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Abstract

We prove the existence of unique solutions for all undetermined coefficients of nonlinear per-

turbations of arbitrary order in a wide class of discrete time DSGE models under standard

regularity and saddle stability assumptions for linear approximations. Our result follows from

the straightforward application of matrix analysis to our perturbation derived with Kronecker

tensor calculus. Additionally, we relax the assumptions needed for the local existence theorem

of perturbation solutions and prove that the local solutionis independent of terms first order in

the perturbation parameter.
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1 Introduction

Macroeconomists are increasingly using nonlinear methodsto analyze dynamic stochastic gen-

eral equilibrium (DSGE) models. One such method, perturbation,1 successively differentiates

the equilibrium conditions to recover the coefficients of a higher order Taylor expansion of the

policy function. As emphasized by Gaspar and Judd (1997), Judd (1998, ch. 13), and Jin and

Judd (2002), solvability/nonsingularity conditions mustbe fulfilled to ensure the existence of

unique solutions for these undetermined coefficients of higher order terms. Current perturbation

analyses proceed under the seemingly tenuous assumption that these solvability conditions hold

generically, as no general set of conditions has been proven. We corroborate this approach by

proving that the standard assumptions imposed on linear approximations to guarantee a unique

stable solution are already sufficient to guarantee the existence and uniqueness of solutions for

all the unknown coefficients of DSGE perturbations of an arbitrarily high order.

Our main result builds on the Sylvester equation representation common to many perturba-

tion studies2 by representing all of the linear equations in the undetermined coefficients at all

orders of approximation in a Sylvester form. We confirm the result of Jin and Judd (2002) that

the solvability conditions (i.e., invertibility of these linear maps or coefficient matrices) change

as the order of approximation changes: at each order, the lone trailing matrix in the Sylvester

equation is a Kronecker power of the linear transition matrix of the state space. Thus, the

change in the solvability conditions is systematic and and the unit-root stability of this lone or-

der dependant matrix is directly dependant on the eigenvalues of the matrix quadratic problem

at first order.3 The generalized Bézout theorem can be applied to deflate thequadratic equation

with the unique stable first order solution to relate the set of remaining unstable eigenvalues to

a generalized eigenvalue problem, which forms the remaining homogenous coefficients in the

series of Sylvester equations. Due to the separation induced by saddle stability, the spectra of

these pencils in the generalized Sylvester equation necessarily form a disjoint set, satisfying

the necessary and sufficient conditions for the existence and uniqueness of solutions of Chu

(1987) to the entire sequence of Sylvester equations. Likewise appealing to an eigenvalue sep-

1Perturbation in macro DSGE modeling initiated by Gaspar andJudd (1997) and Judd and Guu (1997) has
been successfully applied to a variety of applications witha few recent examples including the effects of time
varying volatility in interest rates for small open economies in Fernández-Villaverde, Guerrón-Quintana, Rubio-
Ramı́rez, and Uribe (2011), to multi country real business cycle models in Kollmann, Kim, and Kim (2011), to
the yield curve with recursive preferences and long run risks in Rudebusch and Swanson (2012).

2Beyond second order perturbations, Juillard and Kamenik (2004) and Kamenik (2005) provide a Sylvester
representation for many of the unknown coefficients in theirhigher order perturbation.

3This matrix quadratic—see, e.g., Uhlig (1999)—is the sole exception to the Sylvester representation.
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aration, Kim, Kim, Schaumburg, and Sims (2008) demonstratethe solvability of a portion of

a second-order perturbation—our results show that an encompassing Sylvester representation

can be used to extend their result to all coefficients at all orders of approximation. Thus, we

prove that the solvability conditions do hold generically,as saddle stability at the first order

ensures the invertibility of all subsequent linear maps regardless of the order of approximation.

Throughout, we take the existence and smoothness of the policy function as given and

solve directly for unknown coefficients of its Taylor expansion. Assuming analyticity,4 our re-

sult underlines that successive differentiation of the equilibrium conditions recovers the policy

function inside its domain of convergence. Our factorization eliminates the solvability assump-

tion in Jin and Judd’s (2002) local existence theorem for solutions to nonlinear DSGE models.5

Schmitt-Grohé and Uribe (2004) and others have argued thatthe first derivative of the policy

function with respect to the perturbation parameter ought to be zero. However, they assume the

invertibility of the mappings they show to be homogenous; weprove this invertibility.

The paper is organized as follows. Section2 contains a nonlinear multivariate DSGE model

and the preliminaries for the approximation to its policy function. We derive a perturbation

of arbitrary order and present our main result—solvabilityof all coefficients given a unique

stable first order solution—in section3. Section4 presents the proof, with the factored matrix

quadratic at first order pivotal for the solvability of the sequence of equations for higher order

coefficients. We turn to the proof of the local existence of the policy function and of its first-

order independence from the perturbation parameter in section 5. Finally, section6 concludes.

2 DSGE Problem Statement and Policy Function

We begin with our class of models, a system of (nonlinear) second order expectational differ-

ence equations, and a Taylor approximation of the policy function we take as a solution.

2.1 Model Class

We analyze a family of discrete-time rational expectationsmodels given by

0= Et [ f (yt+1,yt ,yt−1,εt)](1)

the vector functionf : Rny ×R
ny ×R

ny ×R
ne → R

ny is assumedCM with respect to all its

arguments, whereM is the order of approximation to be introduced subsequently; yt ∈ Rny

4See, e.g., Jin and Judd (2002) and Anderson, Levin, and Swanson (2006).
5See Woodford (1986) for an alternate approach in the space ofinfinite sequences of innovations.
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endogenous and exogenous variables; andεt ∈ R
ne exogenous shocks.6 We assume thatεt is

i.i.d. with E [εt ] = 0 andE
[

εt
⊗[m]

]

finite ∀m≤ M.7

2.2 Perturbation Solution

As is usual in perturbation methods, we introduce an auxiliary parameterσ ∈ [0, 1] to scale the

uncertainty in the model.8 The stochastic model under study corresponds toσ = 1 andσ = 0

represents the deterministic version of the model. Indexing solutions likewise withσ

yt = y(σ,zt), y : R+×R
nz → R

ny(2)

with the state vectorzt given by

zt =

[
yt−1

εt

]

∈ R
nz×1

, wherenz= ny+ne(3)

Assuming time invariance of the policy function and scalinguncertainty give

yt+1 = ỹ(σ,zt+1), zt+1 =

[
yt

σεt+1

]

