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ABSTRACT. This paper demonstrates an economically significant loss of accuracy in stan-

dard, generalized Schur (or QZ) decomposition based solutions methods for linear dynamic

stochastic general equilibrium (DSGE) models. This is illustrated in a simple production-

based asset pricing model with external habit formation, calibrated to match post-war

US consumption growth and the equity premium. When there is insufficient eigenvalue

separation about the unit circle, QZ-based numerical solutions miss the equity premium by

up to several annualized percentage points. While none of the numerical solution methods

gave any indication of this error, easily implementable backward-error metrics are shown

to successfully warn of such potential inaccuracies.
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1. INTRODUCTION

The asset pricing literature abounds with puzzles and perhaps the most prominent

is the equity premium puzzle (Mehra and Prescott, 1985; Mehra, 2003) that seeks to

understand how risky assets can command such a high excess return in the face of

moderate underlying volatility. While many convincing consumption based explanations

that modify assumptions on, say, the stochastic properties of the pricing kernel have

been offered, production based asset pricing face the additional challenge of needing

to provide a structural cause of these stochastic properties. Providing a structural

explanation invariably requires solving a structural model, the most common being

dynamic stochastic general equilibrium (DSGE) models, which generally need to be
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2 ACCURACY OF LINEAR DSGE SOLUTION METHODS

solved numerically. Cochrane (2008, p. 300) expressed concern regarding the accuracy of

solution approximations in general equilibrium and this paper points out a surprising

degradation of the accuracy of solution approximations in the simplest approximation,

linear approximations, and their consequences for the equity premium reported by these

methods.

Providing a solution to a DSGE model involves solving a functional equation to de-

termine an unknown function that maps the sequences of variables in the information

set into the endogenous variables of the model, resolving expectations of these same en-

dogenous variables (Judd, 1998; Fernández-Villaverde, Rubio-Ramírez, and Schorfheide,

2016). Linear DSGE models and associated linear solutions have long been studied, e.g.,

Blanchard (1979) and Blanchard and Kahn (1980), and modern numerical packages such

as Dynare (Adjemian, Bastani, Juillard, Mihoubi, Perendia, Ratto, and Villemot, 2011),

Gensys (Sims, 2001), (Perturbation) AIM (Anderson and Moore, 1985; Anderson, Levin,

and Swanson, 2006), Uhlig’s Toolkit (Uhlig, 1999) and Solab (Klein, 2000) not only provide

tools for solving a wide range of linear models, but also provide a first step in the solution

procedure for many nonlinear methods as well.

The substantial hurdle in these linear methods is finding a solution to a (matrix)

quadratic equation, frequently required to be the unique stable solution. For multivariate

models with potentially singular coefficient matrices, the standard method is to double

the dimension of the problem and employ the generalized Schur or QZ decomposition of

Moler and Stewart (1973). While this algorithm is backward stable for the generalized

eigenvalue decompositions for which it was designed, it is not always backward stable for

quadratic eigenvalue problems (Tisseur, 2000) and may yield ill-conditioned eigenvalues

for quadratic matrix polynomials (Higham, Mackey, and Tisseur, 2006; Higham, Mackey,

Tisseur, and Garvey, 2008). I present the backward-forward error analysis of Higham and

Kim (2001) for matrix quadratic equations to provide an assessment of the accuracy of

various solution methods in the literature valid when a symbolic solution is not available

for comparison.

I demonstrate potential numerical inaccuracy in a simple, two equation canonical

real business cycle model with habit formation, chosen as its small dimension enables

a symbolic solution to serve as a benchmark. Exploring calibrations that match two

calibration targets, post-war US consumption growth volatility and the average equity

premium, I find that standard QZ based methods deliver an equity premium often off by
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several annual percentage points. Using the pseudospectrum (see Tisseur and Higham,

2001; Higham and Tisseur, 2002), the set of eigenvalues subjected to small perturbations,

I demonstrate the numerical inaccuracies gain economic significance when the separation

of stable and unstable eigenvalues at the unit circle becomes numerically small. Backward

error diagnostics that can be calculated at minimal additional cost and in the absence

of a symbolic or analytic solution successfully warn of potential inaccuracies. This is

of immediate, practical use, as none of the algorithms from the literature I explore

produced any warning that their solutions might suffer from economically significant

losses of accuracy. More general production based explanations, such as Jermann (1998),

Tallarini (2000), and Croce (2014), combine more involved specifications of preferences

and mappings from exogenous variables to underlying macroeconomic variables, and

must also invariably solve their models numerically. Inasmuch as the solutions thereto

are potentially subject to this inaccuracy in the solution of the underlying DSGE models,

so too are their asset pricing predictions.

The remainder of the paper is structured as follows. Section 2 introduces the real

business cycle model and the log-linear asset pricing approach. In section 3 I turn to

solution methods of linear DSGE models and in section 4 to the numerical mathematics

literature on solving matrix quadratic and generalized eigenvalue problems to assess the

accuracy of these solutions. Section 5 presents the results from various methods in the

DSGE linear solution literature for several calibrations. Finally, I conclude in section 6.

