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Abstract

This paper uses data consisting of students� strategically reported preferences and their un-

derlying true preferences to study the course allocation mechanism used at Harvard Business

School. We show that the mechanism is manipulable in theory, manipulated in practice, and

that these manipulations cause meaningful welfare losses. However, we also �nd that ex-ante

welfare is higher than under the strategyproof and ex-post e¢ cient alternative, the Random

Serial Dictatorship. We trace the poor ex-ante performance of RSD to a phenomenon speci�c to

multi-unit assignment, �callousness�. We draw lessons for the design of multi-unit assignment

mechanisms and for market design more broadly.
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1 Introduction

Educational institutions commonly place limits on the number of students in any particular class.

We are interested in a market-design problem that arises from class-size limits: if it is not possible for

all students to take their most desired schedule of courses, then how should seats in over-demanded

courses be allocated?1

Economists have increasingly played an active role in designing solutions to real-world resource-

allocation problems like course allocation. In the past, mechanisms suggested by the pure theory

literature have often provided a useful starting point. One prominent example comes from the

redesign of the institution that matches medical-school graduates to hospital residency positions,

on which Roth (2002) remarks that �the simple theory [of Gale and Shapley (1962)] o¤ered a

surprisingly good guide to the design [of the Roth-Peranson (1999) algorithm].�Other important

examples include the design of school-choice procedures, advertising markets on internet search

engines, and combinatorial auctions.2

For course allocation, however, the extant theory literature is of little help. Course allocation

is an example of a multi-unit assignment problem, in which a set of indivisible objects (seats in

courses) is to be allocated amongst a set of agents (students), the agents have multi-unit demand (for

schedules of courses), and there are exogenous restrictions against the use of monetary transfers.3

One set of results on such problems shows that speci�c e¢ ciency, fairness and incentives criteria

that are compatible for the single-unit assignment problem are impossible to achieve for the multi-

unit case (Sönmez, 1999; Konishi, Quint and Wako, 2001; Klaus and Miyagawa, 2001; Manea,

2007; Kojima, forthcoming). A second set of results shows, essentially, that the only multi-unit

assignment mechanisms that are ex-post Pareto e¢ cient and strategyproof are dictatorships, which

intuitively are highly unfair: for any two students, one gets to choose all her courses before the

other gets to choose any (Papai, 2001; Ehlers and Klaus, 2003; Hat�eld, 2009).4

Given the lack of positive results from theory, a sensible starting point for design is to see what

we can learn from mechanisms that are actually used in practice. In this paper, we study the

1Press coverage and anecdotal evidence suggest that the scarcity problem is particularly acute in higher education,

especially at professional schools. See Bartlett (2008), Guernsey (1999), Lehrer (2008), and Neil (2008).
2New school choice procedures in New York and Boston incorporated aspects of Gale and Shapley�s mechanism

for two-sided matching and Shapley and Scarf�s (1974) mechanism for single-unit assignment (Abdulkadiroglu and

Sonmez 2003; Abdulkadiroglu et al 2005a, b). Google cites the in�uence of Vickrey�s (1961) �Nobel Prize-winning

economic theory� in the design of its auction for advertising slots (Edelman, Ostrovsky and Schwarz, 2008; Varian,

2007). On the relationship between theory and practice for combinatorial auction design, see Cramton et al (2007)

and Milgrom�s (2004) aptly named text �Putting Auction Theory to Work.�
3Other examples of multi-unit assignment problems include the assignment of tasks within an organization, the

allocation of shared scienti�c resources amongst their users, sports drafts, the division of heirlooms amongst heirs,

and the allocation of airport takeo¤-and-landing slots to airlines in many countries.
4Budish (2009) formalizes the sense in which dictatorships are unfair in multi-unit assignment.
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mechanism used at Harvard Business School (HBS) since the mid-1990s to allocate roughly 9,000

elective course seats to about 900 second-year MBA students every year. We choose this mechanism

for two reasons. First, it is a prima facie sensible mechanism, satisfying attractive e¢ ciency and

fairness properties and di¤ering from the dictatorship in an intuitively attractive way.5 Rather

than choosing courses all at once, which will lead to highly unequal allocations, students take turns

choosing a single course at a time. (More accurately, a computer chooses courses for them based

on their reported preferences; the priority order is random in the �rst round, and is reversed each

subsequent round.) Similar mechanisms have been used for a long time both by other educational

institutions and in other multi-unit assignment contexts (Brams and Stra¢ n, 1979; Brams and

Taylor, 1999). In this sense, the mechanism passes a market endurance test.

Second, we have great data. In addition to students�actual (strategic) reports of their prefer-

ences, we have data on students�underlying truthful preferences, from a survey conducted by the

HBS administration. (We describe in detail in Section 5 our argument that the survey data are

indeed truthful). Whereas strategic reports are naturally recorded by market administrators and

commonly made available to researchers, data on underlying preferences typically are only available

to researchers in laboratory settings. The combination of truthful and stated preferences is powerful

for two reasons. First, it means that we can directly observe students�strategic manipulations and

quantify their e¤ect on welfare. Second, we can use the truthful preferences to simulate equilibrium

play of the strategyproof Random Serial Dictatorship (RSD) suggested by the extant theory,6 and

so can compare the two mechanisms.

The main results of our analysis can be summarized as follows. The HBS mechanism is simple

to manipulate in theory (Section 3), is heavily manipulated by students in practice (Section 5),

and these manipulations cause congestion and substantial ine¢ ciency, assessed either ex-ante (i.e.

before priority orders are drawn) or ex-post (Section 6). Yet, ex-ante welfare is higher under the

HBS mechanism than under the strategyproof and ex-post e¢ cient RSD (Section 7). We trace

the poor ex-ante performance of RSD to a phenomenon we call "callousness" that is speci�c to

multi-unit assignment and unrelated to risk attitudes (Section 8).

Thus, one thing we learn from looking to practice is that the HBS mechanism, though �awed, is a

sensible choice relative to the extant theoretical alternative; RSD can be rejected on welfare grounds

alone. In the Conclusion we describe how our results suggest "where to look" for new mechanisms

that are better still, a direction taken up in subsequent work by Budish (2009). We also discuss

5By contrast, Sönmez and Unver (forthcoming) show that another widely used course-allocation mechanism, the

Bidding Points Mechanism, has a serious conceptual �aw. See also Krishna and Unver (2008) and Budish (2009;

Section 7.3).
6Amongst dictatorship mechanisms, what distinguishes the Random Serial Dictatorship is that it satis�es the

procedural fairness property of anonymity (also called "equal treatment of equals"), because the choosing order is

uniform random.
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how our results contribute to two active debates in the broader literature on market design: (i)

the importance of strategyproofness, and whether gaming of real-life mechanisms has �rst-order

welfare e¤ects; and (ii) how to analyze the e¢ ciency of random mechanisms, and speci�cally the

relationship between ex-post and ex-ante e¢ ciency.

Our analysis begins in Section 3 by studying the theoretical properties of the HBS mechanism.

It satis�es several criteria of fairness and yields outcomes that are consistent with ex-post Pareto

e¢ ciency if students reveal their preferences truthfully. However, the HBS mechanism is simple

to manipulate: students should overreport how much they like popular courses and underreport

how much they like unpopular courses, so they do not waste early-round draft picks on courses

they can get in later rounds. We provide a partial characterization of equilibrium behavior and

equilibrium run-out times for courses. We �nd that strategic behavior a¤ects students�welfare

through two distinct channels. First, strategic behavior leads to congestion (popular courses reach

capacity faster) which hurts students whose preferred courses are popular amongst other students.

Second, strategic behavior can lead to ex-post Pareto ine¢ cient outcomes (i.e., mutually bene�cial

trades) if a student strategically underreports some class and then turns out not to get it. We show

through an example that all students can be worse o¤ ex-ante under equilibrium strategic play.

Section 4 describes our data, which cover the allocation of second-year courses to MBA students

at Harvard Business School during the 2005-2006 academic year. We have student-level survey

data on preferences over courses at two di¤erent points in time, as well as their o¢ cially-submitted

preferences during a trial run and the real run of the HBS mechanism.

We argue in Section 5 that the survey data collected prior to the initial allocation correspond

to students�truthful preferences and that the preferences submitted for the real run of the HBS

mechanism correspond to equilibrium behavior. This joint hypothesis is natural given the context

of our data; beyond context, we provide support for this hypothesis at both the aggregate level

and the individual level. At the aggregate level, we show that preferences at these two points in

time di¤er signi�cantly and in a way that is consistent with equilibrium strategic behavior, and

largely inconsistent with alternative explanations such as social learning or new information. At the

individual level, we test whether students�submitted preferences rearrange popular and unpopular

courses in a manner that is consistent with our characterization of equilibrium best responses. We

�nd that most students (82.2%) submit preferences that are consistent with equilibrium behavior.

Most of those who do not seem to have changed their preference for some single course, or made a

strategic error based on plausible incorrect beliefs about a course�s popularity.

In Section 6 we then use these preferences and equilibrium strategies to quantify the welfare

consequences of strategic play, by comparing actual equilibrium play with non-equilibrium truthful

behavior. In other words, our counterfactual exercise asks what would happen if the social planner

knew students�preferences and used the HBS mechanism to allocate courses. We �rst document
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that strategic behavior causes congestion and ex-post ine¢ cient allocations: on average our Pareto-

improvement-seeking integer program is able to �nd bene�cial trades involving 84% of students

and 15% of course seats. Ex-ante welfare comparisons are more subtle: our data consist of ordinal

preferences over individual courses, but welfare depends on von Neumann-Morgenstern preferences

over bundles. We develop a novel computational method which allows us to draw welfare com-

parisons for many students based on this limited ordinal information: nearly half of students�are

unambiguously harmed by strategic play, whereas only 5% unambiguously bene�t. To reach com-

parisons for the other students, or to evaluate welfare from the perspective of a utilitarian social

planner, we put more structure on preferences, i.e., on the map between ordinal preferences over

individual courses and vNM preferences over bundles. We develop two such maps, motivated by the

HBS administration�s emphasis on the number of students who obtain their single favorite course

and on the average rank of the ten courses students receive. If students have what we call lexico-

graphic preferences or what we call average-rank preferences, we can conclude that a large majority

of individual students and a utilitarian social planner regard strategic play as harmful to welfare.

The magnitudes are meaningful: strategic play reduces the proportion of students who receive their

favorite course from 83% to 60%, and increases the expected average rank of the ten courses in

a student�s schedule from 7.76 to 8.35 (higher is worse, 5.50 is bliss). Intuitively, there is a basic

asymmetry between the costs and bene�ts of strategic play; e.g., it is impossible to strategically

overreport one�s favorite course.

Because strategic behavior hurts most students it is natural to compare the HBS mechanism

with its strategyproof alternative, RSD. In Section 7, our counterfactual exercise asks what would

happen in equilibrium if the HBS administration adopted RSD as its course-allocation mechanism.

Ex-post, we know that RSD is Pareto e¢ cient whereas we found in the previous section that HBS

yields substantial ine¢ ciencies. But when we compare the two mechanisms ex-ante, HBS looks

much more attractive than RSD. If students have either average-rank preferences or lexicographic

preferences, then both the large majority of individual students and a utilitarian social planner

prefer the HBS mechanism to RSD.7 Perhaps surprisingly, this is the case even if students are risk

neutral. Using RSD would reduce the proportion of students who receive their favorite course from

60% to 47%, and increase the expected average rank from 8.35 to 8.94.

Why is the ex-post ine¢ cient HBS mechanism more attractive ex-ante than the ex-post e¢ cient

RSD? In Section 8 we propose a simple theoretical explanation. Under RSD, fortunate students

with good random draws make their second, third, ..., last choices independently of whether these

courses would be some unfortunate students��rst choices. That is, the lucky �callously disregard�

7One measure on which RSD outperforms HBS is the proportion of students who obtain their bliss bundle: 29%

under RSD versus 1% under HBS. Students who care mainly about the probability of getting their bliss bundle prefer

RSD.
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the unlucky.8 In any one random draw, there is no way to improve the allocation of the unlucky

without harming the lucky, so outcomes are ex-post Pareto e¢ cient. But in expectation the harm

to the unlucky exceeds the bene�t to the lucky, so RSD does very poorly on measures of ex-ante

e¢ ciency. Note that this explanation does not depend on risk preferences; aversion to risk only

exacerbates the unattractiveness of RSD.

2 The course allocation problem

2.1 Environment

Courses. There is a �nite set of C courses, C.9 Courses have capacities q = (q1; :::; qC):

Students and preferences. There is a continuum of students described by the interval [0; 1]

and endowed with the Lebesgue measure.10 Each student s is endowed with a von Neumann-

Morgenstern utility function us that indicates her utility from each bundle of courses, including

singletons. Associated with each utility function us is an ordinal preference relation de�ned over

permissible bundles of courses, Ps 2 P. We assume that the mapping from the set of students

to the set of preference relations, P, is measurable. We further assume that the utility functions
are such that students�ordinal preferences over individual courses are strict, and that their ordinal

preferences over bundles are responsive to their preferences for individual courses.11

Demand. Students are allowed to consume any bundle that consists of 0 or 1 seat of each course,

and at most m > 1 courses in total. Let rs(c) 2 N denote course c�s rank in student s�s preferences
over individual courses. Thus rs(c) < rs(c0) if and only if cPsc0; with rs(c) = 1 if cPsc0 for all c0 6= c:
This allows us to de�ne the demand for individual courses:

De�nition 1 (Demand for Courses). The demand for course c is de�ned asDc(�) =
R 1
0 1frs(c)��gds

qc
;

� = 1; :::; C:

The allocation problem is non-trivial if at least one capacity constraint binds. Thus, in the rest

8Callousness is distinct from Bogomolnaia and Moulin (2001)�s critique of RSD in the context of single-unit

assignment. See Section 8 for discussion.
9We use the terms "students" and "courses" because of our application. We could equally use the generic terms

"agents" and "objects".
10The use of a continuum of students is a technical, rather than substantive, assumption. It simpli�es proofs and

helps clarify the key forces behind the results.
11Preferences are responsive if, for any student s, courses c; c0, and bundle of courses X with c; c0 =2 X and jXj < m,

cPsc
0 () (X[c)Ps(X[c0): Also, cPs; () (X[c)Ps(X[;) (Brams and Stra¢ n, 1979, Roth, 1985). While restrictive,

survey evidence suggests that responsiveness is a reasonable assumption in our context. This is in part due to the

explicit design of the HBS elective curriculum to avoid overlap or interdependence amongst courses. Also, it is

important to note that the dictatorship theorems mentioned in the introduction still obtain when preferences are

responsive; see Hat�eld (2009).
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of our analysis we assume that there exists at least one course c such that Dc(m) > 1:

Feasible Allocations. An allocation in this environment is an assignment of courses to students.

We denote by as � C student s�s allocation of courses. An allocation is feasible if jasj � m for

all s and
R 1
0 1fc2asgds � qc for all c: We denote by A the set of feasible allocations. A random

allocation is a probability distribution over feasible allocations. We denote by L(A) the set of
random allocations.