∈ R
nz×1

, ỹ : R+×R
nz → R

ny(4)

The notation,y and ỹ, is adopted to track the source (throughyt or yt+1 ) of derivatives of

the policy function. This is necessary as (i) thezt+1 argument of ˜y is itself a function ofy

through its dependance onyt , and (ii)σ scalesεt+1 in thezt+1 argument of ˜y, but notεt in the

zt argument ofy. This follows from the conditional expectations in (1): Conditional ont, εt has

been realized and is known with certainty—hence, it is not scaled withσ; εt+1, however, has

not yet been realized and is the source of uncertainty—hence, it is scaled withσ.9

Inserting the policy functions foryt andyt+1—equations (2) and (4)—into (1) yields

0= Et

[

f

(

ỹ

(

σ,
[
y(σ,zt)
σεt+1

])

,y(σ,zt),zt

)]

= F(σ,zt)(5)

a function with argumentsσ andzt .10 We will construct a Taylor series approximation of the

solution (2) around a deterministic steady state defined as

Definition 2.1. Deterministic Steady State

6This model class encompasses competitive equilibria and dynamic programming problems, as well as mod-
els with finitely many heterogenous agents, see Judd and Mertens (2012). Nonlinearity or serial correlation in
exogenous processes can be captured in the functionf and the processes themselves are included in the vectoryt .

7εt
⊗[m] is them’th fold Kronecker product ofεt with itself: εt ⊗ εt · · ·⊗ εt

︸ ︷︷ ︸

m times

.

8Our formulation follows Adjemian, Bastani, Juillard, Mihoubi, Perendia, Ratto, and Villemot’s (2011)
Dynare, Anderson, Levin, and Swanson’s (2006) PerturbationAIM, Juillard (2011), and Lombardo (2010). Jin
and Judd’s (2002) or Schmitt-Grohé and Uribe’s (2004) model classes can be rearranged to fit (1).

9See also Anderson, Levin, and Swanson (2006) and Juillard (2011) for similar discussions.
10Note thatεt+1 is not an argument ofF as it is the variable of integration inside the expectations. I.e.,

F(σ,zt) =

∫
Ω

f

(

ỹ

(

σ,
[
y(σ,zt)
σεt+1

])

,y(σ,zt),zt

)

φ(εt+1)dεt+1

whereΩ is the support andφ the p.d.f. ofεt+1. Thus, whenσ = 0, εt+1 is no longer an argument off and the
integral (and hence the expectations operator) is superfluous, yielding the deterministic version of the model.
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Let y∈ R
ny be a vector such that

0= F(0,z), wherez=

[
y
0

]

(6)

solving (5) in the absence of both uncertainty(σ = 0) and shocks (εt = 0).11

The policy function evaluated at the deterministic steady state is thusy = y(0,z) and y

likewise solves 0= f (y,y,y,0). We will admit models that possess unit root solutions in the

first order approximation and do not require the deterministic steady state to be unique.12

2.3 Taylor Series Approximation

Sincey is a vector valued function, its partial derivatives form a hypercube. We use the method

of Lan and Meyer-Gohde (2012b) that differentiates conformably with the Kronecker product,

allowing us to maintain standard linear algebraic structures to derive our results.

Definition 2.2. Matrix Derivatives

Let A(B) : Rs×1 → Rp×q be a matrix-valued function that maps an s×1 vector B into an p×q

matrix A(B), the derivative structure of A(B) with respect to B is defined as

AB ≡ DBT{A} ≡
[

∂
∂b1

. . .
∂

∂bs

]

⊗A(7)

where bi denotes i’th row of vector B,T indicates transposition; n’th derivatives are

ABn ≡ D(BT)n{A} ≡

([
∂

∂b1
. . .

∂
∂bs

]⊗[n]
)

⊗A(8)

We leave the details of the associated calculus that generalizes familiar chain and product

rules as well as Taylor approximations to multidimensionalsettings to the Appendix.

With definition2.2and assuming (2) isCM with respect to all its arguments, we can write a

Taylor series approximation ofyt = y(σ,zt) at a deterministic steady state as

yt =
M

∑
j=0

1
j!

[
M− j

∑
i=0

1
i!

yzj σi σi

]

(zt −z)⊗[ j ](9)

whereyzj σi ∈ Rny×n j
z is the partial derivative of the vector functiony with respect to the state

vectorzt j times and the perturbation parameterσ i times evaluated at the deterministic steady

state. Here
[

∑M− j
i=0

1
i! yzj σi σi

]

collects all the coefficients associated with thej ’th fold Kronecker

product of the state vector,(zt −z). Higher orders ofσ correct the Taylor series coefficients for

uncertainty by successively opening the coefficients to higher moments in the distribution of

future shocks.13 We need to generate and solve equations that determine theseyzj σi .

11Accordingly, the stochastic or “risky” steady state would solve 0= F(1,z).
12The degenerate nonuniqueness as studied, for example, in Coeurdacier, Rey, and Winant (2011) and Juillard

(2011), however, cannot be studied with the standard perturbation approach of this paper.
13A similar interpretation can be found in Judd and Mertens (2012) for univariate expansions and in Lan and

Meyer-Gohde (2012b) for expansions in infinite sequences ofinnovations.
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3 Higher Order Perturbation: Existence and Uniqueness

3.1 Equations Characterizing the Coefficients

Following general practice, we pin down the coefficient matricesyzjσi in (9) though repeated

application of an implicit function theorem by successively differentiating (5) and solving the

resulting systems of equations. It is the existence and uniqueness of solutions to these equations

(and hence for the coefficients in the Taylor series) that is the focus of our analysis.

A standard result in the literature, noted by Judd (1998, ch.13), Jin and Judd (2002),

Schmitt-Grohé and Uribe (2004) and others, is that the higher order terms of the Taylor ex-

pansion are solutions to linear problems taking the coefficients from lower orders as given.

A Sylvester form for these linear equations has been identified in previous studies,14 to our

knowledge, however, ours is the first representation that (i) expresses all equations of an arbi-

trary order perturbation as Sylvester equations and (ii) provides a closed form representation of

the order dependency of the homogenous part of the equations(Kronecker products inzyyz).