2. A SIMPLE LOG NORMAL DSGE ASSET PRICING MODEL

Here I layout a simple production-based asset pricing model, based on a standard

real business cycle model (Kydland and Prescott, 1982; King and Rebelo, 1999) with

external habit formation and a power utility kernel. (Constantinides, 1990; Campbell and

Cochrane, 1999; Campbell, 2003) The representative household seeks to maximize

E0

∞∑
t=0

βtu (ct, X t) , 0<β< 1 (1)

where ct is consumption and X t the externl habit stock, subject to

ct +kt = ezt kαt−1 + (1−δ)kt−1, 0<α,δ< 1 (2)
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where kt is the capital stock accumulated at time t and zt is total factor productivity that

follows the AR(1) process

zt = ρzt−1 +ωεt, εt
i.i.d.∼ N(0,1), |ρ| < 1, 0<ω (3)

The first order condition of the maximization problem is

1= E t

[
β

uc (ct+1, X t+1)
uc (ct, X t)︸ ︷︷ ︸

mt+1

(
αezt+1 kαt +1−δ)︸ ︷︷ ︸

Rt+1

]
(4)

where mt+1 is the stochastic discount factor or pricing kernel and R+1 is the (risky) return

on capital. Assuming an external habit such that X t = ct−1 in equilibrium with h the

degree of habit formation and power or CRRA utility with risk coefficient σ, marginal

utility is uc (ct, X t) = (ct −hct−1)−σ. Equations (2)-(4) characterize a equilibrium for the

stochastic sequences {ct,kt, zt}∞t=0 given a sequence of shocks {εt}∞t=0 and initial conditions

c−1,k−1, z−1.

Defining the steady state, values c,k, z that solve (2)-(4) with εt = 0∀t, equations (2)

and (4) can be log-linearized around these values to yield

0= AE t [yt+1]+Byt +Cyt−1 +Dzt, yt =
[
ĉt k̂t

]′
(5)

zt = ρzt−1 +ωεt, εt
i.i.d.∼ N(0,1) (6)

a 2 by 2 system of equations linear in the log-deviations of the endogenous variables, ct

and kt, from their steady states, ŵt ≡ logwt − logw, for w ∈ c,k.

Following Hansen and Singleton (1983); Campbell and Shiller (1988); Campbell (2003),

risky (say, Rt from above) and risk-free (via no arbitrage, 1= E t [mt+1]R f
t ) assets can be

priced under the implied joint log-normality of the approximation above via

1= E t

[
e �mt+1+�Rt+1

]
, and1= R f eR f

t E t

[
e �mt+1

]
(7)

which gives the risk premium as −covt( �mt+1, �Rt+1), following, e.g., Lettau (2003), and can

be expressed in terms of the variance of zt (ω2) as σ
1−hαQcz

(
1+β(1−δ)

)
ω2. Importantly,

the coefficient Qcz, the impact of technology on (log) consumption, must be solved for

numerically even in this (log) linear case. To this solution I turn to in the following section.

3. SOLUTION METHODS

Standard numerical solution packages available to economists and policy makers—e.g.,

Dynare (Adjemian, Bastani, Juillard, Mihoubi, Perendia, Ratto, and Villemot, 2011),

Gensys (Sims, 2001), (Perturbation) AIM (Anderson and Moore, 1985; Anderson, Levin,
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and Swanson, 2006), Uhlig’s Toolkit (Uhlig, 1999) and Solab (Klein, 2000)—all analyze

models that in some way or another can be expressed in the form of the nonlinear

functional equation

0= E t[ f (yt+1, yt, yt−1,εt)] (8)

The model equations (optimality conditions, resource constraints, market clearing

conditions, etc.) are represented by the ny-dimensional vector-valued function f :

Rny ×Rny ×Rny ×Rne →Rny ; yt ∈Rny is the vector of ny endogenous variables; and εt ∈Rne

the vector of ne exogenous shocks with a known distribution, where ny and ne are positive

integers (ny,ne ∈N).

The solution to (8) is sought as the unknown function

yt = y(yt−1,εt), y :Rny+ne →Rny (9)

a function in the time domain that maps states, yt−1 and εt, into endogenous variables,

yt. An analytic form for (9) is rarely available and researchers and practitioners are

compelled to find approximative solutions. However, a steady state, y ∈ Rny a vector

such y = y(y,0) and 0 = f (y, y, y,0) can frequently be recovered, either analytically or

numerically, providing a point of expansion around which local solutions may be recovered.

A first-order, or linear approximation, of (8) at the steady state delivers, analogously to

the log linearized model of section 2,

0= AE t [yt+1]+Byt +Cyt−1 +Dεt (10)

where A, B, C, and D are the derivatives of f in (8) with respect to its arguments and,

recycling notation, the y’s in (10) refer to (log) deviations of the endogenous variables

from their steady states, y.

In analogy to (9), the standard approach to finding a solution to the linearized model

(10) is to find a linear solution in the form

yt = P yt−1 +Q εt (11)

a recursive solution in the time domain–solutions that posit yt as a function of its own

past, yt−1, and exogenous innovations, εt.

