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Abstract

I construct risk-corrected approximations of the policy functions of DSGE models around the stochas-

tic steady state and ergodic mean that are linear in the statevariables. The resulting approximations

are uniformly more accurate than standard linear approximations and capture the dynamics of asset

pricing variables such as the expected risk premium missed by standard linear approximations. The

algorithm is fast and reliable, requiring only the solutionof linear equations using standard pertur-

bation output. I examine the joint macroeconomic and asset pricing implications of a real business

cycle model with stochastic trends and recursive preferences. The method is able to estimate risk

aversion under these preferences using the Kalman filter, where a standard linear approximation

provides no information and alternative methods require computationally intensive particle filters

subject to sampling variation.
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1 Introduction

What are the effects of small shock realizations in economies subject to risk? There is a growing

consensus that standard linear approximations around the deterministic steady state are insufficient

to address this question satisfactorily in a variety of settings, such as for conditional asset pricing,

under recursive utility, for welfare comparisons, etc., where precautionary motives play a signif-

icant role in economic decision making.1 At fault is the certainty equivalence of standard linear

approximations around the deterministic steady state thatmakes them invariant to the moments of

the distribution of exogenous shocks (i.e., to risk).

I reconcile the linear framework with risk by constructing approximations of the policy functions

of DSGE models that are linear in states but that account for risk in the points and slopes used to

construct the linear approximation; I call these risky linear approximations.2 I construct two differ-

ent approximations, one around the stochastic steady stateand one around the ergodic mean. The

method can be used profitably in estimation. Due to the linearity in states and under the assumption

of normally distributed shocks, the Kalman filter is operational for the risky linear approximation. I

find the risky linear approximation using the Kalman filter isas equally successful as standard per-

turbation particle filter3 estimation—both with the state space and nonlinear moving average policy

function representations4—in identifying parameters outside the reach of standard linear approxima-

tions. The advantage, then, is that the risky linear approximation, by employing the Kalman filter, is

1Kim and Kim (2003) provide an insightful example, where blind application of linear approximations leads to the
spurious results that autarky is to be preferred over risk sharing given risk averse utility.

2I construct only risky linear approximations and not second, third, or higher order risky approximations as standard
DSGE perturbations, see, e.g., Jin and Judd (2002), providethe appropriate, in the sense of Taylor’s theorem, local
polynomial approximation of the policy function using derivatives calculated at the deterministic steady state. The risky
linear approximation I derive uses some derivatives from a given order and discards others. This price is worth paying
for maintaining linearity in states, which resuscitates the linear toolbox of DSGE analysis including the Kalman filter
for estimation, while incorporating the nonlinearities associated with risk. It is less clear what the gain over a standard
perturbation would be for higher order risky approximations.

3See Fernández-Villaverde and Rubio-Ramı́rez (2007) and Fernández-Villaverde, Guerrón-Quintana, Rubio-
Ramı́rez, and Uribe (2011) for details on particle filteringin DSGE models as well as applications to risk.

4See Jin and Judd (2002), Schmitt-Grohé and Uribe (2004), Kim, Kim, Schaumburg, and Sims (2008), Lombardo
(2010) and Lan and Meyer-Gohde (2013c)
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several orders of magnitude faster and is not subject to the sampling variation that the particle filter

faces when identification is weak.

I apply the method to a real business cycle model with risk sensitivity, using Epstein and Zin

(1989) and Weil (1990) recursive preferences, and long run risk following Bansal and Yaron (2004).

The risky linear approximations match the stochastic steady state, ergodic mean, and impulse re-

sponses reported in previous nonlinear studies.5 I assess the accuracy of the risky linear approxima-

tion using Euler equation errors and find a uniform improvement over the standard linear approxi-

mation. As risk aversion is increased, allowing risk to playa greater role in the utility maximiza-

tion problem, the risky linear approximation demonstratesaccuracy in the vicinity of the stochastic

steady state and ergodic mean that is comparable to second and third order perturbations. I find that

US post war data on consumption, output, and the risk premiumleads the likelihood function to

favor higher levels of risk aversion with the posterior modeat about 30. The likelihood function,

however, is rather flat in this dimension and fully nonlinearapproximations employing the particle

filter suffer from sampling variation that impedes reliable inferenceand are four orders of magnitude

slower; for standard linear approximations, the likelihood function is entirely flat in the dimension

of risk aversion and the posterior is identical to the prior.

The method I propose here is not the first method to employ a risk correction as opposed to a

standard nonlinear method (higher order perturbation or global solution method such as projection),6

but it is different in two important respects. First, it is the first methodto work solely with deriva-

tive information from a standard perturbation and known moments of the exogenous process—no

5The stochastic steady state derived here is identical to that of Lan and Meyer-Gohde (2013b), the ergodic mean
identical to that of Lan and Meyer-Gohde (2013a) and Andreasen, Fernández-Villaverde, and Rubio-Ramı́rez (2013),
and the impulse responses to those that would result from themethod of Lan and Meyer-Gohde (2013c)

6Kim and Kim (2003) as well as Collard and Juillard (2001b) andCollard and Juillard (2001a) are early DSGE bias
reduction or risk correction techniques. Coeurdacier, Rey, and Winant (2011) uses a second order approximation to the
equilibrium conditions to solve for the stochastic steady state in a portfolio problem, de Groot (2013) extends this to
general settings as a matrix quadratic problem. Juillard (2011) and Kliem and Uhlig (2013) use iterative techniques,
solving for implied stochastic steady states given an approximated solution and then recalculating the approximationat
the new implied stochastic steady state. Evers (2012) solves for the stochastic steady state implied by a risk perturbation
of the equilibrium conditions and then solves for a perturbation in the states of these perturbed equilibrium conditions.
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reevaluation of derivatives or recalculation of policy rules are required to construct the approxima-

tion. The resulting equations are linear in the unknown coefficients of my approximation, entirely

avoiding fixed point or other recursive algorithms with unknown convergence properties. Second,

my approximation allows for the approximation around the ergodic mean as well as around the

stochastic steady state—competing methods can provide only the latter. Both of these two features

are accomplished by working implicitly with the unknown policy function instead of the model

equilibrium conditions.

The remainder of the paper is organized as follows. In section 2, I lay out the model class

and assumptions underlying the local, risk corrected procedure behind risky linear approximations

before I derive the approximations in section3. In section4, I present the real business cycle model

with recursive preferences and long run risk. I analyze two calibrated versions of the real business

cycle model in terms of accuracy in section5. In section6, I assess the likelihood properties of the

risky linear approximation relative to particle filters andstandard linearizations and estimate risk

aversion and long run risk using post war US data. Section7 concludes.

2 DSGE Model: Assumptions and Local Approximation

I begin by introducing a general class of models, a system of nonlinear second order expectational

difference equations.

2.1 Model Class

I will analyze a family of discrete-time rational expectations models given by

0 = Et[ f (yt+1, yt, yt−1, σεt)](1)

f : Rny ×Rny ×Rny ×Rne → Rny is any-dimensional vector-valued function collecting the equilibrium

conditions that describe the model;yt ∈ R
ny is the vector ofny endogenous and exogenous variables;7

7As well as subsidiary definitions to bring a model into the form of (1). Nonlinearity or serial correlation in exoge-
nous processes can be captured by including the processes themselves in the vectoryt and including functions inf that
specify the nonlinearity or correlation pattern. For the model of section4, the subsidiary definitionsUe

t � Et [Ut+1] and
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andεt ∈ R
ne the vector ofne exogenous shocks,8 whereny andne are positive integers (ny, ne ∈ N).

The auxiliary parameterσ ∈ R scales the risk in the model.9 The stochastic model version of

(1) corresponds toσ = 1 andσ = 0 represents the deterministic version of the model. Indexing

solutions byσ yields

yt = g(yt−1, σεt, σ), y : Rny × Rne × R→ Rny(2)

Thatσ scales risk can be by writing out the integral and probability density function behind the

expectations operator in the model, (1), giving

0 =
∫

Ω

f (yt+1, yt, yt−1, σεt) φ (εt+1) dεt+1 =

∫

Ω

f (yt+1, yt, yt−1, ε̃t) φ
(
ε̃t+1

σ

)

dε̃t+1(3)

whereΩ is the support andφ the probability density function ofεt+1 and the second equality follows

upon defining ˜εt � σεt. Lettingσ go to zero collapses the entire distributionφ (·), and this can be

rewritten as

0 = lim
σ→0

∫

Ω

f (yt+1, yt, yt−1, ε̃t)φ
(
ε̃t+1

σ

)

dε̃t+1 = f (yt+1, yt, yt−1, 0)(4)

the deterministic counterpart of (1).

2.2 Local Approximations and Points of Expansion

The starting point and point of expansion for local approximations to the solution of DSGE models

is the deterministic steady state, defined as follows

Definition 2.1. Deterministic Steady State

Let ydet
∈ Rny define a fixed point of (2) given by

ydet
= g(ydet

, 0, 0)(5)

Me
t � Et [Mt+1] are required to capture the nonlinearities over the conditional expectations while conforming to the class

in (1).
8This model class encompasses competitive equilibria and dynamic programming problems, as well as models with

finitely many heterogenous agents, see Judd and Mertens (2012). Nonlinearity or serial correlation in exogenous pro-
cesses can be captured by including the processes themselves in the vectoryt and including functions inf that specify
the nonlinearity or correlation pattern.