3.1.1 Deterministic First Order Term yz and Matrix Quadratic

To recoveryz, we first differentiatef in (5) with respect tozt

DzT
t
{ f}= fỹ ỹzzyyz+ fyyz+ fz(10)

Evaluating this at the deterministic steady state and setting its expectation to zero yields

Et

[

DzT
t
{ f}

]∣
∣
∣zt=z
σ=0

= fỹyzzyyz+ fyyz+ fz = 0(11)

Takingyzzy as given,yz then solves

( fỹyzzy+ fy)yz+ fz = 0(12)

Postmultiplying the foregoing withzy yields

fỹ(yzzy)
2+ fyyzzy+ fzzy = 0(13)

This is the familiar matrix quadratic equation (inyzzy) from linear analyses.15

3.1.2 Arbitrary Order Terms yzj σi

For all other coefficients, we successively differentiate (5) with respect to the state vectorzt and

the perturbation parameterσ, evaluate the resulting expressions at the deterministic steady state

14The Sylvester form in second order context of, e.g., Kim, Kim, Schaumburg, and Sims (2008) or Gomme and
Klein (2011) aside, Juillard and Kamenik (2004) and Kamenik(2005) show explicitly that many of the unknown
coefficients of a perturbation of arbitrary order can be castas Sylvester equations.

15See, e.g., Uhlig (1999).
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and set their expectations equal to zero. This generates a set of generalized Sylvester equations,

Lemma 3.1. For all j , i ∈ N0 such that j+ i > 1 except the case j= 1 and i= 0, the undeter-

mined coefficients yzjσi solve the following generalized Sylvester equation

fỹyzj σi (zyyz)
⊗[ j ]+( fy+ fỹyzzy)yzjσi +A( j, i) = 0(14)

where A( j, i) is a function of coefficients from lower orders and given moments E
[

εt
⊗[k]

]

, k≤ i.

Proof. See the Appendix.

This representation provides an explicit formulation of the homogenous structure of the

equations that the unknown coefficients of each order of approximation must fulfill,16 which

will facilitate the analysis of solvability using linear algebra. At each order, the leading matrix

coefficients,fỹ and fy+ fỹyzzy, remain unchanged and are formed by the coefficients of un-

stable factorization of the matrix quadratic as will be detailed in proposition4.6. The trailing

matrix coefficient,(zyyz)
⊗[ j ], is a Kronecker power of the linear transition matrix of the state

space and changes with the order of approximation. This is the source for the dependence of

the solvability conditions on the order of approximation identified by Jin and Judd (2002).17

However, this dependence is systematic and has a convenientclosed form.

3.2 Existence and Uniqueness of the Coefficients

Here, we present our main result that the existence of a unique stable solution at first order

guarantees the existence and uniqueness of the unknown coefficients of a Taylor expansion of

arbitrary order.

We guarantee a unique stable solution at first order with Blanchard and Kahn’s (1980) order

and rank conditions.18 The order condition assumes a full set of latent roots with half on or

inside and half outside the unit circle

Assumption 3.2.Order

There exists2ny latent roots of f̃yλ2+ fyλ+ fzzy—that is,λ ∈R : det( fỹX2+ fyX+ fzzy) = 0—

of which ny lie inside or on the unit circle and ny outside.

16The derivations for the second order expansion and the threeresulting Sylvester equations of (14) in yz2, yzσ,
andyσ2 can be found in the Appendix and are needed to initialize the induction that proves lemma3.1.

17Specifically, Jin and Judd (2002) first develop a deterministic perturbation inzt only and then perturb stochas-
tically with respect toσ. They point out that the change in the solvability conditions occurs only in a change in
the order of approximation in the deterministic perturbation. This is reflected in (14) as the only change in the
homogenous components occurs withj, the order of the perturbation with respect to the state vector zt .

18In the working paper version, Lan and Meyer-Gohde (2012a), we derive the results from the assumptions of
Klein (2000) on the companion linearized pencil of the matrix quadratic and its generalized Schur decomposition.
We hasten the exposition by imposing the existence of a unique stable solution and regularity directly.
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We then assume that a solution can be constructed containingthese stable eigenvalues

Assumption 3.3.Rank

There exists an X∈ Rny×ny such that f̃yX2+ fyX+ fzzy = 0 and|eig(X)| ≤ 1.

We now state our main result,

Theorem 3.4. Let the assumptions3.2 and 3.3 be fulfilled and set yzzy equal to this stable

solvent, then there exist unique solutions, yzj σi for all j , i ∈ N0 such that j+ i > 1, for (12) and

the generalized Sylvester equations (14) in lemma3.1

Proof. From lemmata4.10and4.11, the conditions of proposition4.8 are fulfilled for for all

j, i ∈ N0 such thatj + i > 1. See the following section.

While the solvability of coefficients outside the matrix quadratic in linear models is guar-

anteed by any separation (and not just unit root) of eigenvalues, we must be more careful in

nonlinear models. Kim, Kim, Schaumburg, and Sims (2008) require that the square of the

largest eigenvalue in the linear transition matrix be smaller than the smallest unstable eigen-

value for their second order solution. Moving to anM’th order of approximation, the smallest

unstable root in assumption3.2 would analogously need to be larger than theM’th power of

the largest eigenvalue inyzzy, the largest stable root in assumption3.2. Requiring stability

with respect to the unit circle at the first order, of course, eliminates this problem and ensures

solvability for perturbations of arbitrary order.19

4 Solvents, Sylvesters, and Proof of Theorem3.4

After laying out some preliminaries, we factor the matrix quadratic into two regular pencils

with disjoint spectra by deflating the matrix quadratic (13) according to the Generalized Bézout

Theorem with the stable solvent of assumption3.3. We then apply this factorization to the

sequence of generalized Sylvester equations (14) in lemma3.1and prove that the existence of

unique solutions is guaranteed by assumptions3.2and3.3.

4.1 A Factorization of the Matrix Quadratic

To derive our factorization, we begin by formalizing the matrix quadratic equation (13). Our

analysis will proceed initially in the complex plane, but the results carry over when we restrict

19These separations are merely sufficient. The necessary disjointness of lemma4.11would still be satisfied up
to M’th order if there is noM’th order or less product of eigenvalues ofyzzy equal to an eigenvalue ofPU(z).
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solutions to be real valued due to the eigenvalue separationin assumption3.2, see also Klein

(2000).

