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Abstract

We propose a nonlinear infinite moving average as an alieentd the standard state space
policy function for solving nonlinear DSGE models. Peratibn of the nonlinear moving average
policy function provides a direct mapping from a history ohovations to endogenous variables,
decomposes the contributions from individual orders ofemtanty and nonlinearity, and enables
familiar impulse response analysis in nonlinear settingéien the linear approximation is saddle
stable and free of unit roots, higher order terms are likevgaddle stable and first order correc-
tions for uncertainty are zero. We derive the third orderrapination explicitly and examine the

accuracy of the method using Euler equation tests.
JEL classificationC61, C63, E17

Keywords Perturbation; nonlinear impulse response; DSGE; sailutiethods; Volterra series

“We are grateful to Michael Burda and Lutz Weinke, as well aiggpants of the CEF 2012 and of research seminars
at the Bundesbank and HU Berlin for useful comments, suggestand discussions. This research was supported by
the DFG through the SFB 649 “Economic Risk”. Any and all esrare entirely our own.

THumboldt-Universitat zu Berlin, Institut fiir Wirtschatheorie Il, Spandauer StraRe 1, 10178 Berlin, Germany;
Tel.: +49-30-2093 1466; Emdiinhong@cms.hu-berlin.de

SHumboldt-Universitat zu Berlin, Institut fiir Wirtschiatheorie 11, Spandauer StraRe 1, 10178 Berlin, Germany;
Tel.: +49-30-2093 5720; Fax: +49-30-2093 5696; E-Malexander.meyer-gohde@wiwi.hu-berlin.de


mailto:lanhong@cms.hu-berlin.de
mailto:alexander.meyer-gohde@wiwi.hu-berlin.de

1 Introduction

Solving models with a higher than first order degree of aaguisan important challenge for DSGE

analysis with the growing interest in nonlinearities. Weaduce a novel policy function, the non-

linear infinite moving average, to perturbation analysislymamic macroeconomics. This direct
mapping from shocks to endogenous variables neatly ds#eeindividual contributions of orders

of nonlinearity and uncertainty to the impulse responsetions (IRFs). For economists interested
in studying the transmission of shocks, our method offerg ingight into the propagation mecha-
nism of nonlinear DSGE models.

The nonlinear moving average policy function chooses astéte variable basis the infinite
history of past shocks.The nonlinear DSGE perturbation literature initiated bys@ar and Judd
(1997), Judd and Guu (1997), and Judd (1998, ch. 13) hasdhupérated solely with state space
methods Our infinite dimensional approach is longstanding in lin@adels and delivers the same
solution as state space methods for linear mo#lélsr the nonlinear focus of this paper, however,
it provides a different solution. Deriving the direct mapgifrom shocks to endogenous variables
of interest—a \olterra series expansion—facilitates feanimpulse response analysis and makes
clear the caveats introduced by nonlinearity. These irchidtory dependence, asymmetries, a
breakdown of superposition and scale invariance, as wéfiepotential for harmonic distortich.

As highlighted by Gomme and Klein (2011) in their second o&jgproximation, deriving per-

IKalman’s (1980) “external” or “empirical” approach to syst theory in contrast to the ‘internal” or “state-variable”
approach of the state space methods more familiar to DSG&itwaers. See Woodford (1986) for a theoretical
foundation of nonlinear DSGE solutions in this space of itdisequences of innovations.

2See Collard and Juillard (2001b), Collard and Juillard @00 Jin and Judd (2002), Schmitt-Grohé and Uribe
(2004), Anderson, Levin, and Swanson (2006), Lombardo antesland (2007), and Kim, Kim, Schaumburg, and
Sims (2008). Recent work of Aruoba, Bocola, and Schorfh&@é 1) links their quadratic autoregressive (QAR) time
series model within a DSGE context to the Volterra seriesaagjpn that we use as our solution basis. Whereas we
solve a DSGE model directly with a \olterra series, Aruobac@a, and Schorfheide (2011) compare a reduced form
\olterra time series with a state space DSGE policy functiimeir focus is on estimation, which is beyond the scope
of this paper.

3Compare, e.g., the state space representations of UhI@R)1%lein (2000), or Sims (2001) with the infinite
moving-average representations of Muth (1961), Whiterd@838) or Taylor (1986).

4See Priestly (1988), Koop, Pesaran, and Potter (1996 R@100), and Gourieroux and Jasiak (2005) for detailed
discussions from a time series perspective.



turbation solutions with standard linear algebra increabe transparency of the technique and
makes coding the method more straightforward. In that wem,adapt Vetter’'s (1973) multidi-
mensional calculus to provide a mechanical system of @iffeation that maintains standard linear
algebraic structures for arbitrarily high orders of appneation. We implement our approach nu-
merically by providing an add on for the popular Dynare pagekaWe then apply our method to
the stochastic growth model of Aruoba, Fernandez-Villdeeand Rubio-Ramirez (2006) for com-
parability and explore the resulting decomposition of tbetabuting components of the responses
of variables to exogenous shocks. We develop Euler equation methods for our infinite dimen-
sional policy function and confirm that our moving averageson produces approximations with a
degree of accuracy comparable to state space solutions séthe order of approximation presented
in Aruoba, Fernandez-Villaverde, and Rubio-RamireD@)8

We make two assumptions on the characteristic equatioredirdt order (i.e., linear) approxi-
mation: it is saddle stable and it is free of unit roots. Thst i the standard Blanchard and Kahn
(1980) assumption and we show that the resulting stabrlimyfthe first order is passed on to higher
order terms. The second is necessary to ensure the boursgenineorrections to constants and
essentially embodies the necessary invertibility of addat state space policy function to yield our
infinite moving average. Additionally, these assumptiomalde us to show that the derivatives of
the moving average policy function first order in the peradiidn parameter are uniquely zero, as
shown by Jin and Judd (2002) and Schmitt-Grohé and Urib@4Rfor state space policy function.

The paper is organized as follows. The model and the nonlinéaite moving average policy
function are presented in secti@ In section3, we develop the numerical perturbation of our
nonlinear infinite moving average policy function expligibut to the third order. We apply our

method to a standard stochastic growth model in seetjcan widely used baseline for numerical

5See Adjemian, Bastani, Juillard, Mihoubi, Perendia, Rattal Villemot (2011).

5Aruoba, Fernandez-Villaverde, and Rubio-Ramirez (3G0€o explore several global methods (projection, value
function iteration) and our choice allows comparabilitytiese other methods. Our focus, however, is on the alteenati
basis from the nonlinear moving average for local (perttiobd methods and our analysis proceeds accordingly.



methods in macroeconomics. In sectmwe develop Euler equation error methods for our infinite

dimensional solution form and quantify the accuracy of oethod. Sectio® concludes.

2 Problem Statement and Solution Form

In this section, we introduce the class of models we analyzktlae policy function we propose
as a solution. Our class of models is a standard system ofiiiean) second order expectational
difference equations. In contrast with the general pradticthe literature, however, the solution
will be a policy function that directly maps from realizat® of the exogenous variables to the
endogenous variables of interest. We will first present thdehclass followed by the solution form
and then conclude with the Taylor/\Volterra approximatidrihe solution and the matrix calculus

necessary to follow the derivations in subsequent sections
2.1 Model Class

We analyze a family of discrete-time rational expectatimaglels given by

(1) 0= Blf(s-1,Y0:¥te1, )], wherets = 5 N'ei

=
f is an(negx 1) vector valued function, continuoustytimes (the order of approximation to be
introduced subsequently) differentiable in all its argaisey; is an(ny x 1) vector of endogenous
variables; the vector of exogenous variabliggs of dimension(nu x 1) and it is assumed that
there are as many equations as endogenous varigiges= ny). N is the (nux nu) matrix of
autoregressive coefficients of, presented here in moving average form. The eigenvalubisasé
assumed all inside the unit circle so thaiadmits this infinite moving average representation; and
& is an(nex 1) vector of exogenous shocks of the same dimen&ion= ne). Our software add on

forcesN = 0 to align with Dynaré.

’See again Adjemian, Bastani, Juillard, Mihoubi, Peren®&atto, and Villemot (2011). Thus in practice, the
economist using Dynare must incorporate any serial cdioglanto the vectory;. This choice is not made in the
exposition here as the admissibility of serial correlaiinthe exogenous driving force brings our first order derorat
in line with earlier moving average approaches for lineadais, e.g., Taylor (1986).



Additionally, & is assumed independently and identically distributed gshabE(g;) = 0 and
E(st®[”]) exists and is finite for alh up to and including the order of approximation to be intraztlic
subsequentl§.

