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Abstract
We ask whether a PAYG-financed social security system is welfare improving

in an economy with idiosyncratic and aggregate risk. We argue that interactions
between the two risks are important for this question. One is a direct interaction
in the form of a countercyclical variance of idiosyncratic income risk. The other
indirectly emerges over a household’s life-cycle because retirement savings contain
the history of idiosyncratic and aggregate shocks. We show that this leads to risk
interactions, even when risks are statistically independent. In our quantitative
analysis, we find that introducing social security with a contribution rate of two
percent leads to welfare gains of 2.2% of lifetime consumption in expectation, despite
substantial crowding out of capital. This welfare gain stands in contrast to the
welfare losses documented in the previous literature, which studies one risk in
isolation. We show that jointly modeling both risks is crucial: 60% of the welfare
benefits from insurance result from the interactions of risks.
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1 Introduction

Many countries operate large social security systems. One reason is that social security
can provide insurance against risks for which there are no private markets. However, these
systems also impose costs by distorting prices and decisions. The question arises whether
the benefits of social security outweigh the costs.

We address this question in a model that features aggregate wage and asset return
risk as well as idiosyncratic productivity risk. We follow the literature and assume that
insurance markets for both forms of risk are incomplete. In such a setting, social security
can increase economic efficiency by partially substituting for missing markets. The analysis
is embedded in a general equilibrium framework to account for the costs of crowding out.
Our analysis differs from the previous literature in that, thus far, prior studies have only
considered models with one type of risk. One strand of the literature has examined social
security when only aggregate risk is present (e.g., the quantitative analysis of Krueger and
Kubler (2006)). In that setting, social security can improve intergenerational risk sharing.
The other strand has only considered idiosyncratic risk (e.g., İmrohoroğlu, İmrohoroğlu,
and Joines (1995, 1998)). There, social security is valuable because of intragenerational
insurance. However, households face both types of risk over their lifetimes. We emphasize
that jointly modeling both risks is not only relevant for obtaining a complete picture of
how much insurance social security can provide. More important, there are interactions
between the two types of risk, which amplify the welfare benefits of social security. We
show that the quantitative role of these interactions is large so that introducing social
security increases welfare.

The first interaction is an interaction over the life-cycle, and we accordingly call it
the life-cycle interaction (LCI). This interaction arises even when the two risks are
statistically independent. To the best of our knowledge, this effect has not been discussed
in the related literature. To understand it, consider a standard life-cycle model with
idiosyncratic wage risk as well as aggregate wage and return risk. In the absence of
social security, retirement consumption is financed by private savings. Private savings
are accumulated over the life-cycle and contain the history of idiosyncratic and aggregate
shocks. We show analytically that the variance of retirement consumption therefore
contains an interaction term between the two types of risk, called LCI. As households
face both risks for many years before they enter retirement, this interaction term can
become large. Since social security reduces the variance of retirement consumption, this
interaction of risks amplifies the welfare benefits from social security.
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The second interaction is a countercyclical cross-sectional variance of idiosyncratic
productivity risk (CCV ). This means that the variance of idiosyncratic shocks is higher in
a downturn than in a boom.1 The CCV has been documented in the data (Storesletten,
Telmer, and Yaron 2004) and analyzed with respect to its asset pricing implications
(Mankiw 1986; Constantinides and Duffie 1996; Storesletten, Telmer, and Yaron 2007).
We add this channel to understand how benefits from insurance provided by social security
are affected when idiosyncratic risk varies over the cycle.2

We begin our analysis with a simplified two-generations model with incomplete markets,
yielding analytical results. We expose LCI and demonstrate how it amplifies the welfare
benefits of social security. We then build a large-scale overlapping generations (OLG)
model in the tradition of Auerbach, Kotlikoff, and Skinner (1983) and Auerbach and
Kotlikoff (1987), extended with various risks, to evaluate how much the two interactions,
LCI and CCV , matter quantitatively. Aggregate wage risk is introduced through a
standard technology shock. Aggregate return risk is driven by the same technology shock
and an additional shock to the depreciation rate of physical capital, as in Gomes and
Michaelides (2008), Krueger and Kubler (2006), and Storesletten, Telmer, and Yaron
(2007), among others. The two shocks enable us to calibrate the model in such a way that
it produces realistic fluctuations of wages and returns, both of which are central to the
welfare implications of social security.

The social security system is a pure pay-as-you-go (PAYG) system. In every period,
all contributions are paid out as a lump-sum to all retirees. Households can also save
privately by investing in a risk-free bond and a risky stock. Including this portfolio choice
in the quantitative model is important, as social security can be regarded as an asset with
a low risk and a low return. Therefore, the risk-return structure of the bond and the stock
directly affect the value of social security and an appropriate calibration is crucial. The
possibility to save in two assets also implies that households have additional means of
self-insurance. This reduces the welfare benefits of social security, ceteris paribus.

When we calibrate the quantitative model to the U.S. economy, we find that a marginal
introduction of social security with a contribution rate of 2% leads to a strong welfare
gain of approximately 2% in terms of consumption equivalent variation. This welfare
improvement is obtained despite substantial welfare losses from crowding out of capital in

1In contrast to LCI, CCV is a direct interaction between aggregate and idiosyncratic risk.
2Guvenen, Ozkan, and Song (2013) show that the skewness of idiosyncratic shocks, not their variance,

is countercyclical. From an ex-ante perspective, both specifications capture a direct interaction between
aggregate and idiosyncratic risk. We chose the CCV specification to remain in line with the previous
asset pricing literature. Our expectation is that a countercyclical left-skewness would reinforce our results.
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general equilibrium. These findings stand in contrast to the previous literature. Crucially,
we find that the interactions between the two risks are very important: approximately 60%
of the welfare benefits from insurance can be attributed to the interactions, LCI and CCV .
These numbers are robust for a range of common calibration strategies. Furthermore,
we also consider economies with only one risk. Consistent with the previous literature,
we observe welfare losses in these cases. This reemphasizes the importance of jointly
modeling both risks.

The notion that social security can insure against aggregate risks dates back to Diamond
(1977) and Merton (1983). They demonstrate how it can partially complete financial
markets and thereby increase economic efficiency. Building on these insights, Shiller
(1999) and Bohn (2001, 2009) show that social security can reduce consumption risk of all
generations by pooling labor income and capital income risks across generations if labor
income and capital returns are imperfectly correlated.

Gordon and Varian (1988), Matsen and Thogersen (2004), Krueger and Kubler (2006)
and Ball and Mankiw (2007) use a two-period partial equilibrium model in which house-
holds only consume in the second period of life, i.e., during retirement. For our analytical
results, we extend this model by adding idiosyncratic risk.

There are not many quantitative papers with aggregate risk and social security. Krueger
and Kubler (2006) is the most similar to our work.3 They also examine a marginal
introduction of a PAYG system and conclude that it does generally not constitute a
Pareto-improvement.4 The concept of a Pareto-improvement requires that they take an
ex-interim welfare perspective, whereas we calculate welfare from an ex-ante perspective.
Our analysis differs substantially because we also include idiosyncratic risk and analyze
interactions between risks.

In contrast, there are many quantitative papers that consider idiosyncratic risk and so-
cial security, e.g., Conesa and Krueger (1999), İmrohoroğlu, İmrohoroğlu, and Joines (1995,
1998), Huggett and Ventura (1999), and Storesletten, Telmer, and Yaron (1999).5 Gener-
ally speaking, one conclusion from this literature is that welfare in a stationary economy

3Ludwig and Reiter (2010) assess how pension systems should optimally adjust to demographic
shocks. Olovsson (2010) contends that pension payments should be highly risky because this increases
precautionary savings and thereby capital formation, which in that context is welfare improving.

4The recent work by Hasanhodzic and Kotlikoff (2013), who demonstrate that generational risk is
small in a calibrated overlapping generations economy with aggregate risk, mirrors these findings.

5This literature also includes idiosyncratic survival risk, which we abstract from for two reasons.
First, it would distract from the main point of the paper, which focuses on the interactions. Second, it
is not straightforward to model both financial risk and survival risk when households have Epstein-Zin
preferences (Epstein and Zin 1989; Epstein and Zin 1991) as in our quantitative model, see, e.g., Cordoba
and Ripoll (2013).
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without social security is higher than in one with a PAYG system. That is, the losses
from crowding out dominate the gains from completing insurance markets. More recent
work by Nishiyama and Smetters (2007) and Fehr and Habermann (2008) are examples of
papers that focus on modeling the institutional features of existing social security systems
in detail. We abstract from such details. Our results demonstrate the benefits of a flat
minimum pension.

Huggett and Parra (2010) argue that it is important to consider simultaneous reforms
to both the social security system and the general tax system. They report strong welfare
gains from joint reforms of both systems. The question of how much redistribution to
provide through the general tax system and how much life-cycle risk social security should
insure is an interesting one. Redistribution through social security is sensible because
total lifetime resources are observed at retirement and moral hazard frictions limit optimal
redistribution via other social insurance institutions such as unemployment insurance.6

Here, however, we do not address the optimal joint design of both systems. Instead, we
follow the more standard approach and take the general income tax system as given.
Consequently, we calibrate our model to an income process after taxation.

Finally, Gomes, Michaelides, and Polkovnichenko (2012) use a very similar model to
study how changes in fiscal policy and government debt affect asset prices and capital
accumulation. Our work also relates to the literature on the welfare costs of aggregate
fluctuations initiated by Lucas (1978). There are two papers that highlight how interactions
between idiosyncratic and aggregate risk can increase these costs substantially: De Santis
(2007) in a partial equilibrium, and Krebs (2007) in a general equilibrium model without
trade. In contrast to those papers, the present model features trade in general equilibrium.

The remainder of this paper is structured as follows. We derive our analytical results
in Section 2. Section 3 describes the quantitative model and Section 4 presents the
calibration. The main results of our quantitative analysis are presented in Section 5.
Both the choice of calibration targets in Section 4 and the interpretation of the results in
Section 5 heavily draw on the insights derived in the analytical section. We conclude in
Section 6. Proofs, computational details, and details on the calibration are relegated to
separate appendices.

6Werning (2007)’s result on the optimality of inter-temporal tax smoothing is suggestive for optimality
of taxation based on lifetime earnings. An early proponent of such a scheme is Vickrey (1947), although
for horizontal equity rather than efficiency considerations. More recently, Shourideh and Troshkin (2012)
and Golosov, Shourideh, Troshkin, and Tsyvinski (2013), who extend the work by Huggett and Parra
(2010), also optimize over the parameters of a redistributive pension system.
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2 A Two-Generations Model

The analytical model developed here provides useful insights for our quantitative analysis.
We adopt the partial equilibrium framework of Gordon and Varian (1988), Matsen and
Thogersen (2004), Krueger and Kubler (2006), and Ball and Mankiw (2007), among others,
who assume that members of each generation only consume in the second period of life.
This literature only considers aggregate risk. We extend it by adding idiosyncratic risk,
which enables us to demonstrate that there is an important interaction mechanism.

