows directly from assumptidn4.1. O

4.3 Recursive Solution

We will solve for a recursive solution for the endogenousalaes in the model(22) using a
method of undetermined cfieients approach. Give (25) arld22), the state variabldbeof
model are
(27) {X1.20Zc0, . Z oy € €t 6 (o)
wherep’= max(p, 1)

While we could redefine the modél(22) to include the entiatesvector[(2]7) as endogenous
variables to bring the model into the canonical form of, €iyns (2001) or Klein (2000), doing

18This follows directly from[[25) expressed in first order vadiorm

Z zZ, . Zpy € €1 - a@d| =PP[Z, Z, ... Z, €, €, ... ad +QQa

for appropriatePP and QQ matrices. The left hand side of the foregoing is then theesurexogenous state vector.
The casep = 0 is permitted througlp,"which ensure&; remains on the left hand side of the foregoing despite the
indexing convention laid out in footndiell15.
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so would significantly increase the computation costs wvewlin the QZ decomposition for the
state transition and the Sylvester equation for the impaattimnof shocks. The solution for the
endogenous variables is, accordingly, given by

(28) X = AXeq+ PoZ + P17 1. .. + Dy 1Z 5y + Oper + Or61. .. + O 16 (1)

where

(29) (A, @, ®1,...,D51,00,0,...,044]

are the unknown cdgcients that we solve for.

We will make the following two assumptions that correspoadhe Blanchard and Kahn’'s
(1980) order and rank conditions to guarantee a uniqueestidlition. The order condition as-
sumes a full set of latent roots with half inside and half @l@she unit circle
Assumption 4.3. Order
There exisPn, latent roots of A%+BA+C—thatis, p+rank(A) finited e R : detA1? + BA+C =0
as well as R — rankA infinite A——of which r lie inside the unit circle and poutside.

We then assume that a solution, or solvent, can be constraotegaining these stable roots
Assumption 4.4. Rank
There exists arh € R™™ such that A? + BA + C = 0 and|eig(A)| < 1.

Thus, A is the unique solution to the matrix quadratic equa#ox? + BA + C = 0 whose
eigenvalues coincide with the stable latent roots of theltatac A matrix A1? + BA + C

Under the order and rank assumptions, as well as the statipaasumption on the exoge-
nous processes, the modell(22) has a unique, stable splatome summarize in the following
proposition
Proposition 4.5. Let assumptioris 4.8, 4.4, and}4.2 hold. There exists a unstaigle solution(28)
to (22). The cogicientA in (28) is the solvent of assumption¥4.4, theﬁo'ents{@o, O..., ®q_1}

7See Lancaster (1966), Dennis, Jr., Traub, and Weber (1876 )igham and Kim (2000) for detailed analysis of
matrix polynomials and matrices, as well as Lan and Meyer-Gohde (2012) for an agijic to DSGE models.
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for g > O solve

0 =A (A@o + (I)le + @1) + B@o

Nyxn;

0 =A (A®1 + (I)on + @2) + B®l

Nyxn,

0 =A (A®q—2 + q)qu_l + ®q—1) + B®q—2

NyxnN;

(30) 0 =A(AGq1 + DoQq) + BOy

Nyxn;

and the coﬁcients{cl)o, D4, ..., ch_l} solve

0 :A(Aq)o + q)Opl + q)]_) + B(I)o +D

Nyxn;

0 =A (A(Dl + (D()PZ + (Dz) + B(I)l

Nyxn;

0 :A(A(Dp_z + (I)OPp—l + (Dp—l) + B(I)p_z

Nyxn;

(31) 0 =A(AQp_1 + DoPp) + BO,

NyxN;

for p > 0 and®, solves

0 :AAq)o + Bq)o +D

NyxN;

otherwise.

Proof. Insert the solutiorf{28) faX; once and foX,, twice in (22), substituté (25) lagged forward
once for theZ;,, that arises whek,, is replaced with[(28), and then collect ¢beients on the state
variables[(2]7). As the solution (P8) must hold for all valaéshe state variables, the d@eients

just collected must all be zero. The resulting equationgrarse stated in the proposition. O

We can also calculate an infinite moving average representadr the solution, which will
prove useful in the estimation exercise, allowing us to Wake the likelihood spectrally and to
apply the closed form frequency domain representationedifth filter (Hodrick and Prescott 1997)
to treat the model with the filter while estimating. Taking tmique stable solution derived above
as given, we define the followingmatrices for the exogenous processes

(32) P(Q) = Iy, — Pid = PyA?... — PpaP
(33) Q) =1+ Q...+ Q"
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and for the endogenous transfer function
(34) D (1) = Py + DiA... + Dy 1Pt
(35) O(1) =B+ 011...+ 0 1A%

ReplacingA with the lag or backshift operatdr we can expres¥; as an infinite moving
average, as we summarize in the following proposition
Proposition 4.6. Let assumptions 4.8, 4.4, ahd 4.2 hold. The unique, stahitico (28) to [22)
for X, in propositio 4.5 has a unique infinite moving average repreation given by

1
(36) Xt:(l —AL) [eLPLQWL +O L)«

Ny XNy

Proof. Invertibility of ( | - AL) follows from proposition 45 and that & (L) from lemmd.4.D.
Ny XNy

Uniqueness follows from the uniqueness of the homogenguesentation from assumptidnsi4.3

and4.4 and of the uniqueness of the inhomogenous représerftam proposition 4.5. O

4.4 DSGE Likelihood

One dfficulty in implementing likelihood methods lies in the evdlaa of the likelihood func-
tion. As we will consider applying the HP filter to the modelavhit was applied to the data, the
Kalman filter is less desirous here due to the availabilitg ofosed form frequency domain repre-
sentation for the HP filter, see King and Rebelo (1993). We¥ohn alternative approach based
on the Toeplitz structure of the covariance of stationanetseries that uses the iterative method of
Meyer-Gohde (2010) for evaluating the likelihood functlmntreating the sample as a single draw
from a multivariate normal distributi(ﬁ,where the derivation of the sequence of autocovariances
is done spectrally to enable us to apply the HP filter to theehadhile evaluating the likelihood
function.