Inserting (11) into (10) and taking expectations (E t [εt+1]= 0), yields the restrictions

0= AP2 +BP +C, 0= (AP +B)Q+D (12)
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Generally, a unique P with eigenvalues inside the closed unit circle is sought (I will

address this formally below). Lan and Meyer-Gohde (2014) prove the latter can be

uniquely solved for Q if such a P can be found. Hence, the hurdle is the former, matrix

quadratic equation.

To assist in the analysis, I will formalize the matrix quadratic equation in (12). For A,

B, and C ∈Rny×ny , a matrix quadratic M(P) :Cny×ny →Cny×ny is defined as

M(P)≡ A P2 +B P +C (13)

with its solutions, called solvents,1 given by P ∈ Cny×ny if and only if M(P) = 0. The

eigenvalues of the solvent, called latent roots of the associated lambda matrix2 M(λ) :C→
Cn×n (here of degree two), are given via

M(λ)≡ Aλ2 +Bλ+C (14)

The latent roots are (i) values of λ ∈C such that det M(λ)= 0 and (ii) ny−rank(A) infinite

roots. An explicit link between the quadratic matrix problem and the quadratic eigenvalue

problem is given via

λ ∈C :
(
Aλ2 +Bλ+C

)
x = 0 for some x 6= 0 (15)

which has been reviewed extensively by Tisseur and Meerbergen (2001) and for which

Hammarling, Munro, and Tisseur (2013) provide a comprehensive method to improve

the accuracy of its solutions. If a unique stable solution is sought or required, this can be

formulated via an adaptation of Blanchard and Kahn’s (1980) rank and order conditions to

the matrix quadratic formulation above. First assume there exist 2ny latent roots of (14)

of which ny lie inside and ny outside the unit circle. Second, there exists an P ∈Rny×ny

such that M(P)= 0 and |eig(P)| < 1.

Most linear DSGE methods use a generalized Schur or QZ decomposition (Moler and

Stewart, 1973; Golub and van Loan, 2013) of the companion linearization of (10)3 in some

form or another. For the formulation above, the matrix quadratic (12) can be brought into

1The analysis proceeds in the complex plane, but the results carry over when solutions are restricted to

be real valued due to the eigenvalue separation about the unit circle assumed below, see also Klein (2000).
2See, e.g., Dennis, Jr., Traub, and Weber (1976, p. 835) or Gantmacher (1959, vol. I, p. 228).
3Instead of the method of undetermined coefficients taken for expediency here, a multivariate pivoted

Blanchard (1979) approach that delivers the solution constructively is presented in the appendix.
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the QZ form as

F

Iny

P

P =G

Iny

P

 , F ≡
 Iny 0ny×ny

0ny×ny A

 , G ≡
0ny×ny Iny

−C −B

 (16)

where Iny is an ny ×ny identity matrix and 0ny×ny is an ny ×ny zero matrix.

Applying the QZ or generalized Schur decomposition (unitary Q and Z and upper

triangular S and T with Q∗FZ = S and Q∗GZ = T), Higham and Kim (Theorem 3 2000)

prove that all solvents or solutions of (16) are of the form P = Z21Z−1
11 =Q11S−1

11 T11Q−1
11 .

The decomposition is intricately related to the quadratic eigenvalue problem (15) via

λ ∈C : (Fλ−G) y, where y=
[
x′ x′λ

]
for some x 6= 0 (17)

λ ∈C : Q (Sλ−T) ỹ, where ỹ= Z∗
[
x′ x′λ

]
for some x 6= 0 (18)

where the eigenvalues in both lines are identical following from unitary equivalence

(Moler and Stewart, 1973) and hence identical to the eigenvalues in (15) and the latent

roots of (14). From the upper triangularity of S and T it follows that the spectrum or set

of eigenvalues of the pencil PFG(λ)= Fλ−G is determined by the diagonal entries of S

and T

ρ(PFG)= {
tii/sii, if sii 6= 0; ∞, if sii = 0; ;, if sii = tii = 0; i = 1, . . . ,2ny

}
(19)

where sii and tii denote the i’th row and i’th column of S and T respectively.

Ordering the decomposition so that the eigenvalues outside the unit circle are in

the lower right blocks of S and T (hence S22 and T22), the necessary and sufficient

assumptions for a unique stable solution for yt of (10) to exist are (1) Regularity: PFG(z)

is called regular if there exists a z ∈C such that det (Fz−G) 6= 0; (2) Order: Of the 2ny

generalized eigenvalues, there are exactly ny stable roots inside the unit circle, and

consequently, exactly ny unstable roots outside the unit circle; (3) Rank: Z11, the upper

right block of Z, is nonsingular. If and only if these three assumptions are fulfilled does

a unique solution P stable with respect to the closed unit circle exist. Consequentially,

the overwhelming majority of the linear solution methods provided to researchers and

practitioners in the standard numerical solution packages enumerated at the beginning

of the section can be summarized by this single matrix decomposition.

