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Abstract

We propose a nonlinear infinite moving average as an alternative to the standard state space

policy function for solving nonlinear DSGE models. Perturbation of the nonlinear moving average

policy function provides a direct mapping from a history of innovations to endogenous variables,

decomposes the contributions from individual orders of uncertainty and nonlinearity, and enables

familiar impulse response analysis in nonlinear settings.When the linear approximation is saddle

stable and free of unit roots, higher order terms are likewise saddle stable and first order correc-

tions for uncertainty are zero. We derive the third order approximation explicitly and examine the

accuracy of the method using Euler equation tests.
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1 Introduction

Solving models with a higher than first order degree of accuracy is an important challenge for DSGE

analysis with the growing interest in nonlinearities. We introduce a novel policy function, the non-

linear infinite moving average, to perturbation analysis indynamic macroeconomics. This direct

mapping from shocks to endogenous variables neatly dissects the individual contributions of orders

of nonlinearity and uncertainty to the impulse response functions (IRFs). For economists interested

in studying the transmission of shocks, our method offers new insight into the propagation mecha-

nism of nonlinear DSGE models.

The nonlinear moving average policy function chooses as itsstate variable basis the infinite

history of past shocks.1 The nonlinear DSGE perturbation literature initiated by Gaspar and Judd

(1997), Judd and Guu (1997), and Judd (1998, ch. 13) has thus far operated solely with state space

methods.2 Our infinite dimensional approach is longstanding in linearmodels and delivers the same

solution as state space methods for linear models.3 For the nonlinear focus of this paper, however,

it provides a different solution. Deriving the direct mapping from shocks to endogenous variables

of interest—a Volterra series expansion—facilitates familiar impulse response analysis and makes

clear the caveats introduced by nonlinearity. These include history dependence, asymmetries, a

breakdown of superposition and scale invariance, as well asthe potential for harmonic distortion.4

As highlighted by Gomme and Klein (2011) in their second order approximation, deriving per-

1Kalman’s (1980) “external” or “empirical” approach to system theory in contrast to the ‘internal” or “state-variable”
approach of the state space methods more familiar to DSGE practitioners. See Woodford (1986) for a theoretical
foundation of nonlinear DSGE solutions in this space of infinite sequences of innovations.

2See Collard and Juillard (2001b), Collard and Juillard (2001a), Jin and Judd (2002), Schmitt-Grohé and Uribe
(2004), Anderson, Levin, and Swanson (2006), Lombardo and Sutherland (2007), and Kim, Kim, Schaumburg, and
Sims (2008). Recent work of Aruoba, Bocola, and Schorfheide(2011) links their quadratic autoregressive (QAR) time
series model within a DSGE context to the Volterra series expansion that we use as our solution basis. Whereas we
solve a DSGE model directly with a Volterra series, Aruoba, Bocola, and Schorfheide (2011) compare a reduced form
Volterra time series with a state space DSGE policy function. Their focus is on estimation, which is beyond the scope
of this paper.

3Compare, e.g., the state space representations of Uhlig (1999), Klein (2000), or Sims (2001) with the infinite
moving-average representations of Muth (1961), Whiteman (1983) or Taylor (1986).

4See Priestly (1988), Koop, Pesaran, and Potter (1996), Potter (2000), and Gourieroux and Jasiak (2005) for detailed
discussions from a time series perspective.
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turbation solutions with standard linear algebra increases the transparency of the technique and

makes coding the method more straightforward. In that vein,we adapt Vetter’s (1973) multidi-

mensional calculus to provide a mechanical system of differentiation that maintains standard linear

algebraic structures for arbitrarily high orders of approximation. We implement our approach nu-

merically by providing an add on for the popular Dynare package.5 We then apply our method to

the stochastic growth model of Aruoba, Fernández-Villaverde, and Rubio-Ramı́rez (2006) for com-

parability and explore the resulting decomposition of the contributing components of the responses

of variables to exogenous shocks. We develop Euler equationerror methods for our infinite dimen-

sional policy function and confirm that our moving average solution produces approximations with a

degree of accuracy comparable to state space solutions of the same order of approximation presented

in Aruoba, Fernández-Villaverde, and Rubio-Ramı́rez (2006).6

We make two assumptions on the characteristic equation of the first order (i.e., linear) approxi-

mation: it is saddle stable and it is free of unit roots. The first is the standard Blanchard and Kahn

(1980) assumption and we show that the resulting stability from the first order is passed on to higher

order terms. The second is necessary to ensure the boundedness of corrections to constants and

essentially embodies the necessary invertibility of a standard state space policy function to yield our

infinite moving average. Additionally, these assumptions enable us to show that the derivatives of

the moving average policy function first order in the perturbation parameter are uniquely zero, as

shown by Jin and Judd (2002) and Schmitt-Grohé and Uribe (2004) for state space policy function.

The paper is organized as follows. The model and the nonlinear infinite moving average policy

function are presented in section2. In section3, we develop the numerical perturbation of our

nonlinear infinite moving average policy function explicitly out to the third order. We apply our

method to a standard stochastic growth model in section4, a widely used baseline for numerical

5See Adjemian, Bastani, Juillard, Mihoubi, Perendia, Ratto, and Villemot (2011).
6Aruoba, Fernández-Villaverde, and Rubio-Ramı́rez (2006) also explore several global methods (projection, value

function iteration) and our choice allows comparability tothese other methods. Our focus, however, is on the alternative
basis from the nonlinear moving average for local (perturbation) methods and our analysis proceeds accordingly.
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methods in macroeconomics. In section5, we develop Euler equation error methods for our infinite

dimensional solution form and quantify the accuracy of our method. Section6 concludes.

2 Problem Statement and Solution Form

In this section, we introduce the class of models we analyze and the policy function we propose

as a solution. Our class of models is a standard system of (nonlinear) second order expectational

difference equations. In contrast with the general practice in the literature, however, the solution

will be a policy function that directly maps from realizations of the exogenous variables to the

endogenous variables of interest. We will first present the model class followed by the solution form

and then conclude with the Taylor/Volterra approximation of the solution and the matrix calculus

necessary to follow the derivations in subsequent sections.

2.1 Model Class

We analyze a family of discrete-time rational expectationsmodels given by

0= Et [ f (yt−1,yt ,yt+1,ut)], whereut =
∞

∑
i=0

Niεt−i(1)

f is an (neq× 1) vector valued function, continuouslyn-times (the order of approximation to be

introduced subsequently) differentiable in all its arguments;yt is an(ny×1) vector of endogenous

variables; the vector of exogenous variablesut is of dimension(nu× 1) and it is assumed that

there are as many equations as endogenous variables(neq= ny). N is the (nu× nu) matrix of

autoregressive coefficients ofut, presented here in moving average form. The eigenvalues ofN are

assumed all inside the unit circle so thatut admits this infinite moving average representation; and

εt is an(ne×1) vector of exogenous shocks of the same dimension(nu= ne). Our software add on

forcesN = 0 to align with Dynare.7

7See again Adjemian, Bastani, Juillard, Mihoubi, Perendia,Ratto, and Villemot (2011). Thus in practice, the
economist using Dynare must incorporate any serial correlation into the vectoryt . This choice is not made in the
exposition here as the admissibility of serial correlationin the exogenous driving force brings our first order derivation
in line with earlier moving average approaches for linear models, e.g., Taylor (1986).
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Additionally, εt is assumed independently and identically distributed suchthat E(εt) = 0 and

E(εt
⊗[n]) exists and is finite for alln up to and including the order of approximation to be introduced

subsequently.8

As is usual in perturbation methods, we introduce an auxiliary parameterσ ∈ [0, 1] to scale

the uncertainty in the model. The valueσ = 1 corresponds to the “true” stochastic model under

study andσ = 0 represents the deterministic version of the model. Following Anderson, Levin, and

Swanson (2006, p. 4), we do not scale{εt ,εt−1, . . .} — the realizations of the exogenous shocks up

to (including)t — with σ, as they are known with certainty att. The perturbation parameter does

not enter the problem statement explicitly, but only implicitly through the policy functions, and its

role will become clear as we introduce the solution form and its approximation.

2.2 Solution Form

Let the policy function take the causal one-sided infinite sequence of shocks as its state vector and,

following Anderson, Levin, and Swanson (2006, p. 3), let it be time invariant for allt, analytic and

ergodic.9 The unknown policy function is then given by

yt = y(σ,εt ,εt−1, . . .)(2)

Note thatσ enters as a separate argument. As the scale of uncertainty changes, so too will the policy

functiony itself change. Time invariance and scaling uncertainty give us

yt−1 = y−(σ,εt−1,εt−2, . . .)(3)

yt+1 = y+(σ, ε̃t+1,εt,εt−1, . . .) wherẽεt+1 ≡ σεt+1(4)

8The notationεt
⊗[n] represents Kronecker powers,εt

⊗[n] is the n’th fold Kronecker product ofεt with itself:
εt ⊗ εt · · ·⊗ εt︸ ︷︷ ︸

n times

. For simulations, of course, more specific decisions regarding the distribution of the exogenous pro-

cesses will have to be made. Kim, Kim, Schaumburg, and Sims (2008, p. 3402) emphasize that distributional assump-
tions like these are not entirely local assumptions. Dynare(Adjemian, Bastani, Juillard, Mihoubi, Perendia, Ratto, and
Villemot 2011) assumes normality of the underlying shocks.

9Analyticity is required for the convergence of asymptotic expansion as the order of approximation becomes infinite
and ergodicity rules out explosive and nonfundamental solutions.
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The notation,y, y−, andy+, is adopted so that we can keep track of the source (throughyt , yt−1, and

yt+1 respectively) of any given partial derivative of the policyfunction. Due to the assumption of

time invariance,y, y−, andy+ are the same function differing only in the timing of their arguments.