Consider now a linear combination of elements<ofl.e., the observables, given by

(37) Yi= T %
Ny XN
To evaluate the likelihood function, we will need to caldeléhe sequence of autocovariance ma-

trices associated with the observablgs,

(38) Fo = E[YY]. T1 = E[VY,,]. ...Tn = E[YY,,]

183See, e.g., Sargent (1987)
19Similarly to Leeper and Sims (1994) and Schmitt-Grohé aridé(2010).
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Using the moving average representation of the observables

-1
(39) %:T%Jm—Aq [eLPL QWL +O W)«

The autocovariances can be recovered, see, e.g., Sar@dmn),(Hamilton (1994), and Uhlig
(1999), through

(40) = fﬂ G(w)e“"dw

the inverse Fourier transformation of the spectral dertdityf, G(w) given by

G(w) = |1 (nX>I<nX _ Ae‘iw)_l [q) (e‘i“’) P(e‘i‘”)_l Q (e—iw) +0 (e—iw)”

T“' —A&JTQ@ﬂP@ﬂAQ@ﬂ+®@ﬂ”

Ny XNy

(41) XX

As we will also consider applying the HP filter to the model adlas to the data, we can use
closed form representation of the HP filter in the frequenmydin, see King and Rebelo (1993),

given as
41 (1 - cos))?

1+ 41 (1 - cos))?
whereA is the HP smoothing parameter and frequency. In this case, the autocovariances of the

(42) HP(1, w) =

HP filtered observables can be recovered through

(43) Ih= f HP(1, w)*G(w)e“ "dw
Given the assumptions of linearity and stationarity beirapositio 4.6 and that of the nor-
mality of the innovationss, T observations orY; are normally distributed with mean zero and

non-singular block Toeplitz covariance matrix

‘T, I ... T, It
r, To, .. T,,TI.,
(44) Y= - :
It I7.3 . .. I'o F;_
Ity Ivo .o | I )

with the autocovariance matricds$, given by (40) or[(4B3) depending on whether the HP filter was
used and the log-likelihood of a vector of parametegiven the data is thus
(45) L(slY) = -0.5pTIn(27) — 0.5In (det(¥(9))) — 0.5Y"¥(9) 1Y
whereX = [Y;Y;...Y1]".

Given (44), only two potentially challenging quantitiesedeto be calculatedn (det(‘¥(:)))
and X" (#)~1X, which we calculate using the recursive block-Levinsoretgfgorithm of Meyer-
Gohde (2010).
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5 Neoclassical Growth Model

As a baseline model to examine how the RIMCMC model can beeapid a DSGE model, we
consider Hansen (1985) specification of the neoclassicaltgrmodel. In this simple model, the
social planner’s problem is to maximize the discountedifiie expected utility of a representative

household given by

(46) Eoiﬁt[ln(ct)+wln(1—lt)], 0<B<1

with ¢, representing consum;):t?on ahdhours;B € (0,1) is the subjective discount factor of the
household angr weights the utility of leisure, % |, in the household’s utility function. The social
planner faces the resource constraint

(47) C+it =W

where investmenty, contributes to the accumulation of capital,through

(48) ki = (1-06)Ka +i
with the depreciation raté, and where productioly; is neoclassical and given by
(49) ye = €KL

with z being stationary stochastic productivity. Hansen (19&Sueed a highly autocorrelated
AR(1) process—with the autoregressive parameter set -0 .fllowing Kydland and Prescott
(1982). Relaxing this assumption will be the focus of ouestgation.

The first order conditions of the social planner’s problem@ven by

1 ~ 1 B . It;l l-a

+1
D 1flt :é(l_“)ea(ktl_:l)

An equilibrium is defined by the equatioris [47) throughl (Sibhg with a specification for the

stochastic productivity process,

In this exercise, we will take the parameters of Hansen’8%) @alibration of all parameters
outside the specification of the stochastic productivitycessz, as given. This will allow us to
concentrate on the contribution of the RIMCMC algorithmstireating the order and parameters

of the exogenous process.The calibrated model paramegersgorted in tablel 3.

[Table 3 about here.]
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The calibration delivers standard values for parametefigating empirical observations, e.g., that
about one third of agents’ time endowment is spent in empéractivities, capital contributes a

little more than one third to production.

6 Estimation Results for the Neoclassical Growth Model Mode

We carry out two exercises using the neoclassical growtheinoddel as presented above. First,
in order to check whether the method could pick up the cotnederlying process for a technology
shock in this model, we generated 250 observations of siotti@ta using the AR(1) process as
reported by Hansen (1985) in his original study. Second, stenate order and parameters of
the technology shock process for the model using US GDP ttetted with the HP filter as in
Hansen’s (1985) original study.