Binder and Pesaran (1997), the cyclic reduction method in Dynare (Adjemian, Bastani,

Juillard, Mihoubi, Perendia, Ratto, and Villemot, 2011), and Anderson (2010) are three
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prominent methods that solve for P without appealing to the generalized Schur decom-

position. Binder and Pesaran’s (1997) “fully recursive method” works directly with the

matrix quadratic (12) and iterates on

P̃k = Iny − ÃP̃−1
k−1C̃, where Ã ≡ B−1A, C̃ ≡ B−1C, P̃0 ≡ Iny (20)

Delivering the solution to the matrix quadratic (12) as P =−P̃−1
N C̃ for some maximum

iteration N. The cyclic reduction method implemented in Dynare (Adjemian, Bastani,

Juillard, Mihoubi, Perendia, Ratto, and Villemot, 2011) operates on the following recursion

(see Bini, Latouche, and Meini, 2002)

P =−Â−1
i A0 (21)

where

Â i = Â i−1 − A2,i−1A−1
1,i−1A0,i−1 (22)

A1,i = A1,i−1 − A0,i−1A−1
1,i−1A2,i−1 − A2,i−1A−1

1,i−1A0,i−1 (23)

A0,i =−A0,i−1A−1
1,i−1A0,i−1 (24)

A2,i =−A2,i−1A−1
1,i−1A2,i−1 (25)

with initial conditions Â0 = B, A2,0 = A, A1,0 = B, and A0,0 = C until convergence of Â i.

Anderson (2010) applies the bi-orthogonality from the separation of stable and unstable

solutions to solve for the left invariant space associated with unstable solutions via4

 yt

E t [yt+1]

=
 0ny×ny Iny

−A−1C −A−1B

yt−1

yt

 ⇒
[
V1 V2

] 0ny×ny Iny

−A−1C −A−1B

=M
[
V1 V2

]
(26)

where the vectors of V span the invariant space associated with unstable eigenvalues.

This gives yt =−V−1
2 V1 yt−1 as the solution to the homogenous problem, i.e., the matrix

quadratic (12), P =−V−1
2 V1. Essentially, by rearranging or shuffling the equations and

variables, Anderson (2010) is able to reformulate a potentially singular system requiring

the generalized Schur decomposition into a nonsingular system that can be solved using

standard eigenvalue methods. The key commonality of these three methods is that they

avoid the QZ or generalized Schur decompositon.

4This assumes that A is invertible, the general case can be found in Anderson (2010) and is merely

slightly more involved, utilizing the shuffle-algorithm of Luenberger (1978) to yield an invertible A.
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4. ACCURACY OF METHODS

In this section, I present different perspectives on the accuracy of the different methods

presented in the previous section. As the model in section 2 is of low dimension, a

symbolic solution is available. This allows me to directly compare the numerical solutions

of the previous section with this symbolic solution. As such a symbolic solution is not

available for larger models, this comparison is not useful in general. I accordingly

present two further approaches. Firstly, I turn to the analysis of the pseudospectrum,

which captures the numerical inaccuracy in the calculation of the spectrum or set of

eigenvalues of a pencil, the foundation of the QZ method behind most of the methods of

the previous section. Finally, I summarize a forward-backward error assessment of the

matrix quadratic problem.

Apart from Anderson (2008), very little attention has been paid to comparing the

accuracy of different algorithms for linear models5 and to numerically addressing the

assumptions necessary for the existence of a unique stable solution.6 Improvements in

the accuracy of the solution to linear DSGE models has implications for many nonlinear

solutions as well. Anderson, Levin, and Swanson (2006) demonstrate that even small

inaccuracies in lower orders compound to larger errors in the computation of higher,

nonlinear solutions such as in Jin and Judd (2002).

Higham and Kim (2000) note that Matlab can reliably provide the solvents of matrix

quadratic problems of a small dimensionality like the model of section 2, allowing for a

direct comparison of the numerical solutions with this symbolic solution. Specifically, I

will assess the different methods’ solutions with respect to the symbolic solution via the

two moments I will target in calibrating the model E [rp] and std (log ct) as well as the

largest absolute deviations in the matrices for the linear solution or policy function (11),

P and Q,

max(|∆P|)≡max(|Psymbolic −Pmethod|), max(|∆Q|)≡max(|Qsymbolic −Qmethod|) (27)

5This is in stark contrast to the many studies that examine the accuracy of different nonlinear methods.

See Fernández-Villaverde, Rubio-Ramírez, and Schorfheide (2016) for an overview.
6Heilberger, Klarl, and Maußner (2015) provides an exception, showing that, theoretically, if the rank

assumption for the QZ decomposition is fulfilled for one ordering of the eigenvalues that conforms to the

unit circle separation, it holds for any ordering that conforms to the same.
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While useful as direct measures of accuracy, a symbolic solution for the policy function (11)

is generally not available, even in this linear case. I will now turn to numerical methods

to assess the accuracy of the solution.

The generalized Schur or QZ based methods from section 3 are eigenvalue based

methods, with the triangular structure of the factorizations revealing the eigenvalues

of the underlying inflated matrix pencil. Studies concerning the numerical robustness

of generalized eigenvalue problems date back at least to Stewart (1972) and Wilkinson

(1979), who provided examples of essentially arbitrary results from the QZ algorithm

in the presence of nearly singular pencils, i.e. violation of the regularity assumption

above. The computation of eigenvalues numerically is likewise subject to finite precision.