As is usual in perturbation methods, we introduce an auyilgarametero € [0, 1] to scale
the uncertainty in the model. The valge= 1 corresponds to the “true” stochastic model under
study ando = O represents the deterministic version of the model. FatiguAnderson, Levin, and
Swanson (2006, p. 4), we do not scéde, &1, ...} — the realizations of the exogenous shocks up
to (including)t — with o, as they are known with certainty &at The perturbation parameter does
not enter the problem statement explicitly, but only imiplycthrough the policy functions, and its

role will become clear as we introduce the solution form aa@pproximation.
2.2 Solution Form

Let the policy function take the causal one-sided infinitgusmce of shocks as its state vector and,
following Anderson, Levin, and Swanson (2006, p. 3), letdttine invariant for alt, analytic and
ergodic? The unknown policy function is then given by

(2) Vi = Y(0,&,&-_1,...)

Note thato enters as a separate argument. As the scale of uncertaanyges, so too will the policy
functiony itself change. Time invariance and scaling uncertaintg gis

(3) Yi-1=Y (0,& 1,& 2,...)

4) Vi1 =Y (0,€,1,&, & 1,...) Whereg 1 = o0&, 1

8The notationg;®[" represents Kronecker powers®M is the n'th fold Kronecker product ofg; with itself:

&§RE&---®¢&. For simulations, of course, more specific decisions raggrthe distribution of the exogenous pro-
times

cesges will have to be made. Kim, Kim, Schaumburg, and Si®8320. 3402) emphasize that distributional assump-
tions like these are not entirely local assumptions. Dyifadgemian, Bastani, Juillard, Mihoubi, Perendia, Rattiod a
Villemot 2011) assumes normality of the underlying shocks.

9Analyticity is required for the convergence of asymptotipansion as the order of approximation becomes infinite
and ergodicity rules out explosive and nonfundamentaltwois.



The notationy, y—, andy™, is adopted so that we can keep track of the source (thrguigh 1, and
Vi+1 respectively) of any given partial derivative of the policyiction. Due to the assumption of
time invariancey, y—, andy" are the same function differing only in the timing of theigaments.
The importance of discriminating among these functionslyétome clear in the next section. The
termogi. 1 in (4) is the source of uncertainty, vea, 1, that we are perturbing witt. The known
functionu of the exogenous variable is rewritten similarly as
(5) W = u(0,&, & 1,...) = i)Nisti
=

For notational ease in derivation, we will define vec§orcontaining the complete set of variables
(6) =Yy ¥ Y1 4
X% is of dimension(nxx 1) with (nx= 3ny+ ne). With the policy function of the form3), (3) and
(4), plus the function of the exogenous varial (ve can writex; as
(7) X = X(0,&+1, &, &1, -)

Following from the assumptions gnandu, x is likewise time invariant, analytic and ergodic.
2.3 Approximation: Taylor/\olterra Series Approximation

We will approximate the solution?2], as a Taylor series in the infinite state vector (i.e., adro#
series) expanded around a nonstochastic steady statkich is the solution to the function
(8) 0=1(7,,,0) = f (%)
thatis, the functiorf in (1) with all shocks, past and present, set to zero, and all taingy regarding
the future eliminatedo = 0). Furthermore
9) y=v(0,0,...)
represents the solutio)(evaluated at the nonstochastic steady state.

Following general practice in the perturbation literaiwre pin down the approximation of the
unknown policy function 2) by successively differentiatindgl and solving the resulting systems

for the unknown coefficients. The algorithm is detailed iots® 3. Notice that, sincd is a vector



valued function, successive differentiation fovith respect to its arguments, which are vectors in
general, will generate a hypercube of partial derivatiVés.adapt the structure of matrix derivatives
defined in Vetter (1973) to unfold the hypercube conformabline Kronecker product, collecting
partial derivatives from successive differentiationfah two dimensional matrices. This allows us
to avoid tensor notation and use standard linear algebra.

A similar approach can be found in Gomme and Klein (2011).yTle the matrix derivative
structure and associated chain rule of Magnus and Neud&®@T, ch. 6) to unfold a three dimen-
sional cube of second partial derivatives. The approacls doeappear to be easily adaptable to
orders of approximation higher than two, as Magnus and Nekeit€2007) do not provide methods
that go beyond the second differential. Lombardo and Slathé(2007) also derive a second order
solution without appealing to tensor notation and benedinftheir use of the vech operator to elim-
inate redundant quadratic terms. Our approach, howevaridas a mechanical recipe applicable
to higher orders, extending the ideas of these existingogmbies past the second order.

The formal definition of our matrix derivative structure msthe Appendix. This structure will
make the presentation of the solution method more transpaigiccessive differentiation df to

the desired order of approximation is a mechanical appdicatf the following theorem

Theorem 2.1. A Multidimensional Calculus

For the matrix-valued functions F, G, A, and H and vectomreal functions J and C there
exists an operatof, indicating differentiation with respect to the transpogeie column vector
X. Unless indicated otherwise, all matrices and vectorsuarderstood to be functions of thexd

column vector B and we leave this dependency implicit.

1. Matrix Product Rule:

.@BT{ F G}:FB( | ®G)+FGB
pxqgxu SXS



2. Matrix Chain Rule:

s { A 20} =t (Ceo L)

3. Matrix Kronecker Product Rule:

@BT{ F®H }:FB®H+(F®HB) (Kq,s®lev)

pxq ~ Uxv

where Ky s is a gsx gs commutation matrix (see Magnus and Neudecker (1979)).

4. Vector Chain Rule:

@BT{ J (C)}:ACCB

px1 uxl

where g = ZgTF etc. has been used as abbreviated notation to minimizeeclut

Proof. See Appendix. O

By adapting the abbreviated notation from above and wriig;,...i.,, as the partial derivative,
evaluated at the nonstochastic steady statg,with respect tao for n times and with respect to
& i & i, &_i , We can then write thil-th order Taylor approximation of the policy function

(2) using the following

Corollary 2.2. An M-th order Taylor Approximation o] is written as

M 1 » = 00 M—m 1
(10) Y= 52 2D Yoo im0 | (Bt—iy ©8—ip ©- - &ti)
m=0""" i :

i1=0i=0 im=0| n=

Proof. See Appendix. O

M—m 1 10

This infinite dimensional Taylor approximation, or Volteseries with kernelsy " 5 yonil...imcr”},
directly maps the exogenous innovations to endogenouahtas up theM-th order. The kernels
atm collects all the coefficients associated with théh fold Kronecker products of exogenous in-
novationsiy, i», ... andiy, periods ago. For a given set of indices,i», ... andiy, the sum over

n gathering terms in powers of the perturbation parameteorrects the kernel for uncertainty up

10see Priestly (1988, pp. 25-26) and Gourieroux and Jasid@s)0r a representation theorem.



to then-th order, thereby enabling a useful classification of thetidoutions of uncertainty to the
model. That is, we can first decompose the \Volterra serieskenels associated with the order of
approximation in the state space itself—the zeroth keragldconstants, the first order kernel be-
ing linear in the product space of the history of innovatighe second being quadratic in the same,
etc. Thereafter, we can decompose each of the kernels iotessively higher order corrections for
uncertainty according to the order ar—ygn represents tha'th order correction for uncertainty of
the zeroth order kerngjgnj, then'th order correction for uncertainty of the first order kegrygni,i,
then'th order correction for uncertainty of the second ordemnkg&rand so on.

For a different perspective, observe that moving to a highager in L0) comprises two changes:
(i) adding a higher order kernel and (ii) opening up all @rgkernels to a higher order correction

for uncertainty'Ll The change in moving from avl — 1'th to M’th order approximation is

(11) Z MI Z z z M m yo'V' Mjqip-- |m0M7m (8t7i1®8t7i2®“'8tfim)
i1=0i,=0 im=0

The difference can be written compactly despite the two ghanas change (i) is ad’'th or-
der kernel with a zeroth order correction for uncertaintyr (h = M above,yomfmiliz...imo'\"—m =
ycoiliz,,,imo0 = VYiji»-im)- From (ii) comes then additionally a first order correctfonuncertainty in
theM — 1'th order kernel, a second order uncertainty correctiotifeM — 2'th kernel and so on up
to theM’th order correction for uncertainty in the constant or zerorder kernel. The uncertainty
correction at a given order directly depends on the momédifitéuoe shocks at each order and so (ii)
can be interpreted as successively opening each kernelhigher moments in the distribution of
future shocks, while (i) maintains the standard Taylor@df moving to a higher order polynomial
(captured by the kernels in our Volterra series).

As the notation in10) is rather dense, it is instructive to consider the cadd ef 2 (the second-

order approximation) given by

1 00 1 [ee] 00
(12) Ve =Y+ Y0 + =Y520% + S (Vi +Y0,0) & i+ = Vii(E_j Q& i)
(o) 2Jo i; i o, i Zj;)i; i i i

1\we are grateful to Michael Burda for suggesting this intetation.