Ex-Ante and Ex-Post E¢ ciency. A random allocation is ex-ante Pareto e¢ cient if there is no

other random allocation that all students weakly prefer and a strictly positive measure of students

strictly prefers. A feasible allocation is ex-post Pareto e¢ cient if there is no other feasible allocation

that all students weakly prefer and a strictly positive measure of students strictly prefers. Ex-ante

e¢ ciency is strictly stronger than ex-post, in the sense that a necessary but not su¢ cient condition

for a random allocation to be ex-ante e¢ cient is that every realization of this allocation is ex-post

e¢ cient.

Information. We assume that students�preferences are common knowledge. Since we are working

with a continuum, this is equivalent to assuming that students�preferences are private information

but that the distribution over preferences is common knowledge.

2.2 Allocation Mechanisms

We focus attention on two speci�c course-allocation mechanisms, the HBS mechanism and the

Random Serial Dictatorship (RSD).12 Both mechanisms are ordinal in the sense that they take as

inputs ordinal information about students�preferences (Bogomolnaia and Moulin, 2001). In both

mechanisms, each student s reports a rank-order list (ROL) bPs indicating her ordinal preferences
over individual courses. We write bPs : c1; c2; c3; ::: to describe that student s puts course c1 ahead
of c2; course c2 ahead of c3; and so on (with a slight abuse of notation, we will also write Ps :

c1; c2; c3; :::; to describe her true preferences over individual courses). Then, the mechanism uniform

randomly selects a priority order over students, which is a bijection from the set of students onto

itself. Let �(t) denote the student who has priority t, and ��1(s) the priority of student s. The set

of priority orders is L. We assume that all elements of L have a measurable inverse.
Under RSD, students are allocated their courses all-at-once in ascending priority order. The

algorithm has a single round that takes place from time t = 0 to time t = 1. At time t; student

�(t) is allocated a seat in her m most-preferred courses on bPs that still have remaining capacity.13
Under the HBS mechanism, students are allocated courses one-at-a-time over a series of m

rounds. In odd rounds, which occur during time intervals [0; 1]; [2; 3]; :::; students are allocated

12Sönmez and Unver (forthcoming) and Budish (2009) describe other course-allocation mechanisms used in practice.
13A course has capacity remaining at time t if the measure of students allocated a seat in that course during time

[0; t) is strictly less than the course�s capacity.
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courses one-at-a-time in ascending priority order. In even rounds, which occur during time intervals

[1; 2]; [3; 4]; :::; students are allocated courses one-at-a-time in descending priority order. When it

is student s�s turn, she is allocated her most-preferred course on bPs that (i) she has not already
received in a previous round; and (ii) still has remaining capacity. Following the m rounds of the

HBS mechanism, students have one additional opportunity to modify their schedule. Students can

drop courses they obtained in the initial allocation and add courses that have excess capacity. This

is conducted using a multi-pass algorithm that cycles over students (using a new random priority

order) until no more add-drop requests can be satis�ed. In particular, the algorithm satis�es a

student�s add-drop request only if the course that the student requests has spare capacity. It does

not look for Pareto-improving trades amongst students. For modeling purposes, we model the

add-drop phase as a random serial dictatorship where the only courses that can be requested are

those with spare capacity at the end of the initial allocation. Students have the opportunity to

modify their reported preferences, and a new random priority order is drawn. Thus, each student

in turn creates the best possible schedule out of the courses they got in the initial allocation and

those still with excess capacity.

2.3 Equilibrium

A Nash equilibrium in this setting is a measurable mapping from the set of students to the set of

mixed strategies �P: There exists a pure strategy Nash equilibrium in both mechanisms:

1. RSD is dominant-strategy incentive compatible and we focus on this pure strategy equilibrium

in the remainder.

2. The add-drop phase of the HBS mechanism is equivalent to RSD and thus we also restrict

attention to the equilibrium where students report truthfully in this stage. Existence of

a pure strategy Nash equilibrium is guaranteed in the initial allocation phase of the HBS

mechanism because the action space is �nite and students�expected utilities are continuous

in the strategies of the other students and only depend on the fraction of students who report

each preference pro�le (Schmeidler, 1973).

3 Properties of the HBS mechanism

The HBS mechanism satis�es several attractive e¢ ciency and fairness properties if we ignore incen-

tives and assume that students report their preferences truthfully. In terms of e¢ ciency, it yields

allocations that are ex-post Pareto possible in the sense of Brams et al. (2003). This means that

there exist preferences over bundles of courses that are responsive to the reported preferences over

individual courses, and for which the allocation is ex-post Pareto e¢ cient. With respect to fairness,
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it is procedurally fair in the ex-ante sense of equal treatment of equals, and also in an interim sense,

in that no students�set of choosing times dominates any others�. It also satis�es attractive criteria

of outcome fairness, as described in Budish (2009).

These attractive properties explain the HBS administration�s decision to adopt this mechanism,

and may explain the widespread use of similar draft mechanisms in practice. However, as the

following example illustrates, truthful play is not the expected outcome in the HBS mechanism.

Example 1 (Over-reporting and Congestion) Let m = 2 and suppose there are 4 courses

with capacity of 23 seats each. Preferences are as follows:

Proportion of Population Type Preferences
1
3 P1 c1; c2; c3; c4
1
3 P2 c2; c1; c3; c4
1
3 P3 c1; c3; c4; c2

Truthful play is not a best response for the P2 types. Indeed, suppose that student s is of

type P2. If all other students play truthfully, student s gets fc2; c3g: If, instead, he submits
preferences bP2 : c1; c2; c3; c4; then he gets his �rst choice bundle fc1; c2g for sure.
In fact, the P1 and P3 types reporting truthfully and the P2 types reporting bP2 : c1; c2; c3; c4 is
a Nash equilibrium, independently of risk attitudes or cardinal information about preferences.

In this equilibrium, the P1 and P2 types get fc1; c2g with probability 2
3 and fc2; c3g with

probability 1
3 and the P3 types get fc1; c3g with probability

2
3 and fc3; c4g with probability

1
3 :

More students request c1 (the most popular course based on true demand) in the �rst round

than under truthful play, making c1 �ll up earlier in the round than under truthful play.

The story that Example 1 tells is that students in the HBS mechanism will have a tendency

to overreport their preferences for popular courses, and that this causes those courses to reach

capacity sooner. A P2 type should not waste his �rst-round choice on c2, since he can get it for sure

in the second round, and if he waits until round two to ask for c1 he is sure not to get it. Instead,

he should attempt to obtain the popular c1 in the �rst round.

In this section, we explore the incentives in the HBS mechanism further and provide a partial

characterization of equilibrium outcomes. In particular, we argue that detecting pro�table devia-

tions from truthful behavior is very easy and that there will indeed be a tendency in equilibrium

to overreport preferences for popular courses. This leads to congestion and earlier run-out times

for courses. In the last subsection, we explore the welfare properties of the Nash equilibrium in the

HBS mechanism. One consequence of strategic behavior is redistributive: some students, especially

those whose top choices are not very popular, are better o¤; others, especially those whose top

choices are very popular, are worse o¤. We also show that strategic behavior can lead to ex-post

ine¢ ciency and pin down conditions when this is not the case.
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3.1 Incentives in the HBS mechanism

The basic trade-o¤ that students face in the HBS mechanism is that upgrading a course relative to

their truthful preferences increases the chance of getting that course, at the risk of missing another,

possibly preferred, course. This trade-o¤ is intrinsic to the HBS mechanism and does not depend

on market size. Indeed, Example 1 would work just as well with three students.

To be able to say something about incentives in the HBS mechanism without making any

assumption on risk attitudes, we analyze best responses for a �xed strategy pro�le bP = f bPsgs2[0;1]
and a �xed priority order �. The outcome, then, is determinate (and, in particular, courses are

characterized by their run-out times). A property of best responses will hold irrespective of risk

attitudes, if we can show that it holds for all �:

Consider student s and relabel courses such that student s�s strategy during the initial allocation

phase of the mechanism reads bPs : c1; c2; :::; cC : Because of the continuum assumption, his strategy

does not a¤ect run-out times and thus does not a¤ect the outcome and timing of requests by the

other students. The only thing it does a¤ect is whether student s gets a seat in the courses he

requests. He will do so if he requests a particular course before that course runs out. He will not

do so otherwise.

Our workhorse for most of the proofs in this section is the comparison between two strategies by

student s that di¤er from one another by the position of a single course. We show that allocations

for student s under those two strategies di¤er at most by one course.

For example, denote by bP ck#ls ; the strategy that corresponds to bPs except that course ck has
been downgraded to position l in the ROL, i.e. bP ck#ls : c1; :::; ck�1; ck+1; :::; cl; ck; cl+1; ::: Until the

procedure reaches the kth position in student s�s ROL, the timing of requests and the outcomes

are identical under both strategy pro�les. From then on, bP ck#ls asks for ck+1 one round earlier thanbPs; and if either both strategies get ck+1 or both do not, then bP ck#ls asks for ck+2 one round earlier

than does bPs, and so on. If, before bP ck#ls requests ck; it gets a course that bPs does not, then the two
strategies get back in synch, requesting (and getting) the same courses at the same times. They

can get back out of synch if bP ck#ls turns out also to get ck, only now bPs is making requests for cl+1
one round earlier than does bP ck#ls . Clearly, the exact details on the timing and outcome for student

s depend on the availability of courses when he requests them (they are developed in the proofs).

The key aspect to note here is that requests by student s under both strategies are either in synch

or out of synch by a maximum of one round. When requests are in synch, he must get the same

outcome under both strategies. When requests are not in synch, he may get a course under one

strategy that he does not get under the other strategy. Because requests become in synch after

such event, the di¤erence in outcomes between the two strategies is one course at most.

Let as(bP; �) � C indicate student s�s �nal allocation, including what happens in the add-drop
phase, when students use the strategy pro�le bP and � is the realized priority order. Let as(bP) refer
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to student s�s �nal (random) allocation under pro�le bP:
De�nition 2 (Popularity): Course c is bP-popular if there exists a positive measure of students
for whom Pr(c =2 as(bP) and c0 2 as(bP)) > 0 for some c0 such that c bPsc0: Course c is bP-unpopular
otherwise.

In words: the popularity of a course is de�ned relative to a strategy pro�le. A bP-popular course
runs out with positive probability under strategy pro�le bP. A bP-unpopular course never runs out.
Note that, by the continuum assumption, bP-popular courses are also ( bP 0

s;
bP�s)-popular for any bP 0

s;

so that we can as well talk about bP�s-popular courses.
The next result shows that it is easy for students to �nd pro�table deviations from truthful

play: the deviations that Theorem 1 identi�es only require that students know which courses are

likely to run out, and which aren�t.

Theorem 1 (Simple Manipulations): Fix bP�s. Form the strategy bP simples by taking the �rst

m courses in Ps and rearranging them so that c bP simples c0 whenever:

(i) cPsc0 and both are bP�s�popular or both are bP�s�unpopular
(ii) c is bP�s�popular and c0 is bP�s-unpopular

The strategy bP simples generates weakly greater utility than truthful play Ps.

All proofs are in Appendix A.

Clearly, this simple strategy leads to overreporting of preferences for popular courses. Moreover,

if everyone adopts this simple strategy starting from truthful play, these courses are likely to run

out earlier than under truthful play. This is in line with Example 1. However, Theorem 1 is only

indicative that this may be a general feature of equilibrium. Indeed, it is not yet an equilibrium

characterization, nor even a characterization of best responses. We turn to this question next.

3.2 Equilibrium

We can identify two environments where truthful play in the HBS mechanism is always a Nash

equilibrium.

Theorem 2 (Truthful Play in Special Cases): Consider the following two environments:

(i) Identical preferences: Ps = Ps0 for all s; s0

(ii) Independent preferences: for any two P-popular courses c; c0, Dc(�) = Dc0(�) for � = 1; :::; C;

and all students prefer every P-popular course to every P-unpopular course

In either environment, bP� = P is a Nash equilibrium of the HBS mechanism.

The intuition is the following. When students have identical preferences, if a student prefers

one course to another, then so do all other students and thus it is not possible to overreport one�s
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preferences for more popular courses. Likewise, when all courses for which demand exceeds supply

are equally popular, there is no basis for misreporting. Theorem 2 indicates that partial correlation

of preferences is what drives strategic misreporting in the HBS mechanism.

We next provide a necessary condition for best responses in the HBS mechanism.

Lemma 1 (Best-response Characterization): Consider any equilibrium strategy pro�le bP:
Suppose c is bP�popular, and that rs(c) � m. Then, one of the three following properties must

hold:

(i) c appears before all bP�unpopular courses in bPs,
(ii) Pr(c 2 as(bP)) = 1; or
(iii) Pr

�
c 2 as

� bP c"ks ; bP�s�� = 0 where k is the position of the �rst (highest) bP�unpopular
course on bPs.

It is interesting to compare and contrast Lemma 1 and Theorem 1. Like Theorem 1, Lemma

1 suggests that popular courses will be ahead of unpopular courses in ROLs. There are two

exceptions. A �rst exception is when student s is sure to get the popular course even if he requests

it later. A second exception is when student s would not get the course even if he placed it before

all unpopular courses. In that case, we cannot rule out that, at equilibrium, a student puts that

course in another irrelevant position, that is, after some unpopular courses.

Another di¤erence between Theorem 1 and Lemma 1 is that Lemma 1 is silent about the relative

ordering of popular courses in students�ROLs. How students should optimally rank popular courses

depends on the relative run-out times of these courses under bP, on the cardinal utilities they attach
to these courses and on their attitudes towards risk. We will come back to this point later in the

section. In the meantime, we state the properties of the equilibrium in the HBS mechanism that

we can establish, just based on ordinal preferences.

Theorem 3 (Equilibrium Characterization): Suppose that bP is a Nash equilibrium, and that
Dc(m) > 1 for some c: Then,

(i) c runs out with probability one

(ii) the supremum of run-out times for course c over the di¤erent realizations of �, tc, is weakly

less than the number of bP�popular courses.
Theorem 3 says that courses for which demand exceeds supply based on truthful reports will

run out in any equilibirum. Moreover, such courses will reach capacity in the �rst k rounds, where

k is the number of bP-popular courses.
However, Theorem 3 remains silent concerning the relative run-out times of popular courses.

The reason is that equilibrium in the HBS mechanism has a coordination feature: if a course is

expected to be ranked high by others then students will tend to rank it higher too. This yields

11



equilibrium multiplicity as the next example illustrates.

Example 2 (Multiple Equilibria) Letm = 2. Courses have 0:4 capacity. Courses c1; c2; c3 have

excess demand, all other courses do not. Students�preferences are as follows (where "other"

stands for courses other than c1; c2; c3) :

Proportion of Population Type Preferences

:25 P1 c1; c2; other

:25 P2 c2; c1; other

:30 P3 c3; other

:10 P4 c3; c1; other

:10 P5 c3; c2; other

Truthful play is always an equilibrium. In round 1, the P1 and P2 types get their �rst choice

and the P3; P4 and P5 types get their �rst choice with probability 0.8, else they get their

second choices. The remaining capacity for courses c1 and c2 at the beginning of round 2

depends on the priority order over students in round 1. In expectation, these courses have

0.13 remaining capacity (0:40�0:25�0:02). The expected demand for these courses in round
2 is equal to 0:33 (0:25 + 0:08) so a request is satis�ed with probability 0:13=0:33 � 0:4:14

Thus, the P1 types get their best bundle fc1; c2g with probability 0.4 and otherwise they get
their second best bundle fc1; otherg (the outcome for the P2 types is symmetric). The P3
types get their best bundle, fc3; otherg, with probability 0.8, and their second best bundle
otherwise. The P4 types get their best bundle, fc3; c1g; with probability 0.32, their second
best bundle, fc3; otherg, with probability 0.48 and fc1; otherg otherwise (the outcome for the
P5 types is symmetric). Clearly, no type has a pro�table deviation.