Hammarling, Munro, and Tisseur (2013) provide a comprehensive study on improving the

accuracy of quadratic eigenvalue problems. Anguas, Bueno, and Dopico (2019) provides a

comparison of different conditioning numbers for the eigenvalues of matrix polynomials

and conditioning numbers of polynomial eiqenvalues can be obtained via eigenvalues

for perturbations of the polynomial or pseudospectra (see Tisseur and Higham, 2001;

Higham and Tisseur, 2002). Specifically, Tisseur and Higham (2001), Mengi and Overton

(2005), and Michiels, Green, Wagenknecht, and Niculescu (2006) apply pseudospectra to

stability radii in continuous-time applications. Along with a comparison of the numerical

and symbolic eigenvalues, λ,

max(|∆eig|)≡max(|λsymbolic −λmethod|) (28)

I will turn to the pseudospectrum for insight into the saddle-path stability vis-a-vis the

unit circle in the problem laid out above.

Specifically, the pseudospectrum provides a perturbed analog to the spectrum or set of

eigenvalues/latent roots of (14) and (15)

ρε(M)= {λ ∈C : (M(λ)+∆M(λ))x = 0 for some x 6= 0 and ∆M(λ) (29)

with ‖∆A‖ ≤ εαA,‖∆B‖ ≤ εαB,‖∆C‖ ≤ εαC} (30)

where ∆M(λ) represents the perturbation of the quadratic7

∆M(λ)≡∆Aλ2 +∆Bλ+∆C (31)

7This is perhaps easier to see via the identity M(λ)+∆M(λ)= (A+∆A)λ2 + (B+∆B)λ+ (C+∆C).
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and the αi ’s control the perturbation, which are set as αX = |X | using the 2-norm following

Tisseur (2000). As shown in Tisseur and Higham (2001), this 2-norm definition of the

pseudopectrum corresponds to the backward errors of the eigenvalues.

As proven in Tisseur (2000), while the QZ or generalized Schur algorithm is numerically

stable for the generalized eigenvalue problem (Stewart, 1972), this is not the case for the

quadratic eigenvalue problem, as it does not respect the structure of the latter. To see

this, first define the pseudospectrum of (17) analogous to above

ρε(PFG)= {λ ∈C : (PFG(λ)+∆PFG(λ))x = 0 for some x 6= 0 and ∆PFG(λ) (32)

with ‖∆F‖ ≤ εαF ,‖∆G‖ ≤ εαG} (33)

comparing the perturbations involved in (32) with (29)

∆PFG(λ)≡∆Fλ−∆G =
∆F11 ∆F12

∆F21 ∆F22

λ−
∆G11 ∆G12

∆G21 ∆G22

 (34)

6=
 Iny 0ny×ny

0ny×ny ∆A

λ−
0ny×ny Iny

−∆C −∆B

 Iny

Inyλ

=
 0

∆M(λ)

 (35)

Inspection underscores that, in general, perturbations of the QZ or generalized Schur of

the companion linearization (16) do not respect the specific structure in the underlying

matrix quadratic problem (12).

Higham and Kim (2001) provide bounds on the backward error and a condition number

for the solvent, P, of a quadratic matrix equation. Beginning with the perturbed matrix

quadratic

M(P +∆P)+∆M(P +∆P)≡ (A+∆A) (P +∆P)2 + (B+∆B) (P +∆P)+C+∆C (36)

with normwise perturbations ε=
∥∥∥[
∆A/‖A‖F ∆B/‖B‖F ∆C/‖C‖F

]∥∥∥
F

, they derive the

sharp bound

‖∆P‖F /‖P‖F ≤Ψ(P)ε+O
(
ε2) (37)

where Ψ(P) is the condition number given by

Ψ(P)=
∥∥∥(

In ⊗ AP +P ′⊗ A+ In ⊗B
)−1

[
‖A‖F

(
P2)′⊗ In ‖B‖F P ′⊗ In ‖C‖F In2

]∥∥∥
F

/
∥∥P2∥∥

F

(38)

The backward error of a solvent P, is defined by Higham and Kim (2001) via

η (P)=min
{
ε : M(P)+∆M(P)= 0,

∥∥∥[
∆A/‖A‖F ∆B/‖B‖F ∆C/‖C‖F

]∥∥∥
F
≤ ε

}
(39)
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and they show that the backward error is bounded by

η (P)≤ η (P)≤ η (P) (40)

where the lower bound on the backward error is

η (P)=
∥∥AP2 +BP +C

∥∥
F(∥∥P2

∥∥2
F /‖A‖2

F +‖P‖2
F /‖B‖2

F +n/‖C‖2
F

)1/2 (41)

and the upper bound is

η (P)=
∥∥−vec

(
AP2 +BP +C

)∥∥
2

σmin

([
‖A‖F

(
P2)′⊗ In ‖B‖F P ′⊗ In ‖C‖F In2

]) (42)

where vec is the columnwise vectorization operator and σmin is the smallest singular

value. Higham and Kim (2001) point out that their backward error analysis demonstrates

that a small relative residual (the absolute residual being AP2+BP+C for an approximate

P returned by a numerical algorithm) does not necessarily imply a small backward error

for the matrix quadratic problem. The importance of this can be seen with the “useful

rule of thumb” (Higham, 2002, p. 9)

forward error. condition number×backward error (43)

illustrating that the error in the approximate solution (forward error), necessitates

consideration of both the condition number an the backward error. Nonetheless, both

bounds on the backward error of solvents are useful when, as is generally the case,

an analytic or symbolic solution is not available. The lower bound, η (P), is particularly

appealing to the DSGE literature, which often–e.g., in posterior sampling–requires solving

the matrix quadratic equation a multitude of times, as its computational burden is

minimal with its calculation via matrix products and norms.