Definition 4.1. Matrix Quadratic Problem

For fỹ, fy, and fzzy ∈ Rny×ny, a matrix quadratic M(X) : Cny×ny → Cny×ny is defined as

M(X)≡ fỹX2+ fyX+ fzzy(15)

A solution to the matrix quadratic (15) is called a solvent and is defined as

Definition 4.2. Solvent of Matrix Quadratic

X ∈ Cny×ny is a solvent of the matrix quadratic (15) if and only if M(X) = 0

The eigenvalues of solvents of (15) are latent roots of the associated lambda matrix,20

Definition 4.3. Lambda Matrix

The lambda matrix M(λ) : C→ C
n×n (of degree two) associated with (15) is given by

M(λ)≡ fỹλ2+ fyλ+ fzzy(16)

Its latent roots are values ofλ such thatdetM(λ) = 0.

We are now prepared to link lambda matrices and solvents through the generalized Bézout

theorem, repeated in the Appendix, which states that a lambda matrix divided on the right by

a binomial in a matrix has as a remainder the matrix polynomial associated with the lambda

matrix evaluated at the matrix of the binomial. As noted by Gantmacher (1959, vol. I, ch. 4)

and repeated in Lancaster (1966) and Higham and Kim (2000), if this matrix in the binomial is

a solvent of the matrix polynomial, the division is without remainder, yielding a factorization

of the matrix polynomial. For our matrix quadratic, the lambda matrix can then be factored as

Corollary 4.4. Let yzzy be the stable solvent of assumption3.3, then (16) has the following

factorization

M(λ) = (λ fỹ + fỹyzzy+ fy)
︸ ︷︷ ︸

≡PU (λ)

(Inyλ−yzzy)
︸ ︷︷ ︸

≡PS(λ)

(17)

Proof. Apply theoremA.4 in the Appendix to (15), setA= yzzy, and note thatM(yzzy) = 0 as

yzzy is a solvent ofM(X).

Note that the latent roots ofM(λ) are given byλ’s such that

det(λ fỹ + fỹyzzy+ fy)det(Inyλ−yzzy) = 0(18)

The latter determinant gives the eigenvalues associated with the solventyzzy and the former

determinant gives a generalized eigenvalue problem in the coefficients ofM(X) and the solvent

20See, e.g., J. E. Dennis, Traub, and Weber (1976, p. 835) or Gantmacher (1959, vol. I, p. 228).

8



yzzy.21 This former determinant is simply a multidimensional lambda matrix analog to Viéte’s

formula, which relates the two solutions,x1 andx2, of the scalar quadraticax2+bx+ c = 0

througha(x1+x2)+b= 0. We can now use assumption3.2 on the number of eigenvalues to

establish the regularity ofPU(λ) andPS(λ)

Lemma 4.5. The pencils PU(λ) and PS(λ) are both regular.

Proof. As detM(λ) is vanishing for only 2ny values (respecting multiplicities) inC, detPU (λ)

and detPS(λ) are likewise vanishing for onlyny values (respecting multiplicities) inC. Thus,

there existsλ ∈ C such that detPU(λ) 6= 0 and likewise such that detPU(λ) 6= 0.

Additionally, assumption3.2restricts the eigenvalues ofPU(λ).

Proposition 4.6. Let yzzy be the stable solvent of assumption3.3, the eigenvalues of PU(λ) are

contained entirely outside the closed unit circle.

Proof. From assumption3.2, there are exactlyny latent roots ofM(λ) inside or on the unit

circle and exactlyny outside the unit circle. Theny eigenvalues of the pencilPS(λ) are all

inside or on the unit circle by assumption3.3. Hence, theny eigenvalues ofPU(λ) are theny

remaining latent roots ofM(λ), which must be outside the unit circle.

From proposition4.6, there exists a unique solution to (12)

Corollary 4.7. Let yzzy be the stable solvent of assumption3.3, there exists a unique yz that

solves (12), given by

yz =−( fỹyzzy+ fy)
−1 fz(19)

Proof. At issue is whetherfỹyzzy + fy is nonsingular. As the eigenvalues ofPU (λ) are all

outside the unit circle following proposition4.6, det(λ fỹ + fỹyzzy+ fy) 6= 0 for |λ| ≤ 1. This

applies, of course toλ = 0, from which we can see that det( fỹyzzy+ fy) 6= 0

The regularity of these pencils and the disjointness of their spectra will be central to the

solvability of the undetermined coefficients of perturbations of arbitrary order.

4.2 Existence and Uniqueness in Sylvester Equations

The necessary and sufficient conditions proposed by Theorem1 of Chu (1987) for the existence

and uniqueness of solutions to generalized Sylvester equations requires the two matrix pencils

formed by the leading and trailing matrix coefficients to be regular and have disjoint spectra.

We prove here that they are fulfilled for all our equations in lemma3.1as a direct consequence

21The Appendix contains a definition of a pencil,P(λ), and its spectrum or set of generalized eigenvalues,ρ(P).
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of the existence of the unique stable solution at first order.We adapt his theorem, adopting his

notation temporarily, to our purposes in the following

Proposition 4.8. There exists a unique solution, X∈ Rm×n, for the Sylvester equation

AXB+CXD+E = 0

where A,C∈ Rm×m and D,B∈ Rn×n, if and only if

1. PAC(z)≡ Az+C and PDB(z)≡ Dz−B are regular matrix pencils, and

2. ρ(PAC)∩ρ(PDB) = /0, e.g. their spectra are disjoint

Proof. See Chu (1987). Notice the rearrangement and redefinition ofterms.

Before we examine the general case, we will highlight the intuition behind proposition4.8

using a scalar version of (14), when fỹ, fy,yzzy, andzyyz ∈ R andA( j, i) is a scalar function of

known terms.22 In this case, (14) can be arranged as
[

fỹ (zyyz)
j +( fy+ fỹyzzy)

]

yzj σi +A( j, i) = 0(20)

From, e.g., Strang (2009), the foregoing has a unique solution if and only if the leading coeffi-

cient is not zero, i.e.,
[

fỹ(zyyz)
j +( fy+ fỹyzzy)

]

6= 0. As otherwise there is either no solution

(whenA( j, i) 6= 0) or there exists infinitely many solutions (whenA( j, i) = 0). The conditions

in proposition4.8classify the two ways this coefficient can be equal to zero.

The regularity condition in the scalar case precludes both coefficients in either of the pencils

being equal to zero: eitherfỹ = fy+ fỹyzzy = 0 or 1= (zyyz)
j = 0. Obviously, both coefficients

in the trailing pencil cannot be zero and this general regularity holds in the matrix case as well.

The second condition, disjoint spectra, rules out the remaining hurdle that the sum of all the

coefficients is zero, which can be rearranged asfy+ fỹyzzy
fỹ

6= (zyyz)
j . Recognize that the two

terms correspond to the eigenvalues of the scalar regular pencilsPU (λ) andPIS(λ), hence their

set of eigenvalues (or spectra) must not contain any identical elements (be disjoint).