2.1 Model

In each period t, a continuum of households is born. Households live for two periods only.
A household has preferences over consumption in the second period.7 In the first period of
life, the household experiences an idiosyncratic productivity shock, which we denote by η.
This shock induces ex-post heterogeneity, so that we denote ex-post different households
by i. Age is indexed by j with j = 1 being working age and j = 2 being retirement.
Denoting by ci,2,t+1 consumption in retirement, the expected utility of a household born
in period t is given by Et [u(ci,2,t+1)]. We assume a CCRA per period utility function with
coefficient of relative risk aversion θ,

u(ci,2,t+1) =


c1−θ
i,2,t+1
1−θ for θ 6= 1

ln (ci,2,t+1) for θ = 1.

Gross wage income is given by ηi,1,twt, where wt is the aggregate and ηi,1,t is the
idiosyncratic wage component. Wage income is subject to social security contributions
at rate τ , and hence net wage income is given by (1− τ)ηi,1,twt. During retirement, the
household receives a lump-sum pension income, ysst+1. As the household only cares about
second period consumption and as there is neither satiation nor a bequest motive, the
household consumes all resources in the second period of life. Accordingly, the budget
constraints in the two periods of life are given by

si,2,t+1 = (1− τ)ηi,1,twt (1a)

ci,2,t+1 = si,2,t+1Rt+1 + ysst+1 (1b)
7In our quantitative model, we consider many periods with consumption and saving decisions occurring

in each period.
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where si,2,t+1 denotes gross savings and Rt+1 = 1 + rt+1 is a risky gross interest rate.
From these two equations, one can see how social security can partially insure against
idiosyncratic risk. The amount paid into the social security system depends on the
realization of η, and hence more fortunate households have to pay a larger amount.
However, everyone receives the same lump-sum pension payments in retirement, ysst+1.
Thus, there is substantial redistribution, which constitutes an intragenerational sharing of
idiosyncratic risk.

Aggregate wages and interest rates are stochastic. In this section, we limit the analysis
to a partial equilibrium, and hence wages and returns are exogenous.8 We denote by ζt
the shock to wages and by %t the shock to returns. We further assume that wages grow
deterministically at rate λ. We therefore have:

wt = w̄tζt = w̄t−1(1 + λ)ζt (2a)

Rt = R̄%t, (2b)

where R̄ and w̄t are the deterministic components of returns and wages, respectively.
Social security is a pure PAYG system with lump-sum pension benefits. It is operated

by the government, which must obey the budget constraint

τwtN1,t = ysst N2,t,

where Nj,t is population in period t of age j, i.e., Nj,t =
∫
Ni,j,tdi. We here abstract from

population growth,9 hence

τwt = ysst . (3)

From equations (2) and (3), one can see how social security can provide partial insurance
against aggregate risk. If ζt and %t are less than perfectly correlated, then ysst and Rt

are less than perfectly correlated. Thus, social security pensions provide a hedge against
volatile asset income at retirement. This constitutes an intergenerational sharing of
aggregate risk.

8In the quantitative analysis in the next section, we will consider a general equilibrium.
9Our quantitative analysis features population growth, which is required to correctly calibrate the

implicit return of social security.
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2.2 Analysis

To derive our results, we make the following assumptions.

Assumption 1. a) All shocks are bounded below by zero: ζ, %, η > 0.

b) All shocks have a mean of one: Eζ = E% = Eη = 1.

c) All shocks are uncorrelated over time.

d) All shocks are statistically independent from each other.

Assumption 1a is a common restriction on economic shock processes, and Assump-
tion 1b an innocuous normalization. Despite the observed positive serial correlation of
wages and asset returns in annual data, Assumption 1c can be justified on the grounds
of the long factual periodicity of each period in a two-period OLG model, which is ap-
proximately 30 to 40 years. Assumption 1d is crucial. It greatly simplifies our analytical
solutions. More important, it is at the heart of one of the contributions of this paper:
although the shocks are independent, we will see below that they indirectly interact and
thereby drive up the value of social security.

To evaluate welfare, we adopt an ex-ante perspective. The social welfare function of a
cohort born in period t is the unconditional expected utility of a generation, E [u(ci,2,t+1)].
We can now state our first result.

Proposition 1. Under Assumption 1, a marginal introduction of social security increases
ex-ante expected utility iff

(1 + λ)
E
[

1
%θt+1

]
E
[

1
ζθt

]
E
[

1
ηθi,1,t

]
E
[

1
%θ−1
t+1

]
E
[

1
ζθ−1
t

]
E
[

1
ηθ−1
i,1,t

] > R̄. (4)

Proof. Relegated to Appendix A.

The right-hand side of equation (4) reflects the costs of introducing social security,
which here is simply the expected return on savings, R̄. The left-hand side reflects the
benefit of introducing social security, which is a risk-adjusted implicit return. Obviously,
the implicit return increases if λ increases. If we set all shocks to their respective means of
unity, we obtain the well-known Aaron (1966) condition, namely that (1 + λ) > R̄. That
is, if there were no risk, then social security would only be welfare enhancing if its return
exceeded the return on private savings.
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The proposition demonstrates that with risk, the introduction of social security may
also be welfare enhancing for (1 + λ) < R̄. To see this, observe that for θ ≥ 1, both the
numerator and the denominator in the term representing the risk adjustment represent
convex functions of the respective random variables. Convexity is stronger in the numerator,
so that a mean-preserving spread, an increase in the variance of the respective random
variables, increases the numerator more substantially. This is easiest to see for θ = 1, in
which case the denominator simply equals 1. To exhibit this more clearly, we simplify
the expression for the risk adjustment by making the following conventional assumption
regarding the distribution of shocks:

Assumption 2. ηi,1,t, ζt, %t are distributed jointly log-normal with means µln η, µln ζ, µln %

and variances σ2
ln(η), σ2

ln(ζ), σ2
ln(%).

With this additional assumption, condition (4) becomes intuitive and easy to interpret.

Proposition 2. Under Assumptions 1 and 2, a marginal introduction of social security
increases ex-ante expected utility iff

(1 + λ) · (1 + TR)θ > R̄, (5)

where

TR ≡ var(ηi,1,tζt%t+1) = σ2
η︸︷︷︸

IR

+σ2
ζ + σ2

% + σ2
ζσ

2
%︸ ︷︷ ︸

AR

+σ2
η

(
σ2
ζ + σ2

% + σ2
ζσ

2
%

)
︸ ︷︷ ︸

LCI=IR·AR

. (6)

Proof. Relegated to Appendix A.

The risk adjustment on the left-hand side of (5) is now (1 + TR)θ > 0. It can be
interpreted as the value of insurance that social security provides. This value of insurance
drives up the implicit return of social security, 1 + λ, thereby modifying the standard
Aaron condition. Naturally, the value of insurance is increasing in the coefficient of risk
aversion, θ. It is also increasing in TR, which stands for ’total risk’, as it contains the
variances of all shocks, cf. equation (6). Idiosyncratic risk, abbreviated IR, is simply the
variance of idiosyncratic shocks, σ2

η. Likewise, aggregate risk, AR, contains the variances
of aggregate shocks. The important term is the third, in which IR is multiplied by AR,
which constitutes the life-cycle interaction, LCI.

To understand the source of this term, notice that retirement consumption in the
absence of social security is given by w̄tR̄ηi,1,tζt%t+1. This shows that accumulated savings
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for retirement consumption inherit the history of aggregate risks—as captured by the
component ζt%t+1—and idiosyncratic risk—component ηi,1,t. By providing a lump-sum
transfer, social security jointly reduces exposure to these risks.10 Evaluating the variance of
the product ηi,1,tζt%t+1 gives rise to the product of variances of idiosyncratic and aggregate
risks, as captured by LCI in equation (6).11

From an ex-ante perspective, the variance of assets at retirement may well be large,
because in the context of a life-cycle economy, we are dealing with long horizons. Therefore,
the interaction, LCI, may be large. We pursue this question in the quantitative part of
the paper.

We next address how a marginal introduction of social security translates into utility
in terms of consumption equivalent variation (CEV). CEV is the percentage increase in
consumption, gc, required to make the household indifferent between being born into
an economy without social security (τ = 0) and with a small social security system
(τ = dτ > 0). If gc > 0, then the household prefers the economy with social security. To
remain consistent with the subsequent quantitative analysis, we include a superscript PE
to indicate partial equilibrium, as we subsequently oppose that with the CEV in a general
equilibrium.

Proposition 3. A logarithmic approximation of the consumption equivalent variation is

gPEc =
(

1 + λ

R̄
(1 + TR)θ − 1

)
dτ. (7)

A first-order Taylor series expansion of (7) around TR = 0 yields

gPEc ≈
(

1 + λ

R̄
− 1 + θ

1 + λ

R̄
AR + θ

1 + λ

R̄
IR + θ

1 + λ

R̄
LCI

)
dτ (8)

Proof. Relegated to Appendix A.

In equation (7) we see that gPEc is approximately linear in dτ , and hence under
condition (2), the welfare gains are linearly increasing in the contribution rate. Moreover,
gPEc increases exponentially in risks.

10At the same time, as social security is financed by period t+ 1 wage income, it increases exposure to
period t+ 1 aggregate wage risk, ζt+1. However, in our marginal consideration, ζt+1 appears linearly in
the first-order condition, so that it has no effect because of independence as postulated in Assumption 1.

11Although our proof of Proposition 2 does not make explicit use of the product formula of variances,
term TR can be derived by applying that rule to the variance of term ηi,1,tζt%t+1, cf. Goodman (1960).
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Equation (8) helps to understand what happens, if we shut down a risk. If the
economy has no risk, i.e., if IR = AR = 0, then gPEc ≈

(
1+λ
R̄
− 1

)
dτ . In a deterministic

economy in which 1 + λ < R̄, the welfare losses from introducing social security increase
approximately linearly in the contribution rate. If instead the economy only has aggregate
risk, i.e., IR = 0, then gPEc ≈

(
1+λ
R̄
− 1 + θ 1+λ

R̄
AR

)
dτ . That is, the welfare losses in

the deterministic economy are reduced by the welfare gain attributable to the insurance
against aggregate risk. We can therefore think of the total gPEc as consisting of the
effects attributable to each risk minus the welfare loss in the deterministic economy
with 1 + λ < R̄. Equation (8) motivates us to consider a linear decomposition of the form

gPEc (IR,AR) ≈ gPEc (0, 0) + dgc(IR) + dgc(AR) + dgc(IR) + dgc(LCI), (9)

where gPEc (0, 0) denotes the welfare in an economy without risk and dgc(X) the welfare
effect attributable to risk type X ∈ {IR,AR,LCI}. This is the decomposition approach
we follow in the quantitative part. In addition, equations (7)-(8) will guide us when we
calibrate the quantitative model. They clearly reveal which parameters are important for
the welfare effects. Finally, it is noteworthy that in both equations, the interaction LCI
enters with the same weight as the pure risks. From this analysis, it can be expected that
the life-cycle interaction can substantially increase the welfare gains of social security.

2.3 Discussion and Extensions

Our simple setup only provides a partial characterization of the total welfare effects
of social security. First, we have excluded the counter-cyclical, cross-sectional variance
of idiosyncratic risk (CCV ) that was mentioned in the introduction and that we will
include in the following quantitative model. CCV constitutes an explicit interaction
between idiosyncratic and aggregate risk, and it can be shown that it amplifies the welfare
consequences of social security. In contrast, LCI is present despite the orthogonality of
the risks, which makes LCI somewhat more surprising.

