Income Concentration and Its Optimal Taxation

Giacomo Corneo
November 2nd, 2010

Plan of talk

1. Top Incomes in the Long Run
2. Current Situation in Germany
3. Theory of Optimal Top Tax Rates
4. Application to German Income Tax

Data sources

- Surveys
- Lack of data before 1960
- Rich people not covered

Data sources

- Income Tax Statistics
- Tabulated income distributions
- Tax evasion
- Definition of income
- Definition of the income-receiving unit

1. Evolution over the XXth Century

- 22 investigated countries: Argentina, Australia, Canada, China, Finland, France, Germany, India, Indonesia, Ireland, Italy, Japan, Netherlands, New Zealand, Norway, Portugal, Singapore, Spain, Sweden, Switzerland, UK, US.
- Main reference: Atkinson \& Piketty (2007)

Share of top 1\% in Prussia

The great impoverishment of the rich: Share of top 0.1\%

The rich strike back: Share of top 0.1\% in English-speaking countries

Explanations

- The great impoverishment of the rich: A capital-income phenomenon
- Hyperinflation, Great Depression, Wars
- Progressive taxation

Explanations

- The rich strike back: A wage-income phenomenon (?)
- Global markets for superstars
- Shareholder value
- De-unionization
- Lower top marginal tax rates
- Financial development

2. Recent developments in Germany

- Historical background from Dell (2007)
- Period 1992-2003 from Bach, Corneo, and Steiner (2009)

Share of top 0.01\%

- 1992-2003: ITR-SOEP integrated dataset
- Data matching
- Full coverage of taxpayers in the top percentile

Top personal real market incomes

Gross market income ${ }^{1)}$, capital gains excluded	1992	1995	1998	2001	2003	1995	1998	2001	2003
	1000 Euro at 2000 prices $^{2}{ }^{\text {a }}$					$1992=100$			
Mean income	20.0	19.7	19.8	19.8	19.8	98.7	99.3	99.3	99.3
Median income	12.5	11.3	9.7	8.8	8.2	90.7	77.8	70.1	65.4
Average income									
Top 10\%	77.9	77.0	80.7	83.1	82.1	98.8	103.6	106.7	105.4
Top 1\%	224.2	210.2	229.5	240.4	222.5	93.7	102.3	107.2	99.2
Top 0.1\%	836.0	761.5	867.4	920.4	816.5	91.1	103.7	110.1	97.7
Top 0.01\%	3246.6	3065.8	3614.6	3850.9	3567.4	94.4	111.3	118.6	109.9
Top 0.001\%	11064.6	11721.3	14267.5	15161.2	16223.9	105.9	128.9	137.0	146.6
Top 0.0001\%	31437.4	39051.3	47230.2	48697.1	72793.4	124.2	150.2	154.9	231.6
Lowest income									
Top 10\%	46.8	46.9	48.7	49.6	50.8	100.1	103.9	105.8	108.4
Top 1\%	103.9	101.5	107.4	111.4	109.0	97.7	103.4	107.3	105.0
Top 0.1\%	340.7	312.2	337.9	352.7	316.4	91.6	99.2	103.5	92.9
Top 0.01\%	1397.8	1211.5	1384.2	1478.8	1227.2	86.7	99.0	105.8	87.8
Top 0.001\%	5501.6	5257.7	6175.9	6558.0	5576.8	95.6	112.3	119.2	101.4
Top 0.0001\%	18360.4	19696.6	25456.4	27164.4	25383.8	107.3	138.6	148.0	138.3
1) Income from business activity, wage income, capital income, exclusive public and private pensions; measured at the individual level.- 2) Deflated by consumer price index. Source: ITR-SOEP data base.									

3. Optimal tax rate for top incomes

- Continuum of households whose mass is normalized to unity
- Households are either single persons or couples; $\mu=$ share of couples
- Households differ according to their productivity ω, which is their private information
- Income of singles taxed according to $T(y)$; a couple with income y pays $2 T$ (y/2)
- Government sets a marginal tax rate τ for incomes larger than \bar{y}
- Utility functions defined on consumption and leisure, rewritten as $u(c, y)$ where c is consumption and $y=\omega /$ is earnings
- Rawlsian planner chooses τ

Behavior of top earners

Income tax paid by singles with $y \geq \bar{y}$ is $T(\bar{y})+\tau(y-\bar{y})$; couples with $y \geq 2 \bar{y}$ pay $2 T(\bar{y})+\tau(y-2 \bar{y})$.