Returning to the general case, we first define the leading and trailing matrix pencils and

then establish their regularity and the disjointness of their spectra.

Definition 4.9. For all j ∈ N0, the leading and trailing matrix pencils, respectively, ofthe

generalized Sylvester equation (14) in lemma3.1are

1. λ fỹ + fỹyzzy+ fy = PU (λ), see proposition4.6

2. PIS(λ)≡ λIn j
z
− (zyyz)

⊗[ j ]

The regularity of both the pencils is straightforward and issummarized in the following

22This special case, of course, is not useful practically. Either all shocks or the presence ofyt−1 has to be shut
down, but the mechanisms behind the matrix case are usefullyillustrated in this case.
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Lemma 4.10.For all j ∈ N
0, PU(λ) and PIS(λ) and are regular

Proof. For PU(λ), see lemma4.5. For PIS(λ), this follows from its leading matrix being the

identity matrix, see Gantmacher (1959, vol. II, pp. 25–27).

The spectral disjointness follows nearly directly from thefactorization of the matrix quadratic

in corollary 4.4, with the spectrum of the leading pencilPU (λ) being outside and that of

the trailing pencilPIS(λ) being inside the closed unit circle. From corollary4.4, the pencil

PS(λ) = Inyλ− yzzy is stable, but noting thatzy andzε are two constant matrices with all their

entries being either unity or zero

zy ≡ DyT
t−1

{zt}= DyT
t
{zt+1}=

[
Iny

0ne×ny

]

, zε ≡ DεT
t
{zt}= DσεT

t+1
{zt+1}=

[
0ny×ne

Ine

]

(21)

the matrixzyyz in PIS(λ) is

zyyz =

[
yzzy yzzε

0ne×ny 0ne×ne

]

(22)

and it follows directly23 that the the eigenvalues ofPIS(λ) are all stable with respect to the

closed unit circle, and thus those of an arbitrary Kroneckerpower too. We summarize the

disjointness in the following

Lemma 4.11.For all j ∈ N0, the spectra of PU(λ) and PIS(λ) form a disjoint set.

Proof. See Appendix.

From lemmata4.10and4.11, proposition4.8 applies and the existence and uniqueness of

solutions to the generalized Sylvester equations (14) in lemma3.1is immediate, completing—

along with corollary4.7—the proof of our main result in theorem3.4.

5 Applications

Jin and Judd (2002) provide a local existence theorem for thesolution to stochastic models. We

eliminate their solvability assumption, as their assumption of a unique locally asymptotically

stable solution enables us to apply our factorization to confirm that their solvability assumption

is necessarily fulfilled, analogously to our theorem3.4.

Theorem 5.1.Simplified Local Existence Theorem of Jin and Judd (2002)

If (i) the function f in (1) exists and is analytic for allεt in some neighborhood ofz defined

in (6), (ii) there exists a unique deterministic solution y(0,zt) locally analytic in zt and locally

asymptotically stable, (iii) E[εt ] = 0, and (iv)εt has bounded support, then there is an r> 0

such that for all(zt,σ) in a ball with radius r centered at(0,z) there exists a unique solution

23See, e.g., Golub and Loan (1996, p. 311).
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y(σ,zt) to (5). Furthermore, all derivatives of y(σ,zt) exist in a neighborhood of(0,z) and can

be solved by implicit differentiation.

Proof. See the Appendix.

All told, what is needed for the local existence of a solutionto a stochastic problem is

sufficient differentiability of the equilibrium conditions, the existence of a solution to the de-

terministic variant of the model and restrictions on the moments and support of the stochastic

processes that ensure the model remains well defined.24

Previous studies have conjectured the independence of the policy function from first order

effects of the perturbation parameter (yzj σi = 0 for i = 1), as the equations that these coefficients

solve are homogenous. The conjecture lies in the solvability of these systems: Schmitt-Grohé

and Uribe (2004) to second, Andreasen (2012) to third, and Jin and Judd (2002) to arbitrary

order prove that the unknown coefficients involving the perturbation parameter solve homo-

geneous equations. Of course, the zero solution solves these equations, but the claim that the

solution is uniquely zero requires solvability in additionto homogeneity—see, e.g., Strang

(2009). Theorem3.4adds the missing link, showing not only that zero is a solution (as follows

from homogeneity), but that it is the only solution for a linearly saddle stable model. With

the first moment of exogenous shocks and allyzkσ for k < j zero, the generalized Sylvester

equations inyzj σ are homogenous

fỹyzjσ (zyyz)
⊗[ j ]+( fy+ fỹyzzy)yzj σ = 0(23)

As the zero matrix is always a solution to (23) and the solution must be unique following

theorem3.4, yzj σ = 0 is the unique solution for allj. We formalize this in the following

Proposition 5.2. Let the conditions for theorem3.4hold, then yzj σ = 0 for all j ∈ N0.

Proof. See the Appendix.

The intuition behind this is simple: the unknown coefficientyzj σ is the comparative static

matrix measuring the impact of the first moment of future exogenous shocks on the policy

functiony (and its derivatives with respect to the state vectorzt). As the first moment of future

exogenous shocks is assumed to be zero, it has no impact at all. Thus, our main result confirms

the conjecture of Jin and Judd (2002) and Schmitt-Grohé andUribe (2004) by providing the

necessary solvability so as to add uniqueness to their existence of the zero solution.

24See Woodford (1986) for a related result in the space of infinite sequences of innovations.
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6 Conclusion

We have proven the existence and uniqueness of solutions forthe undetermined coefficients

in perturbations of an arbitrarily high order. Thus, solvability of the higher order terms in a

nonlinear perturbation as questioned by Gaspar and Judd (1997), Judd (1998, ch. 13), and Jin

and Judd (2002) is guaranteed if the model possesses a uniquestable solution at first order.

That is, successive differentiation of the equilibrium condition of a linearly saddle stable model

leads to a unique set of coefficients for a Taylor expansion ofthe policy function.