Second, idiosyncratic income risk in our model can be understood as an uninsurable,
additive background risk (Gollier and Pratt 1996). Loosely speaking, this makes the agent
behave as if he were more risk-averse. In Harenberg and Ludwig (2014), we present an
extension to a multi-period model and show that, in such a more general framework, LCI
appears as a multiplicative background risk (Franke, Schlesinger, and Stapleton 2006),
which comes on top of the additive background risk. The intuition follows from the dynamic
budget constraint in the working period, in which total income is given by sR+wη. In this
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budget constraint, wη is an additive background risk. But in a dynamic setting, savings s
represent a multiplicative background risk, because they are endogenously determined
from past labor income, wη. Thus they inherit the multiplicative, stochastic nature of
past labor income. The previous theoretical literature on background risk fails to address
this point, as it essentially considers at a static optimization problem.12

Finally, as we do not consider consumption in the first period of life, the simple
model omits the effects of taxation on the reallocation of consumption and savings. We
also ignore any feedback in general equilibrium. In Harenberg and Ludwig (2014), we
incorporate both channels in a standard Diamond (1965) model with risk. Thus, in
contrast to the simple model presented here, consumption and savings decisions occur in
the first period and wages and returns are determined in general equilibrium. There, we
conclude that interactions between risks reduce precautionary savings and simultaneously
increase crowding out of capital. Our quantitative model developed in the next section
accounts for all of these additional channels.

3 The Quantitative Model

Our quantitative model extends the two-generations model presented in the previous
section along several dimensions. Nonetheless, the main mechanisms remain the same. All
of the extensions are standard and well understood. First, we include the counter-cyclical,
cross-sectional variance of the idiosyncratic risk, CCV , as a direct, explicit interaction
between idiosyncratic and aggregate risk. Second, we consider a general equilibrium, which
allows us to account for the costs of crowding out of capital. Third, the periodicity is one
calendar year, and there are J overlapping generations instead of two. Consumption and
savings decisions take place every period. Population grows at a constant rate, which acts
as an additional implicit return to social security. Fourth, we add a one-period, risk-free
bond as a second asset. As the propositions in the previous section show, the interest rate
on private savings is an important determinant of the value of social security. The bond
imposes discipline in that respect and allows us to match asset prices. As a side effect,
the household has an additional asset to self-insure against idiosyncratic and aggregate
risk. Ceteris paribus, this reduces the beneficial effects of social security. Fifth, labor
income features, as a deterministic component, a hump-shaped productivity profile over

12This literature is chiefly concerned with the choice of exposure to aggregate risk when background
risk is increased. Relative to this literature, a key difference here is that social security jointly reduces
exposure to both components of risk.
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the life-cycle. Idiosyncratic income shocks are allowed to be autocorrelated. Finally, we
employ Epstein-Zin (Epstein and Zin 1989; Epstein and Zin 1991) preferences. In contrast
to CRRA preferences, they can partially disentangle risk aversion and the elasticity of
inter-temporal substitution. We extensively exploit this feature in our sensitivity analyses.

3.1 Demographics and Risk

Time is discrete and runs from t = 0, . . . ,∞. At the beginning of each period t, an
aggregate shock zt hits the economy. For a given initial z0, a date-event is uniquely
identified by the history of shocks zt = (z0, z1, . . . , zt). The shocks zt follow a Markov
chain with finite support Z and nonnegative transition matrix πz. Thus πz(zt+1|zt)
represents the probability of the shock next period given the current shock.

At every point in time t, the economy is populated by J overlapping generations
indexed by j = 1, . . . , J . We denote the size of a generation by Nj(zt). Each generation
consists of a continuum of households. Without loss of generality, we normalize the
initial population size to unity, i.e., ∑J

j=1Nj(z0) = 1. Population grows at the exogenous
rate of n, and there is no survival risk.13 Consequently, the size of the population at t
is N(zt) = (1 + n)t. We assume that at z0, the population structure is consistent with
this population growth.

Households within a cohort are ex-ante identical but receive an idiosyncratic shock ej
each period so that there is ex-post intragenerational heterogeneity. Thus, households
within each generation differ with respect to their history of idiosyncratic shocks, ej . Like
the aggregate shock, ej follows a Markov chain with finite support E and strictly positive
transition matrix πe. The transition probabilities are πe(ej+1|ej), and the probability of a
specific idiosyncratic shock history is πe(ej). We assume that a Law of Large Numbers
applies, so that πe(ej) represents both the individual probability for ej and the fraction
of the population with that shock history. Likewise, πe(ej+1|ej) represents both the
individual transition probability and the population counterpart. Finally, πe(ej) denotes
the unconditional probability of shock ej.

13See Footnote 5 in the Introduction for the important reasons for not including survival risk.
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3.2 Households

At any date-event zt, a household is fully characterized by its age j and its history of
idiosyncratic shocks ej.14 Preferences over consumption c are represented by a recursive
utility function uj(c, ·) of the Epstein-Zin form (Kreps and Porteus 1978; Epstein and Zin
1989; Epstein and Zin 1991; Weil 1989)15:

uj(c, ej, zt) =

[cj(ej, zt)] 1−θ
γ (10)

+β
∑
zt+1

∑
ej+1

πz(zt+1|zt)πe(ej+1|ej)
[
uj+1(c, ej+1, zt+1)

]1−θ 1
γ


γ

1−θ

,

uJ(c, eJ , zt) = cJ(eJ , zt) ,

c > 0 ,

where β is the discount factor and θ controls risk aversion. The parameter γ is defined as
γ = 1−θ

1− 1
ψ

with ψ denoting the inter-temporal elasticity of substitution (IES). The CRRA
utility specification is nested for θ = 1

ψ
, which yields γ = 1.

Households inelastically supply one unit of labor until they retire at the fixed retirement
age jr. They are endowed with a deterministic life-cycle productivity profile εj. The
idiosyncratic, stochastic component of income, η(ej, zt), depends on the realization of
idiosyncratic and aggregate shocks. This is the only channel through which idiosyncratic
risk enters the model. The dependence of η(ej, zt) on the aggregate shock is necessary to
model the CCV . To shut CCV down, we can simply make this dependence ineffective.
Without loss of generality, we assume that E (η(ej, zt)|zt) = 1. Labor income yj(ej, zt) is

yj(ej, zt) = w(zt)εjη(ej, zt) , (11)

where w(zt) is the real aggregate wage in terms of the consumption good at zt. Insurance
markets against labor income risk are closed by assumption.

Households can transfer wealth between periods by holding stocks and bonds, in
amounts sj+1(ej, zt) and bj+1(ej, zt), respectively. They wish to save due to a life-cycle

14In the two-generations model, we used indexes to denote a household for the sake of exposition. As
we now have more states and ages, a more elaborate, state-dependent notation is required. However, for
the two-generations model, they are equivalent, e.g., u(ci,2,t+1) ≡ u(c, e2, zt+1).

15In a slight abuse of notation, we use the lower case letter u to denote remaining lifetime utility in
this recursive formulation, which was used in Section 2 to denote the per-period utility function.

14



motive and a precautionary motive, because markets for idiosyncratic and aggregate risks
are assumed to be incomplete. Both assets constitute a claim on the firm’s capital in the
following period. They only differ in their returns: the stock has a risky return rs(zt+1)
that depends on the realization of the aggregate shock in the following period, whereas
the bond pays a one-period-ahead risk-free interest rate rb(zt). The sequential budget
constraint is standard:

cj(ej, zt) + sj+1(ej, zt) + bj+1(ej, zt) = (1 + rs(zt))sj(ej, zt)

+ (1 + rb(zt−1))bj(ej, zt) + (1− τ)yj(ej, zt)I(j) + yss(zt)(1− I(j)), (12)

where τ is a fixed social security contribution rate, yss(zt) is pension income from social
security, and I(j) is an indicator function that takes the value 1 if j < jr and 0 otherwise.
Households cannot die in debt:

sJ+1(eJ , zt) + bJ+1(eJ , zt) ≥ 0. (13)

Together with the requirement of positive consumption c > 0 ∀ej, zt, equation (13)
implies a natural debt limit at each date-event. Loosely speaking, at each zt, a household
with ej can borrow up to the present value of its worst future income stream. As
households do not have a bequest motive and utility is strictly increasing in consumption,
equation (13) implies zero bequests. Consequently, households are born with zero assets,
i.e., s1(e1, zt) = b1(e1, zt) = 0.

3.3 Firms

There is a representative firm that produces the final good Y (zt) using capital, K(zt),
and labor, L(zt). The production technology is Cobb-Douglas with capital share α and
deterministic labor-augmenting productivity growth λ. At each date-event, it is subject
to a multiplicative shock to total factor productivity ζ(zt), which depends only on the
current aggregate shock:

Y (zt) = ζ(zt)K(zt)α((1 + λ)tL(zt))1−α. (14)

Assuming a stochastic depreciation rate δ(zt) as in Storesletten, Telmer, and Yaron (2007),
Gomes and Michaelides (2008), Krueger and Kubler (2006) and others, the capital stock
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evolves according to:

K(zt) = I(zt−1) +K(zt−1)(1− δ(zt−1)). (15)

The firm rents capital and labor from households by paying factor prices equal to their
respective marginal productivities. Thus wages, w(zt), and the return on capital, r(zt),
are given by

w(zt) = (1 + λ)t(1− α)ζ(zt)
(

K(zt)
(1 + λ)tL(zt)

)α
, (16a)

r(zt) = αζ(zt)
(

(1 + λ)tL(zt)
K(zt)

)1−α

− δ(zt). (16b)

The capital stock, K(zt), is financed by issuing stocks and bonds in quantities S and
B, respectively:

K(zt) = S(zt) +B(zt) = S(zt)(1 + κf ). (17)

The debt-equity ratio, κf , is exogenous and constant. Therefore, the firm only decides on
aggregate capital and does not make a decision regarding the capital structure. Thus, the
firm’s problem is just like in the standard model, which is nested for κf = 0. Modeling
leverage in this manner is a common practice in the finance literature to mechanically
increase the volatility of stock returns, see, for example, Boldrin, Christiano, and Fisher
(1995) or Croce (2010). This enables us to keep the depreciation shocks small in the
calibration. Note that all of our results go through for κf = 0.16

As shown in the Supplementary Appendix D, the bond and stock returns are

rb(zt−1) = 1
κf
E
[
r(zt)(1 + κf )− rs(zt)|zt−1

]
(18a)

rs(zt) = r(zt)(1 + κf )− κfrb(zt−1). (18b)

Equation (18b) demonstrates how the debt-equity-ratio, κf , leverages the stock return,
thereby increasing both its expected value and variance.

16In the baseline calibration, the depreciation shocks are so small that κf = 0 delivers the same results.
Only in the calibration that matches the volatility of stock returns, κf = 0 implies a volatility of aggregate
investment that is too high, and a higher κf improves on that. It is well known that, in the standard
model, it is difficult to match the volatilities of both the financial and the real side of the economy.
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3.4 Social Security

Social security works just like in the two-generations model of Section 2. The government
organizes a pay-as-you-go system with a fixed contribution rate τ that is levied on labor
income. Pension income yss(zt) adjusts to ensure that the social security budget is
balanced at every date-event. As before, yss(zt) does not depend on the idiosyncratic
history, which means that every household receives the same pension income. Denoting by
P (zt) the number of pensioners, P (zt) = ∑J

j=jr Nj(zt), the budget constraint now reads
τw(zt)L(zt) = yss(zt)P (zt). The case τ = 0.0, i.e., an economy without a social security
system, characterizes the initial situation.