6.1 Priors and Proposals

The priors and proposals for the shock process orders aadheters are reported in table 4.
[Table 4 about here.]

The priors remain the same as in the Monte Carlo study, whéedispersion parameters of the
proposals were tuned on the basis of short pilot runs to aser¢he fficiency of the RIMCMC

algorithm.

6.2 Synthetic AR(1) Data

For this exercise we generated 250 realizations for thentdolgy shock according to the AR(1)
specification and calibration in Hansen (1985)
(52) z = 0.95z_; + &

We then fed the resulting series fgrinto the linearized RBC model and applied our method
generating 650.000 draws discarding the first 100.000 desn®irning to the resulting synthetic
data on outputy;. Standard visual measures over the chains indicated agewves. Figurel4 shows

the posterior distribution over the orders for the distad®g& The method places an overwhelming
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majority of the posterior weight on the correct, AR(1), mbdeler—obviously correctly identi-

fying the AR(1) data generating process for the produgtipibcess with observations on output,

Yt
[Figure 4 about here.]

This result gives us further confidence that, if the real derocess for the productivity shock
were AR(1), it would be correctly identified by the RIMCMC imed we propose.

6.3 US GDP Data: Estimates

We now address what US postwar GDP data can reveal aboutdtaqgbivity shock in Hansen’s
(1985) model. Following Hansen’s (198@,we estimated the productivity shock process using
HP-filtered quarterly US GDP per capita as in Hansen (1988)gaehis original calibration and
value of 1600 for the smoothing parameter in the HP filter &srgi In applying the RIMCMC
method introduced in sectidh 2, we generated 4.000.000stui&sgarding the first 1.000.000 draws
as burn in. The HP filter was applied to the DSGE model whenuatialg the likelihood, thus

treating the data and the model with the same tifter.
[Figure 5 about here.]

Figurel5 shows the posterior ove, §) for this exercise. The model at the mode is ARMA(3,0)
and the baseline AR(1) specification of Hansen (1985) islgiegjected. There is much more sub-
stantial uncertainty regarding the correct shock prodess in the Monte Carlo exercises above.
The prior posterior plots are indicative that our resulesrast being overly driven by our choice of

priors.
[Figure 6 about here.]

Figurel6 reports recursive means of the first AR parametehfee chains with diering initial

states for the orders of the ARMA polynomial for the techmggishock, calculated both conditional

20\We take 1948:1-2013:3 real GDP from the NIPA tables, exgiakss a per capita basis using the BLS series on
the civilian noninstitutional population. Both data setsrevdownloaded from the St. Louis Federal Reserve’s FRED
database.

215ee section 414 for details.
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on the model at the mode of the posterior as well as unconditimeans. Inspection suggests that
all three chains have converged. It is not clear, howeveetkdr these standard graphical or other
formal measures of convergence, e.g., Brooks and Gelm&8)18pply without adaptation in

transdimensional analyses, see e.g. Fan and Sisson (2014)y case, the posterior statistics,

such as impulse responses, that we will examine are indggatia lack of convergence.
[Figure 7 about here.]

Table[5 reports point estimates for the shock process paeastaken from the posterior dis-
tribution conditional onf, ) = (3, 0). Additionaly, the first two autocorrelations of the exngas
processg, implied by these point estimates are given. The first autetation is high, consistent
with the choice of Hansen (1985) following Kydland and Podts(1982) to model the technology

process with a near unit root.

[Table 5 about here.]

6.4 US GDP Data: Impulse Responses

With a posterior distribution over both models—i.e., osglprand g¢—and their parameters for
the ARMA technology process, we plot impulse responsesigagosterior uncertainty about the
model into account. In the presence of MA components, tlysires us to take a stand on which
covariance equivalent representation we ch@)sla!ve will first examine the invertible or fun-
damental impulse responses associated with the postestoibdtion. Then, we will allow the
possibility of nonfundamental representations by sangphith a noninformative prior from the
admissible (i.e., real valued) covariance equivalentaggntations and examine the resulting im-
pulse responses.

For an invertible or fundamental moving average representathe roots,ly, of the MA
polynomial
(53) Yi(1/) =A% + 922971 +yig
must all be contained within the unit circle. That is, thexests noA such thaty; (1) = 0 where

1] > 1 In figure[8, we plot the impulse responses to a one standaidtievtechnology shock.

22See Lippi and Reichlin (1994), Fernandez-Villaverde, ReRamirez, Sargent, and Watson (2007), and Alessi,
Barigozzi, and Capasso (2011) for more ofiatient MA representations in macroeconomic modeling.
233ee, e.g., Hamilton (1994).
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We plot the invertible impulse associated with the modelhat posterior mode of the ARMA
order and parameter space against the pointwise postémorde and 80% credible set) over all
impulse responses weighted by posterior probabilitiesli#ahally, we plot the impulse response
with Hansen’s (1985) AR(1) technology assumption. The dateen selection of the specification

of the shock process implies affdrent dynamic behavior of the model compared to Hansen’s
calibration. Our RIMCMC procedure identifies hump-shapagolilse responses, a salient feature
of the data identified in many empirical studies; e.g., Cpgled Nason (1995) identify a hump
shaped response of output to transitory technology shagikg bboth an SVAR and a VEC model.

[Figure 8 about here.]