Here,y, the policy function evaluated at the nonstochastic stesakyg, represents the rest point in
the absence of uncertainty regarding future shocks. Thestg[* i€t i and% z‘j”:O S oYji(&t—j®
&—i) capture the first and second order responses of the detstimifiie., without uncertainty re-
garding future shocks) system. The constant term has twertaicty correctionsy;o and %yozo2
the first and second order corrections for uncertainty sy, leading to the second order accu-
rate stochastic steady state. At second ofglgr, yicO€: i is the first order correction for uncertainty
concerning future shocks of the first order response to ttetyi of shocks. The first order correc-
tions for uncertainty will turn out to be zero in this caseamfliar result from state space analy$és.
For the case oM = 2, the task at hand is to pin down numerical valuesyfoy;, ys, Yji, Yis, and
Y2 using the information ink). In the next section, we provide explicit derivations todtorder,

which is novel in the literaturé?

3 Numerical Solution of the Perturbation Approximation

It this section, we lay out the method for solving for the ¢oé#nts of the approximated solution.
Solving for the first order terms is primarily an applicat@imethods well known in the literature.
Similarly to existing state space methods, solving for Bigbrder terms operates successively on
terms from lower orders with linear methods. In contrasttaiesspace methods, the system of
equations for the coefficients at all orders of approxinraisoa system of difference equations with
identical homogenous components, enabling the stabiiagy fthe first order to be passed on to
higher orders. Terms linear in the perturbation parameatrzaro, as is the case with the state
space policy function. The moving average solution funtGtimowever, requires us to rule out unit
roots in the first order approximation along with the staddaddle point assumptions to ensure the

boundedness of uncertainty corrections to constants.

125ee Jin and Judd (2002), Schmitt-Grohé and Uribe (2004)Kém, Kim, Schaumburg, and Sims (2008).
133ee Andreasen (forthcoming) for a notable extension of $iti@nohé and Uribe’s (2004) method out to the third
order. The author’s appendix with one third order term ogauptwo pages highlights the advantage of our notation.



The method can be outlined as follodfsinserting the policy functions foy_1, yt, andy;,1—
equations, J), (2), and @) respectively—along with the analogous representatigh,for the ex-
ogenous driving force; into the model ) yields
(13) O=E[f(y (0,&_1,& 2,...),Y(0,&,& 1,...),y (0,€& 1,8, & 1,...),U(0, &, & 1,...))]

a function with arguments, &, &_1, .... At each order of approximation, we take the collection of

derivatives off from the previous order (for the first order, we start with filnection f itself) and

1. differentiate each of the derivatives bfirom the previous order with respect to each of its

arguments (i.eg, &, &_1, ...)
2. evaluate the partial derivatives bind ofy at the nonstochastic steady state
3. apply the expectations operator and evaluate using Wle@ gnoments
4. set the resulting expression to zero and solve for thewirpartial derivatives oy.

The partial derivatives of, obtained in step (4) at each order, constitute the unknaeifficients
of the Taylor/\olterra approximation of the policy funatiy. They are numeric and used again in
step (2) of the next higher order. This introduces the pakfdr the compounding of numerical
errors as we move to higher orders as highlighted by Andeisewvin, and Swanson (2006). The
set of derivatives of obtained in step (1), however, are symbolic at each ordeitifig the source

for potential error compounding to the partial derivatieéghe policy function.
3.1 First Order Approximation

We are seeking the first order approximation of the policfiom (2), evaluated at the nonstochastic

steady statéx), of the form

(14) Yt =Y+ Yo0 + ZJYiStfh I 2071727"'
i=

14see Anderson, Levin, and Swanson (2006, p. 9) for a simillinetin their state space context.

10



The task at hand is to pin down the partial derivatiwgsandy;. Even in the first order case, the
problem is infinite dimensional owing to the infinite movingeeage representation of the solution.
As explained by Taylor (1986, p. 2003) for the linear probldra original stochastic difference
equations iny; become deterministic difference equations in the moviregaye coefficients of;.
This motivates our choice of beginning with the unknown t®imthe history of shocks and then
turning to those i, as the problem at higher orders of approximation will imteesimilar structure.

To determingy;, we differentiatef in (13) with respect to some, _;
(15) '@SLf = fyX
Evaluating this at the nonstochastic steady stgtarfd setting its expectation to zero yields

(16) E(Zer F)| = Ty Yimat ¥+ fyeyia + futi = 0
fori=0,1,..., withy 1 =0

a second order linear deterministic difference equatiothénmatrices; — the derivatives of the

vector valueds function with respect to its— 1'th € element. That isy; contains the linear moving

average coefficients gf with respect to the elements gf ;. Equation {6) is an inhomogeneous

version of Anderson and Moore’s (1985) saddle point probkstved in detail by Anderson (2010).

We make two assumptions regarding the difference equaysters (L6).

Assumption 3.1. Saddle stability

Of the2ny ze C such that def f,- + fyz+ f,+z%) = 0, there are exactly ny witfg| < 1.

Assumption 3.2. No unit roots

There is no = C with |z = 1 and det(fy- + fyz+ f,+ %) =0

The first assumption is standard, fulfilling the Blanchard &ahn (1980) condition. The sec-
ond has been found in other analyses, e.g., Klein (2000) hanelensures the solvability of terms
homogenous ir0 — i.e., uncertainty corrections to the constant. Intuliivieom the state space

perspective, unit roots must be ruled out to allow the stptees solution to be inverted, yielding

11



the nonlinear moving average we work with. As in the case abgntosive state space solution, the
impact of an initial condition on the endogenous variablesii fail to vanish and constants (i.e.,
terms involving the perturbation parameter) would failémeerge when solving out a unit-root state
space solution back into the infinite past.

Anderson’s (2010, p. 479) method can be applied under oungssons3.1 and3.2 along with
the first order linear autoregressiue(i.e., u; = N'),15 delivering the unique stable solution b6}
17) yi = ayi—1+ B, withy 1 =0
a convergent recursion from which we can recover the lineaing-average terms gr’s.26

To determingy/y, we differentiatef in (13) with respect ta
(18) Dt = DX

whereZgXx = Xg + %€t 1

Evaluating this ak and setting its expectation to zero yields

X

asE; (&+1) = 0. From assumptiorB(2), it follows that

(20) det( fyf + fy+ fy+) #0
and hence
(21) Yo =0

The first order correction of the constant for uncertaintygeso, analogous to the result of Jin and
Judd (2002) and Schmitt-Grohé and Uribe (2004). This tesuties over to our moving average
by ruling out unit roots to ensure the invertibility of thextt space representation. The result itself
reflects the rather obvious fact that opening the expansiambtoment of the future distribution of

shocks will change nothing if this momertd; (€;1]) is exactly zero.

alternatively, one can apply Klein’s (2000) QZ algorithmthis deterministic approach to yield the solution above.
Note, as discussed by Meyer-Gohde (2010, pp. 986-987),ewv@rking on a deterministic saddle point problem in the
moving-average coefficients and not on a stochastic sguiigproblem in the endogenous variables themselves.

16\We have tacitly assumed that this solution exists, see Awaef2010, p. 483) for the details. In Klein’s (2000)
notation,Z;; of the QZ decomposition must be invertible, the added pmoefdranslatability.

12



Gathering the results of this section, the first order appmakon of the policy function2),

which can be thought of as an extension of Muth (1961), Tayle86), and others, reduces to

(22) Yt IV—F Vi€t—i, i = O, 1, 2,
I;} | |

The certainty equivalence of the first order solution is otéld by the independence @&3) from o.
3.2 Second Order Approximation

Taking the first order results as given, we now move on to tieersd order approximation of the
policy function @) evaluated at the nonstochastic steady stabe pf the form
(23) Vi =Y+ %YOZUZ + ii (Yi +Y0,i0) & i + % _iii)’j,i (&—j @ &)
The task is to pin down the three ;econd order derivatji;eb_e)j function,yj i, Y52 andygi. The
equations governing i andy, ; will be difference equations with homogenous componeetstidal
to those in 16), with the equation ity being homogenous in accordance with Schmitt-Grohé and
Uribe (2004) and others. The no-unit-root assumption walicbucial again in solving for the term
Y42, preventing this constant correction for uncertainty icetl by the potential for future shocks
from becoming arbitrarily large.