9My formulation follows Adjemian, Bastani, Juillard, Mihoubi, Perendia, Pfeifer, Ratto, and Villemot’s (2011)
Dynare, Anderson, Levin, and Swanson’s (2006) PerturbationAIM and Juillard (2011). Jin and Judd’s (2002) or Schmitt-
Grohé and Uribe’s (2004) model classes can be rearranged tofit (1). Furthermore, my scaling of allεt, future, past, and
present, follows Lombardo (2010).
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i.e., a fixed point of (2) in the absence of both risk(σ = 0) and shocks (εt = 0).

The deterministic steady statey is recovered by solving the for a fixed point of (4), the determin-

istic version of (1) in the absence of risk and shocks, 0= f (y, y, y, 0).

Standard DSGE perturbation then constructs a Taylor seriesexpansion of the policy function,

(2), up to some, sayM’th, order around the deterministic steady state, given by10

yt ≈

M∑

j=0

1
j!





M− j∑

i=0

1
i!

gzjσiσi




(zt − z)⊗[ j](6)

where

gzjσi � D
j+i

zj
t−1σ

i
{y(σ, zt)} ∈ R

ny×nj
z, with nz = ny + nε(7)

is the partial derivative of the vector functiony with respect to the state vectorzt �

[

y′t−1 σε′t

]′

j

times and the perturbation parameterσ i times11 evaluated at the deterministic steady state using the

notation outlined in appendixA.2.

The deterministic steady state is the fixed point for the deterministic, σ = 0, model but not

the stochastic,σ = 1, model. This manifests itself in the Taylor series (6) as the constant terms

∑M
i=1

1
i! gσiσi that move the Taylor series away from the deterministic steady state. The deterministic

steady state is neither a fixed point of the stochastic model and nor of the Taylor series approximation

of the stochastic,σ = 1, model forM ≥ 2, whenσ corrects for the second moment of risk.

The stochastic steady state is the steady state of the stochastic model, incorporating risk into its

definition in the following

Definition 2.2. Stochastic Steady State

Let ystoch
∈ Rny define a fixed point of (2) given by

ystoch
= g(ystoch

, 0, 1)(8)

i.e., a fixed point of (2) in the presence of risk(σ = 1) but in the absence of shocks (εt = 0).

10The assumptions that validate this expansion will be introduced in section2.3. See Lan and Meyer-Gohde (Forth-
coming) for a derivation of this multivariate Taylor seriesapproximation.

11As the perturbation parameter also scalesεt, I should say this is the partial derivative with respect to the third
argument and writeg[1 2]′ j3i ∈ Rny×nj

z, but I choose not to do so as not to overload the notation. The complete, direct
and indirect, derivative ofyt with respect toσ, Dσ{yt}, in my notation is given byDσ{yt} = yεεt + yσ
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That is, the fixed point in the state space in the absence of shocks, but while expecting future

shocks with a known probability distribution. Solving for an approximation of the stochastic steady

state is not trivial using the state space formulation of thepolicy function, see Coeurdacier, Rey,

and Winant (2011), Juillard (2011), and de Groot (2013), andthe definition in (8) is not directly

useful. The difficulty arises asystoch is defined only implicitly in (8) and the method of solving 0=

f (y, y, y, 0) to recover the deterministic steady state is not available as the presence of risk requires

the integral over the probability distribution of future shocks embodied by the expectations operator

be maintained in (1). Alternatively, one could examine an alternative nonlinear moving average

representation of the policy function that results upon inverting or recursively substitution the state

space policy function (2).12 Approximated out to some, sayM’th, order around the deterministic

steady state as13

yt ≈

M∑

m=0

1
m!

∞∑

i1=0

∞∑

i2=0

· · ·

∞∑

im=0





M−m∑

n=0

1
n!

yσni1i2···imσ
n



 (εt−i1 ⊗ εt−i2 ⊗ · · · ⊗ εt−im)(9)

whereyσni1···imσ
n is the derivative ofyt with respect to them’th fold Kronecker products of exogenous

innovationsi1, i2, ... andim periods ago and with respect to the perturbation parameter,σ, n times.

The stochastic steady state now follows by letting the history of shocks be equal to zero at all dates

(i.e., lettingyt converge to its fixed point), but lettingσ = 1 to correct for risk toM’th order, yielding

ystoch
≈

M∑

n=0

1
n!

yσn(10)

as an approximation of the stochastic steady state.

Although not a fixed point, the ergodic mean ofyt will be a useful point to construct a local

approximation around for estimation, defined as

Definition 2.3. Ergodic Mean

12See Lan and Meyer-Gohde (2013c) for solving and analyzing DSGE models with nonlinear moving averages and
Aruoba, Bocola, and Schorfheide (2013) for an empirical application of Volterra series to macroeconomic time series.
Again the the assumptions that validate this expansion willbe introduced in section2.3.

13See Lan and Meyer-Gohde (2013b) for the mapping between the partial derivativesgzjσi andyσni1i2···im.
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Let ymean
∈ Rny be a vector such that

ymean
� E

[

yt
]

= E
[

g(yt−1, εt, 1)
]

(11)

being the unconditional expectation of (2) in the presence of uncertainty(σ = 1) and shocks (εt).

This point is particulary advantageous in empirical applications as it is likely to be associated

with a high probability density. Again, the definition in (11) is not directly useful, as calculating the

mean requires integration over the endogenous variables through the unknown policy function. The

nonlinear moving average formulation proves advantageousagain, requiring only knowledge of the

moments of exogenous variables to give an approximation of the ergodic mean

ymean
� E

[

yt
]

≈

M∑

m=0

1
m!

∞∑

i1=0

∞∑

i2=0

· · ·

∞∑

im=0





M−m∑

n=0

1
n!

yσni1i2···imσ
n



 E
[

εt−i1 ⊗ εt−i2 ⊗ · · · ⊗ εt−im

]

(12)

to calculate the mean.

In section3, I will calculate risky linear approximations around the stochastic steady state and

the ergodic mean, approximating these points and the derivatives of the policy function at these

points through implicit differentiation of the policy function (2) at the deterministic steady state.

That is, I will derive the points and slopes for the risky linear approximation jointly using a new

method and I will compare the results with those presented here in (10) and (12). Before I derive

these risky linear approximations, I will layout the assumptions necessary to validate the procedure.

2.3 Assumptions and Validity of Risky Linear Approximation

I will present assumptions for the local approximation of the model in (1) around the deterministic

steady state and for this approximation to be valid at the stochastic steady state and ergodic mean.

Then I will show how these assumptions validate the methodology that I will use in the next section

of constructing a local approximation of the stochastic or “risky” model around the stochastic steady

state or ergodic mean by using derivative information from the deterministic model evaluated at the

deterministic steady state.
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Assumption 2.4.Assumptions

I impose the following assumptions in my analysis

1. Local Analyticity: the functions f in (1) and g in (2) are locally analytic around the deter-

ministic steady state (yt−1 = y, εt = 0, σ = 0) with a domain of convergence that contains the

stochastic steady state and ergodic mean

2. Local Stability: the eigenvalues of gy evaluated at the deterministic steady state (yt−1 = y,

εt = 0, σ = 0) are all inside the unit circle.

3. Exogenous Moments: the elements ofεt are i.i.d. with E[εt] = 0 and E
[

εt
⊗[m]

]

finite∀m≤ M,

whereεt
⊗[m] is the m’th fold Kronecker product ofεt with itself: εt ⊗ εt · · · ⊗ εt

︸           ︷︷           ︸

m times

The first assumption ensures that the functions involved aresmooth at least in the region of

interest and that the true policy function has an infinite order Taylor series representation that remains

valid as the state space moves to the stochastic steady stateand ergodic mean. The second that the

solution is locally stable at the deterministic steady state. The third that that the exogenous process

is defined at least out to the order of approximation.14

From the assumption of local analyticity forg, yt has the Taylor series representation

yt =

∞∑

j=0

1
j!





∞∑

i=0

1
i!

gzjσiσi





[

y′t−1 − y σε′t

]′⊗[ j]
(13)

Thus, increasing the approximation order in the standard perturbation brings the approximation

closer to the true policy function in the sense that an infinite order perturbation will recover the

true policy function. Local analyticity off andg and of the existence of finite moments validates

the standard DSGE perturbation practice of successively differentiatingf deliver equations that the

coefficients,gzjσi , in (13) solve.15

14Jin and Judd (2002) would additionally require bounded support for the exogenous process. Kim, Kim, Schaum-
burg, and Sims (2008) offer skepticism regarding the necessity of a boundedness assumption.

15Additionally, Lan and Meyer-Gohde (Forthcoming) prove that assumptions2.4are sufficient to guarantee the solv-
ability of DSGE perturbations; that is, that successively differentiatingf delivers equations that can be uniquely solved
to deliver the coefficients,gzjσi , in (13).
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The assumption of local stability in addition to that of local analyticity for g ensures that the

policy function can be inverted, at least locally, as

yt =

∞∑

m=0

1
m!

∞∑

i1=0

· · ·

∞∑

im=0





∞∑

n=0

1
n!

yσni1···imσ
n



 (σεt−i1 ⊗ · · · ⊗ σεt−im)(14)

delivering a infinite nonlinear moving average or Volterra series representation.16

The assumption that analyticity holds over a domain larger than the deterministic steady state

ensures that the Taylor series representation in (13) remains valid beyond the immediate vicinity

of the deterministic steady state. This assumption is crucial. Analyticity in σ from zero to one

connects the deterministic and stochastic models, enabling our use of the derivatives ofg atσ = 0

to approximate the stochastic,σ = 1, model. In this stochastic model, both the fixed point—the

stochastic steady state, (8)—and average value—the ergodic mean, (11)—of the policy function are

generically different from the deterministic steady state. As such, virtually any policy experiment or

simulation will leave the vicinity of the deterministic steady state. Hence, for standard perturbations

to be applicable in settings useful for analysis, they must maintain their validity in a region of the

state space that contains the deterministic steady state, stochastic steady state, and ergodic mean, as

well as in the perturbation parameter,σ, over the deterministic and stochastic models.