3.5 Equilibrium

To define equilibrium, we remove population and technology growth and express all
aggregate variables in terms of labor efficiency units. This is achieved by dividing all
aggregate variables by (1+λ)tL(zt) = (1+λ)t∑jr−1

j=1 εjNj(zt). The corresponding variable is
written in lower case, e.g., k(zt) = K(zt)

(1+λ)tL(zt) . Population statistics used in the equilibrium

definition are the stationary economic dependency ratio, p = P (zt)
L(zt) =

∑J

j=jr
(1+n)J−j∑jr−1

j=1 (1+n)J−jεj
, and

the stationary labor-to-population ratio, ` = L(zt)
N(zt) =

∑jr−1
j=1 (1+n)J−jεj∑J

j=1(1+n)J−j
. Individual variables

are only detrended by the level of technology, and the corresponding variables are denoted
with a tilde, e.g., c̃j(·) = cj(·)

(1+λ)t . Accordingly, the monotone transformation of utility is
denoted by ũj(·).

We proceed with a recursive definition of equilibrium. To this end, we define a
state space that is sufficient for solving the households’ maximization problem. Let
E = {e1, e2, ..., emax} and J = {1, 2, ...J}, and letM be a sigma-algebra over {[s̃,∞]×
[b̃,∞] × E × J }, where s̃ and b̃ are implied by the detrended version of equation (13).
The measure Φ is defined over M, and the set of all such measures is denoted by Q.
We follow the applied literature and define the state space to consist of Φ, the current
idiosyncratic state (s̃, b̃, e), and the current aggregate shock z. As a recursive equilibrium
does not depend on the date-event, we drop time index t and use a prime for next period’s
variables.

Definition 1. For any initial (z0,Φ0) ∈ Z×Q, a recursive competitive equilibrium consists
of a measure Φ, measurable functions for household choices {c̃j(s̃, b̃, e; Φ, z), s̃′j(s̃, b̃, e; Φ, z),
b̃′j(s̃, b̃, e; Φ, z)} and an associated value function ũj(s̃, b̃, e; Φ, z), firm choices k(Φ, z),
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social security settings {τ, ỹss(Φ, z)}, factor prices {w̃(Φ, z), r(Φ, z)}, asset returns {rb(Φ),
rs(Φ, z)}, and a law of motion H(Φ, z) such that:

a) given functions for prices and returns and the law of motion, the households’ policy
functions {c̃j(s̃, b̃, e; Φ, z), s̃′j(s̃, b̃, e; Φ, z), b̃′j(s̃, b̃, e; Φ, z)} solve

max
c̃>0,s̃′,b̃′

ũj(s̃, b̃, e; Φ, z)

=


(
c̃

1−θ
γ + β̃

(∑
z′
∑
e′ πz(z′|z)πe(e′|e) ũ1−θ

j+1

(
s̃′, b̃′, e′;H(Φ, z), z′

)) 1
γ

) γ
1−θ

c̃ if j = J

s. t. c̃+ s̃′ + b̃′ = (1 + rs(Φ, z))s̃+ (1 + rb(Φ))b̃

+ (1− τ)ỹj(e,Φ, z)I(j) + ỹss(Φ, z)(1− I(j)) ,

ỹj(e,Φ, z) = w̃(Φ, z)εjη(e, z) ,

s̃′ + b̃′ ≥ 0 if j = J. (19)

where β̃ = β(1 + λ)
1−θ
γ .

b) functions for prices and for firm choices are related by

w̃(Φ, z) = (1− α)ζ(z)k(Φ, z)α

r(Φ, z) = αζ(z)k(Φ, z)α−1 − δ(z).

c) functions for asset returns are given by

rb(Φ) = 1
κf
E [r(Φ, z)(1 + κf )− rs(Φ, z)]

rs(Φ, z) = r(Φ, z)(1 + κf )− κfrb(Φ)

d) the pension system budget constraint holds, i.e.,

τw̃(Φ, z) = ỹss(Φ, z)p (20)

where p is the economic dependency ratio defined above.
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e) all markets clear:

ζ(z)k(Φ, z)α + (1− δ(z))k(Φ, z) = 1
`

J∑
j=1

∑
e

∫
b̃

∫
s̃
c̃j(s̃, b̃, e; Φ, z)Φ(s̃, b̃, e, j) db̃ ds̃

+ k(H(Φ, z), z′)(1 + λ)(1 + n)

k(H(Φ, z), z′)(1 + λ)(1 + n) = 1
`

J∑
j=1

∑
e

∫
b̃

∫
s̃
(s̃′j(s̃, b̃, e; Φ, z)

+ b̃′j(s̃, b̃, e; Φ, z))Φ(s̃, b̃, e, j) db̃ ds̃
k(H(Φ, z), z′)(1 + λ)(1 + n)

(1 + κf )
= 1
`

J∑
j=1

∑
e

∫
b̃

∫
s̃
s̃′j(s̃, b̃, e; Φ, z)Φ(s̃, b̃, e, j) db̃ ds̃.

By Walras’ Law, the bond market also clears.

f) the law of motion H is generated by the policy functions and the Markov transition
matrix πe, so that

Φ′ = H(Φ, z)

with the initialization at j = 1 of s̃ = b̃ = 0.

3.6 Computational Solution

Like Gomes and Michaelides (2008) and Storesletten, Telmer, and Yaron (2007), among
others, we compute an equilibrium of our model by applying the Krusell and Smith (1998)
method. To approximate the law of motion of the distribution, H(Φ, z), we consider
various forecast functions, Ĥ, of the average capital stock and the ex-ante equity premium
and select the one with the best fit. The average goodness of fit of the selected approximate
law of motion is in the range of R2 = 0.99 for all of the calibrations. The state space is
further reduced by one dimension by recasting the problem in terms of cash-on-hand. To
speed up the solution, we employ a variant of the endogenous grid method (Carroll 2006)
that allows for two continuous choices. We parallelize the solution and simulation, which
enables us to achieve a high degree of accuracy. Details of the computational solution are
provided in the Supplementary Appendix B.
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3.7 Welfare Criterion

We employ the same welfare concept as in the two-generations economy of Section 2,
namely ex-ante expected utility of a household at the start of economic life. As explained
in Davila, Hong, Krusell, and Ríos-Rull (2012), in an economy with ex-ante identical
but ex-post heterogeneous agents, this concept represents a natural objective for a social
planner who is behind the Rawlsian veil of ignorance. It is a Utilitarian welfare criterion,
which weights lifetime utilities with their respective probabilities.

A household’s welfare of being born into an economy with policy A can be written as

E
[
ũ1(c̃A, e1, zt)

]
, (21)

where the expectation is taken over all date-events zt and c̃A denotes the optimal, detrended
consumption attainable under this policy. Consequently, it is an expectation over all
possible equilibrium values of aggregate capital and prices. As before, we express the
welfare difference when comparing policy A to policy B in terms of a consumption
equivalent variation, gc.

Observation 1. The consumption equivalent variation, i.e., the percentage increase in
consumption required in regime A to make the household as well off as under regime B, is
given by

gc =
E
[
ũ1(c̃B, e1, zt)

]
E [ũ1(c̃A, e1, zt)] − 1. (22)

Proof. Relegated to the Supplementary Appendix D.

A positive number then indicates the percentage of lifetime consumption a household
would be willing to give up in order to be born into an economy with policy B. By
adopting an ex-ante perspective, we compare the long-run welfare effects of such a reform.
While this does not include the transition between the two economies, it is important to
understand that for the experiment described below (an introduction of social security),
including the welfare effects along the transition would increase gc. The reason is that
moving from policy A to policy B implies a gradual decrease in capital. Thus, generations
that live through the transition experience the full benefits from insurance but are spared
some of the long-run welfare costs of crowding out. Therefore, by ignoring the transition,
we calculate a lower bound on the welfare effects.

We can provide a closed-form solution for gc for an economy without risk. Following the
discussion in Section 2.2, we denote the consumption equivalent variation in an economy
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without risk by gc(0, 0).

Observation 2. Denote by pviA1 (pviB1 ) the present discounted value of lifetime income
in policy A (B). The consumption equivalent variation in the risk-free economy is given by

gc(0, 0) = ũ1(c̃B)
ũ1(c̃A) − 1 = p̃vi

B

1

p̃vi
A

1

− 1,

i.e., it is not affected by preference parameters.

Proof. Relegated to the Supplementary Appendix D.

We make use of this result in the decomposition analysis, which is described next.

3.8 Experiment and Decomposition Analysis

In terms of the previous section, our computational experiment consists of comparing
policy A, which has a social security contribution rate of τ = 0%, to policy B, which has
τ = 2%. This is the experiment performed by Krueger and Kubler (2006). It can be
interpreted as the introduction of a marginal social security system, which means that it
is close to our analytical results in Section 2.

In general equilibrium, this experiment unambiguously leads to a lower capital stock
because private savings are crowded out. Naturally, the reduction in aggregate capital
leads to changes in relative prices—wages decrease and returns increase. We call the
economy dynamically inefficient if the reduction in capital and the induced price changes
per se lead to a welfare gain. That is, we isolate the welfare consequences of purely
changing capital without introducing social security. If choosing a lower capital stock leads
to a welfare gain, then there was over-accumulation of capital, which implies dynamic
inefficiency. Conversely, if the reduction in capital leads to welfare losses, we say that the
economy is dynamically efficient. Our notion of dynamic inefficiency precisely corresponds
to the over-accumulation of capital as defined by Davila, Hong, Krusell, and Ríos-Rull
(2012).17 In a dynamically inefficient economy, introducing social security could be welfare

17In heterogeneous agent models, the golden rule of capital formation cannot be applied to discriminate
between efficient and inefficient steady states. This is emphasized by Davila, Hong, Krusell, and Ríos-Rull
(2012) in a model with idiosyncratic income shocks and by Kuhle (2012) in a model with heterogeneous
types. In our economy, the same opposing effects as in Davila, Hong, Krusell, and Ríos-Rull (2012) are
at work. On the one hand, idiosyncratic risk induces precautionary savings thereby creating a negative
pecuniary externality because households do not internalize the effects on aggregate capital when making
their savings decision. As a consequence, a social planner would choose a lower capital stock. On the
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improving just because it cures or mitigates the over-accumulation of capital. We avoid
this situation in our calibrated model variants.