We first differentiate 15) with respect to soma_j, deliveringy; i, the second derivatives of the
y function with respect to all pairs @f_j ande;_j. As Judd (1998, p. 477) points out, the resulting

system of equations remains a linear system, only now indbersl derivatives that are being sought

(24) .@Sth_jstT_i f = fa(Xj@x)+ fxXj,i

Evaluating at the nonstochastic steady state and setsiegitectation to zero

(25) Et(-@égjgt[i D) = Ty Yicgi-a+ i+ fyryjeviva + fe(x @x) =0
for j,i=0,1,..., withy;; =0, for j,i <O
a second order linear deterministic difference equation inThe coefficients on the homogeneous

components of the forgoing and®) are identical. The inhomogeneous components have a first

order Markov representation (see the shifting and trasrsitiatrices defined in the Appendix) in the

13



Kronecker product of the first order coefficiedfsThe resulting expression is
(26) fy-Yi—vi—a+ fyyji+ fYjrsiaa+ fe(iown)(§©S) =0
for j,i=0,1,..., withy;; =0, for j,i <0

The stable solution of the forgoing, analogously to the brster, takes the form
(27) Yii=0ayj_1i-1+PB2(Sj®S), withyj ;i =0,Vj,i <0
Note thata in this solution is known. It is the same uniquely stablas in the first order solution
(17) due to the fact that the syster@5] and (L6) have identical homogeneous components. To
determing3,, we substituteZ7) in (25), using the shifting matrices and matching coefficients
(28) (fy+ fyra)Ba+ f B2(Br1 @ &1) = — fe(Vi® V1)
This is a type of Sylvester equation, the solution of whicprissented in detail by Kamenik (2005).

Next we pin downy, j, the second derivatives of thyefunction with respect t@;_j ando se-
guentially, by differentiatingX5) with respect ta. The resulting linear system is

(29) P21 | = f2(Dox@%) + TxZDoX;

O&_j
whereZsXi = Xo,i + %z i (€141 ® Ine)
Note that the additional potential derivativ@ézT ;1 is simply equal to the derivative in the text,
t—i

.@gstT ‘ f.18 Evaluating 29) at X, taking expectations, noting thgs = 0, and setting the resulting

"Thus, our nonlinear moving average solution parallelsineal state space solutions in a manner analogous to the
linear case, where the recursion is in the coefficients assgapto the variables themselves. Instead of products of the
state-variables entering into the solution, we have prtsdofcthe first order coefficients.

18 Although the derivative operat@? works on Kronecker products (i.@cfstT = 9§®83 ~f) and although the Kro-

necker product is not generally commutatiges a scalar and, thus, commutation is preserved. This reanlbe seen
by exploiting the properties of the commutation matfi, as follows. Take the first term iﬁ?gstT , for example, and

insert the identity matrix:f,2l 2 (ZoXx®@ ). This can be rewritten ag,KnynKnxnx(ZoX® %i). Pre-multiplying the
Kronecker product of a matrix and a column vector (each withows) with Knynx reverses their order (see Theorem
3.1.(ix) of Magnus and Neudecker (1979, p. 384)) and, thksgx(ZoX®@Xi) = X @ ZoX. Now f,2 = ‘@%@ﬂ f and post-
multiplying a Kronecker product of row vectors each of dirsien nx with Knynx reverses their order. But the two row
vectors are identical, so reversing their order changesimgpt f,» = @fTWT fKnxnx = @fTWTf = f,.. Combining the
two yields f,2 (Zox®@X%) = f2(% ® Zox). Proceeding likewise with the second term@ﬁST ~completes the argument.
Accordingly for higher-order derivatives, the order in einiderivatives with respect tmaplplear is inconsequential as it
is a scalar and we choose to have éfteappear first.
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expression to zero yields
(30) Et(géeg_i f) = fyYo,i—1+ fyyoi+ fy+ Yois1 =0
fori=0,1,..., withys _1=0

The unique stable solution takes the form
(31) Yo, =0Ygi-1, fori=0,1,..., withys 1 =0
as the system at hand is identical to the homogenous compohéme first order systemlg).
Combined with the initial conditiogl; —1 = 0, the forgoing delivers
(32) Yoi=0,fori=0,1,...
Again, we confirm Schmitt-Grohé and Uribe’s (2004) and Jid dudd’s (2002) result that terms
with a first order uncertainty correction are zero.

Finally, to determing/2, the second derivative of thefunction with respect t@, we differen-
tiate (L8) with respect tao, the resulting linear system is

(33) D2 = f2(DoX® DoX) + TxD2:X

o
WhereZ2;x = Xy2 + 2% g€t41 + Xe2 (€11 @ €11

Evaluating this ak and setting its expectation to zero yields

(34) Ei(Z5f) .= [fy+Yo2 + fyr2(Yo®@Yo)|Et (€41 @ €ts1) + (fy- + fy + fye )yge =0

therefore we can recovgy. by

(35) Yor = —(fy- + fy-+ £ ) T fryge + fye2(Yo @ o) Ee (€141 ® €141)

By assumption, the second moment of the exogeneous variabde, 1 @ €r11), is given.

As the model approaches a unit root from below, the effectnoleutainty on the constant be-
comes unbounded. This result is novel, giving additionahmigg to the invertibility condition of
assumptior8.2 from a state space perspective, the correction for unogrtevill be accumulated
forward starting from the nonstochastic steady state;@fdfate space contains a unit root, this ac-
cumulated correction will become unbounded and there wilhb finite stochastic steady state to

which the model can converge.
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Gathering the results of this section, the second orderoappation of the policy function?)

takes the form
1 s e 122

(36) Yo =Y+ 5Y020" + i;yist—i +35 j;)i;))’j,i (8t—j @ &)
In contrast to the first order approximatioB6] does depend oa, with the term%yoz correcting
the nonstochastic steady state for uncertainty regardifngd shocks. Ae goes from 0 to 1 and
we transition from the certain to uncertain model, the reshipof the solution transitions from
the nonstochastic steady stgt@o the second order approximation of the stochastic stetdg s
y+ %yozcz. As we are interested in this uncertain version, setting one in 86) gives the second

order approximation

(37) Yo =Y+ 5Yo2 + i;yi &-it s ];i;)yj,i (& @&i)

3.3 Third Order and Higher Approximations

Given the results from lower orders, including that ternmedr in the perturbation parameter are
zero, the third order approximation of thdunction we are seeking takes the form

1 1 o 1 122
Vi =Y+ §y0202+ éy0303+ i; <yi + éyczjoz) €+ 5 JZ)IZ) (yj',i +yo’j7i0') (Et—j @& i)

oo o

1 [e¢]
(38) +- Vi ji(Et—k ® & —j © &)
6,2 22, e

The task at hand is to pin down some third derivatives ofythenction, includingyx j i, Y2, Yo.j.i
andy,s. Computing these derivatives largely resembles the coatiputof the second derivatives in
the previous section. We relegate the details to the Appeardi focus on the results here.

To determineyy j i, we differentiate 24) with respect to some shocks k, delivering the third
derivatives of they function with respect to all triplets of the shocks. The t@sg system, evalu-
ated atx and in expectation, of equations is a linear determinigtéoad order difference equation

in ygji.- The homogeneous components AxX7) are identical to those inlg) and @5) and the
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inhomogeneous components can again be rearranged to hasteoader Markov representation

Et@gtkstr_jgtr_i f) . =fy Vicnj-vi-1+ fykii+ fy Vs + [fe fe fe e vsScji=0
(39) fork,j,i=0,1,..., withygji =0, fork,j,i <0

The unique stable solution of the forgoing, analogouslytedr orders, takes the form

(40) Yiji = OYk—1,j—1i-1+B3S i, Withyyji =0, fork,j,i <0

andfs can be solved for by, again, formulating an appropriate &stier equation.

To determineys,j i, we differentiate 24) with respect tao, evaluate ax, take expectations, set

the resulting expression to zero, and recall the resulta fower orders, yielding

(41) Et(-@g’gtT_jstr_i D, =ty Yo-si-1+ fWo.ji+ fy+Yo,j+1i41=0
for j,i=0,1,..., withys ;i =0, for j,i <0

or

(42) Yo,ji =0, for j,i=0,1,...

again confirming Schmitt-Grohé and Uribe’s (2004) and dich dudd’s (2002) result that terms with

a first order uncertainty are zero.

To determiney,2;, we differentiate 29) with respect tao, evaluate ak, take expectations, set

the resulting expression to zero, and recall the resulta foaver orders, yielding
E(Zgeer 1| =Te{l06 @) Be(Erra @ 41)] ©X} +2h0(% @) [Ee(Et 11 @ €t11) @ Ine

+ fe{ (X2 @ %) + (2Bt (Er+1 @ €41)| @ %)} + Fu{Xg2 + X2 i [Ee (€111 @ €111) @ Inel }
(43) =0, fori=0,1,..., withy_ =0
which is still a second order deterministic difference d@gum The homogeneous components are
packed inx,2; and they are identical to those ibg) and @5). The inhomogeneous components can

again be rearranged to have a first order Markov representaitid the unique stable solution of the

forgoing takes the form

(44) Yo2i = UYg2i-1 +BoS, with Yo2,1= 0
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wheref; can be solved for by, again, formulating an appropriate &stler equation.