In this case, both the stochastic steady state

ystoch
=

∞∑

j=0

1
j!





∞∑

i=0

1
i!

gzjσi





[

ystoch′−y 0′
]
′⊗[ j](15)

and the ergodic mean

E
[

yt
]

=

∞∑

m=0

1
m!

∞∑

i1=0

· · ·

∞∑

im=0





∞∑

n=0

1
n!

yσni1···im



 E
[

εt−i1 ⊗ · · · ⊗ εt−im

]

(16)

are recoverable from the implicit function theorem, requiring only derivatives ofg evaluated at the

deterministic steady state as enter the Taylor series (13) and the moments ofεt. Furthermore, due

to the analyticity assumed in a domain containing both the ergodic mean and the stochastic steady

state, the policy function is analytic at these points as well, ensuring its infinite differentiability there

as well. If the function is infinitely differentiable at a point, it is certainly once differentiable there

16See Lan and Meyer-Gohde (2013c) and Sandberg (1983).
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as well.

Thus, the stochastic steady state and the ergodic mean and the first derivative of the policy

function at these points can be recovered using derivative information at the deterministic steady

state and the moments of the exogenous shocks of the model. Now I shall proceed to do exactly that

and assemble the points and slopes into linear approximations.

3 Risky Linear Approximations

Now I will define a risky linear approximation, that is, an approximation that is linear in the states,

yt−1 andεt, but corrected to arbitrary order for risk, i.e., out to the desired moments of the distribution

of the exogenous shocksεt in (1). The correction for risk is accomplished by expanding the policy

function nonlinearly inσ, the index that scales risk. Expanding to first order inσ corrects for the

first moment ofεt,17 to second order inσ corrects for the second moment ofεt, and so forth.

I will write such aσ dependent or risky linear approximation as

yt ≃ y(σ) + yy(σ) (yt−1 − y(σ)) + yε(σ)εt(17)

wherey(σ) is aσ dependent or risky point foryt andyy(σ) andyε(σ) are theσ dependent or risky

first derivatives ofyt at this risky point. I shall consider two risky points, the stochastic steady state

and the ergodic mean.

From standard DSGE perturbation, I have derivative information at the deterministic steady state.

I will now show that the first derivatives,yy(σ) andyε(σ), will depend on the risky point,y(σ), and

that my two choices for the risky point, the stochastic steady state and the ergodic mean, along with

these first derivatives at these points can be obtained from derivative information obtained at the

deterministic steady state.

17As the shock is assumed mean zero, this correction does not alter the policy functions compared with their deter-
ministic counterparts. See Schmitt-Grohé and Uribe (2004) and Lan and Meyer-Gohde (Forthcoming).

10



3.1 Risky Points of Approxiamtion

3.1.1 Stochastic Steady State

The first point around which I will construct a linear approximation is the stochastic steady state.

The stochastic and deterministic steady states can be embedded implicitly in aσ-dependent steady

state

y (σ) = g(y (σ) , 0, σ)(18)

Here,σ = 1 gives the stochastic andσ = 0 the deterministic steady state. A Taylor expansion of

y (σ) around theσ = 0 deterministic steady state can be written as

y (σ) =
∞∑

i=0

1
i!

yσi (0)σi(19)

Using the Taylor expansion inσ, the stochastic steady state can be approximated by solvingsets

of linear equations with inhomogeneous constants collecting lower order terms and standard DSGE

perturbation output, as I summarize in the following

Proposition 3.1.σ Approximation of the Stochastic Steady State

Let assumption2.4 hold, the stochastic steady state in (8) as represented by (19) can be approxi-

mated inσ using only derivative information from standard perturbations—gzjσi in (6)—around the

deterministic steady state.

Proof. See appendixA.3. �

To capture the effect of the first two moments of the exogenous processes (i.e.,that of the vari-

ance of the mean zero growth shocks in the model of section4) on the stochastic steady state, a

second order approximation inσ evaluated atσ = 1 is needed.

y (σ) = y+ yσ (0) +
1
2

yσ2 (0) +O(σ3)(20)

This second order inσ approximation of the stochastic steady state is given in closed form by the

following
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Corollary 3.2. Second Orderσ Approximation of the Stochastic Steady State

The stochastic steady state in (8) can be approximated to second order inσ as

ystoch
≈ y+

1
2

(

Iny − gy

)−1
gσ2(21)

Proof. See appendixA.4. �

The value reported in (21) is identical to the value reported in Lan and Meyer-Gohde (2013b)

derived using a second-order nonlinear moving average.

3.1.2 Ergodic Mean

The second point around which I would like to be able to construct a linear approximation is the

ergodic mean. The ergodic mean and the deterministic steadystate can be embedded implicitly in a

σ-dependent point

y (σ) � E
[

g(yt−1, σεt, σ)
]

(22)

Here,σ = 1 gives the ergodic mean andσ = 0 the deterministic steady state. Due to the singularity

induced byσ = 0, which turns off the stochastics in the model, the steady state coincides with the

mean in this deterministic setting, which I exploit to extrapolate from the deterministic steady state

to the ergodic mean. A Taylor expansion ofy (σ) around theσ = 0 deterministic steady state is

y (σ) =
∞∑

i=0

1
i!

yσi (0)σi(23)

Using the Taylor expansion inσ, the ergodic can be approximated by solving sets of linear

equations with inhomogeneous constants collecting lower order terms, standard DSGE perturbation

output, and the given moments of the exogenous driving force, as I summarize in the following

Proposition 3.3.σ Approximation of the Ergodic Mean

Let assumption2.4hold, the ergodic mean in (11) as represented by (23) can be approximated inσ

using derivative information from standard perturbations—gzjσi in (6)—evaluated at the determin-

istic steady state and the given finite moments of the exogenous driving force.
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Proof. See appendixA.5. �

Discarding terms of order higher than two in (23) and evaluating atσ = 1 give an approximation

of the ergodic mean that captures the effects of the first two moments of the exogenous processes

(i.e., that of the variance of the mean zero growth shocks in the model of section4)

y (σ) = y+ yσ (0) +
1
2

yσ2 (0) +O(σ3)(24)

In terms of the derivatives of the standard perturbation at the deterministic steady state, (7), and

moments ofεt, the ergodic mean is give out to second order by the following

Corollary 3.4. Second Orderσ Approximation of the Ergodic Mean

The ergodic mean in (11) can be approximated to second order inσ as

ymean
≈ y+

1
2

(

Iny − gy

)−1
(

gσ2 +

(

gε2 +
(

In2
y
− g⊗[2]

y

)−1
g⊗[2]
ε

)

E
[

ε
⊗[2]
t

])

(25)

Proof. See appendixA.6. �

The value reported in (25) is identical to the value reported in Lan and Meyer-Gohde (2013a) us-

ing a second nonlinear moving average and in Andreasen, Fernández-Villaverde, and Rubio-Ramı́rez

(2013) using a second order pruned state space approximation.18

3.2 Risky First Derivatives

Given a risky point from above, I need only to calculate the first derivatives with respect to states

and shocks in order to complete the construction of the riskylinear approximation in (17).

The first derivatives with respect to states and shocks around a risky point,y(σ) from above, are

given by

Definition 3.5. First Derivatives at aσ Adjusted Point

18See also Kim, Kim, Schaumburg, and Sims (2008) for second order pruning and Lombardo (2010) for a theoretical
justification of state space pruning. Lan and Meyer-Gohde (2013b) provide an overview and comparison of pruning in
the literature.
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The derivatives of yt with respect to yt−1 andεt at a risky point,y(σ) are

yy(σ) � gy(y(σ), 0, σ), yε(σ) � gε(y(σ), 0, σ)(26)

The first derivatives areσ dependent functions, both directly and indirectly throughthe risky

point of approximation,y(σ), chosen. Here,σ = 1 gives the first derivatives at the risky point of

approximation andσ = 0 at the deterministic steady state. Taylor expansions ofyy(σ) andyε(σ)

around theσ = 0 deterministic steady state can be written as

yy(σ) =
∞∑

i=0

1
i!

yyσi (0)σi, yε(σ) =
∞∑

i=0

1
i!

yεσi (0)σi(27)

As was the case with the two risky points considered above, the first derivatives at these points

depend only on standard output from perturbation algorithms: derivatives of the policy function at

the deterministic steady state and the moments (through thederivatives of the risky ergodic mean)

of the exogenous shocks,εt, as I summarize in the following

Proposition 3.6.σ Approximation of the First Derivatives

The first derivatives in (26) can be approximated inσ using only derivative information from stan-

dard perturbations—gzjσi in (6)—evaluated at the deterministic steady state and the derivative in-

formation inσ from the chosen risky point of approximation.