While the backward stability in the calculation of the eigenvalues does not fully char-

acterize the numerical stability of the solution of linear DSGE models, it highlights the

potential for QZ or generalized Schur-based algorithms to underperform the alternative

algorithms, particularly when the separation between the stable and unstable eigenvalues

is small. I will turn to demonstrating this in the next section using the specific model of

section 2.

5. RESULTS

In this section I investigate the accuracy of the different methods, QZ- and non-QZ-

based, from section 3 in solving the model of section 2. The model was chosen to be as
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simple as possible, in order to enable the symbolic solution of the underlying matrix

quadratic problem; see Higham and Kim (2000) who argue that Matlab can successfully

solve two-dimensional matrix quadratic problems reliably. I provide numerical results

for two calibrations, see table 1, labeled standard and extreme. The standard calibration

follows the RBC literature (see, e.g., King and Rebelo, 1999) with the degree of habit

formation, h and curvature in the utility function, σ, elevated to match an equity premium

of 7.8 in annual percentage points following (Mehra, 2003) for the post-war US and ω, the

standard deviation of the technology shock, adjusted to deliver a standard deviation of

consumption growth, std (log ct), of 0.566 in quarterly percent, in line again with the post-

war US experience. The extreme calibration is chosen to bring the eigenvalue separation

between the stable and unstable pencils closer together, while maintaining the match of

the symbolic solution to the equity premium and consumption growth volatility.

Besides assessing whether the different solution methods are able to recover the exact

solutions for the two calibration targets, I examine the underlying causes of a degeneration

in accuracy following the results of the previous section. Namely the largest absolute

deviation in the matrices for the linear solution or policy function (11), P and Q, and the

largest absolute difference in the finite eigenvalues of the quadratic eigenvalue problem

(15) relative to the symbolic solution, and the separation between the calculated stable and

unstable eigenvalues along with the conditioning number and bounds on the backward

error of the solvent produced by the various methods. Additionally, I provide plots of the

pseudospectra of the matrix quadratic (29) and of the QZ companion linearization (32).

The results that are referred to as “symbolic” are solved symbolically and evaluated using

Mathlab’s VPA (variable precision arithmetic) with 100 digits of accuracy.

h β δ α σ ρ ω

Standard 0.966 0.99 0.025 0.36 98.1 0.95 0.134

Extreme 1-3.907E-05 1-1.750E-10 0.6715 1-5.751E-05 9.151 1-5.184E-04 3.068E-03

TABLE 1. Calibrations

Table 2 contains the results for the standard calibration. The first line contains the

equity premium predicted by the different methods and all of the methods successfully

predict an equity premium of 7.8 annual percentage points, likewise the volatility of

consumption growth, the third line, is identical across methods. Upon closer examination,

the second line, the symbolic equity premium and that predicted by the varying methods
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differ to varying degrees. The most accurate methods being those of Binder and Pesaran

(1997) and the cyclic reduction method of Dynare, with all QZ-based methods apart from

Dynare displaying degrees of accuracy several orders of magnitude lower. As laid out in

Villemot (2011), Dynare reduces the problem solved with the QZ algorithm by, among

others, eliminating zero column variables in the A and C matrices of the linear system

(10); this is in line with one of the suggestions by Hammarling, Munro, and Tisseur

(2013) to improve the accuracy of the quadratic eigenvalue problem. This is reflected

in the fifth line of the table, where the largest error in the finite eigenvalues calculated

by Dynare are in line with the non-QZ-based methods, those of the remaining QZ-based

methods are several orders of magnitude larger, and that of Binder and Pesaran (1997)

demonstrating the smallest error. The errors in the resulting matrices for the linear

solution or policy function (11), P and Q are roughly of the same order of magnitude as the

eigenvalue errors. Despite the differences in the accuracy of calculating the eigenvalues,

all of the methods yield the same eigenvalue separation between the stable and unstable

pencils and conditioning numbers of the solvent P. Based on this standard calibration,

the differences in the solutions generated by the different methods are of no economic

consequence. Yet as indicated by the last two lines, the backward errors in the calculated

solvents P differ in a numerically consequential way. Again with the exception of Dynare,

the backward errors of all QZ-based methods exceed the double precision unit roundoff of

2−52 = 2.2204E−16, whereas all other methods deliver a backward error less than the

roundoff.

Figure 1 plots the pseudospectra for the extreme standard of the matrix quadratic (29)

– in blue – and of the QZ algorithm (32) – in red – against the symbolic eigenvalues –

in black – for two different sizes of perturbations. In the left panel, the pseudospectra

are not visible, as they overlap with the symbolic results for perturbations of this size.