To determingygs, we differentiate 83) with respect tas, evaluate ax, take expectations, set the
resulting expression to zero, and recall the results fromefwrders, yielding

Et(.@gg f) .= fia[ (% @ X @ Xg) Bt (€141 @ €111 @ Et11)] + 2F e [Et (€111 ® €41 @ €111) (X © %g2)]
(45) + e[ (%2 @ %) Et (€11 @ €11 @ €141)] + Tx[Yos + XesBt (&t 11 @ €1 ® € 11)] =0
as the third moment @ is assumed giver; (&1 ® €11 ®€11) is known. Recovering,s from the
forgoing is straightforward under the assumpti8r®(. Wheneg; is normally distributed; however,
Ei(e1+1® &1 ®&+1) = 0. Hence
(46) Y3 =0

Combining, the third order approximation of the policy ftioa (2) takes the form

Yt =Y+ éyozo' -+ % Vi + éyoz’io' &+ é Z) Z)yj’i(&fj ®8t7i>
i= =0is
1 o0 (o] (o]
(47) +t=) Vi ji(Et k@& j @& i)
6k:01: i=

Again in contrast to the first order approximatioA7) does depend oa, with the term%yoz cor-
recting the nonstochastic steady state for uncertaintyrdbsd second order approximatio86j,
but now with %y027i02 correcting the first order kernel for uncertainty; i.e.,cagoes from 0 to 1
and we transition from the certain to uncertain model, weiporate the additional possibility of a
time-varying correction for uncertainty. As we are intéeglsin the original, uncertain formulation,
settingo to one in @7) gives the third order approximation

Yo =Y+ 5¥o2 + i; Vit 5Yo2i ) &t 5 jZ)iZ)yj,i (-] @ &)

1 (o] (o] (o]
(48) + ékzo j;)i;)Yk,j,i(St—k@)Etj ®E—i)

Higher order approximations of the policy functia?) can be computed using the same steps.
Moving through higher orders of approximation succesgj\ibe undetermined partial derivatives of

the policy function will always be terms of highest orderrigeconsidered, ensuring that the leading

19As is the case in Dynare, see Adjemian, Bastani, Juillarthoubi, Perendia, Ratto, and Villemot (2011).
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coefficient matrix isfy. Thus, for all time varying components, the difference ¢igua in these
components will have the same homogenous representatmmet time varying components (i.e.
derivatives with respect twonly), the leading coefficient matrifg along with assumptio®.2ensure
the uniqueness of their solution. The inhomogenous elesradithe difference equations in the time
varying components will be composed of terms of lower orgérich are necessarily constants
(terms in the given moments and derivatives with respectdaly) or products of stable recursions
(time varying components of lower order). As the latter #ewise stable, we can conclude from
assumptior8.1that the difference equations in all time varying compogaemtl be saddle stable;

hence, the stability of the first order recursion is passet @fl higher orders.

4 Stochastic Neoclassical Growth Model

In this section, we examine two versions of the stochasticiassical growth model to demonstrate
the method. This model has been used in numerous studiesacoigmumerical techniques and
is a natural benchmark. We begin with the special case oflefgpences in consumption and full
depreciation that has a known solution to illustrate thatreh of the nonlinear moving average to
the more familiar state space solution. We then move on td#seline specification of Aruoba,
Fernandez-Villaverde, and Rubio-Ramirez’s (2006) cahensive study with inseparable utility to
foster comparability with their results. This version oétimodel lacks a known solution and must be
approximated. Using our nonlinear moving average solutimanalyze the contributing elements
to the response of the model’'s endogenous variables to adkgy shock and highlight the features
of the multidimensional kernels and impulse responses.

The model is populated by an infinitely lived representatisasehold seeking to maximize its

expected discounted lifetime utility given by

(Cte (1- Lt)l_e> o
1-y

(49) Eo [iﬁ‘u (Q,Lt)] , withU (G, Lt) =
t=
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whereC; is consumptionl labor, and3 € (0, 1) the discount factor, subject to
(50) Ci+ Ky = eAK® (LY + (1-8)Ke g
wherekK; is the capital stock accumulated today for productive psegdomorrowyz; a stochastic
productivity processa € [0,1] the capital share, andl€ [0, 1] the depreciation rate. OutpMt is
given bye” Kt‘{lLtl‘o‘ and investmeni by K; — (1 — &) K;_1. Productivity is described by
(51) Zi = pzZi-1+ €21, €20~ N (0,0%)
with pz € (0,1) a persistence paramete,; the innovation to the process, aog the standard
deviation of the innovations.

The solutionis characterized by the intertemporal Euleddaoon equalizing the expected present-

discounted utility value of postponing consumption oneqeeto its utility value today

_g\ 1Y a1y
(52) (Cte(l—:>l e) — BE, (Cte+1(1—clt-t++ll)l e> <aezt+1Kt“’1Lt1;f‘+l—5>

and the intratemporal condition equalizing the utility toEmarginally increasing labor supply to

the utility value of the additional consumption provideeétwith

1-6 0
_ o t e a —a
l_l—t_ct(l a) ek L,

plus the budget constrainb@ and the technology shockl). Collecting the four equations into

(53)

a vector of functions, the set of equilibrium conditions denwritten 0= E[f(yi—1, W, Yi+1, Ut )]

wherey; = (G K; Lt Zt}’ andu = [ez].
4.1 Logarithmic Preferences and Complete Depreciation Spgal Case

The first case we will examine is the simple stochastic nesatal growth model under log prefer-
ences and complete capital depreciation. This model canfiressed in terms of one endogenous
variable, enabling a scalar version of the method to be stljédind possesses a well-known closed-
form solution for the state space policy function. We showv lowr policy function relates to this
well-known state space example and use our resulting climsadpolicy function as a basis for an

initial appraisal of our method.
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Accordingly, letU (G, L) in (49) be given byin (C;),?° normalizelL; = 1 and se® = 1 in (50).
Combining 60) with (52) in this case yields
(54) 0= B | (PKy —Ke) = B(AKE —Keya) T (aghkE Y|

This particular case has a well-known closed form solutmmtlie state space policy function:
Ki = ape? K ;. However, we are interested in its infinite nonlinear mowangrage representation
and guess that the logarithm of the solution is linear in tifi@ite history of technology innovations
(55) In(Ky) = In(K) + _ibjsz,t,-

i=

Inserting the guess and the infinite moving average reptaisen for Z;, (54) can be rewritten

1—exp( 350 (p! —bj +abj_1) ez; j — (1—a)In(K))
1= ok : —
1- eXp(ZTzo (pl —bj+abj_1)ezti1-j— (1—a)ln (K)>
(56) ><exp<i)(pj —bj+abj_1) azi—(l—a)ln(K_))]
=

whereb_; = 0.

The value and recursion
(57) K = (aB)T, by = abj_3+pl, withb_y =0
solve 66) and verify the guess5b).

Not surprisingly, this solution can also be deduced diyettm the known state space solu-
tion. Take logs ofK; = aBe”K¢ ,, yielding In(K¢) = In(af) + Z +aln(Ki—1). Making use of
the lag operatorl, and definingp (L) = z‘fzo(pL)j, the foregoing can be written ds (K;) =
(1—a) tIn(aB) + (1—aL) *p(L) ez, and restating in levels gives
(58) Ke= (aB)re exp((1-aL) *p(L)ez:) = (aB)t's exp( ibisz,t1>
whereb(L) = (1—aL) *p(L) = 3% ,bjL! as before. |

This special case offers a simple check of the numericalogmpr. We defin&; = In(K:) and

20That is, se® andy to one, subtracting an appropriate constant and extenkiéngtility function over the removable
singularity aty = 1.
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useK; = exp(K;) to reexpressd) ag!

(59) 0—E {(eztmktl ~ ) g (crake ) - CEe )]

With this reformulation, the first order expansion is thestpolicy rule in this special case. That is,
(59) can be rewritten as € E¢[f (yi_1,¥, Yt+1, )] wherey, = [Ke  Z]" andu = [ezy].

To check our method, we calculate the kernels of the thirééloedcurate nonlinear moving
average solution of50) out 500 periods, following the parameterization of HangE385) for the
remaining parameters by setting= 0.36, 1/ = 1.01, p = 0.95, andoz = 0.00712. Our method
successfully identifieg; i, yk j.i, andy,2; as being zero and the largest absolute differengefirom
those implied by the analytic solution was3368x 1018, This first check, while encouraging, is
far from comprehensive. In secti@additional and potentially more meaningful measures ball

examined.
4.2 CRRA-Incomplete Depreciation Case

We now move to the general case of Aruoba, Fernandez-¥iltha; and Rubio-Ramirez (2006).
Following their parameterization, we relax the completerdeiation and log preferences of the pre-
vious section, see table As no known closed form solution exists, we will need an agpnation.