Proof. See appendixA.8. �

Approximating out to second order inσ as above for the risky points of approximation to adjust

the first derivatives for the first two moments of the the distribution of the exogenous shocks,εt, and

evaluating atσ = 1 gives the following

yy (σ) = yy + yyσ (0) +
1
2

yyσ2 (0) +O(σ3), yε (σ) = yε + yεσ (0) +
1
2

yεσ2 (0) +O(σ3)(28)

In terms of the derivatives of the standard perturbation at the deterministic steady state, (7), and

derivatives of the chosen risky point of approximation, thefirst derivatives can be written to second

order as
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Corollary 3.7. Second Orderσ Approximation of the First Derivatives

The first derivatives in (26) can be approximated to second order inσ as

yy(1) ≈ gy +
1
2

(

gy2

(

yσ2(0)⊗ Iny

)

+ gσ2y

)

, yε(1) ≈ gε +
1
2

(

gyε
(

yσ2(0)⊗ Ine

)

+ gσ2ε

)

(29)

Proof. See appendixA.8. �

With the risky first derivatives in hand, the risky linear approximation in (17) can be constructed

by choosing either the approximation of the stochastic steady state or of the ergodic mean and

calculating the associated first derivatives. Before I turnto an application of the approximation in an

economic model, I will address the theoretical validity of the approximation.

3.2.1 Relation to Perturbation First Derivatives

Here, I examine the relationship of the risky points and slopes derived above with standard perturba-

tion output. I show that the risky first derivatives correctly recover the first derivatives of the Taylor

series evaluated at the risky points above out to a given order in σ.19 These derivatives differ from

those used in Andreasen, Fernández-Villaverde, and Rubio-Ramı́rez’s (2013) pruning algorithm,

which give risky derivatives evaluated at the deterministic steady state.

Differentiate the Taylor series representation of the standardperturbation in (6) with respect to

the state vectorzt to yield

Dztyt ≈

M∑

j=1

1
( j − 1)!





M− j∑

i=0

1
i!

gzjσiσi





[

(zt − z)⊗[ j−1] ⊗ Inz

]

≈

M−1∑

j=0

1
j!





M− j−1∑

i=0

1
i!

gzj+1σiσi





[

(zt − z)⊗[ j] ⊗ Inz

]

(30)

Evaluated at the deterministic steady state,zt = z, the foregoing collapses to

Dztyt ≈

M−1∑

i=0

1
i!

gzσiσi(31)

For M = 3, the first derivative from a third order perturbation approximation, settingσ to one and

19When the risky point is the stochastic steady state, the firstderivatives recover the risky derivatives used in Lan and
Meyer-Gohde’s (2013b) recursive formulation of Lan and Meyer-Gohde’s (2013c) nonlinear moving average.
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recalling that terms first order inσ are zero,20 is

Dztyt ≈ gz+
1
2

gzσ2(32)

The last term,gzσi , is the time varying risk correction that enters at third order in the pruning algo-

rithm of Andreasen, Fernández-Villaverde, and Rubio-Ramı́rez (2013) and matched perturbation of

Lombardo (2010).21

Of primary interest here are the derivatives at the risky points of interest derived in section2.

Recall, (19) and (23), that the risky points can be expressed as Taylor series inσ; i.e.,

y (σ) =
∞∑

i=0

1
i!

yσi (0)σi(33)

settingyt = y (σ) andεt = 0, in the first derivative of the Taylor series representation of the policy

function from (30) yields

Dztyt ≈

M−1∑

j=0

1
j!





M− j−1∑

i=0

1
i!

gzj+1σiσi









[

y (σ) − y
0

]⊗[ j]

⊗ Inz



(34)

For a second order inσ approximations of the points of interest derived explicitly in section2, this

expression becomes

Dztyt ≈

M−1∑

j=0

1
j!





M− j−1∑

i=0

1
i!

gzj+1σiσi









[
1
2yσ2 (0)σ2

0

]⊗[ j]

⊗ Inz





≈

M−1∑

j=0

1
j!





M− j−1∑

i=0

1
i!

gzj+1σi









[
1
2yσ2 (0)

0

]⊗[ j]

⊗ Inz



σ
i+2 j(35)

Discarding terms inσ of order higher than two in order to obtain a second order inσ approximation

of the matrix of first derivatives at the risky point of interest gives

Dztyt ≈ gz+
1
2

[

gzσ2 + gz2

([

yσ2

0

]

⊗ Inz

)]

(36)

or in terms of derivatives with respect toyt−1 andεt separately

Dyt−1yt ≈ gy +
1
2

[

gyσ2 + gy2

(

yσ2 ⊗ Iny

)]

, Dεtyt ≈ gε +
1
2

[

gεσ2 + gyε
(

yσ2 ⊗ Ine

)]

(37)

which are identical to the results presented in section3.2. The risky derivatives derived in section

3.2 with my implicit risk adjustment procedure provide the correct derivatives at the chosen risky

20See Jin and Judd (2002), Schmitt-Grohé and Uribe (2004), and Lan and Meyer-Gohde (Forthcoming).
21See Lan and Meyer-Gohde (2013b) for a detailed comparison ofthese and other pruning algorithms.
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point of interest up to the chosen order inσ.

4 Long Run Risk and the Real Business Cycle

I will examine a canonical real business cycle model in the spirit of Kydland and Prescott (1982) with

two differentiating features to emphasize the role of risk: recursive—or risk-sensitive—preferences

and long run risk. I follow Epstein and Zin (1989), Weil (1990), and others by replacing the con-

tinuation value of household utility with a power certaintyequivalent to introduce risk sensitivity

and to disentangle risk aversion and the inverse elasticityof intertemporal substitution. I confront

agents with long run real risk in the form of stochastic trends in productivity,22 which adds risk to the

growth of consumption, making the stochastic driving forceof model welfare relevant in the sense of

Lucas (1987). My choice of model is very similar to the model used in the numerical study of Cal-

dara, Fernández-Villaverde, Rubio-Ramı́rez, and Yao (2012), where I have replaced their stochastic

volatility with long run risk.23

The social planner maximizes the expected discounted lifetime utility of a representative house-

hold given recursively24 by

Ut = max
Ct ,Lt

[

(1− β)
(

Cν
t (1− Lt)

1−ν
) 1−γ

θ
+ β

(

Et

[

U1−γ
t+1

]) 1
γ

] θ
1−γ

(38)

whereCt is consumption,Lt labor, β ∈ (0, 1) the discount factor,ν a labor supply parameter,γ

governs risk aversion,25 and

θ =
1− γ

1− 1
ψ

(39)

whereψ is the elasticity of intertemporal substitution (IES). Thus, these recursive preferences dis-

22See, e.g., Bansal and Yaron (2004) in an endowment and Rudebusch and Swanson (2012) in a production model.
23As I will be examining linear approximations, I would only beable to capture the precautionary effects or average

effects of stochastic volatility and would miss the time varying effects of changes in conditional heteroskedasticity.
One could conceivably move the approximation towards the conditionally normal one used in Justiniano and Primiceri
(2008), to retain some of the advantages of linearity, but this is beyond the scope of this paper.

24See Epstein and Zin (1989) and Weil (1990). Backus, Routledge, and Zin (2005) provide a detailed overview of
these and other preferences that deviate from standard expected utility.

25In the presence on an adjustable labor margin, the standard measure of risk aversion does not directly apply, see
Swanson (2012a). Swanson (2012b) presents measures of riskaversion under recursive preferences in the presence of a
labor margin. I maintain the misnomer of referring toγ as risk aversion for expositional ease.
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entangle the IES and risk aversion. The social planner facesthe resource constraint

Ct + Kt = Kξ

t−1

(

eZt Lt

)1−ξ
+ (1− δ) Kt−1(40)

with Kt being capital,ξ its output elasticity andδ its depreciation rate, andZt a random walk with

drift productivity process given by

at � Zt − Zt−1 = a+ σεt, εt ∼ N (0, 1)(41)

with σ the standard deviation ofat anda the drift.

The first order conditions are the intratemporal condition

1− ν
ν

Ct

1− Lt
= (1− ξ) e(1−ξ)Zt Kξ

t−1L−ξt(42)

and the intertemporal condition

1 = Et

[

Mt+1

(

ξKξ−1
t

(

eZt+1Lt+1

)1−ξ
+ 1− δ

)]

(43)

where the pricing kernel is given by

Mt+1 �
∂Ut/∂Ct+1

∂Ut/∂Ct
= β

Ct

Ct+1

(

Cν
t+1 (1− Lt+1)

1−ν
) 1−γ

θ

(

Cν
t (1− Lt)

1−ν
) 1−γ

θ





U1−γ
t+1

Et [Ut+1]
1−γ





1− 1
θ

(44)

The presence ofUt+1 in the pricing kernel necessitates the inclusion of the value function evaluated

at the optimum, where I recycle the notationUt,

Ut =

[

(1− β)
(

Cν
t (1− Lt)

1−ν
) 1−γ

θ
+ β

(

Et

[

U1−γ
t+1

]) 1
γ

] θ
1−γ

(45)

along with the first order conditions, the resource constraint (40), and the exogenous driving force

(41) to characterize an equilibrium. With the stochastic trendin the model, I detrend all variables

(apart fromLt and Mt) with xt � Xt/eZt ; the value function is detrended slightly differently,ut �

Ut/eνZt .26 I reexpress all macroeconomic variables through a log transformation x̂t = ln(xt) so that

deviations in these variables from any given value can be interpreted as percentage deviations and a

linear approximation of ˆxt gives a log linear approximation.27

Additionally, I will examine two conditional asset pricingvariables to measure shifts in the

26See appendixA.1 for the detrended model.
27See, e.g., Uhlig (1999).
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pricing of risk. First, the ex ante risk premium

erpt = Et

[

rk
t+1 − r f

t

]

(46)

where the risk-free rate,r f
t , is given byr f

t �
1

Et [Mt+1] and the return on capital,rk
t , is given byr f

t �

ξKξ−1
t−1

(

eZt Lt

)1−ξ
+ 1− δ; and second, the (squared) conditional market price of risk

cmprt =
Et

[

(Mt+1 − Et [Mt+1])
2
]

Et [Mt+1]
2

(47)

I will take the square of the usual conditional market price of risk—conditional standard deviation

over conditional mean—to maintain differentiability at the deterministic steady state, necessary for

the application of the perturbation methods to which I will turn to later. Finally, I will include the ex

post risk premium

rpt = rk
t − r f

t−1(48)

as an observable counterpart to the ex ante version above.