For slightly larger perturbations (right panel), the pseudospectrum of the QZ algorithms

encompasses the unit circle while that of the matrix quadratic remains invisible at this

scale. This, following Tisseur and Higham (2001), indicates that the backward error in

calculating the eigenvalues is not only larger than under the QZ algorithm than with the

matrix quadratic, consistent with Tisseur (2000) and with the bounds for the backward

errors of the solvents P in table 2, but also that the stable and unstable eigenvalues are

potentially indistinguishable numerically.
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FIGURE 1. Pseudospectrum: Standard Calibration x-axis: real component, y-axis:

imaginary component, large black dots: eigenvalues, black curve: unit circle, small red

dots: pseudospectrum QZ companion linearization (32), small blue dots: pseudospectrum

matrix quadratic (29)

Table 3 contains the results for the extreme calibration and the resulting predictions

for the two calibration targets now differ significantly across methods. While the non-QZ-

based methods continue to maintain a significant match with the calibration targets, lines

1 and 3, the QZ-based methods including Dynare now mispredicts the equity premium

by at least 75 annual basis points and as much as 3 annual percentage points, errors of

genuine economic significance. The second line, containing the differences of the equity

premium predicted by the different methods and the symbolic solution, now show the

algorithm of Anderson (2010) being more accurate than the method of Binder and Pesaran

(1997) and the cyclic reduction method of Dynare being several orders of magnitude

less accurate than either of the two non QZ-based alternatives.. The differences in the

accuracies of the predicted calibration targets ultimately stem from differences in the

accuracies in matrices for the linear solution or policy function (11), P and Q, and the

eigenvalues, as can be seen in the third through sixth lines of the table. The eigenvalue

separation has decreased by several orders of magnitude and the conditioning number has

increased by two, again despite differences in others measures, all the algorithms roughly

agree on these two quantities. This is consistent with Kågström and Poromaa’s (1996) and

Demmel and Kågström’s (1987) assessment that while a generalized eigenvalue problem

is potentially ill-conditioned with respect to eigenvalue groupings if small perturbations

cause eigenvalues of these groupings to coalesce, the eigenvalue separation is in itself

insufficient to determine this and the entire eigenspace must be examined. With respect
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FIGURE 2. Pseudospectrum: Extreme Calibration x-axis: real component, y-axis:

imaginary component, large black dots: eigenvalues, black curve: unit circle, small red

dots: pseudospectrum QZ companion linearization (32), small blue dots: pseudospectrum

matrix quadratic (29)

to the bounds on the backward error, the last two lines of the table now that all QZ-based

algorithms and Dynare’s cyclic reduction algorithm display backward errors that exceed

machine precision. Importantly, not a single one of these algorithms displayed a warning

that their solutions might be inaccurate.

Figure 2 plots the pseudospectra for the extreme calibration of the matrix quadratic (29)

– in blue – and of the QZ algorithm (32) – in red – against the symbolic eigenvalues – in

black – for two different sizes of perturbations. In contrast to the results for the standard

calibration in figure 2, the finite eigenvalues are all much closer to the unit circle (see

the scale on the x-axis) and dispersion away from the exact eigenvalues is visible with

perturbations several orders of magnitude smaller. Again, the pseudospectrum of the QZ

algorithm bleeds across the unit circle for smaller perturbations than does the matrix

quadratic (right panel).

Table 4 contains a summary of results from additional alternate calibrations (see the

appendix, Table 5), in all calibrations, the parameters are chosen to match the annual

equity premium of 7.8 and the quarterly standard deviation of consumption growth

of 0.566%. Calibrations I and II are alternative “standard” calibrations, holding all

parameters apart from h, σ and ω constant. Calibration I has a higher curvature in the

utility function, σ, and a lower degree of habit formation, h, and calibration II vice versa

than in the standard calibration above. As in the standard calibration, the eigenvalue

separation is on the order of 1E −02 and all methods successfully recover the equity
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premium. Calibration III is similar to the extreme calibration above, but with a slightly

reduced degree of habit formation, h, and discount factor, β, compensated by an increased

curvature in the utility function, σ. With an eigenvalue separation on the order of 1E−04,

the QZ methods demonstrate significant deviations in their predicted equity premia as

above, though now some methods over and some methods under predict the premium.

Both the alternative methods successfully match the premium; under this calibration,

the accuracy of the Binder and Pesaran (1997) method exceeds that of Anderson (2010)

(not shown in the table, full results are available online). Calibrations IV-VI provide

further examples of potentially arbitrary results from QZ methods. With the eigenvalue

separation on the order of 1E −05, some methods do very well for some calibrations

yet worse for others, with all the calibrated parameters arguably very similar (see the

appendix, Table 5). Interestingly, Dynare in all of these latter three calibrations arguably

predicts the equity premium successfully. In terms of the backward errors, only Anderson

(2010) and Binder and Pesaran (1997) produce solvents, P, with errors always less than

the unit roundoff. Although Dynare’s QZ method only produces errors below this threshold

for calibration V, its errors are on the same order of magnitude for calibrations II, IV, and

VI. Likewise Dynare’s cyclic reduction method fairs better than the QZ algorithms, albeit

not at quite the level of the other two alternatives to QZ. Again, none of the algorithms

produced any warning as to the potential inaccuracy of their solutions.