With the recent proliferation of interest in nonlinear methods and general familiarity of

economists with the first order perturbation—i.e., (log-)linearization, our results should provide

confidence to researchers refining their approximations to incorporate nonlinearity that their

perturbations of arbitrary order will necessarily be associated with a unique solution if the linear

approximation has a unique stable solution. For users of numerical perturbation algorithms, we

have answered two questions. First, given a nonlinear perturbation solution from a numerical

algorithm, is this solution the only solution? Second, should a numerical algorithm fail to

deliver a solution: does a solution not exist at all or did thenumerical algorithm simply fail

to find a solution? Given a unique stable solution at first order, our results provide a definitive

assurance that solutions for all unknown coefficients in theperturbation exist and are unique.
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A Appendices

A.1 A Multidimensional Calculus and Taylor Approximation

Theorem A.1. A Multidimensional Calculus

Given the vector B∈ R
s×1 and the matrix-valued functions F: B → R

p×q, G : B → R
q×u,

H : B → Ru×v and given the vector-valued function C: B → Ru×1, J : C → Rp×1 and the

matrix-valued function A: C→ Rp×q, the following rules of calculus hold

1. Matrix Product Rule:DBT {FG}= FB(Is⊗G)+FGB, where Is is an s×s identity matrix

2. Matrix Chain Rule:DBT {A(C)}= AC
(
CB⊗ Iq

)
, where Iq is an q×q identity matrix

3. Matrix Kronecker Product Rule:DBT

{

F
p×q

⊗ H
u×v

}

= FB⊗H +(F ⊗HB)

(

Kq,s⊗ I
v×v

)

,

where Kq,s is a qs×qs commutation matrix (see Magnus and Neudecker (1979)).

Proof. See Lan and Meyer-Gohde (2012b).

TheM-th order Taylor approximation of (2) at the deterministic steady state (6) is25

Corollary A.2. An M-th order Taylor Approximation of (2) is written as

yt =
M

∑
j=0

1
j!

[
M− j

∑
i=0

1
i!

yzj σi σi

]

(zt −z)⊗[ j ](A-1)

Proof. From Vetter (1973), a multidimensional Taylor expansion isgiven by

M
(p×1)

( B
(s×1)

) = M(B̄)+
N

∑
n=1

1
n!

D
n
BTnM(B̄)(B− B̄)⊗[n]

+RN+1(B̄,B)(A-2)

whereRN+1(B̄,B) =
1

N!

∫ B

ξ=B̄
D

N+1
BT N+1M(ξ)

(

Is⊗ (B−ξ)⊗[N]
)

dξ(A-3)

Differentiating (2) M times,a Taylor approximation at the deterministic steady statez is

yt =
1
0!

(
1
0!

y+
1
1!

yσσ+
1
2!

yσ2σ2+ . . .+
1

M!
yσM σM

)

+
1
1!

(
1
0!

yz+
1
1!

yzσσ+
1
2!

yzσ2σ2+ . . .+
1

(M−1)!
yzσM−1σM−1

)

(zt −z)

+
1
2!

(
1
0!

yz2 +
1
1!

yz2σσ+
1
2!

yz2σ2σ2+ . . .+
1

(M−2)!
yz2σM−2σM−2

)

(zt −z)⊗[2]

...

+
1

M!
1
0!

yzM (zt −z)⊗[M]

Writing the foregoing more compactly yields (A-1).

A.2 Pencils and Spectra

Definition A.3. Matrix Pencil and Spectrum

25We leave this dependency implicit in the following and adoptthe notation of definition2.2.
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Let P: C→C
n×n be a matrix-valued function of a complex variable; a matrix pencil. Its set of

generalized eigenvalues or spectrumρ(P) is defined viaρ(P) = {z∈ C : detP(z) = 0}.

A.3 The Generalized B́ezout Theorem

Theorem A.4. The Generalized B́ezout Theorem

The arbitrary lambda matrix

M(λ) = M0λm+M1λm−1+ · · ·+Mm, where M0 6= 0
(n×n)

when divided on the right by the binomial Inλ−A yields

M(λ) = Q(λ)(Inλ−A)+M(A)

where Q(λ) = M0λm−1+(M0A+M1)λm−2+ · · ·+M0Am−1+M1Am−2+ · · ·+Mm

Proof. See Gantmacher (1959, vol. I).

A.4 Proof of Lemma 3.1

We will first show that for all j, i ∈ N0 such thatj + i > 1 except the casej = 1 andi = 0,

successive differentiation of the functionf with respect to its arguments,zt andσ, yields

DzT j
t σi{ f}= fỹ ỹzj σi (zyyz)

⊗[ j ]+( fy+ fỹ ỹzzy)yzjσi +B( j, i)(A-4)

where the functionB( j, i) is (i) linear in εt+1 up to and includingi-th Kronecker power and

contains (ii) products involving derivatives ofy andỹ with respect tozt j + i or less times and

σ i or less times except for the unknownyzj σi under consideration

B( j, i) = B
(

ỹzl σk,yzl σk,ε⊗[k]
t+1

)

(A-5)

wherel = 0,1,2, . . . , j + i; k= 0,1,2, . . . , i; l +k≤ j + i; but notl = j andk= i(A-6)

The index rule (A-6) ensures thatB( j, i) contains only terms given by previous calculations

with the unknown,yzj σi , excluded byl = j andk= i simultaneously having been disallowed.

We will proceed inductively by differentiating (A-4) with respect tozt andσ respectively

and confirming that the two resulting expressions take the form of (A-4). Beginning withzt

D
zT j+1
t σi{ f}= fỹ ỹzj+1σi (zyyz)

⊗[ j+1]+( fy+ fỹ ỹzzy)yzj+1σi

+DzT
t
{ fỹ}

(

Inz⊗
[

ỹzj σi(zyyz)
⊗[ j ]

])

+ fỹ ỹzjσiDzT
t

{

(zyyz)
⊗[ j ]

}

+DzT
t
{ fy}

(
Inz⊗yzj σi

)
+DzT

t
{ fỹỹzzy}

(
Inz⊗yzj σi

)

+DzT
t

{

B
(

ỹzl σk,yzl σk,ε⊗[k]
t+1

)}

(A-7)

The second and third lines of the foregoing contain productsinvolving the derivatives ofy

andỹ with respect tozt j + i or less times andσ i or less times, given by previous calculations.
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The last line contains products of the derivatives ofy and ỹ with respect tozt j + i +1 or

fewer andσ i or fewer times, as is revealed by differentiating throughB( j, i) in the last line

with respect tozt in which

DzT
t

{
ỹzl σk

}
= ỹzl+1σk[(zyyz)⊗ Izl ], DzT

t

{
yzl σk

}
= yzl+1σk[(zyyz)⊗ Izl ](A-8)

wherel = 0,1,2, . . . , j + i; k= 0,1,2, . . . , i; l +k≤ j + i; but notl = j andk= i

Importantly, the unknown under consideration upon differentiation,yzj+1σi , is excluded by ad-

vancing the exclusion in the index rule: with noyzj σi in B( j, i), there is noyzj+1σi in B( j +1, i).