The importance of discriminating among these functions will become clear in the next section. The

term σεt+1 in (4) is the source of uncertainty, viaεt+1, that we are perturbing withσ. The known

functionu of the exogenous variable is rewritten similarly as

ut = u(σ,εt,εt−1, . . .) =
∞

∑
i=0

Niεt−i(5)

For notational ease in derivation, we will define vectorxt , containing the complete set of variables

xt ≡
[
y′t−1 y′t y′t+1 u′t

]′
(6)

xt is of dimension(nx×1) with (nx= 3ny+ne). With the policy function of the form (2), (3) and

(4), plus the function of the exogenous variable (5), we can writext as

xt = x(σ, ε̃t+1,εt ,εt−1, . . .)(7)

Following from the assumptions ony andu, x is likewise time invariant, analytic and ergodic.

2.3 Approximation: Taylor/Volterra Series Approximation

We will approximate the solution, (2), as a Taylor series in the infinite state vector (i.e., a Volterra

series) expanded around a nonstochastic steady state,x, which is the solution to the function

0= f (y,y,y,0) = f (x)(8)

that is, the functionf in (1) with all shocks, past and present, set to zero, and all uncertainty regarding

the future eliminated(σ = 0). Furthermore

y= y(0,0, . . .)(9)

represents the solution (2) evaluated at the nonstochastic steady state.

Following general practice in the perturbation literature, we pin down the approximation of the

unknown policy function (2) by successively differentiating (1) and solving the resulting systems

for the unknown coefficients. The algorithm is detailed in section 3. Notice that, sincef is a vector
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valued function, successive differentiation off with respect to its arguments, which are vectors in

general, will generate a hypercube of partial derivatives.We adapt the structure of matrix derivatives

defined in Vetter (1973) to unfold the hypercube conformableto the Kronecker product, collecting

partial derivatives from successive differentiation off in two dimensional matrices. This allows us

to avoid tensor notation and use standard linear algebra.

A similar approach can be found in Gomme and Klein (2011). They use the matrix derivative

structure and associated chain rule of Magnus and Neudecker(2007, ch. 6) to unfold a three dimen-

sional cube of second partial derivatives. The approach does not appear to be easily adaptable to

orders of approximation higher than two, as Magnus and Neudecker (2007) do not provide methods

that go beyond the second differential. Lombardo and Sutherland (2007) also derive a second order

solution without appealing to tensor notation and benefit from their use of the vech operator to elim-

inate redundant quadratic terms. Our approach, however, provides a mechanical recipe applicable

to higher orders, extending the ideas of these existing approaches past the second order.

The formal definition of our matrix derivative structure is in the Appendix. This structure will

make the presentation of the solution method more transparent—successive differentiation off to

the desired order of approximation is a mechanical application of the following theorem

Theorem 2.1.A Multidimensional Calculus

For the matrix-valued functions F, G, A, and H and vector-valued functions J and C there

exists an operatorDT
x indicating differentiation with respect to the transpose of the column vector

x. Unless indicated otherwise, all matrices and vectors areunderstood to be functions of the s×1

column vector B and we leave this dependency implicit.

1. Matrix Product Rule:

DBT

{
F

p×q
G

q×u

}
= FB

(
I

s×s
⊗G

)
+FGB
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2. Matrix Chain Rule:

DBT

{
A

p×q
( C
u×1

)

}
= AC

(
CB⊗ I

q×q

)

3. Matrix Kronecker Product Rule:

DBT

{
F

p×q
⊗ H

u×v

}
= FB⊗H +(F ⊗HB)

(
Kq,s⊗ I

v×v

)

where Kq,s is a qs×qs commutation matrix (see Magnus and Neudecker (1979)).

4. Vector Chain Rule:

DBT

{
J

p×1
( C
u×1

)

}
= ACCB

where FB ≡ DBT F etc. has been used as abbreviated notation to minimize clutter.

Proof. See Appendix.

By adapting the abbreviated notation from above and writingyσni1i2···im as the partial derivative,

evaluated at the nonstochastic steady state, ofy with respect toσ for n times and with respect to

εT
t−i1

,εT
t−i2

, · · · ,εT
t−im, we can then write theM-th order Taylor approximation of the policy function

(2) using the following

Corollary 2.2. An M-th order Taylor Approximation of (2) is written as

yt =
M

∑
m=0

1
m!

∞

∑
i1=0

∞

∑
i2=0

· · ·
∞

∑
im=0

[
M−m

∑
n=0

1
n!

yσni1i2···imσn

]
(εt−i1 ⊗ εt−i2 ⊗·· ·εt−im)(10)

Proof. See Appendix.

This infinite dimensional Taylor approximation, or Volterra series with kernels
[
∑M−m

n=0
1
n! yσni1···imσn

]
,10

directly maps the exogenous innovations to endogenous variables up theM-th order. The kernels

at m collects all the coefficients associated with them’th fold Kronecker products of exogenous in-

novationsi1, i2, ... andim periods ago. For a given set of indices,i1, i2, ... andim, the sum over

n gathering terms in powers of the perturbation parameterσ, corrects the kernel for uncertainty up

10See Priestly (1988, pp. 25–26) and Gourieroux and Jasiak (2005) for a representation theorem.
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to then-th order, thereby enabling a useful classification of the contributions of uncertainty to the

model. That is, we can first decompose the Volterra series into kernels associated with the order of

approximation in the state space itself—the zeroth kernel being constants, the first order kernel be-

ing linear in the product space of the history of innovations, the second being quadratic in the same,

etc. Thereafter, we can decompose each of the kernels into successively higher order corrections for

uncertainty according to the order inσ—yσn represents then’th order correction for uncertainty of

the zeroth order kernel,yσni1 then’th order correction for uncertainty of the first order kernel, yσni1i2

then’th order correction for uncertainty of the second order kernel, and so on.

For a different perspective, observe that moving to a higherorder in (10) comprises two changes:

(i) adding a higher order kernel and (ii) opening up all existing kernels to a higher order correction

for uncertainty.11 The change in moving from anM−1’th to M’th order approximation is
M

∑
m=0

1
M!

∞

∑
i1=0

∞

∑
i2=0

· · ·
∞

∑
im=0

[
1

(M−m)!
yσM−mi1i2···imσM−m

]
(εt−i1 ⊗ εt−i2 ⊗·· ·εt−im)(11)

The difference can be written compactly despite the two changes, as change (i) is anM’th or-

der kernel with a zeroth order correction for uncertainty (for m= M above,yσM−mi1i2···imσM−m =

yσ0i1i2···imσ0 = yi1i2···im). From (ii) comes then additionally a first order correctionfor uncertainty in

theM−1’th order kernel, a second order uncertainty correction for theM−2’th kernel and so on up

to theM’th order correction for uncertainty in the constant or zeroth order kernel. The uncertainty

correction at a given order directly depends on the moments of future shocks at each order and so (ii)

can be interpreted as successively opening each kernel up tohigher moments in the distribution of

future shocks, while (i) maintains the standard Taylor notion of moving to a higher order polynomial

(captured by the kernels in our Volterra series).

As the notation in (10) is rather dense, it is instructive to consider the case ofM = 2 (the second-

order approximation) given by

yt = y+yσσ+
1
2

yσ2σ2+
∞

∑
i=0

(yi +yσ,iσ)εt−i +
1
2

∞

∑
j=0

∞

∑
i=0

y j ,i(εt− j ⊗ εt−i)(12)

11We are grateful to Michael Burda for suggesting this interpretation.
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Here,y, the policy function evaluated at the nonstochastic steadystate, represents the rest point in

the absence of uncertainty regarding future shocks. The terms∑∞
i=0yiεt−i and1

2 ∑∞
j=0∑∞

i=0y ji (εt− j ⊗

εt−i) capture the first and second order responses of the deterministic (i.e., without uncertainty re-

garding future shocks) system. The constant term has two uncertainty corrections,yσσ and 1
2yσ2σ2

the first and second order corrections for uncertainty respectively, leading to the second order accu-

rate stochastic steady state. At second order,∑∞
i=0yiσσεt−i is the first order correction for uncertainty

concerning future shocks of the first order response to the history of shocks. The first order correc-

tions for uncertainty will turn out to be zero in this case, a familiar result from state space analyses.12

For the case ofM = 2, the task at hand is to pin down numerical values fory, yi , yσ, y ji , yiσ, and

yσ2 using the information in (1). In the next section, we provide explicit derivations to third order,

which is novel in the literature.13

3 Numerical Solution of the Perturbation Approximation

It this section, we lay out the method for solving for the coefficients of the approximated solution.

Solving for the first order terms is primarily an applicationof methods well known in the literature.

Similarly to existing state space methods, solving for higher order terms operates successively on

terms from lower orders with linear methods. In contrast to state space methods, the system of

equations for the coefficients at all orders of approximation is a system of difference equations with

identical homogenous components, enabling the stability from the first order to be passed on to

higher orders. Terms linear in the perturbation parameter are zero, as is the case with the state

space policy function. The moving average solution function, however, requires us to rule out unit

roots in the first order approximation along with the standard saddle point assumptions to ensure the

boundedness of uncertainty corrections to constants.