5 Accuracy of the Risky Linear Approximation

I now apply the risky linear approximation to two calibratedversions of the neoclassical growth

model of section4. I begin by assessing the accuracy of the risky linear approximation by examining

the Euler equation errors and comparing the results to standard linear and higher order perturbation

solutions.

5.1 Calibration

In table1, I report the parameter values common to both calibrations Iconsider here. The calibration

for these parameters largely follows Caldara, Fernández-Villaverde, Rubio-Ramı́rez, and Yao (2012)

and reflects standard observations on the post war US economy: ξ is set to match the labor share of

national income;β to reflect an annual interest rate of about 3.5 %; the value ofν induces work to

occupy roughly one third of the time endowment; andδ aligns the model in the deterministic steady

state to the investment output ratio. The value ofa is set to match the average postwar growth rate
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of output.

[Table 1 about here.]

In table2, I report the baseline calibration in the first three columns. Here, I set risk aversion,γ,

to 5, following the baseline parameterization of Caldara, Fernández-Villaverde, Rubio-Ramı́rez, and

Yao (2012). The elasticity of intertemporal substitution (IES) and the standard deviation of technol-

ogy growth shocks are set to match the standard deviations oflog consumption and output growth

for the third order nonlinear moving average perturbation solution of the model.28 This value for the

IES lies in the range of 0.5 to 1.5 examined in Caldara, Fernández-Villaverde, Rubio-Ram´ırez, and

Yao (2012), reflecting conservative bounds on the parameteradvocated in the literature.

[Table 2 about here.]

The extreme calibration can be found in the last three columns of table2. Risk aversion,γ, is

equal to 40, following Caldara, Fernández-Villaverde, Rubio-Ramı́rez, and Yao (2012). The IES and

the standard deviation of technology growth shocks are again set to match the standard deviations

of log consumption and output growth for the third order in perturbation solution of the model.

When calibrating to the two macro data sets, the values for the IES and the standard deviation of

technology growth shocks remain virtually unchanged, reflecting the well known result—see, e.g.,

Tallarini (2000)—that macro series are driven primarily bythe IES and not risk aversion.

5.2 Euler Equation Errors

Following Judd and Guu (1997) and Judd (1998), I use the unit-free Euler equation residuals as a

measure of accuracy.29 I will assess the accuracy of the risky linear approximationat the approxi-

mated stochastic steady state.30

28Thus, this nonlinear moving average representation as opposed to the state space representation of the policy func-
tion admits closed form calculation of the theoretical moments, see Lan and Meyer-Gohde (2013a).

29See also Aruoba, Fernández-Villaverde, and Rubio-Ramı́rez (2006) and Caldara, Fernández-Villaverde, Rubio-
Ramı́rez, and Yao (2012) for applications of this measure toassess the accuracy of varying solution methods.

30The results are virtually unchanged with the alternative, the ergodic mean.
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The Euler equation error expressed as a fraction of timet consumption is given by

EEE(kt−1, εt) =

Et

[

β (ct+1eat+1)ν
1−γ
θ
−1

(
1−Lt+1
1−Lt

) (1−ν)(1−γ)
θ

(

(vt+1eνat+1)1−γ

Et[(vt+1eνat+1)1−γ]

)1− 1
θ (

αkα−1
t (eat+1Lt+1)

1−α + 1− δ
)
] 1

ν
1−γ
θ
−1

ct
− 1

(49)

Here, the value of, say, 1E − 2 implies a $1 mistake for each $100 spent and the value of 1E − 3

implies a $1 mistake for each $1000 and so forth. This is a function of the state,kt−1 and shock,εt.

In figure1, I plot the Euler equation errors with the current shock set to zero and examine how this

error depends on the endogenous state,kt−1.

[Figure 1 about here.]

In figure 1a, the Euler equation errors for the baseline calibration canbe found. The risky

linear approximation uniformly improves on the linear approximation, while lagging behind the

second and third order perturbation. In general, higher order perturbations improve the accuracy of

the approximation. In the vicinity of the steady states,31 this improvement is more than one order

of magnitude. In sum, the risky linear approximation, whilestill linear in states and shocks, is

uniformly more accurate than the standard linear approximation.

The Euler equation errors for the extreme calibration are depicted in figure1b. As the impor-

tance of risk in the underlying nonlinear system is increased through the increase in risk aversion

in the extreme calibration, so does the relative performance of the risky linear approximation. Now

the risky linear approximation is two orders of magnitude more accurate than the standard linear

approximation over a broad vicinity surrounding the steadystates.32 Furthermore, the risky linear

approximation is roughly comparable to higher order approximations despite its linearity in states

and shocks.

Thus, for small shock realizations and values of the state, capital, close to the stochastic steady

31Under the baseline calibration, the stochastic and determinisitic steady states are nearly the same.
32Now the difference between the stochastic and deterministic steady states can be discerned visually, with the min-

imum of the risky linear approximation, the stochastic steady state, to the right of the minimum of the standard linear
approximation, the deterministic steady state.
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state, I conclude that the risky linear approximation of theprevious sections outperforms the standard

linear approximation and performs favorably compared withhigher order perturbations.

5.3 Impulse Response Analysis

Having established the satisfactory accuracy of the risky linear approximation, I will turn to its struc-

tural predictions in the form of impulse response functions. A significant advantage of the linearity

in states and shocks of the approximation is that an impulse response is a straightforward concept.

Whereas nonlinear methods must take a stance regarding the specific assumptions regarding a gen-

eralized impulse response,33 the risky linear approximation and its standard linear approximation

require no such discussion.

[Figure 2 about here.]

In figure 2, the impulses of selected macroeconomic and financial variables with respect to a

one standard deviation shock to the growth rate of technology are plotted. Figure2a contains the

impulses of consumption and capital to a growth rate shock. Impulse responses from the risky

linear (here the stochastic steady state version), standard linear, and third order nonlinear moving

average approximations are indistinguishable up to numerical rounding. Consumption and capital,

both detrended, fall in response to the shock as the capital stock and consumption catch up to the

accelerated growth path. Figure2b contains the impulses of the expected risk premium and the

conditional market price of risk. The standard linear approximation fails to capture the movement in

these conditional asset pricing variables, while the riskylinear approximation put forth in previous

sections here matches, up to numerical rounding, the impulses generated by the full nonlinear third

order moving average approximation of Lan and Meyer-Gohde (2013c).

33See Lan and Meyer-Gohde (2013c) and Andreasen, Fernández-Villaverde, and Rubio-Ramı́rez (2013) and the spe-
cific assumptions therein.
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6 Estimation using Risky Linear Approximations

I begin by exploring the properties of the likelihood function for the risky linear approximation

in a Monte Carlo experiment and then turn to the Bayesian estimation of risk aversion and the

standard deviation of technology growth rate shocks using US post war data. I find the risky linear

approximation using the Kalman filter meets or exceeds the computationally intensive particle filter

routines for third-order state space and nonlinear moving average perturbations while successfully

identifying risk aversion. I find that the posterior of the risky linear approximation using US post

war data on consumption and output growth and the excess return calls for higher risk aversion that

posited by the prior, whereas the likelihood function for standard linear approximation is entirely

flat in the dimension of risk aversion and the likelihood function for the third order perturbations

suffer sufficiently from sampling variation to prevent reliable inference.

6.1 Monte Carlo Study of Estimation Properties

Here, I study the ability of the risky linear approximation to estimate deep parameters beyond the

reach of standard linear approximations and compare the efficiency with which it is able to do such

with perturbation-based particle filters that enjoy relative solution efficiency advantages over al-

ternative nonlinear methods—see, e.g., Aruoba, Fernández-Villaverde, and Rubio-Ramı́rez (2006),

though Fernández-Villaverde and Rubio-Ramı́rez (2007) note that perturbation is neither required

for nor necessarily the preferred method for taking every model to the particle filter.

For the estimation exercise, I generate two 10, 000 period series ofyt, one for each calibration in

section5.1, using a third order nonlinear moving average. I then estimate parameters one at a time,

holding all other parameters constant, using different solution methods. The methods I will compare

are the risky linear method, conventional linearization, third order state space perturbation, and the

third order nonlinear moving average used to generate the data. I will present the results for risk

aversion,γ, and the standard deviation of growth shocks,σ.
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The risky linear method maintains linearity in states and shocks, which, given the assumed nor-

mality of growth rate shocks, enables the use of the Kalman filter. Here, I choose the ergodic mean

of section3.1.2as the risky point so that the mean of the risky linear approximation coincides with

the approximation, inσ, of the ergodic mean of the true nonlinear model. The standard linearization

is also estimated with the Kalman filter. The standard approach for the two nonlinear perturbations,

nonlinear moving average and standard state space, is to estimate using a sequential importance sam-

pler with resampling, i.e., the particle filter, see Fernández-Villaverde and Rubio-Ramı́rez (2007),

which simulates the entire distributions of the unobservable states.Unfortunately, the particle filter

can be very demanding computationally, precluding its use currently in many policy relevant mod-

els.34 I set the number of particles in the filter to be 40, 000 and add measurement noise accounting

for 1% of the variance ofyt to operationalize a version of the particle filter following, e.g. Bidder

and Smith (2012).