To separate the welfare gains of insurance from the welfare losses of crowding out, we
perform a partial equilibrium experiment. In this partial equilibrium, the social security
system changes, but prices, i.e., wages and returns, remain unaffected. Conceptually, it
corresponds to a small open economy with free movement of the factors of production. To
formalize this, denote by PA =

{
{zt, r(zt), rs(zt), rb(zt), w̃(zt)}Tt=1|τ = 0%

}
the sequence

of shocks and prices obtained from the general equilibrium of the economy without a social
security system, i.e., under policy A (τ = 0%). Likewise, denote by ĤA the approximate
law of motion of this equilibrium. Recall that households use ĤA to forecast prices and
solve their optimization problem. We now compute the partial equilibrium under the old
price sequence PA and the old laws of motion ĤA, but with policy B (τ = 2%). That
is, households optimize under the old laws of motion, but under the new social security
system. Consistently, the simulations are performed with the old shocks and prices and
the new optimal policy functions. Again, this is like a small open economy, in which the
domestic social security system has changed, but world prices remain unaffected. The
welfare gains stemming from insurance are then simply given by

gPEc =
E
[
ũ1(c̃B, e1, zt)|PA, ĤA, τ = 2%

]
E
[
ũ1(c̃A, e1, zt)|PA, ĤA, τ = 0%

] − 1. (23)

As long as there is sufficient risk to insure, this number will generally be positive,
because prices do not change and there are thus no costs from the crowding out of capital.
Analogously, the corresponding general equilibrium number is

gGEc =
E
[
ũ1(c̃B, e1, zt)|PB, ĤB, τ = 2%

]
E
[
ũ1(c̃A, e1, zt)|PA, ĤA, τ = 0%

] − 1, (24)

where the crucial difference is that in the new equilibrium with policy B (τ = 2%), the
utility of a newborn is computed under the new general equilibrium prices and laws of

other hand, idiosyncratic wage shocks generate wealth inequality that propagates over time and age.
A social planner may then choose a higher capital stock, because the implied lower return may reduce
inequality. These mechanisms come on top of the standard result that a deterministic OLG model may
give rise to over-accumulation of capital.

22



motion, PB, ĤB. The welfare costs of crowding out are then given by the difference

gCrowdingOutc = gGEc − gPEc . (25)

In a dynamically efficient economy as defined above, gCrowdingOutc will be negative by
definition.

The final step is the decomposition of gPEc into insurance against aggregate risk,
idiosyncratic risk, and the two interactions, LCI and CCV . Recall from Proposition 3
that a Taylor-series approximation of gc is linear in risks and interactions. For convenience,
we restate equation (9):

gPEc (IR,AR) ≈ gPEc (0, 0) + dgc(IR) + dgc(AR) + dgc(IR) + dgc(LCI),

where gPEc (0, 0) denotes the welfare in an economy without risk and dgc(X) the welfare
effect attributable to risk type X ∈ {IR,AR,LCI}. We now extend this by CCV and
write it as a system of equations:

gPEc (AR, IR,CCV ) = gPEc (0, 0) +dgc(AR) + dgc(IR) + dgc(LCI) + dgc(CCV ) (26a)

gPEc (AR, IR) = gPEc (0, 0) +dgc(AR) + dgc(IR) + dgc(LCI) (26b)

gPEc (IR) = gPEc (0, 0) + dgc(IR) (26c)

gPEc (AR) = gPEc (0, 0) +dgc(AR) (26d)

The right-hand side of the first line shows all of the components we want to isolate. To
do so, we begin in the last line, where we compute gPEc (AR) and gPEc (0, 0), as in equation
(23), but for an economy with only aggregate risk and one without risk, respectively.18

With those numbers at hand, we can back out the welfare effect attributable to aggregate
risk, dgc(AR). Likewise, we compute gPEc (IR) for an economy featuring only idiosyncratic
risk to back out dgc(IR).19 Next, we compute gPEc (AR, IR). As we already know dgc(AR)
and dgc(IR), we can back out how much of the welfare effects are attributable to LCI,
dgc(LCI). In the same manner, we obtain dgc(CCV ). In summary, this decomposition
procedure allows us to isolate the welfare effects in a very consistent manner, because
the procedure is performed in partial equilibrium, and hence prices, shocks, and model
parameters are identical in all computations. These welfare numbers are consistent with

18To compute gc(0, 0) we employ Observation 2.
19Notice that in models without aggregate risk, there will no longer be two assets with different returns.

Thus, there will be no portfolio choice.
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the general equilibrium results, because that is where the original equilibrium sequences
and laws of motion come from.

4 Calibration

The selection of the targets and parameters to be calibrated is informed by our theoretical
insights, in particular by Proposition 2. It indicates that the coefficient of relative
risk aversion, θ, the variances of the shocks, and the returns on savings are crucial in
determining the value of social security. Guided by this, our baseline calibration takes
a very conservative approach, in the sense that it features a low θ and small aggregate
shocks. In the sensitivity analysis, we then first increase θ to match the Sharpe ratio20,
ς = E[rs,t−rb,t]

σ[rs,t−rb,t] , and then aggregate shocks to match the equity premium, µ = E [rs,t − rb,t],
see Section 5.3.

One set of parameters is determined exogenously by either taking its value from other
studies or measuring its value in the data. We refer to these parameters as first-stage
parameters. The second set of parameters is jointly calibrated by matching the model-
simulated moments to their corresponding moments in the data. Accordingly, we refer to
those parameters as second-stage parameters.21

Table 1 summarizes our conservative baseline calibration, which we now describe in
detail. Additional information on our empirical approach to measure calibration targets
is provided in the Supplementary Appendix C. The numerical implementation of the
calibration procedure is described in the Supplementary Appendix B.

4.1 Demographics

Households begin working at the biological age of 21, which corresponds to j = 1. We
set J = 58, implying a life expectancy at birth of 78 years, which is computed from the
Human Mortality Database (HMD) for the year 2007. We set jr = 45, corresponding to
a statutory retirement age of 65. Population grows at a rate of 1.1%, which reflects the
current growth trend of the US population.

20The Sharpe ratio is the market price of risk, which in our model is given by ς = E[rs(zt)−rb(zt)]
σ[rs(zt)−rb(zt)] . We

divide by the standard deviation of the excess return, instead of the standard deviation of the stock
return, because our bond returns are not constant over time.

21The second-stage parameters jointly determine all target moments. When we note below that we
calibrate a parameter to a target, we mean that this parameter has the strongest impact on the target.
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4.2 Households

In our baseline calibration, we treat the coefficient of risk aversion as a fist-stage parameter,
i.e., it is not set to match a target. We set it to 3, which is well within the standard
range of [2, 4]. Given this choice, our model produces a Sharpe ratio of ς = 0.079 and
an equity premium of µ = 0.75%. These are by a factor of 4.2, respectively 7.4, lower
than their respective empirical estimates of 0.33 and 5.60%, taken from Robert Shiller’s
website.22 Below, we describe alternative calibrations in which risk aversion is calibrated
as a second-stage parameter to either match the Sharpe ratio or the equity premium.

The inter-temporal elasticity of substitution (IES) is set to 0.5. This is at the lower
end of the range of values used in the literature, as reviewed, e.g., by Bansal and Yaron
(2004). A higher value of the IES means that households react more strongly to price
changes, with the consequence that the welfare losses from crowding out are lower. We
investigate how our results depend on this choice in our sensitivity analysis.

In our baseline calibration, we determine the discount factor β to match the capital
output ratio of 2.65, which we calculate from NIPA data and which is in line with the
estimates of, e.g., Fernández-Villaverde and Krueger (2011). Thus β is a second-stage
parameter, and we obtain β = 0.981.

The age-specific productivity profile εj is computed from PSID data by applying the
method of Huggett, Ventura, and Yaron (2011). It is displayed in the Supplementary
Appendix C. The stochastic component of labor income, η(ej, zt), is based on the estimates
of labor earnings risk in Storesletten, Telmer, and Yaron (2004), who also provide an
estimate of the countercyclical cross-sectional variance of income risk, CCV . Specifically,
we employ the same estimates that they use in their life-cycle paper (Storesletten, Telmer,
and Yaron 2007). These comprise an autocorrelation coefficient of log income of ρ = 0.952
and a conditional variance of innovations, σ2

ν(zt), of 0.0445 in recessions and 0.0156 in
booms. We approximate this process through a discrete, four-state Markov process using
the Rouwenhorst method as proposed by Kopecky and Suen (2010).

4.3 Firms

We set the value of the capital share parameter, a first-stage parameter, to α = 0.32, a
standard choice. This is directly estimated from NIPA data on total compensation as a
fraction of (appropriately adjusted) GDP. Our estimate of the deterministic trend growth
rate, also a first-stage parameter, is based on data on total factor productivity (TFP).

22See http://aida.wss.yale.edu/∼shiller/data.htm.

26



The point estimate is λ = 0.018, which is in line with other studies. Leverage in the firm
sector is set to κf = 0.66, based on the empirical estimates in Rajan and Zingales (1995)
and the calibration in Croce (2010).

The mean depreciation rate of capital, δ0, is a second-stage parameter. We calibrate it
so as to match the average bond return of 2.3%, again taken from Robert Shiller’s website.
In economies without aggregate risk, cf. our discussion on the decomposition of welfare
effects in Subsection 3.8, we calibrate δ0 to produce a risk-free return of 4.2%, which
corresponds to the empirical estimate of Siegel (2002).

4.4 Aggregate Risk

Aggregate risk is driven by a four-state Markov chain with support Z = {z1, . . . , z4} and
transition matrix πz. Each aggregate state maps into a combination of technology shock
and depreciation shock, (ζ(z), δ(z)). Both ζ(z) and δ(z) can each take a high or a low
value. We let

ζ(z) =

1− ζ̄ for z ∈ z1, z2

1 + ζ̄ for z ∈ z3, z4

and δ(z) =

δ0 + δ̄ for z ∈ z1, z3

δ0 − δ̄ for z ∈ z2, z4.
(27)

Set up in this way, z1 corresponds to a low wage and a low return, while z4 corresponds
to a high wage and a high return.

To calibrate the entries in the transition matrix, denote the transition probability of
remaining in the low technology state by πζ = π(ζ ′ = 1− ζ̄ | ζ = 1− ζ̄). Assuming that the
transition of technology shocks is symmetric, we then have π(ζ ′ = 1 + ζ̄ | ζ = 1 + ζ̄) = πζ

and 1− πζ = π(ζ ′ = 1− ζ̄ | ζ = 1 + ζ̄) = π(ζ ′ = 1 + ζ̄ | ζ = 1− ζ̄).
To govern the correlation between technology and depreciation shocks, let the proba-

bility of being in the high (low) depreciation state conditional on being in the low (high)
technology state be πδ = π(δ′ = δ0 + δ̄ | ζ ′ = 1− ζ̄) = π(δ′ = δ0 − δ̄ | ζ ′ = 1 + ζ̄), where
the second equality follows from assuming symmetry of the matrix. We then have that
the transition matrix of aggregate states follows from the corresponding assignment of
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states in (27) as

πz =



πζ · πδ πζ · (1− πδ) (1− πζ) · (1− πδ) (1− πζ) · πδ

πζ · πδ πζ · (1− πδ) (1− πζ) · (1− πδ) (1− πζ) · πδ

(1− πζ) · πδ (1− πζ) · (1− πδ) πζ · (1− πδ) πζ · πδ

(1− πζ) · πδ (1− πζ) · (1− πδ) πζ · (1− πδ) πζ · πδ


.

In summary, the Markov chain process of aggregate shocks is characterized by four
parameters, (ζ̄ , δ̄, πζ , πδ). We calibrate ζ̄ and πζ as first-stage parameters to match the
standard deviation and autocorrelation of TFP in the data of 0.029 and 0.88, respectively,
both estimated using NIPA data. The remaining parameters, δ̄ and πδ, are calibrated as
second-stage parameters to jointly match the standard deviation of aggregate consumption
growth of 0.03 and the correlation of the cyclical component of TFP with risky returns
of 0.5. To match these moments, our calibration routine yields δ̄ = 0.078, ζ̄ = 0.029,
πζ = 0.941, and πδ = 0.886.