12See Jin and Judd (2002), Schmitt-Grohé and Uribe (2004), and Kim, Kim, Schaumburg, and Sims (2008).
13See Andreasen (forthcoming) for a notable extension of Schmitt-Grohé and Uribe’s (2004) method out to the third

order. The author’s appendix with one third order term occupying two pages highlights the advantage of our notation.
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The method can be outlined as follows.14 Inserting the policy functions foryt−1, yt , andyt+1—

equations, (3), (2), and (4) respectively—along with the analogous representation, (5), for the ex-

ogenous driving forceut into the model (1) yields

0= Et [ f (y
−(σ,εt−1,εt−2, . . .),y(σ,εt,εt−1, . . .),y

+(σ, ε̃t+1,εt ,εt−1, . . .),u(σ,εt,εt−1, . . .))](13)

a function with argumentsσ, εt , εt−1, . . .. At each order of approximation, we take the collection of

derivatives off from the previous order (for the first order, we start with thefunction f itself) and

1. differentiate each of the derivatives off from the previous order with respect to each of its

arguments (i.e.,σ, εt , εt−1, . . .)

2. evaluate the partial derivatives off and ofy at the nonstochastic steady state

3. apply the expectations operator and evaluate using the given moments

4. set the resulting expression to zero and solve for the unknown partial derivatives ofy.

The partial derivatives ofy, obtained in step (4) at each order, constitute the unknown coefficients

of the Taylor/Volterra approximation of the policy function y. They are numeric and used again in

step (2) of the next higher order. This introduces the potential for the compounding of numerical

errors as we move to higher orders as highlighted by Anderson, Levin, and Swanson (2006). The

set of derivatives off obtained in step (1), however, are symbolic at each order, limiting the source

for potential error compounding to the partial derivativesof the policy function.

3.1 First Order Approximation

We are seeking the first order approximation of the policy function (2), evaluated at the nonstochastic

steady state(x), of the form

yt = y+yσσ+
∞

∑
i=0

yiεt−i, i = 0,1,2, . . .(14)

14See Anderson, Levin, and Swanson (2006, p. 9) for a similar outline in their state space context.
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The task at hand is to pin down the partial derivatives,yσ andyi . Even in the first order case, the

problem is infinite dimensional owing to the infinite moving average representation of the solution.

As explained by Taylor (1986, p. 2003) for the linear problemthe original stochastic difference

equations inyt become deterministic difference equations in the moving average coefficients ofyt .

This motivates our choice of beginning with the unknown terms in the history of shocks and then

turning to those inσ, as the problem at higher orders of approximation will inherit a similar structure.

To determineyi , we differentiatef in (13) with respect to someεt−i

DεT
t−i

f = fxxi(15)

Evaluating this at the nonstochastic steady state (x) and setting its expectation to zero yields

Et(DεT
t−i

f )
∣∣∣
x
= fy−yi−1+ fyyi + fy+yi+1+ fuui = 0(16)

for i = 0,1, . . . , with y−1 = 0

a second order linear deterministic difference equation inthe matricesyi — the derivatives of the

vector valuedy function with respect to itsi −1’th ε element. That is,yi contains the linear moving

average coefficients ofyt with respect to the elements ofεt−i . Equation (16) is an inhomogeneous

version of Anderson and Moore’s (1985) saddle point problem, solved in detail by Anderson (2010).

We make two assumptions regarding the difference equation system (16).

Assumption 3.1.Saddle stability

Of the2ny z∈ C such that det
(

fy− + fyz+ fy+z2
)
= 0, there are exactly ny with|z|< 1.

Assumption 3.2.No unit roots

There is no z∈ C with |z|= 1 and det
(

fy− + fyz+ fy+z2
)
= 0

The first assumption is standard, fulfilling the Blanchard and Kahn (1980) condition. The sec-

ond has been found in other analyses, e.g., Klein (2000), andhere ensures the solvability of terms

homogenous inσ — i.e., uncertainty corrections to the constant. Intuitively from the state space

perspective, unit roots must be ruled out to allow the state space solution to be inverted, yielding
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the nonlinear moving average we work with. As in the case of anexplosive state space solution, the

impact of an initial condition on the endogenous variables would fail to vanish and constants (i.e.,

terms involving the perturbation parameter) would fail to converge when solving out a unit-root state

space solution back into the infinite past.

Anderson’s (2010, p. 479) method can be applied under our assumptions3.1and3.2along with

the first order linear autoregressiveut (i.e.,ui = Ni),15 delivering the unique stable solution to (16)

yi = αyi−1+β1ui , with y−1 = 0(17)

a convergent recursion from which we can recover the linear moving-average terms oryi ’s.16

To determineyσ, we differentiatef in (13) with respect toσ

Dσ f = fxDσx(18)

whereDσx= xσ + x̃εεt+1

Evaluating this atx and setting its expectation to zero yields

Et(Dσ f )
∣∣∣
x
= ( fy− + fy+ fy+)yσ = 0(19)

asEt(εt+1) = 0. From assumption (3.2), it follows that

det( fy− + fy+ fy+) 6= 0(20)

and hence

yσ = 0(21)

The first order correction of the constant for uncertainty iszero, analogous to the result of Jin and

Judd (2002) and Schmitt-Grohé and Uribe (2004). This result carries over to our moving average

by ruling out unit roots to ensure the invertibility of the state space representation. The result itself

reflects the rather obvious fact that opening the expansion to a moment of the future distribution of

shocks will change nothing if this moment (Et [εt+1]) is exactly zero.

15Alternatively, one can apply Klein’s (2000) QZ algorithm tothis deterministic approach to yield the solution above.
Note, as discussed by Meyer-Gohde (2010, pp. 986-987), we are working on a deterministic saddle point problem in the
moving-average coefficients and not on a stochastic saddle-point problem in the endogenous variables themselves.

16We have tacitly assumed that this solution exists, see Anderson (2010, p. 483) for the details. In Klein’s (2000)
notation,Z11 of the QZ decomposition must be invertible, the added proviso of translatability.
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Gathering the results of this section, the first order approximation of the policy function (2),

which can be thought of as an extension of Muth (1961), Taylor(1986), and others, reduces to

yt = y+
∞

∑
i=0

yiεt−i , i = 0,1,2, . . .(22)

The certainty equivalence of the first order solution is reflected by the independence of (22) from σ.

3.2 Second Order Approximation

Taking the first order results as given, we now move on to the second order approximation of the

policy function (2) evaluated at the nonstochastic steady state,(x), of the form

yt = y+
1
2

yσ2σ2+
∞

∑
i=0

(yi +yσ,iσ)εt−i +
1
2

∞

∑
j=0

∞

∑
i=0

y j ,i(εt− j ⊗ εt−i)(23)

The task is to pin down the three second order derivatives of they function,y j ,i, yσ2 andyσ,i. The

equations governingy j ,i andyσ,i will be difference equations with homogenous components identical

to those in (16), with the equation inyσ,i being homogenous in accordance with Schmitt-Grohé and

Uribe (2004) and others. The no-unit-root assumption will be crucial again in solving for the term

yσ2, preventing this constant correction for uncertainty induced by the potential for future shocks

from becoming arbitrarily large.

We first differentiate (15) with respect to someεt− j , deliveringy j ,i , the second derivatives of the

y function with respect to all pairs ofεt−i andεt− j . As Judd (1998, p. 477) points out, the resulting

system of equations remains a linear system, only now in the second derivatives that are being sought

D
2
εT
t− j ε

T
t−i

f = fx2(x j ⊗xi)+ fxx j ,i(24)

Evaluating at the nonstochastic steady state and setting its expectation to zero

Et(D
2
εT
t− jε

T
t−i

f )
∣∣∣
x
= fy−y j−1,i−1+ fyy j ,i + fy+y j+1,i+1+ fx2(x j ⊗xi) = 0(25)

for j, i = 0,1, . . . , with y j ,i = 0, for j, i < 0

a second order linear deterministic difference equation iny j ,i . The coefficients on the homogeneous

components of the forgoing and (16) are identical. The inhomogeneous components have a first

order Markov representation (see the shifting and transition matrices defined in the Appendix) in the
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Kronecker product of the first order coefficients.17 The resulting expression is

fy−y j−1,i−1+ fyy j ,i + fy+y j+1,i+1+ fx2(γ1⊗ γ1)(Sj ⊗Si) = 0(26)

for j, i = 0,1, . . . , with y j ,i = 0, for j, i < 0

The stable solution of the forgoing, analogously to the firstorder, takes the form

y j ,i = αy j−1,i−1+β2(Sj ⊗Si), with y j ,i = 0,∀ j, i < 0(27)

Note thatα in this solution is known. It is the same uniquely stableα as in the first order solution

(17) due to the fact that the system (25) and (16) have identical homogeneous components. To

determineβ2, we substitute (27) in (25), using the shifting matrices and matching coefficients

( fy+ fy+α)β2+ fy+β2(δ1⊗δ1) =− fx2(γ1⊗ γ1)(28)

This is a type of Sylvester equation, the solution of which ispresented in detail by Kamenik (2005).

Next we pin downyσ,i , the second derivatives of they function with respect toεt−i andσ se-

quentially, by differentiating (15) with respect toσ. The resulting linear system is

D
2
σεT

t−i
f = fx2(Dσx⊗xi)+ fxDσxi(29)

whereDσxi = xσ,i + x̃ε,i(εt+1⊗ Ine)

Note that the additional potential derivative,D2
εT
t−iσ

f , is simply equal to the derivative in the text,

D
2
σεT

t−i
f .18 Evaluating (29) at x, taking expectations, noting thatyσ = 0, and setting the resulting

17Thus, our nonlinear moving average solution parallels nonlinear state space solutions in a manner analogous to the
linear case, where the recursion is in the coefficients as opposed to the variables themselves. Instead of products of the
state-variables entering into the solution, we have products of the first order coefficients.