[Figure 3 about here.]

In figure3 the likelihood function, normalized relative to the maximum likelihood value for each

method, of risk aversion,γ, and the standard deviation of technology growth shocks,σ, are plotted

for the baseline calibration. The standard linear approximation is a certainty equivalent approxi-

mation and changes in risk aversion, figure3a, have no effect on the approximation: the likelihood

function is entirely flat in this dimension. The risky linearapproximation advocated in previous

sections, however, is not certainty equivalent and correctly estimates the level of risk aversion in

figure3a. Both of the particle filter based policy functions correctly estimate the degree of risk aver-

sion, but as can be seen in figure3a, there is clearly sampling variation and the number of particles

would clearly need to be increased past 40, 000 to operationalizes a numerical maximization rou-

tine. As can be gathered from the scale of they axis in figure3a, though, risk aversion of this small

34van Binsbergen, Fernández-Villaverde, Koijen, and Rubio-Ramı́rez (2012) provides a notable exception, yet due
to the demands of the particle filter, they model inflation exogenously and are primarily concerned with the estimation
exercise itself.
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degree is only very weakly identified, placing high demands on the particle filters; the risky linear

approximation, however, has no difficulties with this weak identification. All four of the methods

correctly estimate the standard deviation of growth shocks, as can be seen in figure3b. The likeli-

hood cuts for both of the particle filter estimated perturbations coincide and the risky and standard

linear approximations display slightly more dispersion than the perturbation methods.

[Figure 4 about here.]

The likelihood cuts, expressed relative to the maximum log likelihood value for each method, of

risk aversion,γ, and the standard deviation of technology growth shocks,σ, are plotted in figure

4 for the extreme calibration. Again, the standard linear approximation is a certainty equivalent

approximation and changes in risk aversion have no effect on the approximation as can be garnered

from the entirely flat likelihood function figure4a. Once again, the risky linear approximation

advocated in previous sections, however, is not certainty equivalent and correctly estimates the level

of risk aversion, albeit with slightly more dispersion relative to the particle based filters. Both of the

particle filter based policy functions correctly estimate the level of risk aversion and nearly coincide

in figure4a. Note that sampling variation in the particle filters is not noticeable in figure4a, as risk

aversion is clearly more strongly identified as can be garnered from the scale of the y-axis. Turning to

the standard deviation of growth shocks in figure4b, the standard linear approximation clearly fails

to correctly estimate this parameter. As the standard linearization does not capture risk aversion, it

attributes the increase in risk sensitivity to an increase in risk itself. The risky linear approximation

and the two particle filter based perturbations correctly estimate the standard deviation, with the

risky linear approximation likelihood contour coincidingwith that of the data-generating-process,

the nonlinear moving average.

Figures5 and 6 display likelihood cuts under the baseline calibration foroutput growth—

log(Yt) − log(Yt−1)—and for the ex post risk premium (48). Output growth is an observable series,

yet, as figure5a indicates, this series is unable to reveal the degree of riskaversion. Risk in this
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model is constant, as opposed to a model with say time varyingvolatility, and first differencing re-

moves the constant correction for risk in the policy functions, eliminating the role for risk in the

observable, as all approximations reflect with their flat likelihood surfaces.

[Figure 5 about here.]

The story is different with data generated by the ex post risk premium. Thoughnot entirely

driven by precautionary motives as is the unobservable ex ante risk premium, this measure reveals

significant information on the level of risk aversion, as indicated by the curvature of the likelihood

function in6a. With the effect of increased risk sensitivity incorporated, all measures but the standard

linear approximation agree upon a relative reduction of thesource of constant risk, the standard

deviation of growth shocks—see figure6b.

[Figure 6 about here.]

In table3 the different computation costs, measured in terms of computation time per likelihood

evaluation.35 As can be seen, the risky linear was negligibly slower than the standard linear with

the additional costs coming from the need to calculate the third order perturbation that delivers

the higher order derivatives used to correct the linear terms for risk. Compared to the perturbation

solutions that use the particle filter, the difference is striking. The risky linear method of the previous

sections is four orders of magnitude faster than the particle filter based methods. This despite their

similar performance in estimating the parameters and, as the presence of sampling variation implies,

the choice of the number of particles appears to have been conservative.

[Table 3 about here.]

The estimation exercise provides strong evidence in favor of the risky linear approximation for

use in estimation. It is meets or exceeds, when accounting for potential sampling variability with

35Comparisons computed on an Intel Xeon E5-2690 with 16 cores at 2.90 GHz on Matlab R2013b. Approximately
61% of the processor resources were used by the particle filter at any given point in time during the calculations.
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particle filters, higher order perturbation methods in identifying nonlinear parameters, like risk aver-

sion, that standard linear approximations cannot identifywhile simultaneously maintaining the com-

putational efficiency provided by the linear in state and shock framework.

6.2 US Post-War Estimation of Risk and Risk Sensitivity

I now turn to the estimation of risk and risk sensitivity using post war US data. While estimating, I

take a Bayesian perspective following standard practice inthe DSGE literature.36 Taking the results

of the previous section into account, I shall include ex postrisk premium along with consumption

and output growth in the data set.37 I find that the risky linear approximation introduced here calls

for more risk and risk aversion as is to be expected with the inclusion of the ex post risk premium in

the data set. The particle filter based methods suffer from sampling variation close to the posterior

mode, which makes estimation with my relatively flat prior infeasible.

[Table 4 about here.]

Table4 contains the priors of the standard deviation of growth shocks and risk aversion. Both

priors are relatively loose, with the prior on risk aversioncentered roughly in between the two

values of the calibrated model. The standard deviation of the growth shock has its prior mean and

mode below the calibrated values but assigns substantial probability mass to the region around that

value. Table4 contains point estimates from the posterior from the risky and conventional linear

approximations. The risky linear approximation favors more risk aversion and more risk than the

standard linear approximation, whose estimate of risk aversion is entirely prior driven with prior and

posterior modes coinciding and the likelihood function entirely flat along this dimension.

[Figure 7 about here.]

36See Smets and Wouters (2003) and Smets and Wouters (2007) forprominent and Del Negro, Schorfheide, Smets,
and Wouters (2007) and An and Schorfheide (2007) for instructive examples of Bayesian estimation of DSGE models.

37See appendixA.9 for details on the data series.
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Figure7 depicts the posterior as well as the likelihood using the risky linear approximation. The

likelihood function, figure7b, indicates that the data is informative in both dimensions using the

risky linear approximation. While the likelihood and posterior, figure7a, both favor a similar value

for the standard deviation of growth rate shocks,σ, they differ substantially over the parameter

controlling risk aversion,γ. As discussed also by, e.g., Tallarini (2000), production models with

recursive utility can match the slope of the market line (or market price of risk) but require exorbitant

levels of risk aversion to come close to the average risk premium, see table5. The posterior tempers

this tendency, yielding a modest outward shift in the distribution of risk aversion relative to the prior.

[Figure 8 about here.]

In figure 7, the posterior and likelihood using the standard linear approximation can be found.

As was to be expected from the results of the preceding sections, the likelihood is flat along the

dimension of the parameter controlling risk aversion. In other words, the precautionary component

of the risk premium in the data is entirely ignored and risk aversion is completely prior driven.

The posteriors and likelihoods for the nonlinear moving average perturbation can be found in

figure 9.38 As was the case for two of the four sets of synthetic data from the calibrated models,

sampling variation in the particle filter is visible here with the post war US data set with the dimen-

sion in the risk aversion parameter,γ, being most obviously impacted.39 This is not surprising, as the

likelihood surface for the risky linear approximation indicates that this dimension of the likelihood

function is nearly flat, especially for values of the standard deviation of growth shocks,σ, close to

the mode. Nonetheless, for larger values ofσ, a clear upward slope for larger values ofγ emerges,

consistent with the model requiring more risk aversion to increase the risk premium.

[Figure 9 about here.]

38The results for the standard perturbation were essentiallythe same and have been omitted for brevity.
39For the figures here, I increased the number of particles to 100,000, which improved but as is clear from the figure

did not eliminate the sampling variation of the particle filters.
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Table5 gives the asset pricing variable moments.40 As discussed above, the model does not

match the magnitude of the empirical risk premium. The riskylinear approximation is, however,

able to bring the market price of risk from the pricing kernel(std(mt)/E[mt]) and the Sharpe ratio

from the excess return on risky capital (E[rk
t − r f ]/std(rk

t − r f )) close to the empirical market price

of risk as measured by the NYSE value weighted portfolio overthe secondary market rate for three

month Treasury bill.41 As the standard linear approximation does not generate a risk premium at all,

its Sharpe ratio is zero, and the standard linear approximation produces a market price of risk that is

half the size as generated by the risky linear approximation.

[Table 5 about here.]

Informing the estimation with the empirical risk premium along with consumption and output

growth leads the posterior with the risky linear approximation to favor a higher level of risk aversion

than under the prior. The conventional linear approximation is invariant to the level of risk aversion

and so the likelihood function is unable to inform the posterior. As the likelihood function is rather

flat in the dimension of risk aversion, full nonlinear estimation is infeasible as the particle filter

suffers from a sampling variation large enough to mask the curvature in the likelihood function.

Under the posterior mode estimates, the model’s predictions of the market price of risk and the

Sharpe ratio are brought closer to the observed market priceof risk for the NYSE value weighted

portfolio.