In admitting nonfundamental or noninvertible MA represgiains, we acknowledge that the
covariance structure associated with our posterior Bistion potentially implies several possible
different structural representations. We follow Lippi and Rknc(1994) and engage in a root-
flipping procedure to construct admissible covarianceedent representations. We proceed as
follows. Given a draw of ordeq for the MA component of the exogenous process, we factor the
MA polynomial as
(54) T+yial ... +%igl% = (1= 44l) (1- L) ... (1- A4L)
we then enumerate the number afdient admissible root fIi@and draw anintegere {0, 1,...,0}
from a uniform distribution, where is the number of admissible equivalent representations. A
draw of O gives the invertible or fundamental representaéind a positive draw returns the non-
fundamental representation associated with that integengl the enumeration. For example, if
n = 10 is drawn and the number 10 was associated with flippingrgcand s, the MA polyno-
mial for calculating impulse responses becomes
(55) ¥i (L) = (=25) (=15) (1 - %L) (1 - %L) (1- L) (1-aL)...(1- L)

Drawing the covariance equivalent representation fromigoun distribution over all admissible
covariance equivalent representations puts equal weigbaoh admissible representation, reflect-
ing our flat prior over the dierent representations over which DSGE theory is honinfowaa

Figure[® contains the pointwise posteriors (mode and 80%ildeeset) over all impulse re-

sponses weighted by posterior probabilities and drawrergially, from nonfundamental covari-

2+Admissible” because conjugate pairs of complex roots rbesflipped together, as the flipping of a single com-
plex root would result in a complex-valued impulse respdhagwe rule out on economic grounds.
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ance equivalent representations as outlined above. Wehasé pointwise posteriors against the
invertible representation of the model at the posteriorexmger ARMA orders and their parameter
values and against the impulse response with Hansen’s Y 2888.) technology assumption. The
admission of non-fundamental representations increagasxgertainty over the dynamic response
of variables to a technology innovation, spreading the dswi the 80% credible sets apart. Most
of this spread is downward so that the number of periods fachvthe 80% credible set covers
exclusively positive responses to a technology shock iatiyreeduced.

Interestingly, when allowing for non-fundamental movingege representation a negative
response of hours to a positive technology shock is cordaméhe credible set. It is therefore
possible even in a simple stochastic growth model with ameséd technology shock process
allowing for news shocks, that the responses are in linetélindings of Gali (1999) and Francis
and Ramey (2005). One cannot, therefore, conclude, thattimlastic growth model is unable
to generate this kind of response to a positive technologglshinless one has a strong prior
against the existence of noninvertible moving averagessaptations, e.g., news shocks and policy
announcement shocks. At the same time, however, the magdniosterior mass lies in a region
where the response of hours to technology is conventiondineé with the results in V.V. Chari
and McGrattan (2008) or Uhlig (2004).

[Figure 9 about here.]

In sum, the posterior mode model and the posterior distohbudver impulse responses, both
fundamental and admitting the possibility of non-fundataémoving average representations, as
markedly diferent than those implied by the AR(1) assumption in Hang@®85) original study.
The data clearly favors hump-shaped impulse responsesaambicrule out a drop in hours in

response to a positive technology shock.

6.5 US GDP Data: Correlation Structure

We now examine the variance and correlation structuresi@tdy our posteriors and compare
these with the data and the statistics implied by our basehR(1) model implied by Hansen

(1985)21 The posterior matches the structure of the second momenotgtpfit quite well. As we

25Following Hansen (1985), we calculate the second momentsiganodel using an HP filtered (with the smooth-
ing parametery, set to 1600) version of model.
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estimated with real per capita GDP data, this is reassumdgradicates that the procedure does

indeed provide a substantial improvement in fit.
[Table 6 about here.]

The standard deviations of output are in tdble 6. Both thedstal deviation of model at the
posterior mode of the ARMA order and parameter space anddsipor mode of the standard
deviations line up very close to the statistic in the dateemehs the statistic of Hansen (1985) shows
greater a dterence from the value in the data. The 80% posterior creddtlehows the extent of
posterior uncertainty, which here is great enough to ene@spll the point values reported. The
first six autocorrelations tell a more certain story, howeaad can be found in figute 10. Again,
both the autocorrelations of the model at the posterior ncddbe ARMA order and parameter
space and the posterior mode of the autocorrelations matdtatistic in the data very closely. The
AR(1) structure imposed by Hansen (1985) forces a compemigh the initial autocorrelation

are somewhat lower and the later values somewhat higheiritiha data.
[Figure 10 about here.]

The fit as implied by the point estimates of our posterior wébpect to our observable series
output is reassuring in that our application of the RIMCMGQhud is successfully doing what it
should. With a mean zero normally distributed process,ebersd moments describe the stochastic
properties of the process and our posterior brings the secwmments of output from the RBC

model closer to the data by selecting appropriate ARMA [sees.

7 Conclusion

In this paper we present a novel approach to addressing etisisption in DSGE models. We
relax the assumptions usually placed on the structure ofjemaus processes, usually taken to
follow simple AR(1) processes, and estimate generaliz&IVIA(p, q) processes of unknown or-
ders. Since theory provides no guidance on autocorrelg@ierns of exogenous variables and

the order of the these processes is seldom if ever estintagedsual choice of the AR(1) structure
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on exogenous processes would seem to have little suppann &Bayesian perspective, it does
not appear sensible to put a point prior on an AR(1) strudturan exogenous process in a DSGE
model, while acknowledging uncertainty regarding othamapeeters of the model. Our method
treats the ARMA orders of shock processes as additionahpeteas to be estimated, enabling the
researcher to identify those shock process structuredwianiog the model closer to the data.