We reexpress variables in logs, commensurate with a lagliapproximation. This choice is addi-
tionally motivated by our results in secti&that indicate a log specification improves the accuracy

of the approximation.
[Table 1 about here.]

For higher-order approximations, our policy functi@j, ¢ = y(o, &, &-1,&-2, .. .), will straight-

forwardly enable impulse response analysis. That is, densi shock irt to an element of;, one

21see Fernandez-Villaverde and Rubio-Ramirez (2006) faneron change of variable techniques such as this.
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measuré for the response of; through time to this impulse is given by the sequence
i =Y(0,&,0,0,0,...)
Vi+1 =Y(0,0,&,0,0,...)
Vi+2 =Y(0,0,0,&,0,...)

(60)
[Figure 1 about here.]

Figure 1 depicts the impulse responses and their contributing comms from the kernels of
different orders for capital, consumption, and labor to aifpe, one standard deviation shock in
sz,t.23 The upper panel displays the impulse responses at firstpdeand third order as deviations
from their respective (non)stochastic steady states @ktmas in the middle right panel) and the
first feature to notice is that they are indistinguishabltheye. This is not surprising, as it is well
known that the neoclassical growth model is nearly loglinkathe middle column of panels in the
lower half of each figure, the contributions to the total ingeuresponses from the second and third
order kernelsyj andy; i j are displayed. Note that these components display multipl@ps’ to
either side of the ‘hump’ in the first order component (updr panel), this is in accordance with
the artifact of harmonic distortion discussed in Priesti§88, p. 27).

The second order contributions of capital and consumptiepasitive and that of labor is nega-

tive. This reflects the combination of a precautionary fieacnd nonlinear propagation mechanism

22 Note that we are assuming that ; = y(0,0,0,...), ¥j > 0. Fernandez-Villaverde, Guerron-Quintana, Rubio-
Ramirez, and Uribe (2011), for example, examine the resgmatarting from the mean of the ergodic distribution as
opposed to the stochastic steady state that we assume.hdbie & nonlinear environment, variables will wander away
deterministically from the ergodic mean to the stochaséady state when the response to a single shock is examined,
as the maintenance of variables around the ergodic meair@sdiue model to be constantly buffeted with shocks. We
argue for our measure as it eliminates such deterministicis in impulse responses.

23In terms of the “conceptual difficulties” laid out in Koop, $2an, and Potter (1996), we are assuming a particu-
lar history of shocks (namely the infinite absence thereafeksnteraction will be addressed later), are examining a
particular shock realization (positive, one standard a&wn: due to the nonlinearity, asymmetries and the absehce
scale invariance are a potential confound), and ignoriegilutional composition issues by examining a realizatib
a single structural shock irrespective of its potentiatefation with other shocks (in this model there is only onecht
so this is moot anyway).
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of technology shocks. A technology shock is associated aviliger capital stock, which enables a
larger increase in consumption (but of an order of magnitdaller than capital in terms of second
order contribution, as a precautionary reaction) and alsmatrease in labor (due to the second or-
der downward correction) than the linear model would priedicthe case of a negative technology
shock (not pictured), the first order components would syrbel their mirror images with opposite
sign. The second order contributions, however, would rareatirely unchanged following from
the symmetry of the quadratic. In combination, the seconl@oapproximation can thus capture
time invariant asymmetries in the impulse resporfées.

The precautionary component can likewise be seen in thengpvearection of the steady states
in the rightmost panels. In the stochastic steady statatafgce uncertainty regarding future shocks
and accumulate a precautionary stock of capital througieased labor efforts and disburse this as
increased consumption when shocks fail to manifest themasellhe lower left panel contains the
contributions fromy,z; the second order (im) time varying correction for risk, this demonstrates
an initial wealth effect with consumption increasing ang@ita and labor decreasing relative to a
nonstochastic environmefit. Nonlinear impulse responses are not scale invariant, asiralso
by Fernandez-Villaverde, Guerron-Quintana, Rubio-Ram and Uribe (2011): for example, while
the first order component scales linearly with the magnitoididne shock, the second order order
component scales quadratically. As shocks become lardjeear approximation would generally
not suffice to characterize the dynamics of the model. Thesisely the effect of higher order
terms: as the magnitude of the shock increases, these logiarterms begin to contribute more
significantly to the total impulse, attempting to correc tesponses for the greater departure from
the steady state. For this model, however, one would neeahsiader shocks of unreasonable mag-

nitude to generate any notable effects from the higherrdedens on the total impulse, reinforcing

24Time varying asymmetries would be capturedyy; ;, require a fourth order approximation as the tegn; from
the third order approximation is zero, see sec8dh '

2SFernandez-Villaverde and Rubio-Ramirez (2010) disesiise nonlinear impact of shocks in the production func-
tion and similar wealth effects.
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the conventional wisdom that this model is nearly linear.
[Figure 2 about here.]

In figure 2, the impulse responses to a technology shock with differahtes (2, 5, and 10) of
the CRRA parameteyare overlayed. Note that for all three valuesyothe first order components
dominate. While changes yndo change the periodicity of the harmonic distortion as \&slthe
shape and sign of some second and third order componentgrtb&nt and time varying corrections
for risk display a significant change in magnitude. YAis increased, the stochastic steady state is
associated with higher constant precautionary stocks ptatiaand the time varying component
displays a magnified wealth effect. Though not very large ptecautionary channel of the second
order kernel is highlighted by the experiment, with both sleeond order contributions of capital
and labor increasing minimally and that of consumption éasing initially. At values above 20 (not
pictured), the time varying corrections for risk begin towttute noticeably to the total impulse,
whereas shocks several orders of magnitude larger thamdasthdeviation are needed to propel

the nonlinear kernels to significance.
[Figure 3 about here.]

Figures3 and4 draw the second and third order kerngis,andyx j i, as they depend on differing
time separation (potentially# j # k) of shocks. As likewise discussed in Fernandez-Villagerd
Guerron-Quintana, Rubio-Ramirez, and Uribe (2011),uls® responses are not invariant to the
history of shocks. The third order kernels in figdrare four dimensional objects, captured by our
use of colors inside a cube; we slice the cube with a diagdaagpvhose diagonal € | =K) is the
third order contribution (though not scaled to the magretatithe shock) in figurd. The unscaled
contribution from the second order kernel in the impulspoeses in figurd can be found along the
diagonals of the kernels € j) in figures3. The off diagonali(+£ j # k) elements ‘correct’ for the

history of shocks. That is, in addition to the individual ged order contribution that can be found
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along the diagonals in figui@ an off diagonal correction to the second order contribtould be
needed for shocks from the past. The deep valleys on eittieo$ithe kernels for consumption and
capital that bottom out at about fifty periods indicate a sattgally persistent nature or ‘memory’

of the second order kernels.

[Figure 4 about here.]

Additionally, the harmonic distortion mentioned earli@ndoe seen in the kernels as well. The
shapes of the kernels perpendicular to the diagonal haeetdinalogs in polynomials: on either
side of the diagonal of figure3a and 3b, the shape is reminiscent of the parabola of a quadratic
equation and the ‘s’ shape of the cubic equation can be fooritber side of the diagonal of figure
4. This bears a word of caution that not too much should be r&adhe shape itself of the kernels,

as they are dictated by the form of the underlying polynosial

[Figure 5 about here.]

Figure 5 highlights a central component of higher order impulse oesps: the break down
of superposition or history dependence of the transfertianc The nonlinear impulse response
to two shocks at different points in time is not equal to thensaf the individual responses, even
after having corrected the individual responses for thadngrder. The panels in the figure depict
the second order contributions to the impulse responseapfat, consumption, and labor to two
positive, one standard deviation technology shocks, sha@eeriods apart. The dashed line in the
top of figure simply adds the individual second order comptséom each shock together (i.e.,
presents the total second order component if superpositede to hold), whereas the solid line
additionally contains the second order cross component firesents the true total second order
component). Demonstrating this breakdown of superpasitite cross component overwhelms the
individual components shortly after the second shocksamtsthe second order contributions to the

responses of capital (upper panel) and consumption (mjzitiel) fail to match the peak response
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from a single shock, despite the lingering contributiomirthe initial shock in the same direction.
Although the mitigation is much less pronounced for labow@r panel), the difference from the
sum of individual contributions is nonetheless noticealle prolonged. In a nonlinear environment,
there is no single measure for an impulse respéfse;starting from the stochastic steady state,
however, we remove any deterministic trends (as would bseptte e.g, when starting from the

ergodic mean, see footna@) in our impulse response measure at each order of appragimat

5 Accuracy

In this section, we explore the accuracy of our solution meétising Euler equation error methods.
Beside validating the accuracy of our solution method, we ad Euler equation error method
for assessing the accuracy of an impulse response, endhknmethod to address our infinite-
dimensional state space.