6. CONCLUSION

This paper has provided a concrete example, calibrated to macroeconomic and financial

data, of economically significant numerical errors from standard QZ-based methods.

In this example, the errors become significant when the DSGE model has insufficient

separation between the backward looking, or stable, and the forward looking, or unstable,

components of the solution. None of the QZ-based methods from the literature examined

here gave the user any indication that the numerical solution it provided might imply

an equity premium off by several percentage points. This example was chosen to be as

small as possible, two endogenous variables, to enable a benchmark symbolic solution,

but backward error analyses successfully warn of the inaccuracies without appealing to

this symbolic solution. Thus, this paper serves as a cautionary tale and provides a first

step towards numerical accuracy metrics for the ubiquitous linear DSGE model.
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APPENDIX

6.1. Multivariate pivot derivation of the linear solution using the generalized Schur decompo-

sition. While this derivation contains nothing substantially new compared with, say Klein (2000), its

formulation commensurate with (10) enables a straightforward application of Blanchard’s (1979) forward

method, making the derivations potentially more transparent and accessible than existing expositions in

the literature.

Rearranging the model (10) into the companion linearization yields

F

 yt

E t [yt+1]

=G

yt−1

yt

+
0ny×nε

D

εt, F ≡
 Iny 0ny×ny

0ny×ny A

 , G ≡
0ny×ny Iny

−C −B

 (A1)

where Iny is an ny ×ny identity matrix and 0ny×ny is an ny ×ny zero matrix.

The generalized Schur decomposition (unitary Q and Z and upper triangular S and T with Q∗FZ = S

and Q∗GZ = T) of the matrix pencil PFG(z)= Fz−G, can be ordered arbitrarily to formS11 S12

0 S22

E t
[
ws

t+1
]

E t
[
wu

t+1
]
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T11 T12
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with the definition Z
[
ws

t
′ wu

t
′
]′
=

[
y′t−1 y′t

]′
. With any generalized Schur decomposition of PDE(z), the

spectrum or set of eigenvalues of the pencil PDE(z) is determined by the diagonal entries of S and T

ρ(PDE)= {
tii/sii, if sii 6= 0; ∞, if sii = 0; ;, if sii = tii = 0; i = 1, . . . ,2ny

}
(A3)

where sii and tii denote the i’th row and i’th column of S and T respectively. Ordering the decomposition

so that the unstable eigenvalues are in the lower right blocks of S and T (hence S22 and T22), this lower

block can be solved forward following Blanchard (1979) to yield

wu
t = lim

j→∞
(
T−1

22 S22
) j

E t
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−T−1
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where the invertibility of T22 and convergence of lim j→∞
(
T−1

22 S22
) j follow directly from the ordering above.

Using the definition Z
[
ws

t
′ wu

t
′
]′
=

[
y′t−1 y′t

]′
from above delivers

wu
t =

[
Z∗

21 Z∗
22

][
y′t−1 y′t

]′
=−T−1

22 {Q∗}2•D̂εt (A5)

where ∗ indicates the complex conjugation of Z that delivers its inverse by virtue of it being a unitary

matrix. If the necessary and sufficient assumptions for a unique stable solution for yt of (10) from the main

text hold, the unique stable solution for yt is given by

yt = Z21Z−1
11 yt−1 −

(
Z22 −Z21Z−1

11 Z12
)
T−1

22 {Q∗}2•D̂εt (A6)

=Q11S−1
11 T11Q−1

11 yt−1 −
(
Z22 −Z21Z−1

11 Z12
)
T−1

22 {Q∗}2•D̂εt (A7)
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where Z∗
22

−1 = Z22−Z21Z−1
11 Z12 and Z∗

22
−1Z∗

21 =−Z21Z−1
11 follow from the properties of unitary matrices and

Z21Z−1
11 =Q11S−1

11 T11Q−1
11 from the first block rows of F and G in (16) and upper triangularity of S and T.

From Q11S−1
11 T11Q−1

11 , it follows that the recursion in yt is stable from the ordering of the eigenvalues above,

i.e. the eigenvalues of the upper left block of the generalized Schur decomposition, det (S11λ−T11)= 0, are

inside the unit circle.

h β δ α σ ρ ω

I 0.8617 0.99 0.025 0.36 324.3 0.95 8.355E-02

II 1-9.857E-05 0.99 0.025 0.36 6.109 0.95 6.175E-02

III 1-1.008E-04 1-8.991E-06 0.6402 1-5.680E-04 51.53 1-6.066E-05 7.742E-04

IV 1-6.829E-06 1-5.863E-08 0.6562 1-2.652E-05 1+2.591E-08 1-3.437E-03 1.594E-02

V 1-4.294E-06 1-1.012E-12 0.4727 1-9.990E-05 1+7.590E-08 1-9.628E-04 7.898E-03

VI 1-5.070E-06 1-4.259E-08 0.6539 1-5.715E-05 1+4.755E-05 1-1.221E-03 7.102E-03

TABLE 5. Additional Calibrations I-VI
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