Our method has the advantage that it will ultimately endidesinalysis of a joint posterior over
different specifications of the exogenous processes includeggarameters as well as parame-
ters of the model, as we are investigating in work in progr@dss allows for the quantification
of posterior uncertainty regarding the model parametedsadirparameters of the exogenous pro-
cesses including their orders, while maintaining the prtetability of these processes as structural.
The impulse responses implied by the estimated ARMA usin@&D® data with Hansen’s (1985)
specification of the canonical stochastic neoclassicavtjranodel are markedly ferent than
those generated under the original calibration. Our pmstelearly identifies hump-shaped im-
pulse responses and cannot rule out a drop in hours in respoagpositive technology shock.

In applications directed at providing policy recommenalasi, our procedure should be brought
to bear on a policy-relevant model with the data series aredt and combined with standard
MCMC estimation of parameters, giving policy makers estedamodels that take the cross-
equation restrictions of rational expectations modelsossly while accounting for model (in
terms of exogenous driving forces) as well as parameterrtaioty. If one interprets the richer
shock structure preferred by our method as a means of cimdytidr misspecification and, insofar
as this misspecification is taken to be policy invariant,gbaeralized shocks should improve the
accuracy of policy experiments while at the same time impigthe fit of the model, as indicated
in Del Negro and Schorfheide (2009).

26



References

ALEssi, L., M. Baricozzi, axo M. Carasso (2011): “Non-Fundamentalness in Structural Economet-
ric Models: A Review, International Statistical Review9(1), 16—47.

AN, S.,anp F. ScHorrHEIDE (2007): “Bayesian Analysis of DSGE Model&tonometric Reviews
26(2-4), 113-172.

ANDERSON, B. D. O.,anp J. B. Moore (1979): Optimal Filtering Prentice-Hall, Inc.

BarNDORFF-NIELSEN, O., anp G. SHou (1973): “On the Parametrization of Autoregressive Models
by Partial Autocorrelations,Journal of Multivariate Analysis3, 408—419.

BrancHarD, O. J.,ano C. M. Kann (1980): “The Solution of Linear Dierence Models under
Rational ExpectationsEconometrica48(5), 1305-1311.

Brooks, S. P.anp R. BEiLers (2004): “Bayesian Analysis of Order Uncertainty in ARIMA Mels,”
Discussion paper, Federal University of Paran, BrazilMdrsity of Cambridge, UK.

Brooks, S. P.,anp A. GELMAN (1998): “General Methods for Monitoring Convergence ofdtere
Simulations,”Journal of Computational and Graphical Statisti@$4), 434—455.

Brooks, S. P., P. @picr, anxpo G. O. PoBerts (2003): “Eficient construction of reversible jump
Markov chain Monte Carlo proposal distributiong@urnal of the Royal Statistical Society:
Series B (Statistical Methodology5(1), 3—39.

Carrg, O., C. P. RBerT, anp T. Rypen (2003): “Reversible jump, birth-and-death and more gdnera
continuous time Markov chain Monte Carlo sampledsirnal of the Royal Statistical Society:
Series B (Statistical Methodology5(3), 679—-700.

CHari, V., P. J. KeHOE, anp E. R. McGratTaN (2007): “Business Cycle AccountingZconometrica
75(3), 781-836.

CumB, S., ano E. GreenerG (1995): “Understanding the Metropolis-Hastings Algomith The
American Statisticiaj49(4), 327-335.

CoGLEY, T.,anp J. M. Nason (1995): “Output Dynamics in Real-Business-Cycle Modefsyierican
Economic Review85(3), 492-511.

Cirbia, V., anp R. Reis (2010): “Correlated Disturbances and U.S. Business Cy®ER Work-
ing Papers 15774, National Bureau of Economic Research, Inc

pE JoNG, P.,anp J. Rinzer (2004): “The ARMA Model in State Space Forn§tatisticsé Proba-
bility Letters 70(1), 119 — 125.

DeL NEGro, M., ano F. ScHorrHEIDE (2009): “Monetary Policy Analysis with Potentially Misspe
fied Models,”American Economic Revie®9(4), 1415-50.

Dennis, R., J. E., J. F. ®Raus, ano R. P. WEBER (1976): “The Algebraic Theory of Matrix Polyno-
mials,” SIAM Journal on Numerical Analysi$3(6), 831-845.

27



Encers, R., ano S. P. Books (2008): “Adaptive Proposal Construction for Reversiblengu
MCMC,” Scandinavian Journal of Statistic35(4), 677—690.

Fan, Y., anp S. Ssson (2011): Handbook of Markov Chain Monte Cadbap. 3, pp. 67-87. CRC
Press.

FERNANDEZ-VILLAVERDE, J.,anp J. F. RiBio-Ramirez (2004): “Comparing dynamic equilibrium mod-
els to data: a Bayesian approackgurnal of Econometrigsl23(1), 153 — 187.

FERNANDEZ-VILLAVERDE, J., J. F. RBI0-RAMIREZ, T. J. SiRGENT, AND M. W. Watson (2007): “ABCs
(and Ds) of Understanding VARsEmerican Economic Revie®7(3), 1021-1026.

Francis, N., ano V. A. Ramey (2005): “Is the technology-driven real business cycle higpsis
dead? Shocks and aggregate fluctuations revisiteaitnal of Monetary Economic$2(8),
1379-1399.