If the P4 and P5 types�intensity of preference for c3 versus c1 and c2, respectively, is not too

large, there exists another equilibrium in which types P1; P2 and P3 play truthfully, the P4

types submit bP4 : c1; c3; other, and the P5 types submit bP5 : c2; c3; other. In this equilibrium,
the P4 types get their best bundle, fc1; c3g with probability 0.5 and fc1; otherg otherwise.
If they deviate from this equilibrium to play truthfully (the only deviation to consider given

their preferences), they receive their best bundle with probability 0.2 (c1 is available in round

2 with probability :4�:1�:25
:25 ) and get fc3; otherg with probability 0.8. This is less preferable if

the intensity of preference for c3 is not too large. The analysis for the P5 types is analogous.

In Example 2, course c3 runs out in equilibrium in round 1 or 2, i.e., at the same time or later

than under truthful play, even though more students have c3 as their top choice relative to other

14Recall that a property of expected utilities is that preferences over compound lotteries correspond to the prefer-

ences over the reduced lottery. Thus it is su¢ cient to look at expected probabilities of outcomes.
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courses. This is consistent with Theorem 3, which says that c1; c2 and c3 should all run out with

probability 1, but otherwise does not pin down the relative timing of these events.

To go beyond Theorem 3, we make additional assumptions on the relationship between students�

ordinal preferences over courses and their utility functions. In Example 2, c3 sells out at equilibrium

in the �rst round if the P4 and P5 types students prefer the lottery [0:2 : fc1; c3g; 0:8 : fc3; otherg]
to the lottery [0:5 : fc1; c3g; 0:5 : fc1; otherg]: This motivates the following restriction:

De�nition 3 (Lexicographic Preferences): Consider two lotteries over �nal allocations, L1

and L2 2 L(A). Fix an arbitrary s, and label courses so that Ps : c1; c2; :::; cC . Let p1(c); p2(c)
denote the probability of getting c under lottery L1 and L2 respectively. We say that student s

has lexicographic preferences if he prefers L1 to L2 whenever there exists any k 2 N such that

p1(ci) � p2(ci) for all i = 1; 2; :::; k with at least one strict inequality.

In Example 2, if the P4 and P5 types have lexicographic preferences, they prefer any lottery in

which they obtain c3 for sure to any lottery in which they don�t, and so truthful play is the unique

equilibrium. This yields sharper predictions about the structure of students�best responses in the

HBS mechanism.

Lemma 2 (Best-response Characterization with Lexicographic Preferences): Suppose

students have lexicographic preferences and consider any equilibrium strategy pro�le bP. Suppose
c is bP�popular, and rs(c) � m. Then, one of the three properties must hold:

(i) c appears before all bP�unpopular courses in bPs and, for all c0; cPsc0 ) c bPsc0
(ii) Pr(c 2 as(bP)) = 1; or
(iii) Pr

�
c 2 as

� bP simples ; bP�s�� = 0:
In words, Lemma 2 says that students only downgrade a course when they are sure to get it

(or when they cannot hope to get it anyways). Theorem 4 provides a tighter characterization of

equilibrium run-out times:

Theorem 4 (Equilibrium with Lexicographic Preferences): Suppose students have lexico-

graphic preferences. Suppose further that bP is a Nash equilibrium and that Dc(m) > 1. Then:

(i) tc < �c � inff� : Dc(�) > 1g � m

(ii) argminrf bDc(r) � 1g � argminrfDc(r) � 1g where bDc(r) corresponds to the reported
demand under bP.

Theorem 4 provides an upper bound on the times by which courses run out, based on their true

demand, and a prediction on the relationship between truthful demand and reported demand at

equilibrium. We revisit these predictions in section 5.

13



3.3 Welfare

Strategic behavior in the HBS mechanism has redistributive consequences. On the one hand, it

helps students who, by overreporting their preferences for popular courses, increase their chances

of getting them. On the other hand, it creates congestion for these courses and hurts students who

value these courses highly. This can be seen in Example 1 where the P1 and P3 types are better o¤

ex-post and ex-ante from truthful play, and the P2 types are better o¤ under strategic play.15

Strategic behavior also has e¢ ciency consequences because of the intrinsic trade-o¤ that stu-

dents face between upgrading a less preferred but very popular course at the risk of potentially

missing a seat in a preferred but less popular course. The next example illustrates this ex-post

ine¢ ciency of equilibrium in the HBS mechanism.

Example 3 (Ex-post Ine¢ ciency of Strategic Play) Let m = 2: Courses c1; c2 have excess

demand with respective capacity 0:6 and 0.8. All other courses do not. Suppose preferences

are as follows (where "other" stands for courses other than c1 or c2)

Proportion of Population Type Preferences

0:3 P1 c1; c2; other

0:4 P2 c2; c1; other

0:3 P3 c2; other

Consider the strategy pro�le where all students of type P1 play bP1 : c2; c1; other, and the
P2 and P3 types submit truthful ROLs. Under this strategy pro�le, all students request

c2 in round 1, which means that only the �rst 0.8 are successful. Those who do not get

their �rst choice get their second choice in round 1. At the beginning of round 2, 0.46 seats

(0:6 � (0:7)(0:2)) remain in c1 in expectation; whereas 0.56 students request it. This means
82% of these students are successful. Thus, the P1 and P2 types face the following lottery:

[0:66 : fc1; c2g; 0:20 : fc1; otherg; 0:14 : fc2; otherg] (1)

To check whether this strategy pro�le is an equilibrium, we only need to look at the oppor-

tunity for a P1 student to deviate and submit his truthful preferences. If he does, he gets the

deterministic outcome fc1; otherg: Thus bP1; P2; P3 is an equilibrium if all P1 students prefer

the lottery in (1) over the deterministic outcome fc1; otherg: This equilibrium is ex-post inef-
�cient because it is possible that a P1 student ends up with fc2; otherg and that a P2 student
ends up with fc1; otherg: Those students would prefer to trade.

15The P1 and P3 types got their best bundle under truthful play and now only get it with probability 1=3: The P2

types who never got their top bundle now get it with probability 1=3; and otherwise they get what they used to get

for sure under truthful play.

14



Because the ex-post ine¢ ciency of the HBS mechanism is due to risk-taking behavior by students

who deviate from truthful behavior, we can expect that no such ine¢ ciency occurs in settings where,

at equilibrium, students do not deviate from truthful behavior or when risk aversion is so high or

preferences so extreme that they do not take any risk. Theorem 5 con�rms this.

Theorem 5 (Ex-post E¢ ciency in Special Cases) (i) Nash equilibria in truthful strategies

are always ex-post e¢ cient possible; (ii) All Nash equilibria are ex-post e¢ cient possible when

preferences are lexicographic.

By contrast, ex-post ine¢ ciencies are likely when preferences are correlated, students are not

very risk averse and cardinal utilities attached to each course are not very di¤erent.

Not surprisingly, the HBS mechanism is also ex-ante ine¢ cient, independently of whether it is

ex-post ine¢ cient or not, for the very same reasons why RSD if ine¢ cient when students require

a single course (Bogomolnaia and Moulin, 2001). More interestingly, the next example shows that

strategic behavior can hurt all students ex-ante, relative to truthful behavior. In other words,

strategic behavior has consequences beyond redistribution. We will revisit this issue in section 6.

Example 3 (cont�d) Strategic Behavior May Hurt All Students Ex-Ante Consider again

Example 3. The next table compares the lotteries that students face under truthful behavior

and under the equilibrium identi�ed in Example 3 above.

Type Lottery under truthful play Lottery under strategic behavior

P1 [0:33 : fc1; c2g; 0:67 : fc1; otherg] [0:66 : fc1; c2g; 0:20 : fc1; otherg; 0:14 : fc2; otherg]
P2 [0:75 : fc1; c2g; 0:25 : fc2; otherg] [0:66 : fc1; c2g; 0:14 : fc2; otherg; 0:20 : fc1; otherg]
P3 [1 : fc2; otherg] [0:80 : fc2; otherg; 0:20 : fother, otherg]

Clearly, the P2 and P3 types are worse o¤ under strategic behavior, independently of cardinal

information about their preferences. The P1 types are worse o¤ if, for example us(fc1; c2g) =
4; us(fc1; otherg) = 3:4 and us(fc2; otherg) = 0:8: (These numbers also ensure that strategic
behavior is indeed an equilibrium.)

4 Description of Data

Our dataset covers the allocation of second-year elective courses to second-year MBA students at

Harvard Business School during the 2005-2006 academic year. Students choose 10 elective courses

each, �ve for each semester (Fall 2005, Winter 2006). Courses for both semesters are allocated

together in a single allocation process. The HBS mechanism was described formally in Section 2.2.
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4.1 Timing of actions and information

Students are asked to report their ranking over individual courses at three separate times: in early

May, in mid-May and in mid-July. Prior to this, students have information on the past enrollment

of each course and they receive both o¢ cial and uno¢ cial course evaluation information.

In early May, they are asked to participate in a survey in which they rank their top �ve favorite

courses. Participation is voluntary. The results are used to aggregate information about demand

and adjust some course capacities.16 The students have access to the full results, except for the

student identities which are removed.

In mid-May, students participate in a trial run of the allocation mechanism. Participation is

compulsory and students can rank up to 30 courses (rankings can be section-speci�c for courses

o¤ered in di¤erent sections). The administration reports the resulting course enrollments based on

one single run of the algorithm. For courses at capacity, students are told how many times a course

was overenrolled based on the submitted preferences. In addition, the administration reports the

10 courses most often ranked �rst in the submitted rank order lists (ROLs) with the number of

times each was ranked �rst. Students do not receive any feedback on their individual assignment

of courses from the trial run.

Finally, students submit their ROLs for the real run of the mechanism in mid-July. Some

changes are possible at the beginning of each semester during an add-drop phase, as described in

Section 2.2.

4.2 Course Characteristics

Our data contain all course characteristics, including section, capacity, term and scheduling infor-

mation as they were available at the time of the May trial run and the July run of the algorithm.

Seats in 71 courses and 21 half-courses (147 sections) were o¤ered in May for a total capacity of

11,871 seats. Course capacities ranged from 12 to 404 students. The numbers for July were 67

courses and 22 half-courses (141 sections) for a total of 10,898 seats.17 The capacities range was

the same. A total of 9,269 seats were allocated in the July 2005 run of the algorithm.18

16The exact text is the following: "This poll has been set up to gauge current interest in 2005-06 courses. Be sure

you enter your top 5 course selections for the coming year, with #1 the course you want most. Your selections will

be anonymous to others. As a participant, you�ll be able to view anonymous results on Friday, May 6."
17Two courses were added between the May poll and the trial run. Between the trial run and the July run, one

course was added, four courses were cancelled, one full semester course was changed into a half course, and several

courses had their capacities increased or decreased slightly.
18The reason this sums to a bit more than 10 courses per student is the half courses.
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4.3 Submitted Preferences

Our data contain students� submitted ordinal preferences over individual courses (with student

identi�ers) in the May poll, May trial run and the July run of the algorithm. In addition, we

conducted an auxiliary survey in January 2006 in which we asked students to rank their 30 favorite

courses. The poll was conducted after the add-drop phase for the second semester but before

courses started. In the poll, we explicitly asked students to rank the courses according to their

true preferences, independently of whether they got the course or not. The stated objective of the

poll was to collect data on preferences to investigate potential improvements to the HBS allocation

mechanism.19

Table 1: Descriptive statistics � submitted preferences

May poll May trial run July run Jan poll

# students 460 922 916 163

avg # courses per ROL 5 22.33 21.96 17.46

std dev # courses per ROL 0 5.13 4.86 7.31

# courses listed at least once 85 92 89 92

Table 1 summarizes the number of students and courses covered by the data on each occasion.

Because participation was compulsory, the May trial run data and the July run data cover the

entire population. The small discrepancy in numbers is due to students leaving for or returning

from military duty, maternity leave or any other leave of absence. The table also reports the number

of courses ranked by the students. For the May trial run and the July run, the submitted rank

order lists can be section-speci�c. When constructing a student�s rank order list over courses, we

kept the �rst time a course appeared in the original rank order list.20

19The exact text was the following: "Please use the following pull down menus to rank your top 30 most preferred

EC courses for 2005-2006, irrespective of whether you were assigned the course or not. Courses are not section-

speci�c. If you have fewer than 30 courses that you would like to rank, please select "Finished Ranking Courses"

from the pull-down menu and move on to Question #2. It is critical that the ranking you submit completely re�ects

your preferences. In particular, do not feel the need to rank courses that �ll up quickly �rst. Alternatively, do not

ignore courses just because you perceived that they would be di¢ cult to get. You should rank the courses according

to how you actually feel about them." The interface was identical to the interface used for the May poll.
20This convention a¤ects very few observations. Out of the 20,279 student-course observations in the July run,

14,296 observations are for courses that have multiple sections but for most of them the student listed the di¤erent

sections of the course in consecutive order. Requests for di¤erent sections of the same course were non consecutive

for only 282 student-course observations (2%). In our robustness checks we considered alternative conventions for

treating those non-consecutive requests.
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5 Evidence of Strategic Behavior

In this section, we provide evidence that students understand the strategic incentives of the HBS

mechanism and act accordingly. Our analysis lends support to the joint hypothesis that we use in

the rest of the paper according to which: (1) students�May poll responses represent their truthful

preferences, and (2) students�July run preferences represent equilibrium behavior.

This joint hypothesis is natural given the context of our data. In the May poll, students were

explicitly asked by the administration to state their true preferences, and we see no compelling

reason for them to disobey this request. Submitted preferences in the July run are those used for

the initial allocation of courses. We have argued in section 3 that pro�table deviations from truthful

behavior are easy to detect in the HBS mechanism: they only require the kind of information that

the HBS administration provides to the students through the May trial run. In a high-stakes

environment with sophisticated and informed players that have had some opportunity to learn,

equilibrium play is a natural hypothesis.

However, we may worry about two issues. First, preferences may change over time and May

poll preferences may no longer represent preferences in July. Second, students may fail to play a

best response despite the information and learning opportunities they have had.21 To address these

concerns, we show that May poll preferences and July run ROLs di¤er systematically, in a way that

is by and large consistent with our joint hypothesis, and inconsistent with alternative accounts.

5.1 Evidence based on aggregate data

Four distinct reasons may explain why a student submits di¤erent preferences for courses at di¤erent

points in time: idiosyncratic preference change, new information, social learning and strategic

consideration. By de�nition, idiosyncratic preference changes should not a¤ect aggregate demand

for individual courses over time.22 This leaves three potential drivers of changes in the aggregate

demand for individuals courses over time:

1. New information about courses (whether good or bad) should lead to a correlated and

persistent shock to preferences and thus a persistent shock to the aggregate demand for these

courses. These shocks should not, however, be related to the popularity of these courses.