18 Although the derivative operatorD works on Kronecker products (i.e.D2
σεT

t−i
= D2

σ⊗εT
t−i

f ) and although the Kro-

necker product is not generally commutative,σ is a scalar and, thus, commutation is preserved. This resultcan be seen
by exploiting the properties of the commutation matrixKm,n as follows. Take the first term inD2

σεT
t−i

, for example, and

insert the identity matrix:fx2Inx2(Dσx⊗ xi). This can be rewritten asfx2Knx,nxKnx,nx(Dσx⊗ xi). Pre-multiplying the
Kronecker product of a matrix and a column vector (each withnx rows) withKnx,nx reverses their order (see Theorem
3.1.(ix) of Magnus and Neudecker (1979, p. 384)) and, thus,Knx,nx(Dσx⊗xi) = xi ⊗Dσx. Now fx2 =D2

xT⊗xT f and post-
multiplying a Kronecker product of row vectors each of dimensionnx with Knx,nx reverses their order. But the two row
vectors are identical, so reversing their order changes nothing: fx2 = D2

xT⊗xT f Knx,nx = D2
xT⊗xT f = fx2. Combining the

two yields fx2(Dσx⊗ xi) = fx2(xi ⊗Dσx). Proceeding likewise with the second term inD2
σεT

t−i
completes the argument.

Accordingly for higher-order derivatives, the order in which derivatives with respect toσ appear is inconsequential as it
is a scalar and we choose to have theσ’s appear first.
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expression to zero yields

Et(D
2
σεT

t−i
f )
∣∣∣
x
= fy−yσ,i−1+ fyyσ,i + fy+yσ,i+1 = 0(30)

for i = 0,1, . . . , with yσ,−1 = 0

The unique stable solution takes the form

yσ,i = αyσ,i−1, for i = 0,1, . . . , with yσ,−1 = 0(31)

as the system at hand is identical to the homogenous component of the first order system (16).

Combined with the initial conditionyσ,−1 = 0, the forgoing delivers

yσ,i = 0, for i = 0,1, . . .(32)

Again, we confirm Schmitt-Grohé and Uribe’s (2004) and Jin and Judd’s (2002) result that terms

with a first order uncertainty correction are zero.

Finally, to determineyσ2, the second derivative of they function with respect toσ, we differen-

tiate (18) with respect toσ, the resulting linear system is

D
2
σ2 f = fx2(Dσx⊗Dσx)+ fxD

2
σ2x(33)

whereD
2
σ2x= xσ2 +2xσ,̃εεt+1+ x̃ε2(εt+1⊗ εt+1)

Evaluating this atx and setting its expectation to zero yields

Et(D
2
σ2 f )

∣∣∣
x
= [ fy+y02 + fy+2(y0⊗y0)]Et(εt+1⊗ εt+1)+( fy− + fy+ fy+)yσ2 = 0(34)

therefore we can recoveryσ2 by

yσ2 =−( fy− + fy+ fy+)
−1[ fy+y02 + fy+2(y0⊗y0)]Et(εt+1⊗ εt+1)(35)

By assumption, the second moment of the exogeneous variable, Et(εt+1⊗ εt+1), is given.

As the model approaches a unit root from below, the effect of uncertainty on the constant be-

comes unbounded. This result is novel, giving additional meaning to the invertibility condition of

assumption3.2: from a state space perspective, the correction for uncertainty will be accumulated

forward starting from the nonstochastic steady state; if the state space contains a unit root, this ac-

cumulated correction will become unbounded and there will be no finite stochastic steady state to

which the model can converge.
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Gathering the results of this section, the second order approximation of the policy function (2)

takes the form

yt = y+
1
2

yσ2σ2+
∞

∑
i=0

yiεt−i +
1
2

∞

∑
j=0

∞

∑
i=0

y j ,i(εt− j ⊗ εt−i)(36)

In contrast to the first order approximation, (36) does depend onσ, with the term1
2yσ2 correcting

the nonstochastic steady state for uncertainty regarding future shocks. Asσ goes from 0 to 1 and

we transition from the certain to uncertain model, the rest point of the solution transitions from

the nonstochastic steady statey to the second order approximation of the stochastic steady state

y+ 1
2yσ2σ2. As we are interested in this uncertain version, settingσ to one in (36) gives the second

order approximation

yt = y+
1
2

yσ2 +
∞

∑
i=0

yiεt−i +
1
2

∞

∑
j=0

∞

∑
i=0

y j ,i(εt− j ⊗ εt−i)(37)

3.3 Third Order and Higher Approximations

Given the results from lower orders, including that terms linear in the perturbation parameter are

zero, the third order approximation of they function we are seeking takes the form

yt =y+
1
2

yσ2σ2+
1
6

yσ3σ3+
∞

∑
i=0

(
yi +

1
2

yσ2,iσ
2
)

εt−i +
1
2

∞

∑
j=0

∞

∑
i=0

(
y j ,i +yσ, j ,iσ

)
(εt− j ⊗ εt−i)

+
1
6

∞

∑
k=0

∞

∑
j=0

∞

∑
i=0

yk, j ,i(εt−k⊗ εt− j ⊗ εt−i)(38)

The task at hand is to pin down some third derivatives of they function, includingyk, j ,i , yσ2,i , yσ, j ,i

andyσ3. Computing these derivatives largely resembles the computation of the second derivatives in

the previous section. We relegate the details to the Appendix and focus on the results here.

To determineyk, j ,i , we differentiate (24) with respect to some shocksεt−k, delivering the third

derivatives of they function with respect to all triplets of the shocks. The resulting system, evalu-

ated atx and in expectation, of equations is a linear deterministic second order difference equation

in yk, j ,i. The homogeneous components in (A-17) are identical to those in (16) and (25) and the

16



inhomogeneous components can again be rearranged to have a first order Markov representation

Et(D
3
εT
t−kεT

t− j ε
T
t−i

f )
∣∣∣
x
= fy−yk−1, j−1,i−1+ fyyk, j ,i + fy+yk+1, j+1,i+1+

[
fx3 fx2 fx2 fx2

]
γ3Sk, j ,i = 0

for k, j, i = 0,1, . . . , with yk, j ,i = 0, for k, j, i < 0(39)

The unique stable solution of the forgoing, analogously to lower orders, takes the form

yk, j ,i = αyk−1, j−1,i−1+β3Sk, j ,i, with yk, j ,i = 0, for k, j, i < 0(40)

andβ3 can be solved for by, again, formulating an appropriate Sylvester equation.

To determineyσ, j ,i , we differentiate (24) with respect toσ, evaluate atx, take expectations, set

the resulting expression to zero, and recall the results from lower orders, yielding

Et(D
3
σεT

t− jε
T
t−i

f )
∣∣∣
x
= fy−yσ, j−1,i−1+ fyyσ, j ,i + fy+yσ, j+1,i+1 = 0(41)

for j, i = 0,1, . . . , with yσ, j ,i = 0, for j, i < 0

or

yσ, j ,i = 0, for j, i = 0,1, . . .(42)

again confirming Schmitt-Grohé and Uribe’s (2004) and Jin and Judd’s (2002) result that terms with

a first order uncertainty are zero.

To determineyσ2,i , we differentiate (29) with respect toσ, evaluate atx, take expectations, set

the resulting expression to zero, and recall the results from lower orders, yielding

Et(D
3
σ2εT

t−i
f )
∣∣∣
x
= fx3{[(x̃ε ⊗ x̃ε)Et(εt+1⊗ εt+1)]⊗xi}+2 fx2(x̃ε ⊗ x̃εi)[Et(εt+1⊗ εt+1)⊗ Ine]

+ fx2{(xσ2 ⊗xi)+([x̃ε2Et(εt+1⊗ εt+1)]⊗xi)}+ fx{xσ2,i + x̃ε2,i [Et(εt+1⊗ εt+1)⊗ Ine]}

=0, for i = 0,1, . . . , with y−1 = 0(43)

which is still a second order deterministic difference equation. The homogeneous components are

packed inxσ2,i and they are identical to those in (16) and (25). The inhomogeneous components can

again be rearranged to have a first order Markov representation and the unique stable solution of the

forgoing takes the form

yσ2,i = αyσ2,i−1+βσSi, with yσ2,−1 = 0(44)
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whereβσ can be solved for by, again, formulating an appropriate Sylvester equation.

To determineyσ3, we differentiate (33) with respect toσ, evaluate atx, take expectations, set the

resulting expression to zero, and recall the results from lower orders, yielding

Et(D
3
σ3 f )

∣∣∣
x
= fx3[(x̃ε ⊗ x̃ε ⊗ x̃ε)Et(εt+1⊗ εt+1⊗ εt+1)]+2 fx2[Et(εt+1⊗ εt+1⊗ εt+1)(x̃ε ⊗ x̃ε2)]

+ fx2[(x̃ε2 ⊗ x̃ε)Et(εt+1⊗ εt+1⊗ εt+1)]+ fx[yσ3 + x̃ε3Et(εt+1⊗ εt+1⊗ εt+1)] = 0(45)

as the third moment ofεt is assumed given,Et(εt+1⊗εt+1⊗εt+1) is known. Recoveringyσ3 from the

forgoing is straightforward under the assumption (3.2). Whenεt is normally distributed,19 however,

Et(εt+1⊗ εt+1⊗ εt+1) = 0. Hence

yσ3 = 0(46)

Combining, the third order approximation of the policy function (2) takes the form

yt =y+
1
2

yσ2σ2+
∞

∑
i=0

(
yi +

1
2

yσ2,iσ
2
)

εt−i +
1
2

∞

∑
j=0

∞

∑
i=0

y j ,i(εt− j ⊗ εt−i)

+
1
6

∞

∑
k=0

∞

∑
j=0

∞

∑
i=0

yk, j ,i(εt−k⊗ εt− j ⊗ εt−i)(47)

Again in contrast to the first order approximation, (47) does depend onσ, with the term1
2yσ2 cor-

recting the nonstochastic steady state for uncertainty as in the second order approximation (36),

but now with 1
2yσ2,iσ2 correcting the first order kernel for uncertainty; i.e., asσ goes from 0 to 1

and we transition from the certain to uncertain model, we incorporate the additional possibility of a

time-varying correction for uncertainty. As we are interested in the original, uncertain formulation,

settingσ to one in (47) gives the third order approximation

yt =y+
1
2

yσ2 +
∞

∑
i=0

(
yi +

1
2

yσ2,i

)
εt−i +

1
2

∞

∑
j=0

∞

∑
i=0

y j ,i(εt− j ⊗ εt−i)

+
1
6

∞

∑
k=0

∞

∑
j=0

∞

∑
i=0

yk, j ,i(εt−k⊗ εt− j ⊗ εt−i)(48)

Higher order approximations of the policy function (2) can be computed using the same steps.