Furthermore, the terms are linear inεt+1 up to and including thei-th Kronecker power as dif-

ferentiatingε⊗[k]
t+1 in the last line does not advance the indexi. Hence (A-7) can be rewritten

D
zT j+1
t σi{ f}= fỹ ỹzj+1σi (zyyz)

⊗[ j+1]+( fy+ fỹ ỹzzy)yzj+1σi +B( j +1, i)(A-9)

Hence differentiation with respect tozt confirms the form of (A-4).

Differentiating (A-4) with respect toσ yields

D
zT j
t σi+1{ f}= fỹ ỹzj σi+1 (zyyz)

⊗[ j ]+( fy+ fỹ ỹzzy)yzj σi+1

+Dσ{ fỹ}
[

ỹzj σi (zyyz)
⊗[ j ]

]

+ fỹ ỹzj+1σi(zyyz)
⊗[ j+1]+ fỹ ỹzj+1σi zεεt+1(zyyz)

⊗[ j ]

+ fỹ ỹzj σiDσ

{

(zyyz)
⊗[ j ]

}

+Dσ{ fy}yzjσi +Dσ{ fỹỹzzy}yzj σi

+Dσ

{

B
(

ỹzl σk,yzl σk,ε⊗[k]
t+1

)}

(A-10)

The second and third lines of the foregoing contain productsinvolving the derivatives ofy

and ỹ with respect tozt j + i +1 or less times andσ i or less times, all known from previous

calculations. Note again that the unknown, hereyzj σi+1, only appears in the first line.

The last line contains products involving the derivatives of y andỹ with respect tozt j+ i+1

or fewer andσ i+1 or fewer times. To see this, differentiate throughB( j, i) in the last line with

respect toσ in which

Dσ
{

ỹzl σk

}
= ỹzl+1σk(zyyσ +zεεt+1)+ ỹzl σk+1, Dσ

{
yzl σk

}
= yzl σk+1(A-11)

wherel = 0,1,2, . . . , j + i; k= 0,1,2, . . . , i; l +k≤ j + i; but notl = j andk= i

Importantly, the unknownyzj σi+1 is again not present here either, as whenk= i or equivalently,

k+1 = i +1, l = j is not allowed by the index rule: with noyzj σi in B( j, i), there can be no

yzj σi+1 in B( j, i +1). Notice that an additionalεt+1 is included in (A-11). The possibility that

this term multiplies with the existingε⊗[k]
t+1 necessitates the advancement of the index associated

with Kronecker powers ofεt+1 for B( j, i +1) to remain linear in the set ofε⊗[k+1]
t+1 .

All terms in the last three lines of (A-10) form B( j, i +1) and (A-10) can be rewritten

DzT j
t σi+1{ f}= fỹyzj σi+1 (zyyz)

⊗[ j ]+( fy+ fỹ ỹzzy)yzj σi+1 +B( j, i +1)(A-12)
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Hence differentiation with respect toσ likewise confirms the form of (A-4).

The second step is to evaluate (A-4), having been verified by induction above, with the

given moments ofεt+1 and at the deterministic steady state. Setting the resulting expression

equal to zero and lettingA( j, i)≡ Et [B( j, i)]
∣
∣
∣zt=z
σ=0

yields (14) in the text.

All that remains is to address the cases that were excluding by the indexation rule and to

initialize the induction. Excluded were: (i)( j = 0, i = 0) corresponding to the deterministic

steady state value ofy which was assumed given in the text; and (ii)( j = 1, i = 0) for yz,

which was solved separately as (12) in the text. The case( j = 0, i = 1) for yσ can be handled

individually,26 so that we can start the induction with the three second orderterms (j + i = 2),

yz2, yzσ, andyσ2, which are provided in the next section separately.

A.5 Generalized Sylvester Equations for Second Order Terms

From corollaryA.2, the second order Taylor expansion of the policy function (2) takes the form

yt = y+yσσ+
1
2

yσ2σ2+(yz+yzσσ)(zt −z)+
1
2

yz2(zt −z)⊗[2](A-13)

Given coefficients from the first order, there are three unknowns:yz2, yzσ andyσ2.

To find yz2, we differentiate (10) with respect tozt

DzT
t zT

t
{ f}=DzT

t

{
fỹ
}(

Inz⊗ ỹzzyyz
)
+ fỹ ỹz2(zyyz)

⊗2+ fỹ ỹzzyyz2

+DzT
t

{
fy
}(

Inz⊗yz
)
+ fyyz2 +DzT

t
{ fz}(A-14)

where DzT
t

{
fỹ
}
= fỹ2

[
(ỹzzyyz)⊗ Iny

]
+ fyỹ

(
yz⊗ Iny

)
+ fzỹ

DzT
t

{
fy
}
= fỹy

[
(ỹzzyyz)⊗ Iny

]
+ fy2

(
yz⊗ Iny

)
+ fzy

DzT
t
{ fz}= fỹz

[
(ỹzzyyz)⊗ Inz

]
+ fyz

(
yz⊗ Inz

)
+ fzz

Evaluating at the deterministic steady state, the expectation of the foregoing set to zero yields

0= Et

[

DzT
t zT

t
{ f}

]∣
∣
∣zt=z
σ=0

= fỹyz2(zyyz)
⊗2+( fỹyzzy+ fy)yz2

+Et

[

DzT
t

{
fỹ
}
(Inz⊗ ỹzzyyz)+DzT

t

{
fy
}
(Inz⊗yz)+DzT

t
{ fz}

]∣
∣
∣zt=z
σ=0

(A-15)

This is (14) with j = 2 andi = 0 in lemma3.1.

