Income Concentration and Its Optimal Taxation

> Giacomo Corneo November 2nd, 2010

# Plan of talk

- 1. Top Incomes in the Long Run
- 2. Current Situation in Germany
- 3. Theory of Optimal Top Tax Rates
- 4. Application to German Income Tax

#### Data sources

- Surveys
  - Lack of data before 1960
  - Rich people not covered

### Data sources

- Income Tax Statistics
  - Tabulated income distributions
  - Tax evasion
  - Definition of income
  - Definition of the income-receiving unit

### 1. Evolution over the XXth Century

- 22 investigated countries: Argentina, Australia, Canada, China, Finland, France, Germany, India, Indonesia, Ireland, Italy, Japan, Netherlands, New Zealand, Norway, Portugal, Singapore, Spain, Sweden, Switzerland, UK, US.
- Main reference: Atkinson & Piketty (2007)

### Share of top 1% in Prussia



# The great impoverishment of the rich: Share of top 0.1%



# The rich strike back: Share of top 0.1% in English-speaking countries



# **Explanations**

- The great impoverishment of the rich: A capital-income phenomenon
  - Hyperinflation, Great Depression, Wars
  - Progressive taxation

# **Explanations**

- The rich strike back: A wage-income phenomenon (?)
  - Global markets for superstars
  - Shareholder value
  - De-unionization
  - Lower top marginal tax rates
  - Financial development

# 2. Recent developments in Germany

- Historical background from Dell (2007)
- Period 1992 2003 from Bach, Corneo, and Steiner (2009)

#### Share of top 0.01%



- 1992-2003: ITR-SOEP integrated dataset
  - Data matching
  - Full coverage of taxpayers in the top percentile

#### Top personal real market incomes

| Gross market   | 1992                                    | 1995     | 1998     | 2001     | 2003     | 1995       | 1998  | 2001  | 2003  |
|----------------|-----------------------------------------|----------|----------|----------|----------|------------|-------|-------|-------|
| gains excluded | 1 000 Euro at 2000 prices <sup>2)</sup> |          |          |          |          | 1992 = 100 |       |       |       |
| Mean income    | 20.0                                    | 19.7     | 19.8     | 19.8     | 19.8     | 98.7       | 99.3  | 99.3  | 99.3  |
| Median income  | 12.5                                    | 11.3     | 9.7      | 8.8      | 8.2      | 90.7       | 77.8  | 70.1  | 65.4  |
| Average income |                                         |          |          |          |          |            |       |       |       |
| Top 10%        | 77.9                                    | 77.0     | 80.7     | 83.1     | 82.1     | 98.8       | 103.6 | 106.7 | 105.4 |
| Top 1%         | 224.2                                   | 210.2    | 229.5    | 240.4    | 222.5    | 93.7       | 102.3 | 107.2 | 99.2  |
| Top 0.1%       | 836.0                                   | 761.5    | 867.4    | 920.4    | 816.5    | 91.1       | 103.7 | 110.1 | 97.7  |
| Top 0.01%      | 3 246.6                                 | 3 065.8  | 3 614.6  | 3 850.9  | 3 567.4  | 94.4       | 111.3 | 118.6 | 109.9 |
| Top 0.001%     | 11 064.6                                | 11 721.3 | 14 267.5 | 15 161.2 | 16 223.9 | 105.9      | 128.9 | 137.0 | 146.6 |
| Top 0.0001%    | 31 437.4                                | 39 051.3 | 47 230.2 | 48 697.1 | 72 793.4 | 124.2      | 150.2 | 154.9 | 231.6 |
| Lowest income  |                                         |          |          |          |          |            |       |       |       |
| Top 10%        | 46.8                                    | 46.9     | 48.7     | 49.6     | 50.8     | 100.1      | 103.9 | 105.8 | 108.4 |
| Top 1%         | 103.9                                   | 101.5    | 107.4    | 111.4    | 109.0    | 97.7       | 103.4 | 107.3 | 105.0 |
| Top 0.1%       | 340.7                                   | 312.2    | 337.9    | 352.7    | 316.4    | 91.6       | 99.2  | 103.5 | 92.9  |
| Top 0.01%      | 1 397.8                                 | 1 211.5  | 1 384.2  | 1 478.8  | 1 227.2  | 86.7       | 99.0  | 105.8 | 87.8  |
| Top 0.001%     | 5 501.6                                 | 5 257.7  | 6 175.9  | 6 558.0  | 5 576.8  | 95.6       | 112.3 | 119.2 | 101.4 |
| Top 0.0001%    | 18 360.4                                | 19 696.6 | 25 456.4 | 27 164.4 | 25 383.8 | 107.3      | 138.6 | 148.0 | 138.3 |

1) Income from business activity, wage income, capital income, exclusive public and private pensions; measured at the individual level.- 2) Deflated by consumer price index.

Source: ITR-SOEP data base.