Moving through higher orders of approximation successively, the undetermined partial derivatives of

the policy function will always be terms of highest order being considered, ensuring that the leading

19As is the case in Dynare, see Adjemian, Bastani, Juillard, Mihoubi, Perendia, Ratto, and Villemot (2011).
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coefficient matrix isfx. Thus, for all time varying components, the difference equations in these

components will have the same homogenous representation—for non time varying components (i.e.

derivatives with respect toσ only), the leading coefficient matrixfx along with assumption3.2ensure

the uniqueness of their solution. The inhomogenous elements of the difference equations in the time

varying components will be composed of terms of lower order,which are necessarily constants

(terms in the given moments and derivatives with respect toσ only) or products of stable recursions

(time varying components of lower order). As the latter are likewise stable, we can conclude from

assumption3.1 that the difference equations in all time varying components will be saddle stable;

hence, the stability of the first order recursion is passed onto all higher orders.

4 Stochastic Neoclassical Growth Model

In this section, we examine two versions of the stochastic neoclassical growth model to demonstrate

the method. This model has been used in numerous studies comparing numerical techniques and

is a natural benchmark. We begin with the special case of log preferences in consumption and full

depreciation that has a known solution to illustrate the relation of the nonlinear moving average to

the more familiar state space solution. We then move on to thebaseline specification of Aruoba,

Fernández-Villaverde, and Rubio-Ramı́rez’s (2006) comprehensive study with inseparable utility to

foster comparability with their results. This version of the model lacks a known solution and must be

approximated. Using our nonlinear moving average solution, we analyze the contributing elements

to the response of the model’s endogenous variables to a technology shock and highlight the features

of the multidimensional kernels and impulse responses.

The model is populated by an infinitely lived representativehousehold seeking to maximize its

expected discounted lifetime utility given by

E0

[
∞

∑
t=0

βtU (Ct ,Lt)

]
, with U (Ct ,Lt) =

(
Cθ

t (1−Lt)
1−θ
)1−γ

1− γ
(49)
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whereCt is consumption,Lt labor, andβ ∈ (0,1) the discount factor, subject to

Ct +Kt = eZt Kα
t−1L1−α

t +(1−δ)Kt−1(50)

whereKt is the capital stock accumulated today for productive purposes tomorrow,Zt a stochastic

productivity process,α ∈ [0,1] the capital share, andδ ∈ [0,1] the depreciation rate. OutputYt is

given byeZt Kα
t−1L1−α

t and investmentIt by Kt − (1−δ)Kt−1. Productivity is described by

Zt = ρZZt−1+ εZ,t, εZ,t ∼ N
(
0,σ2

Z

)
(51)

with ρZ ∈ (0,1) a persistence parameter,εZ,t the innovation to the process, andσZ the standard

deviation of the innovations.

The solution is characterized by the intertemporal Euler condition equalizing the expected present-

discounted utility value of postponing consumption one period to its utility value today
(
Cθ

t (1−Lt)
1−θ
)1−γ

Ct
= βEt




(
Cθ

t+1(1−Lt+1)
1−θ
)1−γ

Ct+1

(
αeZt+1Kα−1

t L1−α
t+1 +1−δ

)

(52)

and the intratemporal condition equalizing the utility cost of marginally increasing labor supply to

the utility value of the additional consumption provided therewith

1−θ
1−Lt

=
θ
Ct

(1−α)eZt Kα
t−1L−α

t(53)

plus the budget constraint (50) and the technology shock (51). Collecting the four equations into

a vector of functions, the set of equilibrium conditions canbe written 0= Et [ f (yt−1,yt ,yt+1,ut)]

whereyt =
[
Ct Kt Lt Zt

]′
andut =

[
εZ,t
]
.

4.1 Logarithmic Preferences and Complete Depreciation Special Case

The first case we will examine is the simple stochastic neoclassical growth model under log prefer-

ences and complete capital depreciation. This model can be expressed in terms of one endogenous

variable, enabling a scalar version of the method to be studied, and possesses a well-known closed-

form solution for the state space policy function. We show how our policy function relates to this

well-known state space example and use our resulting closed-form policy function as a basis for an

initial appraisal of our method.
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Accordingly, letU (Ct ,Lt) in (49) be given byln(Ct),20 normalizeLt = 1 and setδ = 1 in (50).

Combining (50) with (52) in this case yields

0= Et

[(
eZtKα

t−1−Kt
)−1

−β
(
eZt+1Kα

t −Kt+1
)−1(αeZt+1Kα−1

t

)]
(54)

This particular case has a well-known closed form solution for the state space policy function:

Kt = αβeZtKα
t−1. However, we are interested in its infinite nonlinear movingaverage representation

and guess that the logarithm of the solution is linear in the infinite history of technology innovations

ln(Kt) = ln(K̄)+
∞

∑
j=0

b jεZ,t− j(55)

Inserting the guess and the infinite moving average representation forZt , (54) can be rewritten

1= αβEt




1−exp
(

∑∞
j=0

(
ρ j −b j +αb j−1

)
εZ,t− j − (1−α) ln(K̄)

)

1−exp
(

∑∞
j=0

(
ρ j −b j +αb j−1

)
εZ,t+1− j − (1−α) ln(K̄)

)

×exp

(
∞

∑
j=0

(
ρ j −b j +αb j−1

)
εZ,t − (1−α) ln(K̄)

)]
(56)

whereb−1 = 0.

The value and recursion

K̄ = (αβ)
1

1−α , b j = αb j−1+ρ j , with b−1 = 0(57)

solve (56) and verify the guess, (55).

Not surprisingly, this solution can also be deduced directly from the known state space solu-

tion. Take logs ofKt = αβeZtKα
t−1, yielding ln(Kt) = ln(αβ)+Zt +αln(Kt−1). Making use of

the lag operator,L, and definingρ(L) = ∑∞
j=0(ρL) j , the foregoing can be written asln(Kt) =

(1−α)−1 ln(αβ)+(1−αL)−1 ρ(L)εZ,t and restating in levels gives

Kt = (αβ)
1

1−α exp
(
(1−αL)−1ρ(L)εZ,t

)
= (αβ)

1
1−α exp

(
∞

∑
j=0

b jεZ,t− j

)
(58)

whereb(L) = (1−αL)−1ρ(L) = ∑∞
j=0b jL j as before.

This special case offers a simple check of the numerical approach. We definêKt = ln(Kt) and

20That is, setθ andγ to one, subtracting an appropriate constant and extending the utility function over the removable
singularity atγ = 1.

21



useKt = exp(K̂t) to reexpress (54) as21

0= Et

[(
eZt+αK̂t−1 −eK̂t

)−1
−β
(

ezt+1+αK̂t −eK̂t+1

)−1(
αeZt+1+(α−1)K̂t

)]
(59)

With this reformulation, the first order expansion is the true policy rule in this special case. That is,

(59) can be rewritten as 0= Et [ f (yt−1,yt ,yt+1,ut)] whereyt =
[
Kt Zt

]′
andut =

[
εZ,t
]
.

To check our method, we calculate the kernels of the third order accurate nonlinear moving

average solution of (59) out 500 periods, following the parameterization of Hansen(1985) for the

remaining parameters by settingα = 0.36, 1/β = 1.01, ρ = 0.95, andσZ = 0.00712. Our method

successfully identifiesy j ,i, yk, j ,i, andyσ2,i as being zero and the largest absolute difference inyi from

those implied by the analytic solution was 4.3368×10−18. This first check, while encouraging, is

far from comprehensive. In section5, additional and potentially more meaningful measures willbe

examined.

4.2 CRRA-Incomplete Depreciation Case

We now move to the general case of Aruoba, Fernández-Villaverde, and Rubio-Ramı́rez (2006).

Following their parameterization, we relax the complete depreciation and log preferences of the pre-

vious section, see table1. As no known closed form solution exists, we will need an approximation.

We reexpress variables in logs, commensurate with a loglinear approximation. This choice is addi-

tionally motivated by our results in section5 that indicate a log specification improves the accuracy

of the approximation.

[Table 1 about here.]

For higher-order approximations, our policy function (2), yt = y(σ,εt ,εt−1,εt−2, . . .), will straight-

forwardly enable impulse response analysis. That is, consider a shock int to an element ofεt, one

21See Fernández-Villaverde and Rubio-Ramı́rez (2006) for more on change of variable techniques such as this.
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measure22 for the response ofyt through time to this impulse is given by the sequence

yt = y(σ,εt ,0,0,0, . . .)

yt+1 = y(σ,0,εt,0,0, . . .)

yt+2 = y(σ,0,0,εt,0, . . .)

...(60)

[Figure 1 about here.]

Figure1 depicts the impulse responses and their contributing components from the kernels of

different orders for capital, consumption, and labor to a positive, one standard deviation shock in

εZ,t.23 The upper panel displays the impulse responses at first, second, and third order as deviations

from their respective (non)stochastic steady states (themselves in the middle right panel) and the

first feature to notice is that they are indistinguishable tothe eye. This is not surprising, as it is well

known that the neoclassical growth model is nearly loglinear. In the middle column of panels in the

lower half of each figure, the contributions to the total impulse responses from the second and third

order kernelsyi,i andyi,i,i are displayed. Note that these components display multiple‘humps’ to

either side of the ‘hump’ in the first order component (upper left panel), this is in accordance with

the artifact of harmonic distortion discussed in Priestly (1988, p. 27).