5 Results

5.1 Baseline Calibration

Aggregate Effects. The effects of introducing social security at a contribution rate
of 2% on capital accumulation, prices and welfare are documented in Table 2. Recall that
we compare two long-run stochastic equilibria (steady states). As the table shows, the
experiment leads, on average, to a long-run reduction in the capital stock of 11.97%, which
is accompanied by a 3.93% reduction in wages, an increase in the return on stocks of 1.02
percentage points, and an increase in the return on bonds of 1.04 percentage points. The
average return on bonds increases to a greater extent, because the insurance provided
through social security leads households to rebalance their portfolios towards stocks. This
reduces relative demand for bonds, decreasing their price and increasing their return.

Table 2 also reports the consumption equivalent variation, gGEc , as defined in equa-
tion (24). The reform yields a CEV of 2.21% despite the sizeable crowding out of capital.
This constitutes a substantial welfare gain from a minimum pension at a contribution rate
of 2%.

Finally, Table 2 reports a small increase in aggregate consumption. This does not
mean that the economy is dynamically inefficient. The reduction in aggregate capital, per
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Table 2: Aggregate Effects of The Social Security Experiment

Variable Change

Aggregate capital, K ∆K/K = −11.97%
Aggregate wage, w ∆w/w = −3.93%
Stock return, rs ∆rs = +1.02pp
Bond return, rb ∆rb = +1.04pp
Aggregate consumption, C ∆C/C = +0.24%
Consumption equivalent variation gGEc = +2.21%
Notes: ∆X/X is the expected percent change in variable X between two steady
states, i.e., ∆X/X = E(Xt|τ=2%)−E(Xt|τ=0%)

E(Xt|τ=0%) . ∆x is the change in variable x ex-
pressed in percentage points (pp), i.e., ∆x = E(xt|τ = 2%)− E(xt|τ = 0%). gGEc is
the consumption equivalent variation in general equilibrium, cf. Subsection 3.8.

se, leads to lower consumption and a welfare loss, as we will see in the following paragraph.
The reason for the mildly increased aggregate consumption is that, even though we operate
in a dynamically efficient economy, the implicit return of social security is larger than the
expected one-period risk-free rate.23 While such an increase in aggregate consumption
contributes to the welfare gain, the contribution is small. In fact, in the sensitivity analysis
of Subsection 5.3, we frequently find a decrease in aggregate consumption accompanying
welfare gains that are larger than those reported here.

Benefits from Insurance versus Costs from Crowding Out. To further under-
stand the nature of the welfare gain, we decompose it into the benefits from insurance
and the losses from crowding out by conducting the partial equilibrium (PE) experiment
described in Subsection 3.8. Accordingly, we consider a small open economy in which
aggregate prices are determined on world markets and social security is introduced in
the small home country. That is, in the PE experiment, the sequences of wages and
returns before and after the introduction of social security are identical. As a consequence,
the CEV in this experiment reflects the benefits from insurance, because there are no
price changes. Subtracting this number from the overall welfare gain reported in Table 2
yields the losses from crowding out. As Table 3 reveals, the net welfare gains attributable
to the total insurance provided by social security amount to +5.48% and the losses from

23This is consistent with Proposition 1 of Krueger and Kubler (2006), which—loosely speaking—states
that for dynamic efficiency, it is sufficient that, at every point in time, there are states of the world
in which the bond return is larger than the implicit social security return and which are reached with
positive probability.
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crowding out stand at −3.27%. The fact that the reduction in aggregate capital leads to
a welfare loss means that the equilibrium is dynamically efficient; see the discussion in
Subsection 3.8.

Table 3: Benefits from Insurance versus Costs from Crowding Out

Variable GE PE Crowding Out

CEV, gc +2.21% +5.48% -3.27%
Notes: For the definition of consumption equivalent variation, gc, in general equilib-
rium (GE) and partial equilibrium (PE), cf. Subsection 3.8.

Distributional Effects. The welfare effects reported in Table 3 represent aggregate
effects, which encompass important inter- and intragenerational distributional changes.
Our two-generations model in Section 2 demonstrated that, from an ex-ante perspective,
households value the intra-generational redistribution from the income (and asset) rich to
the income (and asset) poor, which results from the lump-sum payments made by social
security. In addition, a redistribution over a household’s life-cycle might enhance welfare
because of market incompleteness. To see how these distributional changes realize in
the quantitative model, Figure 1 displays the average life-cycle consumption in Panel (a)
and the variance of log consumption over the life-cycle in Panel (b).24 The solid line
represents the pre-experiment (τ = 0) economy, the dashed line represents the post-
experiment (τ = 0.02) partial equilibrium economy, and the dash-dotted line represents
the post-experiment (τ = 0.02) general equilibrium economy. The introduction of social
security in partial equilibrium leads to better consumption insurance and therefore reduces
precautionary savings. Consequently, the consumption profile is pivoted clockwise such
that households consume more on average in early stages of the life-cycle at the expense of
slightly reduced average consumption when older than 52 years, see Panel (a) of Figure 1.
Due to discounting, the early consumption gains are weighted more strongly than the
later consumption losses. Simultaneously, the variance of log consumption decreases at all
ages, as shown in Panel (b). Both effects underlie the strong partial equilibrium aggregate
welfare gain reported in Table 3.

In the post-experiment general equilibrium, the consumption profile is pivoted counter-
clockwise. The reason is that the crowding out of capital now leads to lower wages and

24We look at the variance of log consumption, rather than the variance of consumption, because it is a
relative inequality measure, invariant to the mean.
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higher average returns, as reported previously in Table 2. To profit from higher returns,
young households increase their life-cycle savings, which raises consumption at higher ages.
As can be seen from Panel (a) of Figure 1, consumption remains below its pre-experiment,
general equilibrium level until age 43. Panel (b) shows that, at the same time, the variance
of log consumption is slightly higher than in the pre-experiment economy until age 40.
This is a consequence of the increased life-cycle savings, which leads households to also
bear more volatile consumption when young. In response to a shock, they hence adjust
consumption rather than savings. After the age of 40, the variance of log consumption
is smaller than in the pre-experiment economy, and indeed the gap widens considerably
with age. This reduced volatility at older ages constitutes the major source of the welfare
gains. Thus when comparing the two general equilibria, households expect to loose from
the reform when young, because consumption will be lower on average and have a higher
volatility at young ages, while they expect to gain on both fronts when old. The fact that
we find an overall welfare gain of the reform, as reported in Table 2, means that the gains
when old outweigh the losses when young from an expected ex-ante perspective, even
though there is discounting.

Figure 1: Life-cycle Consumption
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Notes: Average consumption in Panel (a) and variance of log consumption in Panel (b) at each age for
the economy without social security (GE, τ = 0%), with social security (GE, τ = 2%), and the partial
equilibrium with social security and old prices (PE, τ = 2%).

To conclude the discussion of the distributional consequences, Table 4 reports the Gini
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coefficients for assets, labor earnings and consumption. We make three observations. First,
the simulated Gini coefficients closely align with the data reported by, e.g., Hintermaier
and Koeniger (2011). This is notable because they were not a target in the calibration,
and it is not easy to match them.25 The very close match substantially strengthens our
analysis of the distributional consequences of the reform.

Second, the Gini coefficient for assets increases. This is so because households take on
more risky portfolio compositions in response to the introduction of social security and
because of higher average returns, see Table 2. Third, improved consumption insurance
leads to a lower degree of consumption dispersion in the economy. The Gini coefficient for
consumption decreases slightly.

Table 4: Distributional Consequences: Gini Coefficients

Variable τ = 0.00 τ = 0.02 Change Data

Assets 0.764 0.806 4.21pp 0.809
Earnings 0.437 0.437 0.00pp 0.439
Consumption 0.262 0.260 -0.20pp
Notes: pp stands for percentage points. Estimates in column “Data” are taken
from Hintermaier and Koeniger (2011).

Decomposition into risks and interactions. We now investigate how much of the
welfare gains in partial equilibrium of +5.48% can be attributed to insurance against
aggregate risk and idiosyncratic wage risk, as well as to the interactions CCV and LCI.
This is a key aspect of our contribution. The procedure for this decomposition is described
in Subsection 3.8. Essentially, it performs the same partial equilibrium experiment as
described above, but now in addition the risks are turned off. Recall from Section 4 that
we set the interest rate exogenously to 4.2% when solving economies without aggregate
risk.

The results of this decomposition are summarized in Table 5. The consumption
equivalent variation in a deterministic environment is negative at −0.62%, because the
implicit return of social security of λ + n = 0.018 + 0.01 = 0.028 is below the risk-free
interest rate of rb = 0.042.26 As shown in the third and fourth column, the welfare gains
from insurance against idiosyncratic risk amount to 0.84% and against aggregate risk

25See, e.g., Castañeda, Díaz-Giménez, and Ríos-Rull (2003) and De Nardi (2004).
26We arrive at this welfare number both when we solve the model computationally without risks and

when we use the analytical formula presented in Observation 2.
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to 2.02% in terms of consumption equivalent variations. Thus, in welfare terms, the
role played by aggregate risk is approximately twice as important as the role played by
idiosyncratic risk. Turning to the interactions, the welfare gains attributable to LCI
stand at 1.65% and those attributable to CCV at 1.60%. Hence, the interactions account
for dgc(CCV )+dgc(LCI)

gPEc
·100[%] = 1.65+1.60

5.48 ·100[%] ≈ 60% of the total insurance gains through
social security. Since the previous literature on social security has only included one risk,
it has completely missed the important role played by these large interactions between
idiosyncratic and aggregate risk.

Table 5: Decomposition of Welfare Benefits in Partial Equilibrium

gPEc gPEc (0, 0) dgc(IR) dgc(AR) dgc(LCI) dgc(CCV )

5.48% = -0.62% +0.84% +2.02% +1.65% +1.60%
Notes: This table presents the decomposition of the welfare gain expressed, as consumption equivalent
variation, gPEc , into various sources, cf. Subsection 3.8.

5.2 On the Importance of Modeling both Risks

The analysis of our baseline scenario suggests that the role of interactions is large. We next
address whether it is indeed the joint presence of both risks (aggregate and idiosyncratic
risk) as well as their interactions that lead us to conclude that social security is beneficial in
the long run. To this end, we compute the general equilibria of economies that feature only
aggregate risk, only idiosyncratic risk, or no risk. We calibrate each economy to standard
targets in the literature. For the economy without idiosyncratic risk, we adopt the targets
of Krueger and Kubler (2006) and match the equity premium, µ = E [rs,t − rb,t], and the
volatility of stock returns. Specifically, we target an equity premium of µ = 5.60% and a
standard deviation of stock returns of σ(rs) = 16.8%, again based on data taken from Rob
Shiller’s webpage. For the economy without aggregate risk and the deterministic economy,
we again target an interest rate of 4.2%. Throughout these experiments, we target a
capital output ratio of 2.65 by adjusting the discount factor, β. Table 6 summarizes the
second-stage parameters, i.e., the parameters that are jointly calibrated. The remaining
first-stage parameters take the same value as in the baseline, see Table 1. Table 7 displays
the targeted moments for these economies. For comparison, both tables include the
corresponding values of the baseline (BL).