#### 3. Optimal tax rate for top incomes

- Continuum of households whose mass is normalized to unity
- Households are either single persons or couples; μ=share of couples
- Households differ according to their productivity  $\omega$ , which is their private information
- Income of singles taxed according to T(y); a couple with income y pays 2T(y/2)
- Government sets a marginal tax rate  $\tau$  for incomes larger than  $\bar{y}$
- Utility functions defined on consumption and leisure, rewritten as u(c,y) where c is consumption and  $y = \omega l$  is earnings
- Rawlsian planner chooses  $\tau$

#### Behavior of top earners

Income tax paid by singles with  $y \ge \overline{y}$  is  $T(\overline{y}) + \tau(y - \overline{y})$ ; couples with  $y \ge 2\overline{y}$  pay  $2T(\overline{y}) + \tau(y - 2\overline{y})$ .

Write consumption of singles as:  $c = y(1 - \tau) + R$ 

where  $R = \tau \overline{y} - T(\overline{y})$ 

Consumption of couples:  $c = y(1 - \tau) + 2R$ 

Utility maximization yields earnings supply function  $y_s(1 - \tau, R)$  for singles and  $y_c(1 - \tau, 2R)$  for couples

# Planner's choice of $\tau$

Implications of a small  $d\tau$  for tax revenue:

• Mechanical effect:

 $M = [(1 - \mu)(y_{mS} - \bar{y}) + \mu(y_{mC} - 2\bar{y})]d\tau$ 

where  $y_{mS}$  is mean of incomes above  $\bar{y}$  in the income distribution of singles and  $y_{mC}$  is the mean of incomes above  $2\bar{y}$  in the income distribution of couples.

- Behavioral effect decomposed into two parts:
  - (i) Overall uncompensated increase  $d\tau$  in the marginal tax rate starting from 0
  - (ii) Increase in virtual income equal to  $dR = \bar{y}d\tau$  for singles and equal to  $d2R = 2\bar{y}d\tau$  for couples

$$B_{s} = -\tau (\varepsilon_{s}^{u} y_{ms} - \eta_{s} \bar{y}) \frac{d\tau}{1 - \tau}$$

$$B_{c} = -\tau (\varepsilon_{c}^{u} y_{mc} - 2\eta_{c} \bar{y}) \frac{d\tau}{1 - \tau}$$

where  $\varepsilon^{u}$  is the uncompensated labor supply elasticity and  $\eta$  captures the income effect as given by the Slutsky equation

From the optimality condition  $M + B_S + B_C = 0$  one obtains **Propostion 1**: The optimal top marginal tax rate is implicitly given by:  $\frac{\tau}{1-\tau} = \frac{(1-\mu)(y_{mS}-\bar{y}) + \mu(y_{mC}-2\bar{y})}{(1-\mu)(\varepsilon_s^u y_{mS} - \eta_s \bar{y}) + \mu(\varepsilon_c^u y_{mC} - 2\eta_c \bar{y})}$ 

#### A simple special case

Assumptions:

• Top earnings are Pareto distributed, i.e. there exists  $k \in (0, \overline{y}]$  such that

$$1 - F(y) = \left(\frac{y}{k}\right)^{-1}$$

where F is the cumulative distributive function and  $y \ge k$ 

• 
$$\varepsilon_S^u = \varepsilon_C^u = \varepsilon^u$$
  
 $\eta_S = \eta_C = \eta$ 

 $\alpha_S = \alpha_C = \alpha$ 

**Proposition 2**: Under the assumptions made, the optimal top marginal tax rate is

$$\tau = \frac{1}{1 + \alpha \varepsilon^u - (\alpha - 1)\eta} = \frac{1}{1 + \varepsilon^u + (\alpha - 1)\varepsilon^c}$$

#### Taxation of consumption

Posit a consumption tax at rate *t* so that c(1 + t) = y - T(y).

**Proposition 3**: In presence of a consumption tax, the optimal top marginal income tax rate is

$$\tau_y = \tau - (1 - \tau)t$$

#### 4. Quantification for Germany

#### Formula:

$$\tau_y = \tau - (1-\tau)t ,$$

where

$$\frac{\tau}{1-\tau} = \frac{(1-\mu)(y_{mS}-\bar{y}) + \mu(y_{mC}-2\bar{y})}{(1-\mu)(\varepsilon_s^u y_{mS} - \eta_s \bar{y}) + \mu(\varepsilon_c^u y_{mC} - 2\eta_c \bar{y})}$$

t = 0.19

 $\mu$ ,  $y_{mS}$ ,  $y_{mC}$  computed from 2005 ITR  $\varepsilon_{S}^{\mu}$ ,  $\eta_{S}$ ,  $\varepsilon_{C}^{\mu}$ ,  $\eta_{C}$  estimated from SOEP

# Ratio of mean wage income above $\bar{y}$ divided by $\bar{y}$





### Ratio of mean wage, selfemployment and business income above $\bar{y}$ divided by $\bar{y}$



## Optimal top marginal income tax rate (%)

| $\overline{\mathcal{Y}}$ | Wages | Earnings |
|--------------------------|-------|----------|
| 50,000                   | 29.6  | 39.6     |
| 100,000                  | 39.5  | 52.2     |
| 300,000                  | 53.2  | 62.6     |