The second order contributions of capital and consumption are positive and that of labor is nega-

tive. This reflects the combination of a precautionary reaction and nonlinear propagation mechanism

22 Note that we are assuming thatyt− j = y(σ,0,0, . . .), ∀ j > 0. Fernández-Villaverde, Guerrón-Quintana, Rubio-
Ramı́rez, and Uribe (2011), for example, examine the responses starting from the mean of the ergodic distribution as
opposed to the stochastic steady state that we assume. Note that in a nonlinear environment, variables will wander away
deterministically from the ergodic mean to the stochastic steady state when the response to a single shock is examined,
as the maintenance of variables around the ergodic mean requires the model to be constantly buffeted with shocks. We
argue for our measure as it eliminates such deterministic trends in impulse responses.

23In terms of the “conceptual difficulties” laid out in Koop, Pesaran, and Potter (1996), we are assuming a particu-
lar history of shocks (namely the infinite absence thereof—such interaction will be addressed later), are examining a
particular shock realization (positive, one standard deviation: due to the nonlinearity, asymmetries and the absenceof
scale invariance are a potential confound), and ignoring distributional composition issues by examining a realization of
a single structural shock irrespective of its potential correlation with other shocks (in this model there is only one shock,
so this is moot anyway).
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of technology shocks. A technology shock is associated witha larger capital stock, which enables a

larger increase in consumption (but of an order of magnitudesmaller than capital in terms of second

order contribution, as a precautionary reaction) and a smaller increase in labor (due to the second or-

der downward correction) than the linear model would predict. In the case of a negative technology

shock (not pictured), the first order components would simply be their mirror images with opposite

sign. The second order contributions, however, would remain entirely unchanged following from

the symmetry of the quadratic. In combination, the second order approximation can thus capture

time invariant asymmetries in the impulse responses.24

The precautionary component can likewise be seen in the upward correction of the steady states

in the rightmost panels. In the stochastic steady state, agents face uncertainty regarding future shocks

and accumulate a precautionary stock of capital through increased labor efforts and disburse this as

increased consumption when shocks fail to manifest themselves. The lower left panel contains the

contributions fromyσ2i the second order (inσ) time varying correction for risk, this demonstrates

an initial wealth effect with consumption increasing and capital and labor decreasing relative to a

nonstochastic environment.25 Nonlinear impulse responses are not scale invariant, as noted also

by Fernández-Villaverde, Guerrón-Quintana, Rubio-Ramı́rez, and Uribe (2011): for example, while

the first order component scales linearly with the magnitudeof the shock, the second order order

component scales quadratically. As shocks become larger, alinear approximation would generally

not suffice to characterize the dynamics of the model. This isprecisely the effect of higher order

terms: as the magnitude of the shock increases, these higherorder terms begin to contribute more

significantly to the total impulse, attempting to correct the responses for the greater departure from

the steady state. For this model, however, one would need to consider shocks of unreasonable mag-

nitude to generate any notable effects from the higher-order terms on the total impulse, reinforcing

24Time varying asymmetries would be captured byyσ2, j ,i , require a fourth order approximation as the termyσ, j ,i from
the third order approximation is zero, see section3.3.

25Fernández-Villaverde and Rubio-Ramı́rez (2010) discusses the nonlinear impact of shocks in the production func-
tion and similar wealth effects.
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the conventional wisdom that this model is nearly linear.

[Figure 2 about here.]

In figure2, the impulse responses to a technology shock with differentvalues (2, 5, and 10) of

the CRRA parameterγ are overlayed. Note that for all three values ofγ, the first order components

dominate. While changes inγ do change the periodicity of the harmonic distortion as wellas the

shape and sign of some second and third order components, theconstant and time varying corrections

for risk display a significant change in magnitude. Asγ is increased, the stochastic steady state is

associated with higher constant precautionary stocks of capital and the time varying component

displays a magnified wealth effect. Though not very large, the precautionary channel of the second

order kernel is highlighted by the experiment, with both thesecond order contributions of capital

and labor increasing minimally and that of consumption decreasing initially. At values above 20 (not

pictured), the time varying corrections for risk begin to contribute noticeably to the total impulse,

whereas shocks several orders of magnitude larger than a standard deviation are needed to propel

the nonlinear kernels to significance.

[Figure 3 about here.]

Figures3 and4 draw the second and third order kernels,y j ,i andyk, j ,i , as they depend on differing

time separation (potentiallyi 6= j 6= k) of shocks. As likewise discussed in Fernández-Villaverde,

Guerrón-Quintana, Rubio-Ramı́rez, and Uribe (2011), impulse responses are not invariant to the

history of shocks. The third order kernels in figure4 are four dimensional objects, captured by our

use of colors inside a cube; we slice the cube with a diagonal plane whose diagonal (i = j = k) is the

third order contribution (though not scaled to the magnitude of the shock) in figure1. The unscaled

contribution from the second order kernel in the impulse responses in figure1 can be found along the

diagonals of the kernels (i = j) in figures3. The off diagonal (i 6= j 6= k) elements ‘correct’ for the

history of shocks. That is, in addition to the individual second order contribution that can be found
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along the diagonals in figure3, an off diagonal correction to the second order contribution would be

needed for shocks from the past. The deep valleys on either side of the kernels for consumption and

capital that bottom out at about fifty periods indicate a substantially persistent nature or ‘memory’

of the second order kernels.

[Figure 4 about here.]

Additionally, the harmonic distortion mentioned earlier can be seen in the kernels as well. The

shapes of the kernels perpendicular to the diagonal have direct analogs in polynomials: on either

side of the diagonal of figures3a and3b, the shape is reminiscent of the parabola of a quadratic

equation and the ‘s’ shape of the cubic equation can be found on either side of the diagonal of figure

4. This bears a word of caution that not too much should be read into the shape itself of the kernels,

as they are dictated by the form of the underlying polynomials.

[Figure 5 about here.]

Figure 5 highlights a central component of higher order impulse responses: the break down

of superposition or history dependence of the transfer function. The nonlinear impulse response

to two shocks at different points in time is not equal to the sum of the individual responses, even

after having corrected the individual responses for the higher order. The panels in the figure depict

the second order contributions to the impulse responses of capital, consumption, and labor to two

positive, one standard deviation technology shocks, spaced 50 periods apart. The dashed line in the

top of figure simply adds the individual second order components from each shock together (i.e.,

presents the total second order component if superpositionwere to hold), whereas the solid line

additionally contains the second order cross component (i.e., presents the true total second order

component). Demonstrating this breakdown of superposition, the cross component overwhelms the

individual components shortly after the second shocks hitsand the second order contributions to the

responses of capital (upper panel) and consumption (middlepanel) fail to match the peak response
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from a single shock, despite the lingering contribution from the initial shock in the same direction.

Although the mitigation is much less pronounced for labor (lower panel), the difference from the

sum of individual contributions is nonetheless noticeableand prolonged. In a nonlinear environment,

there is no single measure for an impulse response;26 in starting from the stochastic steady state,

however, we remove any deterministic trends (as would be present, e.g, when starting from the

ergodic mean, see footnote22) in our impulse response measure at each order of approximation.

5 Accuracy

In this section, we explore the accuracy of our solution method using Euler equation error methods.27

Beside validating the accuracy of our solution method, we add an Euler equation error method

for assessing the accuracy of an impulse response, enablingthe method to address our infinite-

dimensional state space.

We examine our method using the model of Aruoba, Fernández-Villaverde, and Rubio-Ramı́rez

(2006), examined in section4.2. From Judd (1992), the idea of the Euler equation accuracy test in the

neoclassical growth model is to find a unit-free measure thatexpresses the one period optimization

error in relation to current consumption. Accordingly, (52) can be rearranged to deliver the Euler

equation error function as28

EE() = 1−
1
Ct




βEt

[
(Cθ

t+1(1−Lt+1)
1−θ)

1−γ

Ct+1

(
αeZt+1Kα−1

t L1−α
t+1 +1−δ

)]

(1−Lt)
(1−θ)(1−γ)




1
θ(1−γ)−1

(61)

Deviations in (61) from zero are interpreted by Judd (1992) and many others as the relative opti-

mization error that results from using a particular approximation. Expressed in absolute value and

in base 10 logarithms, an error of−1 implies a one dollar error for every ten dollars spent and an

error of−6 implies a one dollar error for every million dollars spent.

26See, e.g., Gourieroux and Jasiak (2005), Potter (2000), andKoop, Pesaran, and Potter (1996).
27See, e.g., Judd (1992), Judd and Guu (1997), and Judd (1998)
28Cf. Aruoba, Fernández-Villaverde, and Rubio-Ramı́rez (2006, p. 2499).
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The arguments ofEE() depend on the state space postulated. Standard state space methods

would chooseEE(Kt−1,Zt) or EE(Kt−1,Zt−1,εZ,t). Our nonlinear moving average policy function

requiresEE(εZ,t,εZ,t−1, . . .), rendering the Euler equation error function an infinite dimensional

measure. In line with our presentation of impulse response functions, we examine the following set

of Euler equation error functions, holding all be one shock constant and moving back in time fromt,

essentially assessing the one-step optimizing error associated with the impulse response functions.