We examine our method using the model of Aruoba, Fernanilker«erde, and Rubio-Ramirez
(2006), examined in sectigh2 From Judd (1992), the idea of the Euler equation accuratyrtéhe
neoclassical growth model is to find a unit-free measuredkjptesses the one period optimization
error in relation to current consumption. Accordingl§2)f can be rearranged to deliver the Euler

equation error function 8%

1
0(1-y)—-1

—9\1-
oE, (C&l(l—LtH)l 6) ! (antHKtO‘*lLl*a +1— 6)}

Cii1 t+1
(61)  EBE(O=1-¢ (1 L) 0

Deviations in 61) from zero are interpreted by Judd (1992) and many othereeasetative opti-
mization error that results from using a particular appmation. Expressed in absolute value and
in base 10 logarithms, an error efl implies a one dollar error for every ten dollars spent and an

error of —6 implies a one dollar error for every million dollars spent.

263ee, e.g., Gourieroux and Jasiak (2005), Potter (2000)aod, Pesaran, and Potter (1996).
21See, e.g., Judd (1992), Judd and Guu (1997), and Judd (1998)
28Cf. Aruoba, Fernandez-Villaverde, and Rubio-Ramir€0@, p. 2499).

27



The arguments oEE () depend on the state space postulated. Standard state sptumim
would choose&E (Ki—1,7;) or EE(Ki_1,Z:—1,€z¢t). Our nonlinear moving average policy function
requiresEE(ezt,€zt-1,...), rendering the Euler equation error function an infinite efsional
measure. In line with our presentation of impulse respousetions, we examine the following set
of Euler equation error functions, holding all be one shamkstant and moving back in time fram
essentially assessing the one-step optimizing error edsdavith the impulse response functions.
(62) EE =EE(£24,0,0,...), EE_1 =EE(0,€2¢t-1,0,...), EEE_ > =EE(0,0,€z¢t»,...),

We examine a range of shock valuesdgg_ j that covers 10 standard deviations in either direc-
tion. This is perhaps excessive given the assumption of alitgmbut enables us to cover the same
range for the technology process examined in Aruoba, hele Villaverde, and Rubio-Ramirez
(2006) from a single shock. FigufeplotsEE; for first through third order approximations in logs,
see sectiod.2, and in the variables’ original level specification. Thetfobservation is that higher
order in levels performs uniformly better than the precgairder—this result is reassuring, but not
a given. As Lombardo (2010, p. 22) remarks, although withenreidius of convergence the error in
approximation goes to zero as the order of approximatioonines infinite, this does not necessary
happen monotonically. Second, switching to a log specifinamproves the first and second order
approximations uniformly, while for the third order, thstrue only for very small and very large
shocks. If we restrict our attention to three standard dienashocks £0.021), the second order
log approximation make mistakes no greater than one dataevferyone ten million spent and the
third order level and log approximations no greater thandmikar for everyone one hundred million
spent, hardly an unreasonable error. Of independent sttisréhe result that the first order approx-
imation in logs is uniformly superior to the first order apgroation in levels, standing in contrast
to the result of Aruoba, Fernandez-Villaverde, and RuRamirez (2006). As their focus was on
the mapping from capital to errors and ours on shocks to €ribis possible that the preferred

approximation depends on the dimension under study.
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[Figure 6 about here.]

In figure 7, plots of EE;_ for j = 0,1,...,100 for the first order approximations in both levels
and logs are provided. Comparing these two figures—Iet almw@porating the associated results
for the second and third order (not pictured)—is difficulbast. Thus, to facilitate comparison of the
different approximations across the different horizon® measures that reduce to two dimensions

will be examined, namely maximal and average Euler equaticors.
[Figure 7 about here.]

First, we plot the maximal Euler equation errors over a sgd®0 periods in figur&a l.e.,

63 max EE_j), forj=0,1,...,100

( ) —1002<€zﬁt—j<1002( Et 1)7 J ) )

whereaoz is the standard deviation of the technology shock, see fafdlbe figure tends to reinforce
the results from examining only shocks in peribdfor both the level and log approximations,
moving to a higher order uniformly improves the quality opapximation and, at all three orders,

moving from a level to a log specification likewise improveg taccuracy of the approximation

uniformly according to this metric.
[Figure 8 about here.]

In our final measure, we graph average Euler equation ernas & span of 100 periods in
figure 8b. In contrast to state space measures that require the erdstlibution of endogenous
state variables, our measure is relatively easy to cakwéh a nonlinear moving average policy
function, as we merely need to integrate with respect to tioevk distribution (in this case normal)
of the shocks
(64) /EEtdeSZH, for j=0,1,...,100
Weighting the regions of shock realizations most likely éogmcountered as defined by the distribu-

tion of shocks, we are not forced to make a choice regardiegahge of shock values to consider.

29



Again, we note the uniform improvement with higher order tiog level approximations and the
improvement in the approximation by switching to logs. Thlounow there is some ambiguity re-
garding the preferred specification among the third in keagld second and third in logs, with the
second order log specification surpassing both third orgderaximations between 25 and 35 quar-
ters. The average error using a first order in level approtanas around one dollar for every ten
thousand spent regardless of horizon. The second ordepxapmations show an improvement as
the horizon increases, whereas the third order approxamstend to be lower at first, rise and then
fall again. The third order approximation in both levels &gk are associated with an average error
of about one dollar for every billion spent regardless ofizmm, putting the ambiguity mentioned
above in perspective.

We conclude that the nonlinear moving average policy fumcttan provide competitive ap-
proximations of the mapping from shocks to endogenous himsa As was the case with Aruoba,
Fernandez-Villaverde, and Rubio-Ramirez (2006), h@rethe perturbation methods here deterio-
rate (not reported) in their extreme parameterization. r&sall perturbations, our method remains a

local method and is subject to all the limitations and resgowns that face such methods.

6 Conclusion

We have introduced a nonlinear infinite moving average adtamative to the standard state space
policy function to the dynamical analysis of nonlinear DS@®B&dels. We have derived a pertur-
bation approximation of this policy function, providinggicit derivations up to third order in the
form of a Volterra expansion. This direct mapping of thedngbf shocks into endogenous variables
enables familiar impulse response analysis techniquesiomlnear environment, and provides a
convenient decomposition on the mapping from approximati@er and uncertainty. We confirm
that this approach provides a solution with a degree of aoyutomparable to state space methods

by introducing Euler equation error methods for this inBrdimensional mapping.
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Although there are a number of DSGE models and applicatimnsgxample, welfare analy-
sis, asset pricing and stochastic volatility for which thegportance of nonlinear components and
uncertainty in the policy function has been proved, the in@ar components we analyzed in the
baseline neoclassical growth model are quantitativelynpoirtant, this is not surprising as the
model is known to be nearly linear. Qualitatively howevée honlinear contributions to the the
mapping from shocks to endogenous variables are econdynici@rpretable, translating, e.g., into
precautionary behavior and wealth effects. Likewise, mmmemically interpretable artifacts of the
nonlinear method, such as harmonic distortion are docuedeag well.

The potential for explosive behavior in the simulation aftetspace perturbations has lead to
the adaptation of ‘pruning’ algorithms, see Kim, Kim, Schdurg, and Sims (2008), that appear
ad-hoc relative to the perturbation solution itself. Withr onethod, however, the stability from the
first order solution is passed on to all higher order recaisid his feature of the nonlinear kernels
in our moving average solution is consistent with the Voliesperator acting upon the history of
shocks being bounded and the existence of an endogenotigbadéion-based ‘pruning’ algorithm
derived from inverting our moving average, both of which wely in ongoing research.

The nonlinear perturbation DSGE literature is still in amlyeatage of development and our
method provides a different perspective by mapping diydotim the history of shocks. Standard
state space perturbation methods provide insight into dméimear mapping between endogenous
variables through time. Yet when the researcher’s intdiesin examining the nonlinear mapping

from exogenous shocks to endogenous variables, our me#soddditional insight to offer.
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A Appendices

A.1 Matrix Calculus and Taylor Expansion

A.1.1 Matrix Calculus Definition

Definition A.1. Matrix Derivative and Commutation Matrix

1. Matrix Derivative [See Vetter (1973).]

daii by aby
(A-1) D A(B) = {ab—l} = : :
pxq ki dapy dapq
oby X
- 76, A(B) - _:_gﬁb;té(_B_) i
(A-2) Z8A(B) = [Zh,A(B)| = B
P Doy AB) 1 1 TioyA(B)
Structures of higher derivatives are thereby uniquely @efin
(A-3) P8 AB) = Zs(ZB(---(ZBA(B))--+))

2. Abbreviated Notation, whefeindicates transposition,

(A-4) Ag = .@BTA(B), Agn = .@(nBT)nA(B>, and AB= “@CT (.@BTA(B,C» = gcTBTA(B,C)
spxtq

3. Commutation Matrix Ky [See Magnus and Neudecker’s (1979, p. 383) Theorem 3.1.]

(A-5) B ® A =Kmn (A®B) Kst

mxt nxs

A.1.2 Proof of theorem2.1

1. Matrix Product Rule: Combine Vetter's (1973, p. 356) sfamse and product rules and exam-

ine the special case of an underlying vector variable.