21 If we used the May trial-run preferences instead of the July actual-run preferences, the �rst issue would be less of

a concern because less time would have elapsed since the May poll, and the second issue would be more of a concern,

since the May trial run was an opportunity for students to learn about best responses. We focus on the July run since

that is what actually mattered for students�welfare. For robustness, we performed all of the analyses of Sections 5-7

using the May trial-run data instead; the results change very little. See Appendix B for this and other robustness

checks.
22An additional bene�t of using aggregate demand is that it also removes any small randomness in submitted

preferences due to students�"carelessness" or near indi¤erence.
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While very little observable information was provided to students between May and July, we

cannot a priori rule out the possibility of unobservable new information.

2. Social learning, i.e. the updating of one�s own valuation for a course, through word-of-mouth

or the observation of its popularity among students (for example, through the feedback from

the May poll or the trial run), should lead to correlated and persistent shocks to individual

preferences and thus to aggregate demand. These shocks may be correlated to the initial

popularity of the course.

3. Strategic behavior should lead to a correlated but temporary shock to submitted prefer-

ences and thus to aggregrate demand during the initial allocation. As shown in Section 3,

this e¤ect will be related to the popularity of courses.

Our working hypothesis implies that strategic behavior, not social learning or new information,

drives the aggregate di¤erences between the May poll and July run preferences. To distinguish

strategic behavior from the e¤ect of new information or social learning, we compare the aggregate

demands for courses at three di¤erent points in time: May poll, July run and January poll. Consider

course c and a sample of students. Course c�s distribution of ranks in that sample, Dc(r); is the

proportion of students in the sample that rank course c on or before r: To test for the equality

or inequality of aggregate demand for a course across time, we use Gehan (1965)�s extension of

the Wilcoxon rank-based test for discrete and censored data (censoring in our data arises from the

fact that students only rank �ve courses in the May poll and that some students rank less than 30

courses in the July run).23

Table 2 reports the results of the Gehan test for the 83 courses that appear in both the May poll

and the July run, at the 5% signi�cance level. The theory suggests that students will overrreport

courses they believe will be popular in equilibrium, and vice versa. As a proxy for students�beliefs

about equilibrium popularity, we use the popularity information provided by the administration

23The idea behind this non parametric test is the following. Fix a course, say course c; and consider two independent

samples of students of size n1 and n2: An observation is a student�s rank for course c or, if the student did not rank

that course, the rank of the last course she ranked, which will be taken as the censoring point for that observation (in

words, we do not know how where student ranks course c but we know that it must be below this censoring point).

Pair every observation in the �rst sample with each observation in the second sample. This creates n1n2 pairs. To

each pair, we assign a value of -1 if the observation in sample 1 is de�nitely before the observation in sample 2 (this

will be the case if the rank in sample 1 is smaller than the rank in sample 2 or if the observation in sample 2 is

censored and the censoring point is higher than the observation in sample 1). Similarly, we assign a value of +1 if

the observation in sample 2 is de�nitely before the observation in sample 1. We assign a value of zero to the pair

otherwise. Gehan (1965) shows that the resulting sum over each pair is distributed according to a normal distribution

which can be used to test the null hypothesis that D1
c(r) = D

2
c(r) for r � R where D1

c and D
2
c are the distributions

of ranks in sample 1 and sample 2 respectively and R = minfhighest censoring point in sample 1, highest censoring
point in sample 2}.
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after the May trial run (see section 4.1). Speci�cally, the administration reports the enrollment in

each course based on a single run of the algorithm. For courses at capacity, they also report very

explicity by how much the course was oversubscribed: courses at capacity are marked in bold, with

n asterisks added if the course was n times oversubscribed. In the Table, we categorize courses not

at capacity as "unpopular" and courses at capacity according to their level of oversubscription.24

Table 2: Comparison between May poll demand and July run demand

N July demand lower No di¤erence July demand higher

Unpopular 47 26 21 0

Popular, 0�oversubscribed 16 7 9 0

Popular, 1�oversubscribed 8 1 7 0

Popular, 2�oversubscribed 6 0 4 2

Popular, 3�oversubscribed 3 0 0 3

Popular, 4�oversubscribed 1 0 0 1

Popular, 5�oversubscribed 2 0 1 1

Table 2 shows that the null hypothesis of unchanged demand between the May poll and the July

run is rejected for 41 out of the 83 courses (49%), i.e. submitted preferences in the May poll and

in the July run di¤er signi�cantly. For courses that are multiple times oversubscribed, the reason

for rejection is always because demand is higher in July. For courses that are unpopular or only

somewhat popular, rejection occurs because demand is lower in July. This pattern is consistent

with strategic behavior. It is also consistent with social learning.

To distinguish between strategic behavior and social learning, we use the same test to check for

di¤erences in aggregate demand between the May poll and the January poll. Despite the fact that

8 months elapsed between the May poll and the January poll,25 we are only able to reject the null

hypothesis of unchanged demand for 16% of courses, as compared with 49% for the comparison

between the May poll and the July run (Table 2). This suggests that most of the observed change in

submitted preferences in July is due to short-term strategic considerations rather than long-lasting

social learning.

Additional evidence comes from the pattern of rejections in Table 3. Unlike in Table 2, there is

no systematic relationship between the reason for rejection and the level of popularity.26

24We also considered alternative de�nitions of popularity based on the May poll demand and the July actual run.

In both cases, the results in Tables 2 and 3 are essentially unchanged.
25During this time period students took Fall 2005 classes, and their experience of these courses may have a¤ected

their preferences. Table 3 would look similar if we focused on just the Winter 2006 courses.
26To give a rough sense of magnitudes, the two 5�oversubscribed courses constituted 38.6% of �rst choices in the

May poll, and 42.2% of �rst choices in the January poll, which is suggestive of long-lasting social learning. But they

represented 50.0% of �rst choices in the July run, which is suggestive of short-run strategic behavior.

20



Table 3: Comparison between May poll demand and January poll demand

N January demand lower No di¤erence January demand higher

Unpopular 47 3 43 1

Popular, 0�oversubscribed 16 2 14 0

Popular, 1�oversubscribed 8 2 6 0

Popular, 2�oversubscribed 6 0 5 1

Popular, 3�oversubscribed 3 1 1 1

Popular, 4�oversubscribed 1 0 0 1

Popular, 5�oversubscribed 2 0 1 1

As a �nal piece of evidence for strategic behavior by students, we check whether the predictions

of Theorems 3 and 4 are borne out in our data. Theorem 3 predicts that in any equilibrium, those

courses for which truthful demand exceeds supply will reach capacity during the initial allocation.

We use the May poll preferences to construct the set of such courses. Because only 456 students

�lled in the poll we scale course capacities accordingly. A conservative estimate is that any course

whose demand restricted to the top 5 ranks exceeds adjusted capacity should belong to the set

of courses that run out at equilibrium. Six courses satisfy this de�nition, and they all run out

during the initial allocation. As an alternative we considered any course whose demand in the poll

exceeded 50% of adjusted capacity; all 16 such courses run out during the initial allocation.

Theorems 3 and 4 also provide predictions on equilibrium run-out times. Because m = 10 and

44 courses run out at equilibrium, Theorem 3 is automatically satis�ed in our data. Theorem 4 has

more bite. For each course for which Dc(5) > 1 based on the poll data and adjusted capacities, we

check whether this course always runs out before the round at which true demand exceeds supply.

All six such courses satisfy this stronger test.

5.2 Evidence based on individual data

We now turn to individual data. We �rst run the HBS mechanism using the July run submitted

preferences and 10,000 randomly drawn priority orders over students to identify popular courses

from unpopular courses using De�nition 2. We then focus on the 456 students who submitted their

preferences for the May poll and in July. Out of the 2,280 courses that appear as their 5 most

preferred courses according to the poll, 1,744 are popular.

For each of these courses, we check whether Lemma 1�s necessary conditions for a best response

are satis�ed in the July run preferences submitted by these students. Speci�cally, if a popular

course is after an unpopular course on a student�s ROL, we check whether this student gets it

for sure (condition (ii)), and if not, whether moving it up to the position of the �rst unpopular

course on his ROL would secure a positive probability of getting it (condition (iii)).27 Out of the
27For the purpose of the test, we did not consider a multiple sections course as unpopular if one of its sections was

21



1,744 popular course entries, 97 (5.6%) violate the necessary conditions for a best response. These

violations involve 81 students (17.8%).

Violations of Lemma 1 mean that the relationship between the May poll preferences and the

July run preferences does not correspond to the predicted relationship between a student�s true

preferences and his reported preferences in the equilibrium of the HBS mechanism. In our data,

such discrepancy can be explained by genuine preference changes between May and July so that the

submitted preferences in the May poll are actually no longer the true preferences of the students

in July, or by strategic mistakes during the play of the HBS mechanism. We investigate each

hypothesis in more detail.

For every popular course that violates Lemma 1, we �rst look at its position in the student�s

preferences in May and in July. All Lemma 1 violations are caused by courses that were strictly

downgraded relative to the student�s reported preferences in May. Out of the 97 violations, 59

correspond to a course that appears in a student�s top 5 courses in May and no longer appears

in the submitted preferences in July. These involve 49 students. A likely interpretation of these

violations is that those students changed their preferences between May and July.

Another 20 violations can be explained by courses that appeared to be unpopular based on

the trial run but happened to be popular in the real run of the mechanism.28 Students slightly

downgraded these courses, thinking they were "safe", and failed to get some of them as a result.

Likewise, 10 violations can be explained by courses that seemed to be popular based on the trial

run but ended up not being popular in July. Some students needlessly placed these courses ahead

of other popular courses. In total, these (slight) strategic mistakes explain 30 violations. They

involve 28 students.

Twenty two violations are not explained by either obvious preference changes or strategic mis-

takes of the kind just described, involving 22 distinct students. Ten of these mistakes involve the

1�oversubscribed course that is the outlier in Table 2; we suspect that students received unobserv-
able information about this course that caused a meaningful number of them to downgrade their

preference for it between May and July. There is no discernible pattern to the remaining Lemma

1 violations.

To conclude, the analysis of the individual data con�rms the overall picture from the aggregate

data. 82.2% of students submit ROLs that are consistent with the joint hypothesis that May poll

preferences correspond to their true preferences in July and that they play a best response in July;

94.4% of popular-course requests are consistent. About 60% of violations can be traced to likely

�lled. This choice a¤ects nine requests.
28Recall that students receive information on course enrollment and oversubscriptions based on one single trial run

of the algorithm in May. If we de�ne courses as popular based on the trial run if all their sections reach their capacity

(courses are unpopular otherwise), there are �ve courses that are popular based on the trial run but are no longer

popular in the July run, and nine courses that are unpopular based on the trial run and are popular in July.
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preference changes and about a third can be traced to slight strategic mistakes due to incorrect

beliefs about the popularity of courses.

A robustness check reported in Appendix B computes the main welfare results of Sections 6 and

7 for a sub-economy consisting of the 82.2% of students who are Lemma 1 compliers. The results

are substantially similar.

5.3 Constructed Truthful Preferences

So far, we have argued that the May poll preferences can be taken as an approximation of truthful

preferences in July. However, May poll preferences have two limitations for the analysis of the

welfare properties of the HBS mechanism. First, they are restricted to students�top �ve courses.

Second, they are available for only 456 students out of the 916 students who participated in the

July run.

To address the �rst limitation, we construct an extension of students�truthful preferences as

follows. We assume that students� truthful top �ve courses correspond to their top �ve courses

in the May poll.29 Other courses are moved down to position six and below in a way that pre-

serves their relative ranking in the July ROLs. We call the result "constructed truthful prefer-

ences." To illustrate, suppose a student submitted the ROL c1; c2; c3; c4; c5 in the May poll but

submitted c4; c3; c6; c1; c2; c7; c8 in the July run. His constructed truthful preference is given by

c1; c2; c3; c4; c5; c6; c7; c8: Note that the way we construct truthful preferences will cause us to un-

derestimate the extent of strategic behavior, because we assume that the relative ranking of courses

not in the top �ve is truthful.30

To address the second limitation, we restrict attention to the 456 students for whom we have

May poll preferences and adjust course capacities accordingly. For each course, we used the Gehan

test to compare the distribution of course ranks in July for the students who did answer the poll to

the distribution for those who did not. At the 5% level, we found signi�cant di¤erences across these

two samples of students for 7 of 89 courses (8%). We take this as evidence that the 456 students

who answered the poll are representative of the entire population of students.

These constructed preferences and the scaled down course capacities are the main input in our

welfare analysis in the next two sections.

6 Welfare Consequences of Strategic Play

The purpose of this section is to quantify the welfare consequences of students�strategic play in

the HBS mechanism. Section 3.3 identi�ed two channels through which strategic behavior a¤ects

29Courses that were o¤ered in the May poll but were no longer available in the July run are dropped.
30 In the other direction, the presence of unobserved preference changes between May and July for May-poll-ranked

courses will cause us to overestimate the extent of strategic behavior.
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welfare: increased congestion and ex-post ine¢ ciencies due to risk-taking behavior by students. In

this section, we �rst document that strategic behavior has indeed an e¤ect through both channels,

and that these e¤ects are large.

We then turn to the analysis of students�ex-ante welfare (i.e. before priority orders are drawn).

Speci�cally, we compare welfare under the actual play of the HBS mechanism to welfare under a

non-equilibrium counterfactual in which students report their preferences truthfully. Congestion is

expected to have redistributive consequences (some students bene�t, some students lose). Ex-post

ine¢ ciencies due to risk-taking behavior on the other hand hurt all students. Our results show that

the net e¤ect is that many more students are harmed by strategic behavior than bene�t. Welfare

comparisons at the aggregate level con�rm this: a utilitarian social planner unambiguously prefers

truthful play over strategic play, as long as students are risk neutral or risk averse.

The technical challenge we face in this section is that our data consist of students�ordinal pref-

erences over individual courses, yet ex-ante welfare depends on their von Neumann-Morgenstern

preferences over bundles. We address this challenge in two ways. First, we introduce a new compu-

tational method, inspired by the maximum �ow problem in operations research, that allows us to

compare ex-ante welfare levels, just based on students�ordinal preferences over individual courses

and the assumption of responsiveness. This method allows us to pin down students�preference

between truthful and strategic play for 51.5% of them.

Second, for the remaining students, we develop a series of comparison results that indicate

conditions under which we can say that a particular student, or society as a whole, prefers truthful

play or strategic play. These conditions place constraints on the way students�preferences over

bundles of courses relate to their preferences over individual courses and on their risk attitude.