Write consumption of singles as: $\quad c=y(1-\tau)+R$
where $\quad R=\tau \bar{y}-T(\bar{y})$

Consumption of couples: $\quad c=y(1-\tau)+2 R$
Utility maximization yields earnings supply function $y_{s}(1-\tau, R)$ for singles and $y_{c}(1-\tau, 2 R)$ for couples

Planner's choice of τ

Implications of a small $d \tau$ for tax revenue:

- Mechanical effect:

$$
M=\left[(1-\mu)\left(y_{m s}-\bar{y}\right)+\mu\left(y_{m c}-2 \bar{y}\right)\right] d \tau
$$

where $y_{m s}$ is mean of incomes above \bar{y} in the income distribution of singles and $y_{m c}$ is the mean of incomes above $2 \bar{y}$ in the income distribution of couples.

- Behavioral effect decomposed into two parts:
(i) Overall uncompensated increase $d \tau$ in the marginal tax rate starting from 0
(ii) Increase in virtual income equal to $d R=\bar{y} d \tau$ for singles and equal to $d 2 R=2 \bar{y} d \tau$ for couples

$$
\begin{aligned}
& B_{s}=-\tau\left(\varepsilon_{S}^{u} y_{m s}-\eta_{s} \bar{y}\right) \frac{d \tau}{1-\tau} \\
& B_{c}=-\tau\left(\varepsilon_{C}^{u} y_{m C}-2 \eta_{c} \bar{y}\right) \frac{d \tau}{1-\tau}
\end{aligned}
$$

where ε^{u} is the uncompensated labor supply elasticity and η captures the income effect as given by the Slutsky equation

From the optimality condition $M+B_{S}+B_{C}=0$ one obtains
Propostion 1: The optimal top marginal tax rate is implicitly given by:

$$
\frac{\tau}{1-\tau}=\frac{(1-\mu)\left(y_{m s}-\bar{y}\right)+\mu\left(y_{m c}-2 \bar{y}\right)}{(1-\mu)\left(\varepsilon_{s}^{u} y_{m s}-\eta_{s} \bar{y}\right)+\mu\left(\varepsilon_{C}^{u} y_{m c}-2 \eta_{c} \bar{y}\right)}
$$

A simple special case

Assumptions:

- Top earnings are Pareto distributed, i.e. there exists $k \in(0, \bar{y}]$ such that

$$
1-F(y)=\left(\frac{y}{k}\right)^{-\alpha}
$$

where F is the cumulative distributive function and $y \geq k$

- $\quad \varepsilon_{S}^{u}=\varepsilon_{C}^{u}=\varepsilon^{u}$

$$
\eta_{S}=\eta_{C}=\eta
$$

$$
\alpha_{S}=\alpha_{C}=\alpha
$$

Proposition 2: Under the assumptions made, the optimal top marginal tax rate is

$$
\tau=\frac{1}{1+\alpha \varepsilon^{u}-(\alpha-1) \eta}=\frac{1}{1+\varepsilon^{u}+(\alpha-1) \varepsilon^{c}}
$$

Taxation of consumption

Posit a consumption tax at rate t so that

$$
c(1+t)=y-T(y) .
$$

Proposition 3: In presence of a consumption tax, the optimal top marginal income tax rate is

$$
\tau_{y}=\tau-(1-\tau) t
$$

4. Quantification for Germany

Formula:

$$
\tau_{y}=\tau-(1-\tau) t
$$

where

$$
\frac{\tau}{1-\tau}=\frac{(1-\mu)\left(y_{m s}-\bar{y}\right)+\mu\left(y_{m c}-2 \bar{y}\right)}{(1-\mu)\left(\varepsilon_{s}^{u} y_{m s}-\eta_{s} \bar{y}\right)+\mu\left(\varepsilon_{C}^{u} y_{m c}-2 \eta_{c} \bar{y}\right)}
$$

$t=0.19$
$\mu, y_{m s}, y_{m c}$ computed from 2005 ITR $\varepsilon_{S}^{\mu}, \eta_{S}, \varepsilon_{C}^{\mu}, \eta_{C}$ estimated from SOEP

Ratio of mean wage income above \bar{y} divided by \bar{y}

Ratio of mean wage and selfemployment income above \bar{y} divided by \bar{y}

Ratio of mean wage, selfemployment and business income above \bar{y} divided by \bar{y}

Optimal top marginal income tax rate (\%)

\bar{y}	Wages	Earnings
50,000	29.6	39.6
100,000	39.5	52.2
300,000	53.2	62.6