EEt = EE(εZ,t,0,0, . . .) , EEt−1 = EE(0,εZ,t−1,0, . . .) , EEt−2 = EE(0,0,εZ,t−2, . . .) , . . .(62)

We examine a range of shock values forεZ,t− j that covers 10 standard deviations in either direc-

tion. This is perhaps excessive given the assumption of normality, but enables us to cover the same

range for the technology process examined in Aruoba, Fernández-Villaverde, and Rubio-Ramı́rez

(2006) from a single shock. Figure6 plotsEEt for first through third order approximations in logs,

see section4.2, and in the variables’ original level specification. The first observation is that higher

order in levels performs uniformly better than the preceding order—this result is reassuring, but not

a given. As Lombardo (2010, p. 22) remarks, although within the radius of convergence the error in

approximation goes to zero as the order of approximation becomes infinite, this does not necessary

happen monotonically. Second, switching to a log specification improves the first and second order

approximations uniformly, while for the third order, this is true only for very small and very large

shocks. If we restrict our attention to three standard deviation shocks (±0.021), the second order

log approximation make mistakes no greater than one dollar for everyone ten million spent and the

third order level and log approximations no greater than onedollar for everyone one hundred million

spent, hardly an unreasonable error. Of independent interest is the result that the first order approx-

imation in logs is uniformly superior to the first order approximation in levels, standing in contrast

to the result of Aruoba, Fernández-Villaverde, and Rubio-Ramı́rez (2006). As their focus was on

the mapping from capital to errors and ours on shocks to errors, it is possible that the preferred

approximation depends on the dimension under study.
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[Figure 6 about here.]

In figure7, plots ofEEt− j for j = 0,1, . . . ,100 for the first order approximations in both levels

and logs are provided. Comparing these two figures—let aloneincorporating the associated results

for the second and third order (not pictured)—is difficult atbest. Thus, to facilitate comparison of the

different approximations across the different horizons, two measures that reduce to two dimensions

will be examined, namely maximal and average Euler equationerrors.

[Figure 7 about here.]

First, we plot the maximal Euler equation errors over a span of 100 periods in figure8a. I.e.,

max
−10σZ<εZ,t− j<10σZ

(
EEt− j

)
, for j = 0,1, . . . ,100(63)

whereσZ is the standard deviation of the technology shock, see table1. The figure tends to reinforce

the results from examining only shocks in periodt: for both the level and log approximations,

moving to a higher order uniformly improves the quality of approximation and, at all three orders,

moving from a level to a log specification likewise improves the accuracy of the approximation

uniformly according to this metric.

[Figure 8 about here.]

In our final measure, we graph average Euler equation errors over a span of 100 periods in

figure 8b. In contrast to state space measures that require the ergodic distribution of endogenous

state variables, our measure is relatively easy to calculate with a nonlinear moving average policy

function, as we merely need to integrate with respect to the known distribution (in this case normal)

of the shocks
∫

EEt− jdFεZ,t− j , for j = 0,1, . . . ,100(64)

Weighting the regions of shock realizations most likely to be encountered as defined by the distribu-

tion of shocks, we are not forced to make a choice regarding the range of shock values to consider.
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Again, we note the uniform improvement with higher order forthe level approximations and the

improvement in the approximation by switching to logs. Though now there is some ambiguity re-

garding the preferred specification among the third in levels and second and third in logs, with the

second order log specification surpassing both third order approximations between 25 and 35 quar-

ters. The average error using a first order in level approximation is around one dollar for every ten

thousand spent regardless of horizon. The second order approximations show an improvement as

the horizon increases, whereas the third order approximations tend to be lower at first, rise and then

fall again. The third order approximation in both levels andlogs are associated with an average error

of about one dollar for every billion spent regardless of horizon, putting the ambiguity mentioned

above in perspective.

We conclude that the nonlinear moving average policy function can provide competitive ap-

proximations of the mapping from shocks to endogenous variables. As was the case with Aruoba,

Fernández-Villaverde, and Rubio-Ramı́rez (2006), however, the perturbation methods here deterio-

rate (not reported) in their extreme parameterization. As are all perturbations, our method remains a

local method and is subject to all the limitations and reservations that face such methods.

6 Conclusion

We have introduced a nonlinear infinite moving average as an alternative to the standard state space

policy function to the dynamical analysis of nonlinear DSGEmodels. We have derived a pertur-

bation approximation of this policy function, providing explicit derivations up to third order in the

form of a Volterra expansion. This direct mapping of the history of shocks into endogenous variables

enables familiar impulse response analysis techniques in anonlinear environment, and provides a

convenient decomposition on the mapping from approximation order and uncertainty. We confirm

that this approach provides a solution with a degree of accuracy comparable to state space methods

by introducing Euler equation error methods for this infinite dimensional mapping.
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Although there are a number of DSGE models and applications,for example, welfare analy-

sis, asset pricing and stochastic volatility for which the importance of nonlinear components and

uncertainty in the policy function has been proved, the nonlinear components we analyzed in the

baseline neoclassical growth model are quantitatively unimportant, this is not surprising as the

model is known to be nearly linear. Qualitatively however, the nonlinear contributions to the the

mapping from shocks to endogenous variables are economically interpretable, translating, e.g., into

precautionary behavior and wealth effects. Likewise, non economically interpretable artifacts of the

nonlinear method, such as harmonic distortion are documented as well.

The potential for explosive behavior in the simulation of state space perturbations has lead to

the adaptation of ‘pruning’ algorithms, see Kim, Kim, Schaumburg, and Sims (2008), that appear

ad-hoc relative to the perturbation solution itself. With our method, however, the stability from the

first order solution is passed on to all higher order recursions. This feature of the nonlinear kernels

in our moving average solution is consistent with the Volterra operator acting upon the history of

shocks being bounded and the existence of an endogenous, perturbation-based ‘pruning’ algorithm

derived from inverting our moving average, both of which we study in ongoing research.

The nonlinear perturbation DSGE literature is still in an early stage of development and our

method provides a different perspective by mapping directly from the history of shocks. Standard

state space perturbation methods provide insight into the nonlinear mapping between endogenous

variables through time. Yet when the researcher’s interestlies in examining the nonlinear mapping

from exogenous shocks to endogenous variables, our method has additional insight to offer.
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A Appendices

A.1 Matrix Calculus and Taylor Expansion

A.1.1 Matrix Calculus Definition

Definition A.1. Matrix Derivative and Commutation Matrix

1. Matrix Derivative [See Vetter (1973).]

Dbkl A(B)
p×q

≡

[
∂ai j

∂bkl

]
=




∂a11
∂bkl

· · ·
∂a1q
∂bkl

...
...

∂ap1
∂bkl

· · ·
∂apq

∂bkl


(A-1)

DBA(B)
sp×tq

≡
[
DbklA(B)

]
=




Db11A(B) · · · Db1t A(B)
...

...
Dbs1A(B) · · · DbstA(B)


(A-2)

Structures of higher derivatives are thereby uniquely defined

D
n
BnA(B)≡ DB(DB(· · ·(DBA(B)) · · ·))(A-3)

2. Abbreviated Notation, whereT indicates transposition,

AB
sp×tq

≡ DBT A(B), ABn ≡ D
n
(BT)n

A(B), and ACB≡ DCT (DBT A(B,C)) = DCTBT A(B,C)(A-4)

3. Commutation Matrix Ka,b [See Magnus and Neudecker’s (1979, p. 383) Theorem 3.1.]

B
m×t

⊗ A
n×s

= Km,n(A⊗B)Ks,t(A-5)

A.1.2 Proof of theorem2.1

1. Matrix Product Rule: Combine Vetter’s (1973, p. 356) transpose and product rules and exam-

ine the special case of an underlying vector variable.

2. Matrix Chain Rule: Combine Vetter’s (1973, p. 356) transpose and chain rules and examine

the special case of an underlying vector variable.

3. Matrix Kronecker Product Rule: Combine Vetter’s (1973, p. 356) transpose and Kronecker

rules with an underlying vector variable. Commute the termHb⊗F and note that

Kq,vs

(
I

s×s
⊗Kv,q

)
=

(
Kq,s⊗ I

v×v

)(
I

s×s
⊗Kq,v

)(
I

s×s
⊗Kv,q

)
=

(
Kq,s⊗ I

v×v

)
(A-6)
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where the first equality follows from Henderson and Searle (1981, p. 283) and the second from

Magnus and Neudecker (1979, p. 383).

4. Vector Chain Rule: The result follows from the Matrix Chain Rule, settingq to one.

A.1.3 Proof of corollary 2.2

From Vetter (1973, pp. 358–363), a multidimensional Taylorexpansion using the structure of deriva-

tives (evaluated at̄B) in appendixA.1.1 is given by

M
(p×1)

( B
(s×1)

) = M(B̄)+
N

∑
n=1

1
n!

D
n
BT nM(B̄)(B− B̄)⊗[n]

+RN+1(B̄,B)(A-7)

whereRN+1(B̄,B) =
1

N!

∫ B

ξ=B̄
D

N+1
BTN+1M(ξ)

(
Is⊗ (B−ξ)⊗[N]

)
dξ(A-8)

Differentiating (2) with respect to all its argumentsM times, evaluating at the steady statey, and

noting permutations of the order of differentiation, a Taylor approximation is

yt =
1
0!

(
1
0!

y+
1
1!

yσσ+
1
2!

yσ2σ2+ . . .+
1

M!
yσM σM

)

+
1
1! ∑

i1=0

(
1
0!

yi1 +
1
1!

yσi1σ+
1
2!

yσ2i1σ2+ . . .+
1

(M−1)!
yσM−1i1σM−1

)
εt−i1

+
1
2! ∑

i1=0
∑

i2=0

(
1
0!

yi1i2 +
1
1!

yσi1i2σ+
1
2!

yσ2i1i2σ2+ . . .+
1

(M−2)!
yσM−2i1i2σM−2

)
εt−i1 ⊗ εt−i2

...