To determineyzσ, we differentiate (26) with respect tozt

D
2
zT
t σ{ f}=DzT

t

{
fỹ
}(

Inz⊗ ( fỹ[ỹz(zyyσ +zεεt+1)+ ỹσ])
)

+ fỹDzT
t
{ỹz} [Inz⊗ (zyyσ +zεεt+1)]+ fỹ ỹzzyyzσ

26
Dσ{ f} = fỹ ỹzzyyσ + fỹ ỹzzεεt+1+ fỹ ỹσ + fyyσ, which, when evaluated at the deterministic steady state and

with its expectation set to zero, yieldsEt [Dσ{ f}]
∣
∣
∣zt=z
σ=0

= fỹ yσ +( fy+ fỹ yzzy)yσ + fỹyzzεEt [εt+1] = 0.
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+ fỹ ỹzσzyyz+DzT
t

{
fy
}
(Inz⊗yσ)+ fyyzσ(A-16)

where DzT
t
{ỹz}= ỹz2(zyyz)

⊗2+ ỹzzyyz2

Setting the expectation of the foregoing evaluated at the deterministic steady state to zero yields

0= Et

[

DzT
t σ{ f}

]∣
∣
∣zt=z
σ=0

= fỹyzσ(zyyz)+( fỹyzzy+ fy)yzσ

+Et

[

DzT
t

{
fỹ
}(

Inz⊗ ( fỹ[ỹz(zyyσ +zεεt+1)+ ỹσ])
)

+ fỹDzT
t
{ỹz} [Inz⊗ (zyyσ +zεεt+1)]+DzT

t

{
fy
}
(Inz⊗yσ)

]∣
∣
∣zt=z
σ=0

(A-17)

This is (14) with j = 1 andi = 1 in lemma3.1.

To determineyσ2, we differentiate (26) with respect toσ

D
2
σ2{ f}=Dσ

{
fỹ
}
(ỹzzyyσ + ỹzzεεt+1+ ỹσ)+ fỹDσ{ỹz}(zyyσ +zεεt+1)

+ fỹỹzzyyσ2 + fỹỹσ2 +Dσ
{

fy
}

yσ + fyyσ2(A-18)

where Dσ
{

fỹ
}
= fỹ2

[
(ỹz(zyyσ +zεεt+1)+ ỹσ)⊗ Iny

]
+ fyỹ(yσ ⊗ Iny)

Dσ{ỹz}= ỹz2

[
(zyyσ +zεεt+1)⊗ Inz

]
+ ỹσz

Dσ
{

fy
}
= fỹy

[
(ỹz(zyyσ +zεεt+1)+ ỹσ)⊗ Iny

]
+ fy2(yσ ⊗ Iny)

Evaluating at the deterministic steady state, the expectation of the foregoing set to zero yields

0= Et
[
D

2
σ2 { f}

]
∣
∣
∣zt=z
σ=0

= fỹyσ2 +( fỹyzzy+ fy)yσ2

+Et

[

Dσ
{

fỹ
}
(ỹzzyyσ + ỹzzεεt+1+ ỹσ)+ fỹDσ{ỹz}(zyyσ +zεεt+1)

+Dσ
{

fy
}

yσ

]∣
∣
∣zt=z
σ=0

(A-19)

This is (14) with j = 0 andi = 2 in lemma3.1.27

A.6 Proof of Lemma 4.11

From (22), it follows that the eigenvalues ofzyyz are those ofyzzy plus a zero eigenvalue with

algebraic multiplicityne and are, following assumption3.3 all inside the closed unit circle.

As the eigenvalues of the Kronecker product of two matrices are equal to the products of the

eigenvalues of the two matrices, all the eigenvalues of(zyyz)
⊗[ j ] for all j ∈ N0, and hence the

trailing pencil of definition4.9, are also inside the closed unit circle. The eigenvalues of the

leading pencil of definition4.9are all outside the closed unit circle from proposition4.6. The

spectra of the two pencils in question are thusly disjoint, being separated by the unit circle.

27The second moment of future shocks in (A-19) emerges from the terms under the expectation operator.
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A.7 Proof of Theorem5.1

This is Jin and Judd’s (2002) Theorem 6 adapted to our exposition with their assumption (iii)

concerning solvability eliminated. Under our problem statement (1), the derivative of Jin and

Judd’s (2002) operatorN (y,σ) has a leading coefficient matrix given byfy + fỹyzzy at the

steady state. From proposition4.6, this matrix is necessarily invertible.

A.8 Proof of Proposition 5.2

From the proof of lemma3.1, we can write the equations governingyzjσ, for j ≥ 0, as

fỹyzj σ (zyyz)
⊗[ j ]+( fy+ fỹyzzy)yzjσ +A( j,1) = 0(A-20)

whereA( j,1) = Et [B( j,1)]. We will proceed inductively over the terms inB( j,1) where the

homogeneity of the equations will follow from the solvability proven in theorem3.4.

To begin, assume that for somej ≥ 0,B( j,1) is a set of terms involving a product of at least

one ofyzkσ, k< j, or εt+1, but at most one of the latter. As differentiating

fỹyzj σ (zyyz)
⊗[ j ]+( fy+ fỹyzzy)yzjσ +B( j,1) = 0(A-21)

with respect tozt only advances the indexj, see sectionA.4, it follows that

DzT
t σ{B( j,1)}= B( j +1,1)(A-22)

with B( j +1,1) being a set of terms involving a product of at least one ofyzkσ, k < j +1, or

εt+1, but at most one of the latter. To start the induction, note from footnote26 that

B(0,1) = fỹ ỹzzεεt+1(A-23)

thus, confirming the composition ofB( j,1) as a set of terms involving a product of at least one

of yzkσ, k< j, or εt+1, but at most one of the latter.28

Taking expectations

A( j,1) = Et [B( j,1)](A-24)

and as the first moment ofεt was assumed zero, all terms except those involving only products

of yzkσ, k < j are eliminated. Thus, if allyzkσ, k < j are zero, thenA( j,1) is zero and the

equation inyzj σ is homogenous. From theorem3.4 it then follows thatyzj σ must also be zero,

as a unique solution exists and zero is always a solution of a homogenous equation. Hence by

induction, starting from the homogenous equation foryσ, all yzj σ = 0, for j ≥ 0.

28As k < j would admit only negative values ofk in yzkσ for B(0,1), it is useful to examineB(1,1) as well to
confirm the induction. Examining (A-16) for the second order case, which gives

B(1,1) =DzT
t
{ fỹ}

(
Inz⊗ ( fỹ[ỹz(zyyσ + zεεt+1)+ ỹσ])

)
+ fỹDzT

t
{ỹz} [Inz⊗ (zyyσ + zεεt+1)]+DzT

t
{ fy}(Inz ⊗ yσ)

where DzT
t
{ỹz}= ỹz2(zyyz)

⊗2+ ỹzzyyz2

notice that all terms involve a product of at least one ofyσ, or εt+1, but at most one of the latter.
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