Gauy, J. (1999): “Technology, Employment, and the Business €yblo Technology Shocks Ex-
plain Aggregate Fluctuations?merican Economic Review9(1), 249-271.

GeLFaND, A. E., anp A. F. M. Svith (1990): “Sampling-Based Approaches to Calculating Mabin
Densities,"Journal of the American Statistical Associatj@®(410), pp. 398—-409.

GEWwEKE, J. (1998): “Using simulation methods for Bayesian econoimenodels: inference, de-
velopment, and communication,” $t&eport 249, Federal Reserve Bank of Minneapolis.

Gorus, G. H., anp C. F. V. Loan (1996): Matrix ComputationsThe Johns Hopkins University
Press, Baltimore, MD, and London, UK, 3 edn.

GreeN, P. J. (1995): “Reversible Jump Markov Chain Monte CafBi¢gmetrikg 82, 711-732.
Hamicron, J. D. (1994) Time Series Analysi®rinceton University Press, Princeton.

Hansen, G. D. (1985): “Indivisible Labor and the Business Cyclé@durnal of Monetary Eco-
nomics 16(3), 309-327.

Harvey, A. C. (1993):Time Series Model#larvester Wheatsheaf, London, UK, 2 edn.

Hastings, W. (1970): “Monte Carlo Sampling Methods using Markov Gtsaand Their Applica-
tions,” Biometrikg 57, 97-109.

Higram, N. J.,ano H.-M. KM (2000): “Numerical Analysis of a Quadratic Matrix EquatjoiMA
Journal of Numerical Analysj0, 499-519.

Hobrick, R. J.,anp E. C. Rescort (1997): “Postwar U.S. Business Cycles: An Empirical Inivest
gation,”Journal of Money, Credit and Banking9(1), 1-16.

Jones, M. (1987): “Randomly Choosing Parameters from the Statityand Invertibility Region
of Autoregressive-Moving Average Modeldburnal of the Royal Statistical Society, Series C
(Applied Statistics)36, 134—138.

28



King, R. G.,anp S. T. Resero (1993): “Low frequency filtering and real business cycldsiirnal
of Economic Dynamics and Contrdl7(1-2), 207-231.

KLew, P. (2000): “Using the Generalized Schur Form to Solve a Matliate Linear Rational
Expectations Model,Journal of Economic Dynamics and Contra#(10), 1405-1423.

KyprLanp, F. E.,anp E. C. Rescort (1982): “Time to Build and Aggregate Fluctuationgtono-
metricg 50(6), 1345-70.

Lan, H., ano A. MEeveEr-Gonpk (2012): “Existence and Uniqueness of Perturbation Satstim
DSGE Models,” SFB 649 Discussion Papers 2012-015.

LaNcasTER, P. (1966).Lambda-Matrices and Vibrating Syster®ergamon Press, Oxford.

LeepER, E. M., anp C. A. Sms (1994): “Toward a Modern Macroeconomic Model Usable for@&ol
Analysis,” INNBER Macroeconomics Annyald. by S. FischegndJ. J. Rotemberg, vol. 9, pp.
81-118. MIT Press Books.

Liep1, M., anp L. ReicHLIN (1994): “VAR analysis, nonfundamental representatiofessdhke ma-
trices,” Journal of Econometrig63(1), 307-325.

MetropoLis, N., A. W. RosensLuTH, M. N. RosenBLuTH, A. H. TELLER, anp E. TELLER (1953): “Equa-
tion of State Calculations by Fast Computing Machind$)e Journal of Chemical Physics
21(6), 1087-1092.

MEever-Gonbg, A. (2010): “Linear Rational-Expectations Models with lgggl Expectations: A
Synthetic Method,Journal of Economic Dynamics and Contr84(5), 984—-1002.

MonaHaN, J. (1984): “A note on enforcing stationarity in autoregres-moving average models,
Biometrikg 71, 403—-404.

Peskun, P. (1973): “Optimum Monte-Carlo sampling using Markov iciss Biometrikg 60, 607—
612.

PuiLippE, A. (2006): “Bayesian analysis of autoregressive movirgyage processes with unknown
orders,”Computational Statistic& Data Analysis51, 1904—-1923.

SarGenT, T. J. (1987):Macroeconomic TheoryAcademic Press, San Diego, CA, 2nd edn.

ScumiTt-GrosE, S.,ano M. UriBe (2010): “Evaluating the Sample Likelihood of Linearized ®S
Models without the Use of the Kalman FilteEconomics Lettersl09(3), 142—-143.

Sivs, C. A. (2001): “Solving Linear Rational Expectations MosleIComputational Economics
20(1-2), 1-20.

(2012): “Statistical Modeling of Monetary Policy and It$t&cts,” American Economic
Review 102(4), 1187-1205.

Swiets, F., anxo R. Wouters (2007): “Shocks and Frictions in US Business Cycles: A Bmyes
DSGE Approach,American Economic Revie®7(3), 586—-606.

29



Stepnens, M. (2000): “Bayesian analysis of mixture models with an moikn number of compo-
nentsan alternative to reversible jump method@&g Annals of Statistic28(1), 40-74.

TIERNEY, L. (1998): “A note on Metropolis-Hastings kernels for gealestate spacesThe Annals
of Applied Probability 8(1), 1-9.

TroucHTON, P.,anp S. J. GpsiLL (1998): “A Reversible Jump Sampler for Autoregressive Time
Series, Employing Full Conditionals to AchievéiEient Model Space Moves,” pp. 2257-2260.