+
1

M! ∑
i1=0

∑
i2=0

· · · ∑
im=0

1
0!

yi1i2···imεt−i1 ⊗ εt−i2 ⊗·· ·εt−im

Writing the foregoing more compactly yields (10) in the text.

A.2 Auxiliary Matrices

A.2.1 Shifting Matrices

δ1 =




α
ny×ny

β1
ny×ne

0
ne×ny

N
ne×ne


 δ2 =

[
α β2

0 δ1⊗δ1

]
δ3 =




δ1⊗δ1⊗δ1 0 0 0
0 δ2⊗δ1 0 0
0 0 δ1⊗δ2 0
0 0 0 δ1⊗δ2


(A-9)

36



γ1 =




I
ny×ny

0
ny×ne

α β1

α2 αβ1+β1N
0

ne×ny
I

ne×ne




γ2 =




I
ny×ny

0
ny×(ny+ne)2

α β2

α2 αβ2+β2(δ1⊗δ1)
0

ne×ny
0

ne×(ny+ne)2




(A-10)

γ3 =




γ1⊗ γ1⊗ γ1 0 0 0
0 γ2⊗ γ1 0 0
0 0 γ1⊗ γ2 0
0 0 0 γ1⊗ γ2


 γ4 =




0
ny×ny

0
ny×ny

I
ny×ny

0
ne×ny




(A-11)

γ5 =




I(ny+ne)3[
0

ny×(ny+ne)2

I(ny+ne)2

]
⊗ I(ny+ne)

I(ny+ne)⊗

[
0

ny×(ny+ne)2

I(ny+ne)2

]
(K(ny+ne),(ny+ne)⊗ I(ny+ne))

I(ny+ne)⊗

[
0

ny×(ny+ne)2

I(ny+ne)2

]




(A-12)

A.2.2 State Spaces for the Markov Representation

xi = γ1Si , Si =

[
yi−1

ui

]
, andSi+1 = δ1Si(A-13)

x j ,i = γ2Sj ,i, Sj ,i =

[
y j−1,i−1

Sj ⊗Si

]
, andSj+1,i+1 = δ2Sj ,i(A-14)

Sk, j ,i =




Sk⊗Sj ⊗Si

Sk, j ⊗Si

(Sj ⊗Sk,i)(Kne,ne⊗ Ine)
Sk⊗Sj ,i


 andSk+1, j+1,i+1 = δ3Sk, j ,i(A-15)

A.3 Details of Third-Order Derivation

We begin by differentiatingf with respect to each triplet of shocks. The resulting systemof equa-

tions remains linear in the third derivatives

D
3
εT
t−kεT

t− jε
T
t−i

f = fx3(xk⊗x j ⊗xi)+ fx2(xk, j ⊗xi)

+ fx2(x j ⊗xk,i)(Kne,ne⊗ Ine)+ fx2(xk⊗x j ,i)+ fxxk, j ,i(A-16)
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Evaluating this aty and setting its expectation to zero yields

Et(D
3
εT
t−kεT

t− jε
T
t−i

f )
∣∣∣
x
= fy−yk−1, j−1,i−1+ fyyk, j ,i + fy+yk+1, j+1,i+1

+ fx3(xk⊗x j ⊗xi)+ fx2(xk, j ⊗xi)

+ fx2(x j ⊗xk,i)(Kne,ne⊗ Ine)+ fx2(xk⊗x j ,i)

=0, for k, j, i = 0,1, . . . , with yk, j ,i = 0, for k, j, i < 0(A-17)

a linear deterministic second order difference equation inthe third derivativeyk, j ,i . The homoge-

neous components in (A-17) are identical to those in (16) and (25). The inhomogeneous components

again have a first order Markov representation. Using the shifting and transition matrices defined in

appendixA.2 gives (39) of the main text, whose solution takes the form (40). By recursively sub-

stituting (40) in (A-17), using the shifting matrices and matching coefficients, weobtain a Sylvester

equation inβ3

( fy+ fy+α)β3+ fy+β3δ3 =−
[

fx3 fx2 fx2 fx2

]
γ3(A-18)

Now we move on to the partial derivatives ofy function involving the perturbation parameterσ.

To determineyσ, j ,i, we differentiatef with respect toεt−i , εt− j andσ

D
3
σεT

t− jε
T
t−i

f = fx3(Dσx⊗x j ⊗xi)+ fx2(Dσx⊗x j ,i)+ fx2(Dσx j ⊗xi)

+ fx2(x j ⊗Dσxi)Kne,ne+ fxDσx j ,i(A-19)

whereDσx j ,i = xσ, j ,i + x̃ε, j ,i(εt+1⊗ Ine2)

Evaluating aty, taking expectations, setting the resulting expression tozero yields, and noting the

results from lower orders yields the expression in the text,whose solution, again analogously to

lower orders, takes the formyσ, j ,i = αyσ, j−1,i−1, with yσ, j ,i = 0, for j, i < 0 delivering (42) in the

main text.

To determineyσ2,i, we differentiatef with respect toεt−i once andσ twice

D
3
σ2εT

t−i
f = fx3(Dσx⊗Dσx⊗xi)+ fx2(Dσx⊗Dσxi)+ fx2(D2

σ2x⊗xi)+ fx2(Dσx⊗Dσxi)+ fxD
2
σ2xi

whereD
2
σ2xi = xσ2,i +2xσ,̃ε,i(εt+1⊗ Ine)+ x̃ε2,i(εt+1⊗ εt+1⊗ Ine)(A-20)
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Evaluating at the nonstochastic steady state (y), taking expectations, and setting the resulting ex-

pression to zero yields the expression in the main text, which is still a second order deterministic

difference equation. The homogeneous components are packed in xσ2,i , and they are identical to

those in (16) and (25). The inhomogeneous components can again be rearranged to have a first order

Markov representation by using the shifting and transitionmatrices defined in appendixA.2, thus

fy−yσ2,i−1+ fyyσ2,i + fy+yσ2,i+1

+

{[
fx3(γ4β1⊗ γ4β1⊗ γ1)+ fx2([γ4β2(S0⊗S0)]⊗ γ1)+2 fx2(γ4β1⊗ [γ4β2(S0⊗δ1)])

+ fxγ4β3γ5(S0⊗S0⊗δ1)

]
[Et(εt+1⊗ εt+1)⊗ Iny+ne]+ fx2(xσ2 ⊗ γ1)

}
Si = 0(A-21)

for i = 0,1, . . . , with y−1 = 0

The solution of the forgoing takes the form of (44) in the main text Substituting (44) in (A-21) and

matching coefficients, we obtain a Sylvester equation inβσ

( fy+ fy+α)βσ+ fy+βσδ1 =−

{[
fx3(γ4β1⊗ γ4β1⊗ γ1)+ fx2([γ4β2(S0⊗S0)]⊗ γ1)

(A-22)

+2 fx2(γ4β1⊗ [γ4β2(S0⊗δ1)])+ fxγ4β3γ5(S0⊗S0⊗δ1)

]
[Et(εt+1⊗ εt+1)⊗ Iny+ne]+ fx2(xσ2 ⊗ γ1)

}

To determineyσ3, we differentiatef with respect toσ three times

D
3
σ3 f = fx3(Dσx⊗Dσx⊗Dσx)+2 fx2(Dσx⊗D

2
σ2x)+ fx2(D2

σ2x⊗Dσx)+ fxD
3
σ3x(A-23)

whereD
3
σ3x= xσ3 +3xσ2,̃εεt+1+3xσ,̃ε2(εt+1⊗ εt+1)+ x̃ε3(εt+1⊗ εt+1⊗ εt+1)

Evaluating this at the nonstochastic steady state and setting its expectation to zero yields

Et(D
3
σ3 f )

∣∣∣
x
= fx3[(x̃ε ⊗ x̃ε ⊗ x̃ε)Et(εt+1⊗ εt+1⊗ εt+1)]+2 fx2[Et(εt+1⊗ εt+1⊗ εt+1)(x̃ε ⊗ x̃ε2)]

+ fx2[(x̃ε2 ⊗ x̃ε)Et(εt+1⊗ εt+1⊗ εt+1)]+ fx[yσ3 + x̃ε3Et(εt+1⊗ εt+1⊗ εt+1)]

=0(A-24)

the expression in the text.
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Table 1: Parameter Values for the Model of Section4.2

Parameter β τ θ α δ ρZ σZ

Value 0.9896 2.0 0.357 0.4 0.0196 0.95 0.007

See Aruoba, Fernández-Villaverde, and Rubio-Ramı́rez (2006).
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Figure 1: Impulse Responses to a Technology Shock, Model of Section4.2
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(b) Consumption
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Figure 2: Impulse Responses to a Technology Shock, Model of Section4.2
Blue: γ = 2, Redγ = 5, Greenγ = 10
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(a) Capital

(b) Consumption

(c) Labor

Figure 3: Second-Order Kernels, Model of Section4.2
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(a) Capital

(b) Consumption

(c) Labor

Figure 4: Third-Order Kernels, Model of Section4.2
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Figure 5: Second-Order Contributions to Impulse Responsesto a Technology Shock, Model of
Section4.2
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Figure 6: Euler Equation Errors, Shock at Timet, Aruoba, Fernández-Villaverde, and
Rubio-Ramı́rez’s (2006) Baseline Case
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Figure 7: Euler Equation Errors, First Order Approximation, Aruoba, Fernández-Villaverde, and
Rubio-Ramı́rez’s (2006) Baseline Case
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(a) Maximum Euler Equation Errors
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Figure 8: Maximum and Average Euler Equation Errors, Aruoba, Fernández-Villaverde, and
Rubio-Ramı́rez’s (2006) Baseline Case
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