For all results in this section, our economy consists of the 456 students who submitted pref-

erences in the May poll and in July, with course capacities scaled accordingly. When calculating

students�outcomes we include an add-drop phase as described in Section 2.2.31

6.1 E¤ect of Strategic Behavior on Congestion

To evaluate the e¤ect of strategic behavior on congestion, we run the HBS algorithm for 10,000

random priority orders using both the constructed truthful preferences and the July run preferences

and we record the time at which each course reaches capacity (Time = # of rounds elapsed, includ-

ing fractions of rounds). We say that a course reaches capacity earlier under strategic (truthful)

play if the time it reaches capacity is earlier than it is under truthful (strategic) play for at least

99% of the priority orders. Table 4 reports the results of this analysis, with courses categorized as

in Section 5.1.
31Note that this add-drop phase will only be used if students strategically misreport; if students report truthfully

there will be no activity in the add-drop phase.
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Table 4: E¤ect of Strategic Behavior on Congestion

Course Reaches Capacity

N Never Truthful earlier Indeterminate Strategic earlier

Unpopular 47 35 1 9 2

Popular, 0�oversubscribed 16 4 3 8 1

Popular, 1�oversubscribed 5 0 2 1 5

Popular, 2�oversubscribed 6 0 0 0 6

Popular, 3�oversubscribed 3 0 0 0 3

Popular, 4�oversubscribed 1 0 0 0 1

Popular, 5�oversubscribed 2 0 0 0 2

As suggested by our theoretical analysis, congestion is related to popularity. Nearly all the

courses that were at least one time oversubscribed based on the trial run (17 out of 20) reach

capacity earlier. Very few of the other courses experience such congestion (3 of 63).

The magnitudes are large, especially amongst the most popular courses. For the 37 courses

that reach capacity under both truthful play and strategic behavior, the round by which they do so

goes from 6.73 to 6.35 on average (6% faster). If we focus on the 12 courses that are at least twice

oversubscribed, the average round at which they reach capacity goes from 3.78 under truthful play

to 2.61 under strategic play (31%), and the least congested amongst these still reaches capacity

14% faster on average under strategic play.

6.2 Ex-Post E¢ ciency Consequences of Strategic Play

To assess the magnitude of ex-post ine¢ ciency in the HBS mechanism, we run the HBS algorithm

for 100 random priority orders using students�July run preferences. For each priority order, we

compute the number of ex-post Pareto improving trades we can �nd based on students�constructed

truthful preferences.

Because our data consist only of ordinal preferences over individual courses, there are some

pro�table trades that we will not be able to �nd. For instance, if a student�s truthful ROL is

Ps : c1; c2; c3; c4 and his allocation is fc1; c4g then we know that he is willing to trade c4 for c2 or
c3, but we do not know whether he is willing to trade the bundle fc1; c4g for the bundle fc2; c3g.

Subject to this caveat, it is without loss of generality to restrict attention to trades in which

each participant gives and receives a single course seat: whatever many-to-many trades we are able

to �nd can be found using multiple one-for-one trades. For instance, student s above would be

willing to trade fc2; c4g for fc1; c3g, but this can be executed using two one-for-one trades of fc2g
for fc1g and fc4g for fc3g.

Let xscc0 indicate whether we execute the one-for-one trade in which student s gives c and gets

c0. For each priority order, we seek to maximize the number of pareto-improving trades subject to
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the constraint that students trade a course at most once. The result is the following binary integer

program:

max
x2f0;1gSC2

X
s;c;c0

xscc0

such thatX
s

X
c0

xscc0 � xsc0c = 0, 8c (2)X
c0

xscc0 + xsc0c � 1, 8s; c (3)

xscc0 = 1) c 2 as(bP; �); c0 =2 as(bP; �); c0Psc (4)

where constraint (2) captures the condition that each course must be given as often as it is received,

constraint (3) prevents a student from trading the same course twice, both to ensure feasibility and

to avoid double-counting, and constraint (4) ensures that the trade is both feasible and desirable,

in the sense that student s�s original allocation must include c, not include c0, and he must prefers

c0 to c: Table 5 reports the results. It suggests that the level of ex-post ine¢ ciency under the HBS

mechanism is substantial: on average 15% of course seats can be pro�tably reallocated, involving

84% of students.

Table 5. Ex-Post Pareto Improving Trades

Mean Std. Dev.

# of Executed Trades per Student 1.54 (0.04)

% of Allocated Course Seats Traded 15.4% (0.31%)

% of Students Executing

0 Trades 16.4% (1.1%)

1 Trade 35.4 (1.7)

2 Trades 30.5 (1.6)

3+ Trades 17.8 (1.3)

Given the magnitude of this ine¢ ciency we run several robustness checks.32 Each places ad-

ditional restrictions on what constitutes a desirable trade (i.e., on (4)). First, we eliminate from
32Note that the magnitudes in Table 5 are consistent with the results of an informal survey conducted by two HBS

students in the Spring of 2005. As part of a class project related to the HBS mechanism, these students surveyed

160 of their classmates. One of the questions was: �Did you know of a trade with another student that could have

made you both better o¤?�58.1% responded yes. This is suggestive of both the magnitude and students�awareness

of ex-post Pareto ine¢ ciency. This �gure likely includes some double counting. For example, if many students want

to trade A for B, and only one wants to trade B for A, many more students might know of a Pareto-improving trade

than could actually execute them. Of course, it also likely excludes lots of trades that students aren�t aware of,

including multi-way trades. For many random priority orders we are able to �nd 43-way trades involving one seat in

each of the 43 popular courses.
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consideration any trade involving a student whose submitted preferences violate Lemma 1 because

of one of the two courses involved in that trade. This reduces the volume of Pareto-improving

trades to roughly 12% of all course seats. Next, we restrict attention to trades that are true to

the spirit of the equilibrium ex-post ine¢ ciency of Example 3. Speci�cally, we restrict attention

to trades in which the course received is either overreported by the student or is a course that he

downgrades but still receives with strictly positive probability (see type P1 in Example 3). This re-

duces the volume of Pareto-improving trades to roughly 7% of all course seats. Combining the two

tests reduces the level to 6%. This magnitude remains economically meaningful. For comparison, if

students played truthfully, Theorem 5 tells us that there would be no pareto-improving one-for-one

trade.

6.3 Consequences on Ex-Ante Individual Welfare

Both congestion and ex-post ine¢ ciencies due to risk-taking behavior will impact students�welfare,

measured before priority orders are drawn. In this section, we evaluate the impact of strategic

behavior by comparing students�ex-ante welfare under the actual play of the HBS mechanism and

the non-equilibrium counterfactual where students submit their true preferences.

The challenge we face is that our data consist of students�ordinal preferences over individual

courses, whereas such ex-ante welfare comparisons require information about students�preferences

over random allocations of bundles of courses. Students�preferences over individual courses together

with responsiveness generate, for each student, a partial order over bundles of courses and thus, a

fortiori a partial order over random allocations. This partial order is enough however to yield the

following comparison criterion:

Comparison Result 1 (Responsive Preferences) Suppose that student s has responsive pref-

erences. Then student s prefers truthful play P to strategic play bP if, for any complete order over
bundles consistent with the partial order implied by Ps and responsiveness, the lottery over bundles

he receives under P �rst-order stochastically dominates that under bP. He prefers bP if the reverse

relationship holds. He is indi¤erent if the two distributions are equivalent.

We implement this criterion as follows. First, we run the HBS algorithm for both truth-

ful play and strategic play for 100 randomly drawn priority orders, �1; :::; �100. Second, for

each student s, we form a bipartite graph where one set of nodes is her outcomes from truth-

ful play, as(P;�1); :::; as(P;�100); and the other set of nodes is her outcomes from strategic play,

as(bP;�1); :::; as(bP;�100): Third, we draw an edge from node as(P;�j) to node as(bP;�k) if we know
from Ps and responsiveness that she weakly prefers as(P;�j) to as(bP;�k). We do this for all pairs
j; k. Fourth, we check if the resulting bipartite graph has a perfect matching, i.e., a subset of edges

such that each node in the truthful-play node set is connected to exactly one node in the strategic-

play edge set. If there is a perfect match, this means that the set of outcomes under P �rst-order
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stochastically dominates that under bP for any complete order consistent with the responsiveness

partial order. To check if bP dominates P we reverse the way the edges are drawn in the third step.
We �nd that 45% of students are unambiguously harmed by strategic play, versus just 5.5% that

unambiguously bene�t. 1% of students are indi¤erent. For the remaining 48.5% the comparison

is indeterminate. Ignoring the indeterminate cases for now, we note that these results con�rm

our intuition about the asymmetry between the costs and bene�ts of strategic play: the students

who are harmed by strategic play are those whose preferred courses are popular, and by de�nition

there are more of them than students whose preferred courses are not popular and who then gain

from the ability to overreport popular courses. The fact that ex-post ine¢ ciencies hurt everyone

further exacerbates this asymmetry. The data show that the net result is sizable: there is a 1:9

ratio between the students who unambiguously gain from strategic play and those who lose.

To con�rm these results however we need to pin down the indeterminate cases. These arise from

two distinct sources. First, we have only a partial order over bundles; mechanically, this means

that fewer edges are drawn in the bipartite graph than would be the case if we knew students�

complete ordinal preferences. Second, even if we knew students�ordinal preferences over bundles,

we still would need to know their preferences over lotteries to always reach a comparison; �rst-

order stochastic dominance is a demanding order. In the rest of this section, we impose additional

assumptions on preferences that �ll in this information gap and pin down the indeterminate cases.

We say that student s has additive preferences if there exist numbers vs(c) for all courses in C;

such that us(as) > us(a0s)()
P
c2as vs(c) >

P
c2a0s vs(c) where us is student s�s vNM utility func-

tion and as and a0s are allocations. Additive preferences are a special case of responsive preferences.

By itself, the additivity assumption does not yield new results, but it provides a structure onto

which we can layer additional assumptions. Speci�cally, if, in addition, student s is risk neutral,

then his expected utility under strategy pro�le bP can be expressed as
P
�

P
c2as(bP;�) vs(c): This

yields our second comparison result:

Comparison Result 2 (Additive Preferences, Risk Neutral). Suppose that student s is risk

neutral and has additive preferences. Student s prefers truthful play P to strategic play bP if, for

any j, the expected number of top-j courses he gets under P exceeds that under bP: He prefers bP if
the reverse relationship holds. He is indi¤erent if he gets each course with equal probability under

both strategy pro�les.

Note the di¤erence with Comparison Result 1. The combination of additivity and risk neutrality

allows us to aggregate a distribution over
�
C
m

�
bundles into a distribution over just C courses.

A special case of additive preferences that allows us to compress this information further, and

gives us a complete order over bundles, is when the di¤erence in utilities derived from the student�s

1st and 2nd favorite courses is the same as that between the nth and n + 1st favorite, for any

n. Such a student cares about the average rank of the courses in his allocation. Average rank
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is a measure of mechanism performance emphasized by the HBS administration. Combined with

di¤erent assumptions on risk attitudes, the average-rank assumption yields the following comparison

results:

Comparison Result 3 (Average-rank Preferences). Assume student s has average-rank

preferences and let rs(P; �) (rs(bP; �)) denote the average rank of the courses that student s get
under strategy pro�le P (bP) for the priority order � :
(i) Independently of his attitude towards risk, student s prefers truthful play P to strategic play bP
if �rs(P; �) �rst-order stochastically dominates �rs(bP; �). He prefers bP to P if the converse holds.
(ii) If student s is risk averse, he prefers truthful play P to strategic play bP if �rs(P; �) second-order
stochastically dominates �rs(bP; �). He prefers bP to P if the converse holds.33
(iii) If student s is risk neutral, he prefers truthful play P to strategic play bP if

P
�

rs(P; �) �P
�

rs(bP; �). He prefers bP to P if the converse holds.
Another special case of additive preferences is lexicographic preferences (de�ned in Section 3)

which puts a high premium on getting one�s favorite courses. Lexicographic preferences can be seen

as the other extreme from average-rank preferences. The HBS administration implicitly assumes

lexicographic preferences when they evaluate the performance of the mechanism by the number of

students who get their favorite course. Lexicographic preferences also generate a complete order

over random allocations, and yield the following comparison result.

Comparison Result 4 (Lexicographic Preferences). Assume student s has lexicographic

preferences. He prefers truthful play P to strategic play bP if he gets his �rst choice course more

often under P than under bP or if he gets each of his n favorite courses as often under both pro�les
but gets his n + 1th favorite course more often under P; for some n: He prefers bP if the reverse

relationship holds.

To implement Comparison Results 2-4, we ran the HBS algorithm for 10,000 random priority

orders over students using both the constructed truthful and the July-run preferences, and record

each student�s distribution over outcomes. Table 6 reports the results. As a benchmark, we include

33For two cumulative distributions of average ranks, say F and G, with ranks distributed on [�; �]; F second-order

stochastically dominates G i¤
R �
x
(1 � F (x))dx �

R �
x
(1 � G(x))dx for all x 2 [�; �]: The di¤erence versus the usual

formula (Gollier, 2001; Section 3.2) is due to the fact that lower is better.
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the results from CR1.

Table 6. Individual preferences over play of the HBS Mechanism using CR1�4

Assumption on Preferences

Responsive Additive Average-Rank Lexicographic

Any Risk Risk Any Risk Risk Risk Risk

Attitude Neutral Attitude Averse Neutral Neutral

Outcome (1) (2) (3) (4) (5) (6)

Prefers HBS Truthful 45% 46% 56% 68% 73% 90%

Prefers HBS Strategic 5% 5% 13% 17% 26% 9%

Indi¤erent 1% 1% 1% 1% 1% 1%

Indeterminate 48% 47% 30% 14% 0% 0%

The results con�rm the basic asymmetry between the bene�ts and costs of strategic play: by

each comparison criterion, strategic play harms more students than it bene�ts. This asymmetry is

especially acute when preferences are lexicographic (comparison between column (6) and columns

(3)-(5)) because it is impossible to overeport one�s favorite course.

6.4 Consequences on Ex-Ante Social Welfare

We now turn to social welfare. Clearly, we cannot Pareto rank truthful play and strategic play

based on the assumption of responsive preferences alone: some students prefer strategic play and

others prefer truthful play. So in this section, we impose some inter-personal comparison of utilities

and assume additive preferences and a utilitarian social planner. An alternative interpretation is

that we take the perspective of an individual student who does not know his preferences but knows

the distribution of preferences in the population; that is, a student behind a veil of ignorance in

the sense of Harsanyi (1953). The "social" analogues of Comparison Results 2-4 are as follows:

Comparison Result 5 (Additive Preferences, Risk Neutral). Assume that students are risk

neutral and have additive preferences. Society prefers play truthful play P to strategic play bP; if,
for any j, the expected number of top n courses allocated to students under P exceeds that underbP: Society prefers bP if the converse holds.
Comparison Result 6 (Average-rank Preferences). Assume students have average-rank

preferences:

(i) Independently of students�attitude towards risk, society prefers truthful play P to strategic playbP if �r�(P; �) �rst-order stochastically dominates �r�(bP; �): Society prefers bP if the converse holds.
(The notation r�(P; �) indicates that the distribution is taken over priority orders and students.)

(ii) If students are risk averse, society prefers truthful play P to strategic play bP if �r�(P; �)
second-order stochastically dominates �r�(bP; �). Society prefers bP if the converse holds.
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Figure 1: Cumulative distribution of the true preference rank of students�assigned courses: truthful ver-

sus strategic play of the HBS mechanism. The distribution under truthful play �rst-order stochastically

dominates that under strategic play, so CR5, CR6(iii) and CR7 obtain.

(iii) If students are risk neutral, society prefers truthful play P to strategic play bP ifP
�

P
s
rs(P; �) <P

�

P
s
rs(bP; �). Society prefers bP if the converse holds.