Let us first turn to the economy with only aggregate risk, denoted AR-only. As
mentioned above, this economy is calibrated to match the equity premium, as shown
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in Table 7. It also matches the volatility of stock returns. However, it overshoots the
Sharpe ratio and the volatility of aggregate consumption, the simulated moments of which
are ς = E[rs,t−rb,t]

σ[rs,t−rb,t] = 0.352 and σ
(

∆Ct+1
Ct

)
= 0.041, respectively, as compared to 0.33

and 0.03 in the data. The reason is that this economy requires a very high coefficient of
risk aversion of θ = 14.65 and, to match the high volatility of stock returns, also large
depreciation shocks of δ̄ = 0.111, see Table 6.27

Table 6: The Role of Both Risks: Parameters

Scenario θ β δ0 δ̄ πδ

BL 3.00 0.981 0.102 0.078 0.886
AR-only 14.65 0.994 0.077 0.111 0.833
IR-only 3.00 0.967 0.079 0.000 NA
No-risk 3.00 0.998 0.079 0.000 NA
Notes: BL: baseline calibration with θ = 3; AR-only: economy with only aggregate risk, calibrated to
match equity premium; IR-only: economy with only idiosyncratic risk; No-risk: deterministic economy.

Table 7: The Role of Both Risks: Moments

Scenario ς µ E
[
K
Y

]
E [rb] σ

(
∆Ct+1
Ct

)
σ(rs) σ(ζ, rs)

BL 0.078 0.008 2.65 0.023 0.030 0.104 0.500
AR-only 0.352 0.056 2.65 0.023 0.041 0.168 0.500
IR-only 0.000 0.000 2.65 0.042 NA NA NA
No-risk 0.000 0.000 2.65 0.042 NA NA NA
Notes: BL: baseline calibration with θ = 3; AR-only: economy with only aggregate risk, calibrated to
match equity premium; IR-only: economy with only idiosyncratic risk; No-risk: deterministic economy.
ς = E[rs,t−rb,t]

σ[rs,t−rb,t] : Sharpe ratio; µ = E [rs,t − rb,t]: equity premium; E
[
K
Y

]
: average capital-output ratio;

E [rb]: average bond return; σ
(

∆Ct+1
Ct

)
: standard deviation of aggregate consumption; σ(rs): standard

deviation of stock returns; σ(ζ, rs): correlation of TFP shocks and stock returns.

Propositions 2 and 3 show that welfare from introducing social security increases in
risk aversion and the volatility of aggregate risk. With respect to these two, the AR-only
calibration is an extreme case. Nevertheless, Table 8 documents welfare losses for this case.
In general equilibrium, i.e., accounting for the welfare losses from the crowding-out of

27However, both the coefficient of risk aversion and the depreciation shocks are smaller than those
required by Krueger and Kubler (2006). This is because of the leverage in the stock returns as described
in Subsection 3.3.
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Table 8: The Role of Both Risks: Benefits and Costs

Consumption equivalent variation, gc
Scenario GE PE Crowding Out

AR-only -0.54% -0.38% -0.16%
IR-only -1.91% 0.27% -2.18%
No-risk -1.13% -0.62% -0.51%
Notes: AR-only: economy with only aggregate risk, calibrated to match equity
premium; IR-only: economy with only idiosyncratic risk; No-risk: deterministic
economy.

capital, they stand at −0.54%, again expressed as consumption equivalent variation. Even
in the short-run, the benefits from insurance through social security do not dominate, as
the welfare losses are −0.38% in partial equilibrium.

Also in the economy featuring only idiosyncratic risk, denoted IR-only, we find large
welfare losses in general equilibrium of −1.92%. In partial equilibrium, there are modest
welfare gains. Finally, introducing social security in the no-risk economy leads to welfare
losses in both general and partial equilibrium.

These findings reemphasize our main contribution: To correctly assess the welfare
effects of social security, it is crucial to include both idiosyncratic and aggregate risks
together in a life-cycle model.

5.3 Sensitivity Analysis

We now investigate the sensitivity of our results with respect to the calibration targets.
Specifically, we are interested in whether our key finding of long-run welfare gains and
sizeable interactions is robust when we consider economies with alternative levels of
risk and risk aversion. To isolate the effects of risk and risk aversion, we hold the
discount factor β constant at its baseline value. The advantage is that a crucial preference
parameter—which has a strong impact on welfare—remains unchanged, making the
comparison and interpretation of the results much easier. The disadvantage is that the
model will overshoot the capital-output ratio when we increase risk or risk aversion.
Despite the too high capital-output ratio, the expected, risk-free bond return, rb, is always
kept at the same level of the baseline through an appropriate calibration of δ0. As shown in
the propositions of Section 2, the expected return on savings is crucial in determining the
welfare of introducing social security. The level of the capital-output ratio, on the other
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hand, is only of second-order importance for our welfare results, because the consumption
equivalent variation is defined in terms of a percentage deviation.

The calibrated parameters and targeted moments for the various scenarios we consider
are summarized in Tables 9 and 10, respectively. Recall that our baseline calibration
features a coefficient of risk aversion of θ = 3. With this value, both the implied equity
premium, µ, and the implied Sharpe ratio, ς , are too low when compared to the data. To
understand how strongly θ affects the value of social security, we calibrate the model to
match a Sharpe ratio of ς = 0.33, which we term scenario SR in Table 9. This yields a
coefficient of risk aversion of θ = 10.88. In this calibration, we continue to match the
volatility of consumption growth by an appropriate choice of δ̄.

Table 9: Sensitivity Analysis: Parameters

Scenario θ β δ0 δ̄ πδ

IES = 0.5
BL 3.00 0.981 0.102 0.078 0.886
SR 10.88 0.981 0.022 0.044 0.830
EP 5.51 0.981 -0.002 0.114 0.832

IES = 1.5
BLIES=1.5 3.00 0.974 0.099 0.040 0.887
SRIES=1.5 11.72 0.974 0.022 0.039 0.831
EPIES=1.5 5.59 0.974 0.003 0.116 0.837

Notes: BL: baseline calibration with θ = 3; SR: scenario matching the Sharpe ratio; EP : scenario
matching the equity premium.

In a next step, we instead calibrate the model to match the equity premium and the
volatility of stock returns, while retaining the same low bond return. We refer to this
calibration as scenario EP . Ceteris paribus, matching a higher equity premium would
require an even higher degree of risk aversion. However, as we simultaneously increase the
variance of risky returns—by an appropriate choice of δ̄—, we also introduce more risk
into the economy. As a consequence, the coefficient of risk aversion, at θ = 5.51, is lower
than in the SR-calibration. Like in the AR-only scenario of the previous subsection, the
Sharpe ratio and consumption volatility are too high in the EP scenario, see Table 10.

We repeat this sensitivity analysis with a higher IES. To this end, we first proceed
as in our baseline calibration, i.e., for our choice of risk aversion of θ = 3, we define
a modified baseline (BLIES=1.5) in which we set the IES to 1.5 and recalibrate all
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Table 10: Sensitivity Analysis: Moments

Scenario ς µ E
[
K
Y

]
E [rb] σ

(
∆Ct+1
Ct

)
σ(rs) σ(ζ, rs)

IES = 0.5
BL 0.078 0.008 2.65 0.023 0.030 0.104 0.500
SR 0.333 0.020 5.80 0.023 0.030 0.066 0.500
EP 0.357 0.056 7.67 0.023 0.066 0.168 0.500

IES = 1.5
BLIES=1.5 0.051 0.003 2.65 0.023 0.030 0.054 0.500
SRIES=1.5 0.333 0.018 5.90 0.023 0.030 0.057 0.500
EPIES=1.5 0.356 0.056 6.57 0.023 0.089 0.168 0.500

Notes: BL: baseline calibration with θ = 3; SR: scenario matching the Sharpe ratio; EP : scenario
matching the equity premium. ς = E[rs,t−rb,t]

σ[rs,t−rb,t] : Sharpe ratio; µ = E [rs,t − rb,t]: equity premium; E
[
K
Y

]
:

average capital-output ratio; E [rb]: average bond return; σ
(

∆Ct+1
Ct

)
: standard deviation of aggregate

consumption; σ(rs): standard deviation of stock returns; σ(ζ, rs): correlation of TFP shocks and stock
returns.

parameters. Starting from this modified baseline, we then repeat the analogues to the SR
and EP calibrations, referred to as SRIES=1.5 and EPIES=1.5, respectively.

The welfare results in general equilibrium are presented in Table 11, together with the
decomposition into the benefits from insurance and the losses from crowding out of capital
formation. Throughout, our result from the baseline scenario (BL) is confirmed: there are
large welfare gains ranging from 2 to 5 percent in terms of consumption equivalent variation
when losses from crowding out are fully taken into account. Welfare gains increase in
risk aversion: recall that BL features θ = 3, SR has θ = 11 and EP has θ = 5.6. Our
two baseline scenarios, which have an IES of 0.5 and 1.5, respectively, and a reasonable
degree of risk aversion of 3, deliver the smallest welfare numbers with total welfare gains
of 2.2% and 2.5%, respectively.28

It is interesting that the losses from crowding out are smaller in all the IES = 1.5
scenarios than their IES = 0.5 counterparts. This is because households react more
strongly to the change in interest rates induced by lower capital formation. Higher interest
rates make them save more, thus dampening the crowding out.29 This is the main reason

28We also conducted an experiment with a risk aversion of 2 and an IES of 0.5. In this experiment,
welfare gains in general equilibrium are 1.47%, confirming the monotonous impact of risk aversion.

29For the same reason, a higher IES leads to smaller volatility of real aggregates in general equilibrium.
The fluctuations introduced by the depreciation shocks are counteracted by households’ savings, so that,
for a higher IES, the volatility of capital is smaller, leading to smaller volatility of aggregate output and
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Table 11: Sensitivity Analysis: Benefits and Costs

Consumption equivalent variation, gc
Scenario GE PE Crowding Out

IES = 0.5
BL +2.21% +5.48% -3.27%
SR +4.16% +8.32% -4.16%
EP +2.78% +6.53% -3.75%

IES = 1.5
BLIES=1.5 +2.56% +3.65% -1.10%
SRIES=1.5 +5.08% +8.09% -3.01%
EPIES=1.5 +4.45% +7.34% -2.89%

Notes: BL: baseline calibration with θ = 3; SR: scenario matching the Sharpe ratio;
EP : scenario matching the equity premium.

why the general equilibrium welfare gains in the IES = 1.5 scenarios are always larger
than in their IES = 0.5 counterparts.