7 Conclusion

I have derived and analyzed a risky linear approximation of the policy function for DSGE models.

The method solves linear equations in standard perturbation output, requiring neither fixed point nor

40The macroeconomic variables remain essentially unchangedas on the risk aversion has been changed substantially
and it is known, see Tallarini (2000) for example, that macroeconomic variables are virtually invariant to the level of
risk aversion, holding the intertemporal elasticity of substitution constant. Tables with empirical as well as the posterior
model based business cycle measures have thusly been relegated to appendixA.10.

41A description of the post war US data used for the empirical values can be found in appendixA.9
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other recursive methods, by operating implicitly with the unknown policy function instead of the

equilibrium conditions of the model. This direct approach along with the minimal costs associated

with standard perturbation methods allow me provide a certainty non equivalent method suitable

for the estimation and analysis of policy relevant DSGE policy under risk without needed to turn to

the particle filter or alternate algorithms with unknown convergence properties that correct for risk.

Finally, the method presented is able to provide a risk corrected linear approximation around the

ergodic mean as well as the stochastic steady state.

In the chosen application, a risk-sensitive real business cycle model with long run risk, I find

that the risky linear approximation is a uniform improvement over the standard linear approxima-

tion and, as risk becomes more important in the the model, theaccuracy of the algorithm becomes

comparable to second and third perturbations in the vicinity of the stochastic steady state despite

being linear in states and shocks. The method produces impulse responses identical to those gen-

erated by a third order nonlinear moving average and is able to model the responses of conditional

asset pricing variables to shocks, which are beyond the reach of standard linear approximations.

Finally, in a estimation exercise, I show that the risky linear approximation estimated using the

Kalman filter correctly identifies risk and risk aversion (here, different from the inverse elasticity of

intertemporal substitution due to the recursive preferences) along with the particle filter estimations

of standard perturbation and nonlinear moving average approximation. Thus, the risky linear ap-

proximation combines the efficiency in estimation (with the Kalman filter here being four orders of

magnitude faster than the particle filter) of linear formulations with the information from nonlinear

approximations needed to identify parameters such as the degree of risk aversion that are beyond

the reach of standard linear approximations. Indeed, in theapplication to post war US data, the

likelihood function is entirely flat in the dimension of riskaversion for a standard linear approxima-

tion and sufficiently flat for third order perturbations using the particle filter that sampling variation

precludes reliable inference.
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The method here could be extended using the change of variable transformations studied by

Fernández-Villaverde and Rubio-Ramı́rez (2006) to maximized the accuracy of the risky linear ap-

proximation. Likewise conditional linear approximationsas applied by Justiniano and Primiceri

(2008) to study volatility shifts in post war US data could berisk adjusted to capture the precaution-

ary effects neglected in their work. Finally, the method developedhere could be applied to policy

relevant models that require capturing risk, e.g., to matchfinancial market date, but whose size pre-

cludes the application of alternative nonlinear methods, e.g., the computational costs of the particle

filter are too burdensome. In work in progress, Kliem and Meyer-Gohde (2013) apply the risky

linear method developed here to estimate and analyze the effects of monetary policy in a medium

scale DSGE macro finance model of the nominal term structure.
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Schmitt-Grohé, S., and M. Uribe (2004): “Solving Dynamic General Equilibrium Models Using
a Second-Order Approximation to the Policy Function,”Journal of Economic Dynamics and
Control, 28(4), 755–775.

Smets, F., and R. Wouters (2003): “An Estimated Dynamic Stochastic General Equilibrium Model
of the Euro Area,”Journal of the European Economic Association, 1(5), 1123–1175.

(2007): “Shocks and Frictions in US Business Cycles: A Bayesian DSGE Approach,”
American Economic Review, 97(3), 586–606.

Swanson, E. T. (2012a): “Risk Aversion and the Labor Margin in Dynamic Equilibrium Models,”
American Economic Review, 102(4), 1663–91.

(2012b): “Risk Aversion, Risk Premia, and the Labor Margin with Generalized Recursive
Preferences,” Working Paper Series 2012-17, Federal Reserve Bank of San Francisco.

Tallarini, Jr., T. D. (2000): “Risk-Sensitive Real Business Cycles,”Journal of Monetary Eco-
nomics, 45(3), 507–532.

Uhlig, H. (1999): “A Toolkit for Analysing Nonlinear Dynamic Stochastic Models Easily,” inCom-
putational Methods for the Study of Dynamic Economies, ed. by R. Marimon,and A. Scott,
chap. 3, pp. 30–61. Oxford University Press.

van Binsbergen, J. H., J. Fernández-Villaverde, R. S. Koijen, and J. Rubio-Ramı́rez (2012): “The
Term Structure of Interest Rates in a DSGE Model with Recursive Preferences,”Journal of Mon-
etary Economics, 59(7), 634–648.

Weil, P. (1990): “Nonexpected Utility in Macroeconomics,”The Quarterly Journal of Economics,
105(1), 29–42.

34



A Appendix

A.1 Detrended Model

Detrending withxt � Xt/eZt (ut � Ut/eνZt) gives

ut =

[

(1− β)
(

cνt (1− Lt)
1−ν

) 1−γ
θ
+ β

(

Et

[

(ut+1e
νat)1−γ

]) 1
γ

] θ
1−γ

(A-1)

ct + kt = e−ξatkξt−1L1−ξ
t + (1− δ) e−atkt−1(A-2)

1 = Et

[

Mt+1
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t+1 + 1− δ
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(A-3)
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eat+1

)ν
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−1 (

1− Lt+1

1− Lt

) (1−ν)(1−γ)
θ





(ut+1eνat+1)1−γ
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]
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(A-4)

1− ν
ν

ct

1− Lt
= (1− ξ) e−ξatkξt−1L−ξt(A-5)

A.2 Matrix Derivatives

That is

gzjσi � D
j+i

zj
t−1σ

i
{y(σ, zt)} �





[
∂

∂z1,t−1
. . . ∂

∂znz,t−1

]⊗[ j]
⊗

(

∂

∂σ

)⊗[i]
 ⊗ yt(A-6)

=





[
∂

∂z1,t−1
. . . ∂

∂znz,t−1

]⊗[ j]
(

∂

∂σ

)i
 ⊗ yt(A-7)

where the second line follows asσ is a scalar. The terms
[∑M− j

i=0
1
i! yzjσiσi

]

in (6) collect all the

coefficients associated with thej’th fold Kronecker product of the state vector, (zt − z). Higher

orders ofσ in gzjσi correct the Taylor series coefficients for uncertainty by successively opening the

coefficients to higher moments in the distribution of future shocks.42 I will take the availability of

these standard perturbation Taylor series as given.43

With f andy both being vector-valued functions that take vectors as arguments, their partial

derivatives form hypercubes. I use the method of Lan and Meyer-Gohde (2013c) that differentiates

conformably with the Kronecker product, allowing us to maintain standard linear algebraic struc-

42A similar interpretation can be found in Judd and Mertens (2012) for univariate expansions and in Lan and Meyer-
Gohde (2013c) for expansions in infinite sequences of innovations.

43See Jin and Judd (2002) and Lan and Meyer-Gohde (Forthcoming) for more on whether these coefficients can
indeed be recovered by standard DSGE perturbations.
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tures to derive our results.

Definition A.1. Matrix Derivatives

Let A(B) : Rs×1 → Rp×q be a matrix-valued function that maps an s×1 vector B into an p×q matrix

A(B), the derivative structure of A(B) with respect to B is defined as

AB � DB{A} �
[
∂
∂b1

. . . ∂
∂bs

]

⊗ A(A-8)

where bi denotes i’th row of vector B; n’th derivatives are

ABn � D
n
(B)n{A} �

([
∂
∂b1

. . . ∂
∂bs

]⊗[n]
)

⊗ A(A-9)

Details of the associated calculus that generalizes familiar chain and product rules as well as

Taylor approximations to multidimensional settings can befound in Lan and Meyer-Gohde (2013c)

and Lan and Meyer-Gohde (Forthcoming).

A.3 Proof of Proposition 3.1

Successive differentiation of (18) yields equations recursively linear inyσi taking as given lower

order terms of the formyσi and derivatives ofg with respect toyt−1 andσ. For solvability, following

the implicit function theorem, the matrixgy, the first derivative of the policy function at the deter-

ministic steady state with respect to endogenous variables, must have all eigenvalues inside the unit

circle; this holds under local saddle stability of (1).

A.4 Proof of Corollary 3.2

For a second-order (inσ) approximation of the stochastic steady state, differentiatey (σ) = g(y (σ) , 0, σ)

atσ = 0 once for

y′(0) = gyy
′(0)+ gσ =

(

I − gy

)−1
gσ = 0(A-10)

and twice for

y′′(0) = gy2y′(0)⊗[2] + 2gyσyσ + gyy
′′(0)+ gσ2 =

(

I − gy

)−1
gσ2(A-11)
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Thus, up to second order inσ, the stochastic steady state is

ystoch
≈ y+

1
2

(

I − gy

)−1
gσ2(A-12)

as claimed in corollary3.2.