Comparison Result 7 (Lexicographic Preferences). Assume students have lexicographic

preferences. Society prefers truthful play P to strategic play bP if the expected number of students
who get their �rst choice course is higher under P than under bP or if the expected number of

students who get their 1st,..., nth favorite courses is the same under both strategy pro�les, for some

n; but the expected number of students who get their n + 1th favorite course is higher under P:

Society prefers bP if the reverse relationship holds.
Figure 1 shows the average number of courses that students get among their top n choices.

There is a �rst order stochastic dominance relationship between the distribution of outcomes under

truthful and strategic play: students get more of their favorite course, more of their top two

favorite courses and so on under truthful play than under strategic play.34 Thus CR5 obtains and

by consequence CR6(iii) and CR7 obtain as well since both are special cases of risk-neutral additive

34The kink in the HBS Truthful line at rank 6 is a mechanical e¤ect due to the way we construct truthful preferences

(see Section 5.3). Students report their top-5 truthful preferences in the May Poll. Their 6th favorite course is the

�rst course they rank in the strategic rank order list that they didn�t rank in the May Poll. If this course is rated

highly by many other students in the May Poll, then the student will never obtain it under Truthful play, but might

obtain it under Strategic play if he ranks it highly enough.
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Figure 2: Probability distribution of the true-preference average rank of students�assigned bundles: truthful

versus strategic play of the HBS mechanism. The distribution under truthful play second-order stochastically

dominates that under strategic play, so CR6(ii) obtains.

preferences. In other words, if students are risk neutral, a utilitarian social planner unambiguously

prefers truthful play of the HBS mechanism.

The di¤erence is economically meaningful. 83% of students receive their favorite course under

truthful play, and they receive 2.46 of their top three courses, versus 60% and 1.82 under strategic

play. What is driving the result is that some of the most popular courses go to students for whom

they are not the most preferred courses. For example, the two most popular courses in our data

account for 50% of all truthful �rst choices, and 68% of all strategic �rst choices. These two courses

reach capacity in the �rst round of strategic play, so, on average, around 26% of the seats in these

courses go to students for whom it is not their true �rst choice.35

To investigate the role of students�risk attitudes, Figure 2 plots the distribution of the average

rank of course allocations in the population over all 10,000 trials. There is a bit more mass at

the very best outcomes under strategic play than under truthful play; this is due to the targeted

opportunism of students who are fortunate to mainly like unpopular courses. Otherwise, the

distribution under strategic play is dominated by that from truthful play, re�ecting the negative

consequences of congestion and ex-post Pareto ine¢ ciencies. There is no �rst-order stochastic

dominance relationship between the two distributions (CR6(i) is not satis�ed by a tiny margin),

35That is, (68%-50%)/68%. These two courses alone account for around 100 fewer students (11% of the student

body) obtaining their �rst-choice course under strategic play.
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but second-order stochastic dominance (CR6(ii)) does obtain. Thus, strategic behavior hurts ex-

ante social welfare if students have average-rank preferences and are weakly risk averse.

7 Comparison of the HBS Mechanism to a Strategyproof Alter-

native

In the previous section we showed that strategic play of the HBS mechanism harms e¢ ciency,

assessed either ex-ante or ex-post. This section asks the logical next question: should HBS switch

to a strategyproof mechanism? To answer this, we perform a welfare comparison between actual

play of the HBS mechanism and truthful play of its strategyproof alternative, Random Serial

Dictatorship (RSD). We use the same methodology as in Sections 6, except that the counterfactual

is (equilibrium) truthful play of RSD, as opposed to (non-equilibrium) truthful play of HBS.

The �rst thing to note is that RSD is ex-post e¢ cient, whereas we found in Section 6.2 that

the HBS mechanism is highly ine¢ cient ex-post.

In order to assess ex-ante e¢ ciency, we will need to impose additional structure on preferences

beyond responsiveness. Under RSD, students will often obtain their ideal bundle of courses, but

will also often obtain a very poor bundle. The responsiveness assumption does not rule out the

possibility that a student only places value on obtaining his ideal bundle, nor does it rule out that

the student only cares about maximizing the minimum bundle he obtains. So comparisons based

on CR1 are entirely indeterminate.

As soon as we put additional structure on preferences we �nd that the HBS mechanism is

more attractive ex-ante than RSD. RSD�s ex-ante unattractiveness is surprising since ex-post it is

e¢ cient. Furthermore, this result does not depend on risk aversion. We provide a novel theoretical

explanation of RSD�s unattractiveness in the following section.

7.1 Ex-Ante Individual Welfare

We repeat the methodology of Section 6.3. Table 7 compares HBS to RSD under additive, average

rank, and lexicographic preferences using Comparison Results 1-4:
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Table 7. Individual preferences between HBS and RSD: CR1�4

Assumption on Preferences

Responsive Additive Average-Rank Lexicographic

Any Risk Risk Any Risk Risk Risk Risk

Outcome Attitude Neutral Attitude Averse Neutral Neutral

(1) (2) (3) (4) (5) (6)

Prefers RSD 0% 0% 0% 0% 19% 25%

Prefers HBS Strategic 0% 26% 2% 81% 81% 75%

Indi¤erent 0% 0% 0% 0% 0% 0%

Indeterminate 100% 74% 98% 19% 0% 0%

We begin by comparing columns (3), (4) and (5). Without any structure on students� risk

preferences, the comparison is almost entirely indeterminate. This is because RSD induces such

extreme outcomes. If we assume that students are risk-averse, then the indeterminacies are resolved

in favor of the HBS mechanism. No student unambiguously prefers RSD and the vast majority

unambiguously prefers HBS. This re�ects the well-known criticism of RSD that it exposes students

to risk.

There is however more in Table 7 than risk. Indeed, compare now columns (5) and (6). In

both cases, and even though students are risk neutral, the large majority of students prefer the

HBS mechanism to RSD. Interestingly, and unlike in the comparison in Table 6, the ratio does not

vary much between the two columns. This suggests that preference intensity is not what drives

students�ex-ante preference for HBS over RSD.

7.2 Ex-Ante Social Welfare

We repeat the methodology of Section 6.4. Figure 3 compares the aggregate rank distributions of

HBS and RSD. The distribution under strategic play of the HBS mechanism �rst-order stochasti-

cally dominates that under truthful play of RSD. Thus, a utilitarian social planner prefers HBS to

RSD when students are risk neutral and have any additive preferences (CR5, CR6(iii), CR7). This

result con�rms the picture at the individual level but is more suprising at the social level, given

RSD�s ex-post e¢ ciency. It suggests that RSD�s ex-post e¢ ciency is not a good proxy for social

welfare.

The magnitudes are of the most economic importance in the tails. Students receive their favorite

course with 60% probability under HBS, but with only 47% probability under RSD.36 Students

actually receive slightly more of their 2nd-10th favorite courses under RSD (6.02) than under HBS
36To give a sense of the magnitude of this di¤erence, we note Pathak�s (2006) �ndings in the context of a single�

unit assignment problem, school choice. He �nds that students receive their �rst-choice school 60.6% of the time
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Figure 3: Cumulative distribution of the true preference rank of students�assigned courses: RSD versus

strategic play of the HBS mechanism. The distribution under HBS �rst-order stochastically dominates that

under RSD, so CR5, CR6(iii) and CR7 obtain.

(5.95). This is because students with lucky draws in RSD get all 10 of their favorite courses. The

cost is that students receive twice as many courses they like less than 15th (1.30) under RSD than

under HBS (0.65). As a result the mean average rank under RSD is 8.94, versus 8.35 under HBS.

This is an economically meaningful di¤erence, around that of the di¤erence between truthful and

strategic play of the HBS mechanism.

Finally, Figure 4 illustrates the risk to which RSD exposes students by examining the distrib-

ution of average ranks. RSD puts much more weight on the tails of the distribution, and indeed

is second-order stochastically dominated by HBS (CR6 (ii)). So a utilitarian social planner prefers

HBS to RSD if students are weakly risk averse and have average-rank preferences. Again, the mag-

nitudes are signi�cant. Under RSD, around 29% of students obtain their "bliss bundle" consisting

of their 10 favorite courses, versus around 1% under HBS. But over 17% of students obtain a bundle

with average rank worse than 12, versus just 1% under HBS.

under RSD, versus 60.8% in the counterfactual of interest (Bogomolnaia and Moulin (2001)�s Probabilistic Serial

mechanism).
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Figure 4: Probability distribution of the true-preference average rank of students�assigned bundles: RSD

vs. strategic play of the HBS mechanism. The distribution under HBS second-order stochastically dominates

that under RSD, so CR6(ii) obtains.

8 Callousness

Our intuition for RSD�s poor ex-ante performance is simple. Under RSD, fortunate students with

good random draws make their last choices independently of whether these courses would be some

unfortunate students��rst choices; students "callously disregard" the preferences of those who

choose after them. The reason this callous behavior matters for welfare is that the ex-post utility

bene�t to the fortunate students from these last choices will generally be small relative to the

ex-post harm these choices cause to the unfortunate students. Thus, RSD is unattractive when

evaluated ex-ante. Notice that the unattractiveness of RSD does not depend on students being risk

averse; even risk neutral agents regard a "win a little, lose a lot" lottery as unappealing.

We formalize this intuition with a simple example and a simple theorem.

Example 4 (Callousness of RSD). There are two students, a and b, and four courses each

in unit supply. Students�ordinal preferences over singletons are drawn uniformly i.i.d., and they

report their preferences truthfully.

Consider �rst the RSD choosing order aabb. Student a always gets his 1st and 2nd favorite

courses, while b gets either his 1st/2nd, 1st/3rd, 1st/4th, 2nd/3rd, 2nd/4th, or 3rd/4th favorite

courses, each with equal probability. a�s average rank is 1:5 and b�s is 2:5, so the societal mean is

2:0. a always gets his favorite course whereas b gets it with probability 0:5, so the societal mean is
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0:75:

Now consider the HBS choosing order abba. Student a always gets his 1st favorite course. Then,

b gets his 1st and 2nd favorites with probability one-half, and otherwise gets either his 1st/3rd or

2nd/3rd, each with probability one-quarter. Last, a gets either his 2nd, 3rd, or 4th, each with equal

probability. a�s average rank is 2:0 and b�s is 1:875, for a societal mean of 1:9375. a always gets his

favorite course, whereas b gets it with probability 0:75, so the societal mean is 0:875.

The following table summarizes the di¤erences between HBS and RSD.

Table 8. Results of Example 4

Pr(student gets (ith; jth) favorite courses) Summary Stats

(1; 2) (1; 3) (1; 4) (2; 3) (2; 4) (3; 4) E(Avg Rank) Pr(Get Favorite)

RSD 7
12

1
12

1
12

1
12

1
12

1
12 2:0 0:75

HBS 5
12

7
24

1
8

1
6 0 0 1:9375 0:875

In this simple example, ex-ante welfare is higher under HBS than RSD for risk-neutral students

with either average-rank or lexicographic preferences. The driving force behind both results is that

it is harmful, in terms of these measures of welfare, to give a his second choice before b has made

his �rst choice. Risk aversion only exacerbates the case against RSD, because of the increased

probability of the very worst outcomes.

Simulations suggest that the average-rank �nding in Example 4 generalizes to larger economies.

For instance, in an HBS-sized version of Example 4 with 1000 students, 100 courses, 100 seats per

course, and m = 10, the average rank under HBS is 5.72 versus 6.45 under RSD.37

The following simple theorem shows that the �rst-choice-course �nding in Example 4 generalizes.

It helps contrast callousness to existing critiques of RSD.

Theorem 6 (Callousness of RSD): Suppose there are S students, each of whom requires m

courses, and mS courses each in unit supply. Students�ordinal preferences over courses are drawn

uniformly i.i.d., and they report their preferences truthfully.38 Then the expected proportion of

students who obtain their �rst-choice course is 1� (S�1)
2Sm under HBS which is strictly greater than

the proportion 1 � (S�1)
2S under RSD whenever m > 1. As S ! 1 the proportion converges to

1� 1
2m under HBS versus 12 under RSD.

A direct consequence of Theorem 6 is that ex-ante welfare is lower under RSD even if students are

risk neutral (and have lexicographic preferences). Thus callousness is distinct from the risk critique

of RSD. Second, Theorem 6 (as well as the simulation evidence) shows that RSD�s unattractiveness

37Further simulation results and code are available from the authors. We also are able to show theoretically that

Example 4 generalizes to any number of students S, with m = 2 and Sm courses each in unit supply. The proof is

somewhat involved and is available upon request.
38Theorem 2 indicates that truthful reporting is an equilibrium in the continuum version of this environment.
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persists in large markets. This helps to illustrate that callousness is distinct from Bogomolnaia and

Moulin�s (2001) critique of RSD in the single-unit assignment setting, since the magnitude of the

ine¢ ciency they address goes to zero as the market grows large (Che and Kojima, forthcoming).

Finally, note that callousness is speci�c to multi-unit assignment. If m = 1, the HBS and RSD

mechanisms are equivalent.

9 Conclusion

This paper is useful at three levels: the mechanism, the problem, and the �eld.

We analyze two speci�c mechanisms: one used in practice to allocate courses to students at

Harvard Business School, and the other extensively studied in theory. We show that the HBS

mechanism is importantly �awed: it is simple to manipulate in theory and heavily manipulated in

practice, with meaningful welfare consequences. However, we also show that on measures of ex-ante

welfare, RSD is worse, due to an aspect of RSD that we call "callousness".

At the level of the problem, multi-unit assignment, our paper not only shows that the HBS

mechanism is a sensible choice relative to RSD, but suggests "where to look" for mechanisms that

are better still. First, one should seek a mechanism that is not a strategyproof dictatorship but

that is not simple to manipulate like the HBS mechanism. The mechanism should aim to induce

truthful reporting in realistic market environments. Second, one should seek a mechanism that more

resembles HBS than RSD in its ex-ante e¢ ciency characteristics. To avoid callousness, participants�

realized resources (here, their choosing times) should not be highly unequal as in RSD, but rather

roughly equal as in HBS. Budish (2009) proposes a mechanism directly inspired by the present

analysis. His mechanism is strategyproof in an economy with a large number of students (unlike

HBS) and exposes participants to an arbitrarily small amount of resource variance (unlike RSD).

When evaluated on our data, his mechanism outperforms both the HBS mechanism and RSD.

Finally, our paper contributes to two active debates in the broader literature on market design.

The �rst contribution concerns welfare analysis for random allocation mechanisms. The challenge

we face of analyzing welfare on the basis of just ordinal preference data is not unusual for empirical

market design research.39 One approach to such data incompleteness is to limit attention to mea-

sures of ex-post e¢ ciency, for which ordinal data is su¢ cient. On this basis, RSD is more attractive

than HBS. Our contribution is a set of simple tools that allow one to make statements about ex-ante

welfare based on just ordinal preference data. When we use these tools to compare HBS and RSD

39For example, hospitals in the National Resident Matching Program report only ordinal preferences over individual

doctors, but their welfare depends in the end on the team they assemble (Roth and Peranson, 1999). Note that

the challenge is less severe in unit-demand problems, because the dimensionality of vNM preferences equals the

dimensionality of the ordinal preference data. Papers that exploit this fact include Bogomolnaia and Moulin (2001),

Miralles (2009), and Featherstone and Niederle (2008).
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ex-ante, the conclusion from the ex-post analysis is reversed. That is, ex-post e¢ ciency need not

even proxy for ex-ante e¢ ciency, and care should be taken if analyzing the former while hoping for

the latter.