UnriG, H. (1999): “A Toolkit for Analysing Nonlinear Dynamic Stbastic Models Easily,” in
Computational Methods for the Study of Dynamic Econopeigésby R. MarimonandA. Scott,
chap. 3, pp. 30-61. Oxford University Press.

(2004): “Do Technology Shocks Lead to a Fall in Total Hoursrkéal?,” Journal of the
European Economic Associatiai(2-3), 361-371.

V.V. CHari, P. J. K., anp E. R. McGrartan (2008): “Are structural VARSs with long-run restrictions
useful in developing business cycle theonydurnal of Mone55, 1337-1352.

WAaAGEPETERSEN, R.,anp D. Sorensen (2001): “A Tutorial on Reversible Jump MCMC with a View
toward Applications in QTL-mappinglhternational Statistical Reviev69, 49—-61.

Wartson, M. (1993): “Measures of Fit for Calibrated Modelgg@urnal of Political Economyl101,
1011-1041.

30



A Appendices
A.1 Detailed Derivation of Inflated Proposal Mapping

To choose an appropriate mappigyg , it is useful to break the mapping into two parts according

to the desired parametdpy and the auxiliary parametens The mapping,, is given by

(A-1) (P”,U) = gpp (PP, U) = (G1pp (PP, U), Gopp (PP, L)
and its inverse
(A-2) (PP,u) = gpp (P”,U) = gpp(P”, U) = (Gupp(P”, U), G2pp(P7, )

Start withg,p,y. Suppose now that the current state of the Markov chain s at(p, PP).
Now with probabilityy,(p’|p), a move to the model with ordex is proposed. Conditional on this
proposal, we draw from some proposal distributiop,y(u). Then, we introduce a deterministic
mappinggipy that maps the current state and the auxiliary proposalthe proposed new state
such that ¢, P?) = (p', g1pp (PP, U)). Note thatu is not part of the state of the chain.

Additionally, we have to findy,,,. In order to be able to easily verify adherence to detailed
balance for a move from a state, PP) to (p’, P?) = (p’, g1pp (PP, U)) the vectors of Markov chain
states and the random auxiliary proposal variadResi) and P”, u’) must be of equal dimension
and requiringgpp to be a diferentiable bijection lets us use a simple change-of-veasain the
detailed balance equation. l.e., the kernel of the chairowg defined in terms of the auxiliary
variableu together with the model indicator and the parameter vectors

Armed with this structure it is now straightforward to derithe appropriate acceptance prob-
ability. The detailed balance condition holcjgif
(A-3) L 7 (ply) 7 (PPIp, Y) Q(s. By ) dPP = fB 7 (ply) 7 (PPIp’.y) Q(s'. Ap) dP”
for all subsetsf?lp and 8, of the parameter spacpés associated with autoregressiyaopoi-

als of orderp and p’ respectively. The posterior distributior(sly) is factorized asr(sly) =

a(ply)=(PP|p,y) and

Qs 50)- [

Y(s'ls)a(s, ¢")ds’
-(Bp/

= yp(P'IP) f 1(91pp (PP, U) € By)app (PP, g1pp (PP, U)ypy (PP, u)du

265ee also Waagepetersen and Sorensen (2001).
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The left hand side of (Ad3) is then
(A-4) f 7 (sly) Q(s. By ) dP = f f L(P? € Ap, Gipp (PP, U) € Bp)m (ply) 7 (PPIp, y) X
Ap

(A-5) Yo(P'IP)app (PP, 91pp (PP, U)ypp (PP, u)dPPdu
and the right hand side reads
(A-6) f 7 (s'ly) Q(s', Ap) dPP = f f 1(PP € By, iy p(P”. U) € AR (p'ly) 7 (PPIP'. y) X

By
(A-7) Yo(PIP ) p(P?, Q1 p(PP, U))yp (PP, u')dP” du
wherey(s’[s) is again factorized ag,(p'p)ypp (PP, U). The fact thag,, is a diferentiable bijection
together with the dimension matching conditions enabldsaage of variable il (Ai6) leading to

[ [ 2600mPP.0) € 55 PP € A (') 7 (@100 PP, P ) o(PIP)
(A-8) Xap p(G1pp (PP, U), PP)yp p(Gipp (PP, U), Gapy (PP, U))Igp, (PP, u)ldPPdu
wheredPP du = |9, (PP, w)ldPPduandigy,, (PP, u)l is the determinant of the Jacobiangpf; .
By inspection of[(A-#4) and_(A48), the reversibility conditi (A-3) is satisfied if
7 (ply) 7 (PPIP. ) ¥p(PIP)app (PP, Gupp (PP, W)y pp (PP, 1) =
7 (1Y) 7 (G1ppr (PP, W', y) ¥p(PIP ) p(Gapps (PP, 1), PP)x

(A-g) 7p’p(glppf(Pp, u)’ gpr/(Pp, u))|g,p[j(Pp, u)l
Choosing the acceptance probability as large as possiblaawe

(A-10) apy = min(1, xpp(s. "))

with

L) p(s) vo(PIP)Ypp(Qpp (PP, 1))
L(s) p(s)  vp(PIP)Ypp (PP, )
=L 22

Likelihood RatioPrior Ratio Proposal Ratio

With our mappingdpp, in (9), 19, (PP, )l is equal to one and (A-11) reduces[tol(£4).