A.5 Proof of Proposition 3.3

Successive differentiation of (2) with respect toσ evaluated at the deterministic steady state gives

recursive equationsDσi yt that depend on lower order derivatives ofDσi yt,44 derivatives of theg

function evaluated at the deterministic steady state, and the exogenous vectorεt. Successive differ-

entiation of (22) yields equations recursively linear inyσi taking as given lower order terms of the

form yσi , derivatives of theg function evaluated at the deterministic steady state, and expectations

of terms involvingDσi yt andεt. For solvability both of the expectations ofDσi yt and of derivatives

of (22), following the implicit function theorem, the matrixgy, the first derivative of the policy func-

tion at the deterministic steady state with respect to endogenous variables, must have all eigenvalues

inside the unit circle; this holds under local saddle stability of (1). Under this condition and if the

moments ofεt exists and are finite, the terms involving expectations and the derivatives of (22), yσi ,

can be solved uniquely from the given moments ofεt and derivative information of theg function

evaluated at the deterministic steady state.

A.6 Proof of Corollary 3.4

For a second-order (inσ) approximation of the ergodic mean, differentiatey (σ) = E
[

g(yt−1, σεt, σ)
]

at yt−1 = y (0) andσ = 0 once for

y′(0) = E
[

gyDσ{yt−1} + gεεt + gσ
]

=
(

I − gy

)−1
gσ = 0(A-13)

and twice for

y′′(0) = E
[

gyDσ2{yt−1} + gy2Dσ{yt−1}
⊗[2] + 2gyεεt ⊗Dσ{yt−1}(A-14)

44Dσi yt denotes thei’th order derivative ofyt with respect toσ. The alternative notation,yσi , refers to thei’th
derivative ofyt with respect to its third argument, i.e., the “direct” derivative with respect toσ, neglecting derivatives
involvingσ that enter through the termσεt that are included in the notationDσi yt.
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+2gyσDσ{yt−1} + 2gεσεt + gε2ε
⊗[2]
t + gσ2

]

(A-15)

=
(

I − gy

)−1 (

gy2E
[

Dσ{yt−1}
⊗[2]

]

+ gε2E
[

ε
⊗[2]
t

]

+ gσ2

)

(A-16)

=
(

Iny − gy

)−1
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gσ2 +

(
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In2
y
− g⊗[2]

y

)−1
g⊗[2]
ε

)

E
[

ε
⊗[2]
t
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(A-17)

where the last line follows fromE
[

Dσ{yt}
⊗[2]

]

= E
[(

gyDσ{yt−1} + gεεt + gσ
)⊗[2]

]

= g⊗[2]
y E

[

Dσ{yt−1}
⊗[2]

]

+

g⊗[2]
ε E

[

ε
⊗[2]
t

]

Thus, up to second order inσ, the (σ = 1) ergodic mean is

ymean
≈ y+

1
2

(

Iny − gy

)−1
(

gσ2 +

(

gε2 +
(

In2
y
− g⊗[2]

y

)−1
g⊗[2]
ε

)

E
[

ε
⊗[2]
t

])

as claimed in corollary3.4.

A.7 Proof of Proposition 3.6

Successive differentiation of (26) yieldsyyσi andyεσi as functions of derivatives ofg with respect to

yt−1 andσ as well as derivatives of the chosen risky point of approximation y(σ).

A.8 Proof of Corollary 3.7

For a second-order (inσ) approximation ofyy(σ), differentiateyy(σ) = gy(y(σ), 0, σ) once for

yy
′(0) = gy2y′(0)⊗ Iny + gσy = 0(A-18)

and twice for

yy
′′(0) = gy2

(

y′′(0)⊗ Iny

)

+ gσ2y(A-19)

Thus, up to second order inσ, the (σ = 1) derivative iny is

yy(1) ≈ gy +
1
2

(

gy2

(

y′′(0)⊗ Iny

)

+ gσ2y

)

as was claimed in corollary3.7. Analogous derivations follow foryε(σ) ≈ yε(0)+yε
′(0)σ+1

2yε
′′(0)σ2.

A.9 Data

I use post-war US macroeconomic and asset pricing data to calibrate the model in section5 and to

estimate risk aversion and the standard deviation of technology growth shocks in section6.

All series are quarterly. Investment is defined as the sum of the National Income and Product
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Accounts (NIPA) measures of Personal Consumption Expenditures on Durable Goods, Private Non-

residential Fixed Investment, and Private Residential Fixed Investment; Consumption as the sum

of the NIPA measures of Personal Consumption Expenditures on Nondurable Goods and Services;

Output is Gross Domestic Product (GDP) expressed at an annual rate; Hours are measured by Hours

Worked by Full-Time and Part-Time Employees, interpolatedto a quarterly series by the growth

rate of Civilian Noninstitutional Population series. Investment, Consumption, and Output are ex-

pressed in real per capita terms by deflating by the Civilian Noninstitutional Population series and

the chain-type GDP deflator.

The risky return is the return on the NYSE value weighted portfolio from the CRSP dataset and

the risk-free return is secondary market rate for the three month Treasury bill. Both returns have

been deflated by the implicit deflator of the Personal Consumption Expenditures Nondurables and

Services series.

A.10 Business Cycle Tables

Table6 summarizes the first two moments of output, consumption, investment, and hours.

[Table 6 about here.]

Table7 summarizes the first two moments of output, consumption, investment, and hours from

the model of section4 evaluated at the posterior mode with the risky linear approximation.

[Table 7 about here.]

39



Table 1: Common Calibration

Parameter a δ ν β ξ

Value 0.46% 0.0196 0.357 0.991 0.3

a—1948:3-2013:2 average output growth
Remaining values from Caldara, Fernández-
Villaverde, Rubio-Ramı́rez, and Yao (2012)

Table 2: Baseline and Extreme Calibration

Baseline Extreme
Parameter γ ψ σ γ ψ σ

Value 5 1.008 1.12625% 40 1.0085 1.1269%

γ and η—Caldara, Fernández-Villaverde, Rubio-Ramı́rez, and
Yao’s (2012) baseline and extreme values
σ andψ—1948:3-2013:2 average output and consumption growth
volatilities

Table 3: Computational Costs: Monte Carlo Estimation

Method Linear Risky Linear 3rd Order Pert. 3rd Order Pert. (pruned)
Evaluation Time 0.44 0.47 430 690

in seconds, per likelihood evaluation

Table 4: Priors and Posteriors

γ σ

Priors
Type Shifted Gamma Inverse Gamma
Mean 20 0.22%
Mode 14.737 0.11%
Standard Deviation 10 0.6%
Domain (1,∞) (0,∞)

Posteriors
Risky Linear Mode 29.296 1.0032%
Standard Linear Mode 14.737 0.9911%
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Table 5: Asset Return Properties

Empirical Risky Linear Standard Linear

Return Mean Std. Dev. Mean Std. Dev.
rk 2.14 8.25 0.5003 0.0801 0.5502 0.0758
r f 0.26 0.62 0.4980 0.0767 0.5502 0.0726
rk − r f 1.88 8.25 0.0023 0.0212 0.000 0.0217
Market Price of Risk

0.2283
0.2004 0.1049

Sharpe Ratio 0.1072 0.0000

All returns are measured as real quarterly percentage returns.
A description of the post war US data used for the empirical values can be found in
appendixA.9.
The model based numbers were derived using the posterior mode from the risky linear
model, see table4

Table 6: Business Cycle Data, 1948:2-2013:2

Variable Mean Std. Dev.
Relative Autocorrelations Cross Corr.
Std. Dev. 1 2 3 w∆ ln Yt

∆ ln Yt 0.458 0.988 1.000 0.381 0.266 0.046 1.000
∆ ln Ct 0.497 0.565 0.572 0.257 0.205 0.074 0.531
∆ ln It 0.420 2.527 2.558 0.335 0.249 0.043 0.662
∆ ln Nt 0.328 1.188 1.202 -0.020 -0.010 -0.008 0.388
ln Nt 119.993 2.786 2.820 0.999 0.998 0.997 -0.141
ln Ct − ln Yt — 5.956 6.029 0.990 0.979 0.965 -0.173
ln It − ln Yt — 7.328 7.418 0.962 0.911 0.843 0.129

All data was retrieved from the Federal Reserve Economic Data (FRED) database of the Fed-
eral Reserve Bank of St. Louis.

Table 7: Business Cycle Properties, Posterior Mode

Variable Mean Std. Dev.
Relative Autocorrelations Cross Corr.
Std. Dev. 1 2 3 w∆ ln Yt

∆ ln Yt 0.46 0.863 1.000 0.0083 0.0080 0.0078 1.000
∆ ln Ct 0.46 0.515 0.596 0.0665 0.0641 0.0619 0.992
∆ ln It 0.46 1.712 1.983 -0.0156 -0.0150 -0.0145 0.996
∆ ln Nt 0 0.231 0.268 -0.0237 -0.0229 -0.0221 0.984
ln Nt -1.035 0.864 1.001 0.9643 0.9303 0.8980 0.308
ln Ct − ln Yt — 1.341 1.553 0.9643 0.9303 0.8980 -0.308
ln It − ln Yt — 3.203 3.710 0.9643 0.9303 0.8980 0.308

Compare with the empirical moments in table6.
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Figure 1: Euler Equation Errors
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(b) Asset Pricing Variables

Figure 2: Impulse Response Functions
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Figure 3: Likelihood Cuts: Baseline Calibration
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Figure 4: Likelihood Cuts: Extreme Calibration
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Figure 5: Likelihood Cuts: Baseline Calibration, Data on∆Yt
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Figure 6: Likelihood Cuts: Baseline Calibration, Data onrpt
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Figure 7: Risky Linear Estimation Results
x-axis:σ; y-axis:γ
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Figure 8: Standard Linear Estimation Results
x-axis:σ; y-axis:γ
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Figure 9: Third Order Nonlinear Moving Average Estimation Results
x-axis:σ; y-axis:γ
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