2. Matrix Chain Rule: Combine Vetter's (1973, p. 356) tramspand chain rules and examine

the special case of an underlying vector variable.

3. Matrix Kronecker Product Rule: Combine Vetter's (19733p6) transpose and Kronecker

rules with an underlying vector variable. Commute the téligw F and note that

(A-6) Kq,vs (slxs® Kv,q) - (Kq,s® lev) (slxs® Kq,v) (slxs® Kv,q) - (Kq,s® lev)
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where the first equality follows from Henderson and Sea®8{1 p. 283) and the second from

Magnus and Neudecker (1979, p. 383).

4. Vector Chain Rule: The result follows from the Matrix Gh&ule, settingy to one.

A.1.3 Proof of corollary 2.2

From Vetter (1973, pp. 358—-363), a multidimensional Tagkgansion using the structure of deriva-

tives (evaluated eB_) in appendixA.1.1is given by

MBS Lon B B_g e s
(A7) M (B)=MB)+ nZﬁ@BTnM(B) (B—B)*I + Ry,1 (B, B)
_ B
(A-8) whereRy.1(B.8) = 1r [~ M(E) (1o (B-&)°M) a

Differentiating @) with respect to all its argumenk$ times, evaluating at the steady stgtand

noting permutations of the order of differentiation, a Taydpproximation is
1/1 1 1 5 1 M
oi y+ |y(,c5+ EYoZG +...+Wy0M0

1 1 1 > 1 M—1
+ 1,2 ayil YOt Yo, O g Ty Yot 0 ) B

Yt =

1
Z Z <0,y|1|2+1,Yo|1|20+2|y02.1|20 +. +(|\/| 2) yc,M 2j,i,0 oM~ 2) €—i; @& i,

Il Olz—

Z Z Z O|y|1I2 Imst |1®8t |2®.“8tfim

|1 0i,=0 im=0

Writing the foregoing more compactly yield$Q) in the text.

A.2 Auxiliary Matrices
A.2.1 Shifting Matrices

a B 01 ® 01 ® 01 0 0 0

} __ | nYXNY  nyxne a B2 - 0 02 ® 01 0 0

(A9 =17 "N| 2= {0 61®6J 8= 0 0 &®d%p O
nexny nexne 0 0 0 5195,
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[ 0o | [ 0 |
nyxny nyxne nyxny nyx (ny+ne)2
o B1 a B2
A-10 = =
(A-10) M= ez apyrBN| 2T | a2 apa+ Ba(siy)
_ne9ny ne>|< ne i _ne9ny nex (n3+ne)2
vioyi®yr 0 0 0 nyany
- _ 0 Y2 @Y1 0 0 | nyxny
|0 0 0 vi®y R
| nexny,
[ I(ny+ne)3 |
0
nyx (ny+ne)? | lny+ne)
I(ny+ne)2
(A-12) Y5 =
I(ny+ne) ® ny(x(ny+r;j)2 (K(ny+ne),(ny+ne) ® I(ny+ne))
ny-+ne
0
|(ny+ne) ® | nyx(ny+ne)?
L (ny+ne)2 J

A.2.2 State Spaces for the Markov Representation

(A-13) X —ViS. § = [yiu—il} LandS 1 = 815
(A-14) Xji =VY2Sji, Sji = [yéj_gél} , andSj; 141 = 625
SOS®S
_ o Sj®S L N
(A 15) S(,j,l - (Sj ®S<,i>(Knene® |ne) andsk+1,j+1,|+l - 633(,“
S®S

A.3 Details of Third-Order Derivation

We begin by differentiating with respect to each triplet of shocks. The resulting systéequa-

tions remains linear in the third derivatives
93 T}f:fxs(Xk®Xj®Xi)—|—fxz(Xk,j®Xi)

T T
& k&t &

(A-16) + fra(X] @ X%i) (Knene® Ine) + fra (X @ X)) + fxX j

37



Evaluating this ay and setting its expectation to zero yields

Et(@gT,kstT_jstT_i ) L= Iy Yeeng-ticat B+ Ty Vi jesiv
+ fe (k@ X @ %) + fa (X j © %)
+ 2 (Xj @ X)) (Knene® Ine) + fe (X @ Xj i)
(A-17) =0, fork, j,i=0,1,..., withygji =0, fork,j,i <0
a linear deterministic second order difference equatiothenthird derivativeyy j ;. The homoge-
neous components il{17) are identical to those irlg) and @5). The inhomogeneous components
again have a first order Markov representation. Using thiéirstpiand transition matrices defined in
appendixA.2 gives @9) of the main text, whose solution takes the fo@)( By recursively sub-
stituting @0) in (A-17), using the shifting matrices and matching coefficientspbtin a Sylvester
equation inBs
(A-18) (fy+ fyra)Bs+fy:Bads=—[fe fe fe fe]vs
Now we move on to the partial derivativesyfunction involving the perturbation parameter

To determingyg, j i, we differentiatef with respect te;_j, &_j ando

'@gﬁtT_jﬁtT_if = e (DX @ X @%) + T2 DX @ X i) + fr2(ZoX] @ %)
(A-19) + fe(Xj @ ZoXi ) Knene+ xZoXi |
whereZgX; i = Xg,j.i +Xg7j,i(st+1 R lhe)
Evaluating afy, taking expectations, setting the resulting expressiareto yields, and noting the
results from lower orders yields the expression in the texipse solution, again analogously to
lower orders, takes the foryy ji = ayg,j—1i-1, Withyg ji = O, for j,i < O delivering é2) in the
main text.

To determinQ/c,z’i, we differentiatef with respect te;_; once and twice
.@ngtT f = f3(DoXQ DX R X ) + Ty2 (DX @ DsXi) + fxz(922x® Xi) + f2(ZoX®@ DoXi) + fx.@§2>q

] 9

(A-20) WhereZ5,% = X2 + g 2111 @ Ine) + X2, (€11 @ €11 @ Ine)
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Evaluating at the nonstochastic steady stgletéking expectations, and setting the resulting ex-
pression to zero yields the expression in the main text, kvlscstill a second order deterministic
difference equation. The homogeneous components are gpatlkg: ;, and they are identical to
those in (L6) and @5). The inhomogeneous components can again be rearrangadda first order

Markov representation by using the shifting and transitratrices defined in appendi?2, thus
1:)FYO2,ifl + fyycrz,i + 1:yﬂ/o2,i+l

T { [fxsmsl DYaB1 Y1) + fe([YaBa(So® So)] @V1) + 2e(yabr @ [yaBe(So B1))

(A-21)  + fxVaPays(So® S ® B1) | [Ee(Ett1 @ €111) ® Inyne + fra (X2 @ V1) }S =0
fori=0,1,..., withy 1 =0
The solution of the forgoing takes the form @#j in the main text Substitutingid) in (A-21) and

matching coefficients, we obtain a Sylvester equatigByin
(A-22)

(fy+ fyr0)Bo + fy+ Bodr = —{ [fxs (YaBr @ VaB1@y1) + fre([YaB2(S® )] @ y1)

+ 22 (YaB1 ® [yaB2(So® 81)]) + fxyaBays(So ® So® 81) | [Ex(Et11 @ &t11) ® Inynel + fra(Xg2 @ Y1) }
To determingy/z, we differentiatef with respect tao three times
(A-23)  Z%f = f,3(DoX® DoX@ DoX) + 2T2( DX @ D2X) + o ( D2X @ DoX) + Tk DX
WhereZ2:x = X3 + 3Xq2 €141 + 3o 22 (Et41 @ Et41) + Xe3(Et11 ® €11 @ Err1)
Evaluating this at the nonstochastic steady state andgétsiexpectation to zero yields
E((2%1) . = Pl 0% @) Er(err1 @ erra @ 1)) + 20 [Br(Br1 @ 81 © E141) (% 0 2]
+ fre[(Xe2 @ Xg) Bt (41 @ &1 @ Et1)] + Tx[Yg3 + Xe3Ee (8111 ® €111 ® €111)]
(A-24) =0

the expression in the text.
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Table 1: Parameter Values for the Model of Sectian

Parameter 3 T 0 a o) Pz Oz

Value 0.9896 2.0 0.357 0.4 0.0196 0.95 0.007

See Aruoba, Fernandez-Villaverde, and Rubio-Ramire@qp
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Figure 1: Impulse Responses to a Technology Shock, Modetcti@h4.2
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Figure 2: Impulse Responses to a Technology Shock, Modetctich4.2
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