(A-11) Xpp (5,67) = IGpy (PP, U)|

A.2 Solving for the Codficients in the Recursive Solution

For the sequence of cfieients{®; }f’:‘ol that measure the impact of the exogenous process&s in

on X; we need to solved (31) or (B2) g = 0. This set of equations can be rewritten by recursive

2'The posterior is here written factorized as the product of likelihood andmn£(s)p(s) for correspondence with
the general formulation of the detailed balance condif)n (
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substitution g

(A12) @, = {Ziil (~(B+ AN A) @oPy i fori=12,...p-1

S (- (B+AA)TA) ©Pyij — (B+AA) 1D fI:r i=p

where the invertibility oB + AA follows from assumptioris 4.3 a Thus, givend, from the

i = p case we can recover the remaining matribgs

Fori = p, (A-12) is
(A-13) D = Zp: (- (B+AA)YA) 0P - (B+AA) D
or j:1
(A-14) q>0+zp(—(B+AA)-1A)jc1>0(—Pj) — _(B+AA)'D

j=1
which is linear in®q, being ap’'th generalized Sylvester equation of the form

(A-15) X+ BXy1 + B2Xyo ...+ Pxy; =6
wherex = @y andg = — (B+ AA) ! A

Proposition A.1. A generalized Sylvester equation of the form
(A-16) X+ BXyr + B2Xyo...+ Bxy; =6

can be solved recursively for »as follows

NaXNp

J Na—i J
a1 . [Zyjui{i):ai,._[z 3 (U s, fori = - L. 1
=0

k=1 j=0
whereX = Q'x, QUQ = S with U upper diagonal and Q unitary is the complex Schur dgmmm

sitior@ of 8, " indicates conjugate transposition, apgireferences the c’'th row and d'th column of

a matrix.

Proof. With the Schur decompositiocQUQ' = 3, (A-15) can be rewritten as

2 J
(A-18) x+QUQ Xy +(QUQ') xy2... +(QUQ) xyy =6
The matrixQ is unitary, soQ' = Q! reducing the foregoing to
(A-19) X+ QUQ xy1 + QU?Q xy,... + QUIQxy; =6

multiplying through withQ" and using the definitior £ Q'x gives
(A-20) X+ USy1 + U%Ky,...+ U%y; = Q76

283tarting with the last equation df(31). It is already in tfism. Then proceed to the second-to-last equation and
eliminate®,_; in this equation using the last equation. Proceed thuslydditst equation.

29See Lan and Meyer-Gohde (2012).

30For completenesy, = -Pj, for j=1,2,..., pands = — (B+ AA) 1 D.

31See, e.g., Golub and Loan (1996).
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As U is upper diagonal, so is any powerWf thus given all rows of the matrix after some, the

i'th row of X, X . solves

J Na—i J
(A-21) Z U/ %.ey) = 6ia - Z Z{Uj}i,na+k)~(na+k,07j

j=0 k=1 j=0
recognizing that);; is a scalar giveg (A-17) which can be solved by multiplyingtoa right by
the inverse of 7., 7;U},). O

Given®y, the remaining sequence of cfﬁeients{cl)i}i'c’:‘ll can be recovered recursively from{31)
starting with®,_; and working backwards td;. Likewise, givend,, the sequence of céiiients

Her }ﬁz‘ol an be recovered recursively from {30) starting with, and working backwards .
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Variable Prior Proposal
p U(0,10) LaplaceD(p,2)
q U(0,10) LaplaceD(q,2)
AR PAC TN(0,0.25)] TN(PAC,0.0025)
MA inverse PAC TN(0,0.25) TN(PAC,0.0025%)
o Standard Deviatiog 1G(1,1) TN(e,0.0025)

Table 1: Prior and Proposal Distribution for Monte Carlo Exment

Method | Proportion of correctly identified mode
RIMCMC 0.50
AIC 0.36
AICC 0.44
BIC 0.71

Table 2: Proportion of Correctly Identified Models

S

L % Steady state employmen3lof total time endowment
a | 0.36 Capital share
o | 0.025 Depreciation rate for capital
R| 1.01 One percent real interest rate per quarter
Table 3: Model Calibration
Variable Prior Proposal
p U(0,10) LaplaceD(p,2.2
q U(0,10) LaplaceD(q,2.2
AR PAC | TN(0,0.25)] TN(PAC,0.0016
MA PAC | TN(0,0.25)| TN(PAC,0.0016
o 1G(1,1) TN(,0.0025)

Table 4: Priors and Proposals for RBC Model Estimation
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Parameter| Conditional Mean Conditional Median Hansen
AR(1) 1.1689 (0.04) 1.1681 0.95
AR(2) -0.0732 (0.06) -0.0725 M
AR(3) -0.1224 (0.04) -0.1215 M

o 0.5873 (0.08) 0.5733 0.712
Autocorr(1) 0.9804 0.9810 0.95
Autocorr(2) 0.9528 0.9542 0.9025

Table 5: Posterior Point Parameter Estimates Conditiom&bay) = (3, 0); Standard Errors in
Parentheses

Data | Hansen Posterior Mode Model Posterior M

pde  90% Posi€redible Set
2.8491| 3.2574 2.8332 2.8182

2.1074 — 4.0965

Table 6: Standard Deviation of Output, in %
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Figure 1. Histogram of Posterior Mass Assigned to True Méuative to Model at the Mode,
Model Incorrectly Identified
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Figure 2: Typical Posterior Distribution, Model Correcttlentified
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