The second contribution to the �eld of market design concerns the role of strategyproofness,

and the welfare costs of using a manipulable mechanism. Strategyproofness has long been viewed

as an important desideratum in practical market design, especially in the context of assignment

and matching problems (Roth 2008).40 Our �eld data allow us to directly document that students

at HBS �real-life participants in a one-shot high-stakes setting ��gure out how to strategically

manipulate the non-strategyproof HBS mechanism. Further, we show that these manipulations

have real welfare consequences. But while these �ndings are strongly consistent with the view

that strategyproofness is an important desideratum, our �nding that the HBS mechanism is more

attractive than RSD suggests that this desideratum should be used with caution. It would have

been a mistake for HBS to impose strategyproofness as an in�exible design requirement.

40There are at least three reasons to favor strategyproof mechanisms in such settings. First, strategyproof mech-

anisms are the ultimate robust mechanisms in the sense of Wilson (1987). Second, strategyproof mechanisms make

it easy to advise market participants and help to level the playing �eld between sophisticated and naive players

(Abdulkadiroglu et al (2009), Pathak and Sonmez (2008)). Third, strategyproof mechanisms generate preference

information that can be used for ex-post policy evaluation and public decisions (Roth, 2008).
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A Proofs

A.1 Proof of Theorem 1 (Simple Manipulations)

The strategy of the proof is to show that a sequence of deviations from Ps; that consist in downgrad-

ing the bP�s-unpopular courses to the bottom half of the top m courses in student s�s ROL while

preserving the relative ordering of the bP�s-popular and bP�s-unpopular courses, leaves student s
weakly better o¤ for all �. For ease of reference, relabel courses such that Ps : c1; c2; c3; :::; cC :

To save on notations, in the remainder, we simply refer to popular and unpopular courses forbP�s-popular and bP�s-unpopular courses respectively.
Claim 1: Suppose ck is unpopular. Then, for all �; bP ck#ls gets exactly the same courses as bPs or
exactly one more course in fck+1; ::::; clg than bPs; at the cost of a course in fcl+1; :::; cCg:
Proof of Claim 1: Fix an arbitrary �: Because bPs and bP ck#ls only di¤er from position k onwards,

the game proceeds identically until the time at which bPs requests ck (and bP ck#ls requests course

ck+1): Let rk be the round at which this happens. By construction, ck is available when bPs requests
it in round rk: Because student s has zero mass, the fact that his outcome in round rk is di¤erent

across the two strategies does not a¤ect course seat availabilities and thus, a fortiori, the allocation

and requests of other students in any given round.

From round rk + 1 onwards, student s requests courses one round earlier under strategy bP ck#ls

than under strategy bPs; until we either reach a course, say ck0 ; in fck+1; :::; clg that student s gets
under bP ck#ls but not under bPs, or reach position l in student s�s ROL. We consider each case in
turn:

1. There exists ck0 in fck+1; :::; clg that student s gets under bP ck#ls but not under bPs:
Let rk0 be the round at which student s requests but does not get this course under bPs. From
round rk0 onwards, student s�s requests are in synch under both strategies and thus he gets

the same outcome until the algorithm reaches position l in his ROL.

When the algorithm reaches the request in position l; student s requests (and gets) course ck

under bP ck#ls . From then on, student s requests courses one round earlier under bPs: This has
two possible consequences: either there exists a course that he gets under bPs but not underbP ck#ls (after which his requests are in synch and there is no more discrepancy between the two

outcomes), or the algorithm reaches round m (and thus the course that the student requests

in round m under bPs is never requested by bP ck#ls ). In both cases, there is a single course in

fcl+1; :::; cCg that student s gets under bPs instead of ck0 that he does not get under bP ck#ls .

2. The algorithm reaches position l in student s�s ROL without any di¤erence in allocations

between the two strategies
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At that round, bP ck#ls requests ck and student s�s requests become in synch again. There is

thus no more di¤erence in outcomes.

Claim 2: Let ck be the lowest-ranked unpopular course among the top m courses in Ps: LetbP 1s = P ck#ms : Student s is weakly better o¤ using bP 1s than Ps for all �:
Proof of Claim 2: By claim 1, bP 1s gets exactly the same courses or exactly one additional course in
fck+1; ::::; cmg than Ps; at the cost of a course in fcm+1; :::; cCg. Because all courses in fck+1; :::; cmg
are strictly preferred to courses in fcm+1; :::; cCg, student s is either indi¤erent or strictly better o¤
using bP 1s (here we are using the fact that preferences are responsive and that students have vNM
preferences over lotteries).

Claim 3: Let cj be the nth lowest unpopular courses among the top m courses in Ps: Let bPns =bPn�1 cj#m�n+1
s (student s downgrades course cj just above all the other less preferred unpopular

courses that he has already downgraded). Student s is weakly better o¤ using bPns than bPn�1s for

all �:

Proof of Claim 3: By claim 1, bPns gets either exactly the same courses or exactly one additional
course among the popular courses that were between cj and position m�n+1 in bPn�1s : This comes

at the expense of a course in fcm+1; :::; cCg: Given that preferences are responsive and take the
vNM form, student s is weakly better o¤ using bPns over bPn�1s :

We continue until there is no further unpopular course to downgrade. At each deviation, student

s is weakly better o¤ for all �. The claim then follows by transitivity. QED

A.2 Proof of Theorem 2 (Truthful Play in Special Cases)

Proof : Identical preferences: Let Ps = Ps0 : c1; c2; c3; ::: Under truthful play, course c1 runs out

earlier than c2; which itself runs out earlier than c3 and so on. Also note that c1 runs out with

probability 1 in round 1 for all strategy pro�les ( bPs;P�s) for any bPs:
Towards a contradiction, suppose bPs 6= Ps constitutes a pro�table deviation for student s when the
other students play P�s: Let bP c"s equal bPs except that c is moved to the �rst position. Similarly, letbP cc0"s equal bPs; except that c is moved to the �rst position and c0 is moved to the second position,
and so on for bP cc0c00"s ; bP cc0c00c000"s ; :::

We show that the sequence bP c1"s ; bP c1c2"s ; :::; bP c1::::cC�1"s = Ps constitutes a chain of pro�table devia-

tions so that student s is at least as well o¤ under Ps as under bPs. This contradicts the hypothesis
that bPs was a pro�table deviation from Ps:

Consider �rst bP c1"s and bPs and suppose c1 is not �rst in bPs (otherwise bP c1"s = bPs and we are done):
Claim 1: Student s gets either exactly the same courses under ( bP c1"s ;P�s) and ( bPs;P�s) or his two
allocations di¤er by exactly one course: he gets c1 under ( bP c1"s ;P�s) which he does not get under

( bPs;P�s), in exchange for getting a course under ( bPs;P�s) that he does not get under ( bP c1"s ;P�s):
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Proof of Claim 1: We compare how the game plays out under the two strategies. Partition the

set of priority orders L into L1 and L0 according to whether student s does or does not get c1 in
the �rst round when playing bP c1"s . Under all priority orders in L0 the two games play out exactly
in the same fashion (since student s never gets c1 under bPs), so we focus on priority orders in L1:
Fix � 2 L1: Under ( bP c1"s ;P�s); student s gets c1 which he does not get under the original strategy.

From round 1 onwards until we reach a course that student s gets under one strategy but not under

the other, student s requests each speci�c course exactly one round later under bP c1"s . Because

of the continuum assumption, other students� requests and outcomes are otherwise not a¤ected

and courses run out at the same time under both strategy pro�les. Thus if there is a course that

student s gets under one strategy but not under the other it is a course that he does not get

under ( bP c1"s ;P�s): Call this course cl and let r be the round at which this happens. From round r,

student s�s requests are in synch again and so are other students�requests. This implies there are

no additional discrepancies between the two allocations.

Claim 1, together with responsiveness (c1Pscl) and vNM preferences over uncertain outcomes,

implies that student s is strictly better o¤ playing bP c1"s than bPs: We next show that bP c1:::ck"s is

preferred to bP c1:::ck�1"s :

Claim 2: Student s gets either exactly the same courses under ( bP c1:::ck"s ;P�s) and ( bP c1:::ck�1"s ;P�s)

or his two allocations di¤er by exactly one course: he gets ck under ( bP c1:::ck"s ;P�s) which he does

not get under ( bP c1:::ck�1"s ;P�s), in exchange for getting cl; l > k under ( bP c1:::ck�1"s ;P�s) that he

does not get under ( bP c1:::ck"s ;P�s) for k � 2

Proof of Claim 2: The proof proceeds along similar lines as the proof of claim 1. Without

loss of generality, assume that bP c1:::ck"s 6= bP c1:::ck�1"s : Until student s requests ck under bP c1:::ck"s ;

the two games proceed identically. Partition the set of priority orders into L11 (s gets ck under
both strategies), L10 (s gets ck only under ( bP c1:::ck"s ;P�s)) and L00 (s does not get ck under either
strategies). Clearly, for priority orders in L00; the two games proceed identically and s gets the
same �nal allocation.

We claim that s gets also the same �nal allocation for priority orders L11: To show this, �x �

and let r be the round at which student s requests ck under bP c1:::ck�1"s and r0 < r the round at

which he requests ck under bP c1:::ck"s : Because ck �lls up earlier than cl for l > k; it means that all

courses requested by student s between ck�1 and ck under bP c1:::ck�1"s are still available at the time

of student s�s turn in round r under the alternative strategy bP c1:::ck"s : Thus, by round r student s

has the same allocation under both strategies. Because requests are identical across the two games

from then on, so are allocations.

Finally, we argue that, under priority orders in L10; student s gets ck under bP c1:::ck"s at the cost of

cl for some l > k: The argument here is identical to the argument in the proof of claim 1. There

exists a course cl that student s does not get under bP c1:::ck"s : From the time of this unsuccessful
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request, student s�s requests are identical across the two strategies. Thus so are his outcomes.

Claim 2, responsiveness and the assumption of vNM preferences over uncertain outcomes implies

that student s prefers bP c1:::ck"s to bP c1:::ck�1"s : Theorem 2(2) then follows from transivity.

Independent preferences: Let r be such that Dc(r � 1) < 1 and Dc(r) � 1 for P-popular course

c: Under truthful play, all P-popular courses run out exactly in round r: This also holds for all

strategy pro�les ( bPs;P�s) for any bPs: Truthful play guarantees that each student gets his top r� 1
courses. Moreover, it maximizes the chance that he gets r P-popular courses; and conditional on

getting r P-popular courses, the probability distribution it generates on those r-course bundles �rst

order stochastically dominates the outcome from any alternative (here we use the assumption of

responsiveness and the fact that all r-course bundles di¤er by a single course, the one requested in

round r; to generate an order over them). Finally, the fact that P-unpopular courses are listed in

order of preferences ensures that he gets his m � r (or m + 1 � r) most preferred courses among
them, with no need to resort to the add-drop phase: The claim then follows from responsiveness

and the assumption of vNM preferences over uncertain outcomes. QED

A.3 Proof of Lemma 1 (Best-Response Characterization)

Towards a contradiction, suppose that student s�s best response bPs involves ranking bP-popular
course c lower than a bP-unpopular course despite the fact that (i) rs(c) � m, (ii) Pr(c 2 as(bP)) < 1
and (iii) Pr

�
c 2 as

�bPc"k�� > 0 where k is the position of the �rst bP�unpopular course on bPs.
Let ec denote the last bP-unpopular course to appear before c on bPs: Moreover, let c0 denote the
lowest ranked bP�popular course in bPs (c0 could be c) and let l and l0 be the position of c and c0 inbPs:
We construct an alternative strategy, ePs, by making two changes relative to bPs. First, switch the
positions of c and ec. Second, downgrade ec further down to position l0 if there is a popular course
below c in bPs: Thus, the two strategies can be written as:

l l0

If c 6= c0:bPs : ... ec ... c ... c0 ...ePs : ... c ... ... c0 ec ...

If c = c0:bPs : ... ec ... c ...ePs : ... c ... ec ...

(5)

where the dots denote courses that do not change relative positions between bPs and ePs. Partition
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the set of priority orders into three:

L1 = f�jc 2 as(bP;�) and c 2 as(( ePs; bP�s); �)g
L2 = f�jc =2 as(bP; �) and c =2 as(( ePs; bP�s); �)g
L3 = f�jc =2 as(bP; �) and c 2 as(( ePs; bP�s); �)g

Note that we do not need to consider the case where c 2 as(bP; �) and c =2 as(( ePs; bP�s); �) because
this outcome is impossible: for all �; ePs requests c strictly earlier than the original strategy.
Claim 1: Student s is weakly better o¤ using ePs if � 2 L1:
Proof of Claim 1: Because ePs gets c when it requests it, and bPs gets ec in that round, the two
strategies are in synch and obtain identical outcomes until we reach position l in student s�s ROL.

If c 6= c0 bPs requests c at that round and, by hypothesis, gets it, while the alternative strategy
requests the next course on the list. In other words, ePs requests courses early from that round

onwards until we reach position l0 on the ROL or a course that ePs gets but that bPs does not get.
If we reach position l0 �rst; ePs gets ec and requests are again back in synch. In that case, there is
no di¤erence in outcomes between the two strategies. Otherwise, ePs gets a course that bPs does not
get (it could be a popular course or the unpopular course requested by ePs in round m and never

requested under the original strategy because we never reach position l0). If c = c0, bPs requests and
gets c and ePs requests and gets ec when we reach position l in the ROL. Requests and outcomes are
identical from then on.

To summarize, during the initial allocation, ePs gets every popular course that bPs receives, plus
possibly one additional popular course ranked lower than c on bPs (at the expense of an unpopular
course). Because unpopular courses are available with probability one during the add-drop phase,

the �nal schedule that s is able to form using ePs is at least weakly preferred to that from using bPs.
Claim 2: Student s is weakly better o¤ using ePs if � 2 L2
Proof of Claim 2: By a similar argument as above, we can again show that ePs gets every popular
course that bPs receives, plus possibly one additional. This additional course might be any popular
course ranked lower than ec on bPs. Because of the add-drop phase, ePs yields a weakly better outcome
than does bPs.
Claim 3: Student s is strictly better o¤ using ePs if � 2 L3:
Proof of claim 3: Again we distinguish two cases depending on whether c = c0: If c 6= c0; the two
strategies are essentially in synch until we reach their requests for c0: indeed, except for the fact

that bPs gets ec when ePs gets c, they get the same courses in exactly the same rounds. Once we
reach the (successful) request for ec by bPs; they become out of synch and ePs requests courses one
round earlier. Because, by construction, all these courses are unpopular and thus available with

probability one, the end result is that the allocations from the two strategies di¤er by exactly one
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course: bPs gets popular course c that ePs does not get, at the cost of an unpopular course: Since
rs(c) � m; and unpopular courses are available with probability one in the add-drop phase, the

�nal schedule that s is able to form using ePs is strictly preferred to that from using bPs. If c = c0;
the two strategies become out of synch when we reach position l in the ROL. By assumption, bPs is
unsuccessful at getting c and ePs is successful at getting ec: From then on, bPs requests courses one
round earlier than ePs: Because, by construction, these are unpopular courses, the end result is that
the allocations from the initial phase di¤er by a single course: bPs gets c at the cost of an unpopular
course. Since rs(c) � m; and unpopular courses are available with probability one in the add-drop
phase, the �nal schedule that s is able to form using ePs is strictly preferred to that from using bPs.
To complete the argument and prove that student s is strictly better o¤ using ePs, we need to argue
that Pr(� 2 L3) > 0. If Pr(c 2 as(bP)) 2 (0; 1); this follows from the fact that ePs requests c strictly
earlier than does bPs: If, instead, Pr(c 2 asjbP) = 0 but Pr

�
c 2 as

�bPc"k�� > 0 where k is the

position of the �rst bP�unpopular course on bPs, we may need to reiterate the argument using the
next unpopular course ahead of c in ePs: Once no more unpopular courses are ahead of c then we
can call upon the fact that Pr

�
c 2 as

�bPc"k�� > 0 where k is the position of the �rst bP�unpopular
course on bPs: QED
A.4 Proof of Theorem 3 (Equilibrium Characterization)

(i) Fix an equilibrium bP. For any priority order �; every student for whom c belongs to their

top�m favorite courses either requests c in the original allocation or requests it in the add-drop

phase. Since Dc(m) > 1 there exists a positive measure set of students whose requests are rejected.

(ii) Let k denote the number of bP-popular courses. If k > m the claim follows trivially. Suppose

k � m and tc > k. Then there exists a positive mass of students who (1) have c among their top-m

courses, but who place it in position k + 1 or below in their submitted ROLs and (2) get course

c with probability strictly less than 1. Consider one such student, say s: bPs must contain at least
one bP-unpopular course, c�; in the top k positions. This contradicts Lemma 1. QED
A.5 Proof of Lemma 2 (Best-response Characterization with Lexicographic

Preferences)

We prove Lemma 2 in two steps. The �rst step is identical to the proof of Lemma 1.

Step 1: Move unpopular courses down

Suppose that none of (i)-(iii) hold for course c. Consider the deviation strategy ePs; described in (5),
possibly repeated so that no unpopular course appears before c in ePs: Then, by the same arguments
as claims 1-3 of the proof of Lemma 1, student s is weakly better o¤ using ePs than using bPs: He is
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strictly better o¤ if Pr(c =2 as(bP; �) and c 2 as(( ePs; bP�s)) > 0; i.e. if by doing so student s gets c
more often. Note, that unlike in the proof of Lemma 1, we cannot guarantee that Pr(c =2 as(bP; �)
and c 2 as(( ePs; bP�s)) > 0:
If there exists another popular course that is preceded by an unpopular course and violates condi-

tions (ii) and (iii) of the Lemma repeat the operation until we reach a point where the deviation

strategy increases the probability of getting that popular course or there is no more popular course

preceded by an unpopular course. In the �rst case, student s is strictly better o¤ and we are done.

In the second case, he is weakly better o¤.

Step 2: Reorder popular courses

Without loss of generality (given step 1), consider a strategy bPs where all unpopular courses appear
after popular courses but where, for some popular course c; conditions (i)-(iii) are all violated. For

ease of reference relabel courses such that Ps : c1; c2; c3; ::::

Consider �rst c1. If conditions (i)-(iii) are violated for c1; then move it up to position 1: Given that

this strictly increases the probability of getting it and that student s has lexicographic preferences,

student s is strictly better o¤ using this strategy and so we are done.

Suppose next that conditions (i)-(iii) are not violated for c1 but are violated for c2: Consider the

deviation where the pair of courses fc1; c2g are moved up to the �rst and second positions of the
ROL, in the order in which they appear on bPs: This does not decrease the probability that c1
belongs to the �nal allocation but strictly increases the probability that c2 belongs to the �nal

allocation. Given lexicographic preferences, student s is strictly better o¤, and so we are done.

We can reiterate this argument if conditions (i)-(iii) are satis�ed for c1; :::; ck but not ck+1; and

show that moving up these courses leaves student s strictly better o¤.

To �nish the proof, we need to argue that, if the result of the deviations in Step 1 satis�es conditions

(i)-(iii), then these deviations must lead to student s being strictly better o¤. This follows directly

given that conditions (ii)-(iii) were not satis�ed by the original strategy. QED.

A.6 Proof of Theorem 4 (Equilibrium with Lexicographic Preferences)

(i). Towards a contradiction assume that tc > �c. Then there exists a positive mass of students for

whom rs(c) � �c but who request the course later than round �c with strictly positive probability
and get rejected with positive probability: These students ranked c in position �c + 1 or lower in

their ROLs, in contradiction of Lemma 2.

(ii). From the �rst part of the Theorem, we know that all courses for which Dc(m) > 1 arebP�popular in any equilibrium. Moreover, by Lemma 2, we know that the only time when these
courses are moved down on students�ROLs is when (1) the student nevertheless gets the course

for sure, or (2) when even ranking them in their truthful position would yield the course with

46



probability zero. In both cases, this downgrading of course c does not a¤ect the timing of its

run-out time relative to truthful play. On the other hand, whenever unpopular courses are moved

down these high demand courses are requested weakly earlier. QED.

A.7 Proof of Theorem 5 (Ex-post E¢ ciency in Special Cases)

(i) An allocation is not ex-post e¢ cient possible if there exist a chain of courses c1; c2; :::; ck and k

students such that student s1 prefers c1 to c2 but got c2 and not c1; student s2 prefers c2 to c3 but

got c3 and not c2;... etc, and student sk prefers ck to c1 but got c1 and not ck: This means there

exists a chain of one-for-one pareto improving trades among those students (given responsiveness,

one-for-one trades are the only pareto improving trades we can detect). This implies that, for the

particular priority order that generated this allocation, tc1 < tc2 < ... < tck < tc1 : An impossibility.

(ii) Suppose student s is part of a chain of one-for-one trades. Let c be the course he wants to give

and c0 the course he gets in return. Then either:

(a) the time of the successful request for c < the time of the unsuccessful request for c0; or

(b) the time of the successful request for c > the time of the unsuccessful request for c0:

By Lemma 2, case (a) is impossible. If student s prefers c0 to c then he only downgrades it if he is

sure to get it. Thus everybody in the trade must be in the situation (b). But this is impossible: it

cannot be that everyone gets a course that sells out earlier than the course they give up. QED

A.8 Proof of Theorem 6 (Callousness of RSD)

The probability that the jth student in the random priority order gets his �rst favorite course

is Sm�(j�1)
Sm under HBS, as j � 1 of the Sm objects have been selected by other students, and

which objects were selected is random due to the uniform i.i.d. assumption. For RSD the �gure is
Sm�m(j�1)

Sm , as m(j � 1) objects have been randomly selected by the time of j�s turn. Taking the
arithmetic average over all j yields the desired expressions. QED.

47



B Robustness Checks

The results of our welfare analysis in Sections 6 and 7 are robust to a variety of alternate speci�-

cations for truthful and strategic preferences.

Our �rst robustness check uses students�May trial-run preferences instead of their July actual-

run preferences, both for students� strategic reports and for the construction of their truthful

preferences beyond the top �ve from the May poll data. The advantage of using the May trial-run

preferences is that just 10 days elapsed between the May poll and the May trial-run, so there is less

reason to worry about social learning, new information and idiosyncratic preference changes. The

disadvantage is that the July run is what actually mattered for welfare, and students may have

used the May trial-run to learn about equilibrium best responses.

Our second robustness check considers a sub-economy consisting only of the 82% of students

whose July strategic reports are consistent with our partial characterization of equilibrium best

responses (Lemma 1). Students whose play violates Lemma 1 either are making a strategic error

or their preferences changed between May and July. Ideally, our welfare calculations would exclude

students whose preferences changed but include students who make strategic errors; this robustness

check is likely to make the HBS mechanism look a bit better than it actually is because it excludes

the possibility of human error.

Reassuringly, the results of Sections 6 and 7 do not move that much under either of these

alternate speci�cations. Furthermore, they move in roughly the direction we would expect given

the issues we are concerned about. For instance, eliminating the Lemma 1 violators somewhat

narrows the di¤erence in mean average ranks between truthful and strategic play of the HBS

mechanism. And, using the May trial preferences instead of the July actual preferences slightly

reduces the number of indeterminacies in Tables 6 and 7.

Another limitation of our analysis is that we rely on a survey to ascertain students�true prefer-

ences.41 Therefore as another simple robustness check we consider a simulation economy in which

we can directly control agents� preferences. Speci�cally, there are 1000 students each of whom

require 10 courses, and 100 courses with 120 seats each, for 20% excess capacity as in the data.

Students have additive risk-neutral preferences. Student s�s value for course c is given by

vsc = vc + �sc

where vc � U [0; 1] is a common-value quality component for course c, and �sc � U [0; 1] repre-
sents s�s idiosyncratic taste for c. We then assume that students report their preferences under the

41Some of the advantages and disadvantages of using survey data for economic analysis are described in Bertrand

and Mullainathan (2001). Fortunately, our context avoids some of the most important disadvantages (as compared

e.g. to surveys of political attitudes).
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HBS mechanism as if their preferences are

bvsc = 2vc + �sc
that is, students over-weight the common-value quality component. Our aim is not to model

equilibrium behavior but rather to understand, in a simple and transparent way, the mechanical

e¤ects of strategic overreporting of popular courses on the welfare measures we care about.

The main patterns we �nd in Sections 6 and 7 emerge in this simple simulation as well. Thus,

a reader who is skeptical of our use of survey data, but who is persuaded that students are likely

to strategically overreport popular classes, should be somewhat willing to believe our basic results.

Table B1 reports the most salient moments of our analysis under each of the above-described

speci�cations. Table B2 reports the social comparison results (CR5-7) for each of the speci�cations.

We then re-run the individual-level comparison results (CR1-4), i.e., Tables 6 and 7 from the main

text, under each of the speci�cations.

Table B1: Robustness Checks: Summary Statistics

E(Average Rank) Pr(Get 1st Favorite) Pr(Get Top Ten)

Main Speci�cation

HBS - Truthful Play 7.76 82.7% 0.9%

HBS - Strategic Play 8.35 59.7 1.5

RSD - Truthful Play 8.94 47.3 29.4

May Trial Run instead of July Actual Run

HBS - Truthful Play 7.56 83.7% 1.0%

HBS - Strategic Play 8.09 60.2 1.5

RSD - Truthful Play 8.61 48.3 30.8

Subeconomy with Lemma 1 Compliers

HBS - Truthful Play 7.94 80.1% 0.4%

HBS - Strategic Play 8.39 58.4 1.6

RSD - Truthful Play 9.12 43.9 28.7

Simulation Economy

HBS - Truthful Play 15.34 99.1% 0.0%

HBS - Strategic Play 16.38 86.5 0.0

RSD - Truthful Play 19.98 29.8 12.0
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Table B2: Robustness Checks: Social Comparison Results

CR5 CR6(i) CR6(ii) CR6(iii) CR7

HBS Truthful vs. HBS Strategic

Main Speci�cation HBS-T Indet. HBS-T HBS-T HBS-T

May Trial Run instead of July Actual Run HBS-T Indet. HBS-T HBS-T HBS-T

Subeconomy with Lemma 1 Compliers HBS-T Indet. HBS-T HBS-T HBS-T

Simulation Economy HBS-T HBS-T HBS-T HBS-T HBS-T

HBS Strategic vs. RSD

Main Speci�cation HBS-S Indet. HBS-S HBS-S HBS-S

May Trial Run instead of July Actual Run HBS-S Indet. HBS-S HBS-S HBS-S

Subeconomy with Lemma 1 Compliers HBS-S Indet. HBS-S HBS-S HBS-S

Simulation Economy HBS-S Indet. HBS-S HBS-S HBS-S
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Table 6 Robustness Check - May Trial Run instead of July Actual Run

Assumption on Preferences

Responsive Additive Average-Rank Lexicographic

Any Risk Risk Any Risk Risk Risk Risk

Attitude Neutral Attitude Averse Neutral Neutral

Outcome (1) (2) (3) (4) (5) (6)

Prefers HBS Truthful 46% 47% 56% 64% 68% 88%

Prefers HBS Strategic 8% 8% 14% 21% 30% 11%

Indi¤erent 1% 1% 1% 1% 1% 1%

Indeterminate 45% 44% 29% 13% 0% 0%

Table 7 Robustness Check - May Trial Run instead of July Actual Run

Assumption on Preferences

Responsive Additive Average-Rank Lexicographic

Any Risk Risk Any Risk Risk Risk Risk

Attitude Neutral Attitude Averse Neutral Neutral

Outcome (1) (2) (3) (4) (5) (6)

Prefers RSD 0% 0% 0% 0% 23% 23%

Prefers HBS Strategic 0% 30% 1% 76% 76% 77%

Indi¤erent 0% 0% 0% 0% 0% 0%

Indeterminate 100% 70% 98% 23% 0% 0%
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Table 6 Robustness Check - Subeconomy with Lemma 1 Compliers

Assumption on Preferences

Responsive Additive Average-Rank Lexicographic

Any Risk Risk Any Risk Risk Risk Risk

Attitude Neutral Attitude Averse Neutral Neutral

Outcome (1) (2) (3) (4) (5) (6)

Prefers HBS Truthful 45% 46% 53% 63% 67% 87%

Prefers HBS Strategic 9% 9% 16% 20% 31% 11%

Indi¤erent 1% 1% 1% 1% 2% 1%

Indeterminate 45% 44% 30% 15% 0% 0%

Table 7 Robustness Check - Subeconomy with Lemma 1 Compliers

Assumption on Preferences

Responsive Additive Average-Rank Lexicographic

Any Risk Risk Any Risk Risk Risk Risk

Attitude Neutral Attitude Averse Neutral Neutral

Outcome (1) (2) (3) (4) (5) (6)

Prefers RSD 0% 0% 0% 0% 15% 22%

Prefers HBS Strategic 0% 28% 2% 85% 85% 78%

Indi¤erent 0% 0% 0% 0% 0% 0%

Indeterminate 100% 72% 98% 15% 0% 0%
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Table 6 Robustness Check - Simulation Economy

Assumption on Preferences

Responsive Additive Average-Rank Lexicographic

Any Risk Risk Any Risk Risk Risk Risk

Attitude Neutral Attitude Averse Neutral Neutral

Outcome (1) (2) (3) (4) (5) (6)

Prefers HBS Truthful 26% 30% 68% 85% 95% 96%

Prefers HBS Strategic 0% 0% 1% 2% 6% 4%

Indi¤erent 0% 0% 0% 0% 0% 0%

Indeterminate 74% 70% 31% 13% 0% 0%

Table 7 Robustness Check - Simulation Economy

Assumption on Preferences

Responsive Additive Average-Rank Lexicographic

Any Risk Risk Any Risk Risk Risk Risk

Attitude Neutral Attitude Averse Neutral Neutral

Outcome (1) (2) (3) (4) (5) (6)

Prefers RSD 0% 0% 0% 0% 1% 2%

Prefers HBS Strategic 0% 42% 0% 10% 99% 98%

Indi¤erent 0% 0% 0% 0% 0% 0%

Indeterminate 100% 58% 100% 90% 0% 0%
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