Finally, to compare the role played by the interactions of risks across scenarios, we
compute the ratio dgc(CCV )+dgc(LCI)

gPEc
, displayed in Table 12. It amounts to approximately 60

percent in our two baseline scenarios and reaches 71 percent in scenario EPIES=1.5.
Therefore, a share of interactions of roughly 60% of total welfare gains is a robust (lower
bound) finding.30

consumption.
30In the scenario with risk aversion of 2 and an IES of 0.5, cf. Footnote 28, the share of interactions

is approximately 50%.
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Table 12: Sensitivity Analysis: Welfare Share of Interactions

Scenario Welfare share, dgc(LCI)+dgc(CCV )
gPEc

IES = 0.5
BL 0.59
SR 0.65
EP 0.67

IES = 1.5
BLIES=1.5 0.60
SRIES=1.5 0.65
EPIES=1.5 0.71

Notes: BL: baseline calibration with θ = 3; SR: scenario matching the Sharpe ratio;
EP : scenario matching the equity premium.
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6 Conclusion

This paper extends the previous literature on the welfare effects of social security by
evaluating its benefits and costs when households face multiple risks. We include both
idiosyncratic and aggregate risk in a life-cycle model and show that it is crucial to take
interactions between the two into account. One interaction is explicit, in the form of a
countercyclical, cross-sectional variance of idiosyncratic income risk. The other interaction
emerges from the economic structure of a household’s life-cycle, even when the two risks
are statistically independent. This second interaction, which has not been previously
studied, is exposed analytically. In our quantitative analysis, based on a calibrated,
large-scale overlapping generations model, we find that introducing a PAYG financed
social security system with a contribution rate of 2% leads to strong long-run welfare
gains of over 2% in terms of consumption equivalent variation despite significant crowding
out of capital. Such welfare gains contrast with standard findings in the related literature.
We document that jointly modeling both risks and their interactions is crucial for this
finding. Of course, by only examining one risk in isolation, it was not possible to address
this in the previous literature.

There is an interesting parallel to the literature on the welfare costs of fluctuations. In
his seminal contribution, Lucas (1987) demonstrated that the costs of business cycles are
negligible. However, when business cycle risk is analyzed in conjunction with idiosyncratic
income risk and a countercyclical cross-sectional variance of the income risk, then the
welfare costs can become very large, see e.g., Krebs (2007).

While our analysis reveals an important channel and documents that it matters
quantitatively, some aspects are not taken into account. We abstract from endogenous
labor supply. This may bias the results in favor of social security for two reasons. First, we
do not account for self-insurance against risk through endogenous labor supply adjustments.
Second, a higher contribution rate would distort labor supply decisions and thereby crowd
out aggregate labor supply. However, when taking labor market frictions into account and
considering small policy changes, as we do in this paper, a realistically calibrated model
would only lead to second-order effects of endogenous labor supply reactions.

Another important extension would be to include survival risk. When annuity markets
are missing, social security can be beneficial because it partially substitutes for these
markets.31 Preliminary results reveal that this makes the analysis much more complex,

31Caliendo, Guo, and Hosseini (2013) demonstrate that this does not hold in a stylized general
equilibrium with accidental bequests.
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because survival risk seems to interact with the other risks. Moreover, it is not straightfor-
ward to jointly model survival risk and financial risk while using Epstein-Zin preferences,
see Cordoba and Ripoll (2013).

Furthermore, in our economy, intergenerational sharing of aggregate risks is limited
to generations alive at the same point in time. From a social planner’s perspective, it
would be desirable to also share this risk with future, unborn generations. This could
be achieved by allowing the government to take on debt or manage a pension fund to
smooth shocks over time. That would open up an additional insurance channel, which
would increase the welfare gains of introducing social security.

Finally, our analysis restricts attention to redistribution within the social security
system, taking redistribution through taxes and transfers during the working period as
given. Yet, Huggett and Parra (2010) argue that it is important to simultaneously analyze
the optimal design of both systems. This is an interesting aspect that we plan to address,
in addition to the other questions discussed above, in our future research.
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Appendix

A Proofs

Proof of Proposition 1. Maximize

Eu(ci,2,t+1)= 1
1− θE

(
w̄t
(
R̄ηi,1,tζt%t+1 + τ

(
(1 + λ)ζt+1−R̄ηi,1,tζt%t+1

)))1−θ

which is equivalent to

max 1
1− θER

1−θ
p,t,t+1

where Rp,t,t+1 ≡ ηi,1,tζtR̄%t+1 + τ
(
(1 + λ)ζt+1 − R̄ηi,1,tζt%t+1

)
is a consumption (or portfo-

lio) return. Increasing ex-ante utility for a marginal introduction of social security requires
the first-order condition w.r.t. τ to exceed zero, hence:

E

[
R−θp,t,t+1

∂Rp,t,t+1

∂τ

]∣∣∣∣∣
τ=0

> 0. (28)

Taking the according partial derivatives we get:

(1 + λ)E
[
(ηi,1,tζt%t+1)−θ ζt+1

]
> R̄E

[
(ηi,1,tζt%t+1)1−θ

]
⇔ (1 + λ)E

[
(ηi,1,tζt%t+1)−θ

]
E [ζt+1] > R̄E

[
(ηi,1,tζt%t+1)1−θ

]
⇔ (1 + λ)E

[
(ηi,1,tζt%t+1)−θ

]
> R̄E

[
(ηi,1,tζt%t+1)1−θ

]
(29)

where the transformations follow from Assumption 1. Rewriting gives equation (4).

Proof of Proposition 2. Define

Z1 ≡ (ηi,1,tζt%t+1)−θ

Z2 ≡ (ηi,1,tζt%t+1)1−θ .

By log-normality we have that EZi = exp(E lnZi + 1
2σ

2
lnZi), i = 1, 2. Turning first to Z1
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observe that

E lnZ1 = −θ (E ln ηi,1,t + E ln %̃+ E ln ζ)

σ2
lnZ1 = θ2

(
σ2

ln η + σ2
ln % + σ2

ln ζ

)
.

Therefore:

E[Z1] = exp
(
−θ

(
E ln ηi,1,t +

σ2
ln η

2

))
· exp

(
−θ

(
E ln %+

σ2
ln %

2

))
·

· exp
(
−θ

(
E ln ζ +

σ2
ln ζ

2

))
exp

(1
2θ(1 + θ)

(
σ2

ln η + σ2
ln % + σ2

ln ζ

))
= (E[ηi,1,t])−θ (E[%])−θ (E[ζ])−θ · exp

(1
2θ(1 + θ)

(
σ2

ln η + σ2
ln % + σ2

ln ζ

))
= exp

(1
2θ(1 + θ)

(
σ2

ln η + σ2
ln % + σ2

ln ζ

))
,

where the last line follows from Assumption 1b.
Next, observe that for x ∈ {η, ζ, %}, log-normality implies that

σ2
x = exp

(
2E ln x+ σ2

lnx

) (
exp

(
σ2

lnx

)
− 1

)
= (Ex)2

(
exp

(
σ2

lnx

)
− 1

)
=
(
exp

(
σ2

lnx

)
− 1

)
,

where the last line again follows from Assumption 1b. Therefore:

exp
(1

2θ(1 + θ)
(
σ2

ln η + σ2
ln % + σ2

ln ζ

))
=
(
(1 + σ2

η)(1 + σ2
ζ )(1 + σ2

%)
) 1

2 θ(1+θ)
.

We consequently have

E[Z1] =
(
(1 + σ2

η)(1 + σ2
ζ )(1 + σ2

%)
) 1

2 θ(1+θ)
.

As to Z2 observe that

E lnZ2 = (1− θ) (E ln ηi,1,t + E ln ζ + E ln %̃)

σ2
lnZ2 = (1− θ)2

(
σ2

ln η + σ2
ln ζ + σ2

ln %

)
.
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Therefore:

E[Z2]=exp
(
(1−θ)

(
E ln ηi,1,t +

σ2
ln η

2

)(
E ln %+

σ2
ln %

2

)(
E ln ζ +

σ2
ln ζ

2

))

· exp
(1

2θ(θ − 1)
(
σ2

ln η + σ2
ln % + σ2

ln ζ

))
=
(
(1 + σ2

η)(1 + σ2
ζ )(1 + σ2

%)
) 1

2 θ(θ−1)

and hence

E[Z1]
E[Z2] =

(
(1 + σ2

η)(1 + σ2
ζ )(1 + σ2

%)
)θ
.

Proof of Proposition 3. To evaluate the CEV between two scenarios, i.e., comparing
Eu

(
cτ>0
i,2,t+1

)
with Eu

(
cτ=0
i,2,t+1

)
. We use that

Eu
(
cτ>0
i,2,t+1

)
= Eu

(
cτ=0
i,2,t+1

)
+
∂Eu

(
cτ=0
i,2,t+1

)
∂τ

dτ.

and evaluate this expression at τ = 0.

1. Case θ 6= 1. We have that, evaluated at τ = 0,

∂Eu(cτ=0
i,2,t+1)
∂τ

= w̄1−θ
t E

[(
R̄ηζt%t+1

)−θ
·
(
(1 + λ)ζt+1 − R̄ηζt%t+1

)]
= w̄1−θ

t

(
R̄−θ(1 + λ)E

[
(ηζt%t+1)−θ ζt+1

]
− R̄1−θE

[
(ηζt%t+1)1−θ

])
= w̄1−θ

t R̄1−θ
(

1 + λ

R̄
EZ1 − EZ2

)

where Z1, Z2 are defined in our proof of Proposition 2.

We also have that

Eu(cτ=0
i,2,t+1) = 1

1− θ w̄
1−θ
t R̄1−θE (ηi,1,tζt%t+1)1−θ

= 1
1− θ w̄

1−θ
t R̄1−θEZ2.
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Therefore:

Eu(cτ>0
i,2,t+1) = 1

1− θ w̄
1−θ
t R̄1−θEZ2

+ w̄1−θ
t R̄1−θ

(
1 + λ

R̄
EZ1 − EZ2

)
dτ.

The CEV, denoted by gc, is defined by the relationship:

Eu(cτ=0
i,2,t+1(1 + gc)) = Eu(cτ>0

i,2,t+1),

from which, using the above formulae, we get

(1 + gPEc )1−θ 1
1− θ w̄

1−θ
t R̄1−θEZ2 = 1

1− θ w̄
1−θ
t R̄1−θEZ2

+ w̄1−θ
t R̄1−θ

(
1 + λ

R̄
EZ1 − EZ2

)
dτ,

where we put a superscript PE to indicate that this is the CEV in partial equilibrium.
Hence:

(1 + gPEc )1−θ = 1 +
w̄1−θ
t R̄1−θ

(
1+λ
R̄
EZ1 − EZ2

)
1

1−θ w̄
1−θ
t R̄1−θEZ2

dτ

= 1 + (1− θ)
(

1 + λ

R̄

EZ1

EZ2
− 1

)
dτ

= 1 + (1− θ)
(

1 + λ

R̄
(1 + TR)θ − 1

)
dτ

where the last line again follows from the proof of Proposition 2.

Hence,

gPEc =
(

1 + (1− θ)
(

1 + λ

R̄
(1 + TR)θ − 1

)
dτ

) 1
1−θ

− 1,
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or, expressed in logs, i.e., using that gPEc ≈ ln(1 + gPEc ) for small gPEc , we get

gPEc ≈ 1
1− θ · ln

(
1 + (1− θ)

(
1 + λ

R̄
(1 + TR)θ − 1

)
dτ

)

≈
(

1 + λ

R̄
(1 + TR)θ − 1

)
dτ (30)

2. Case θ = 1. We have that, evaluated at τ = 0,

∂Eu(cτ=0
i,2,t+1)
∂τ

= E
[(
R̄ηζt%t+1

)−1
·
(
(1 + λ)ζt+1 − R̄ηζt%t+1

)]
=
(
R̄−1(1 + λ)E

[
(ηζt%t+1)−1 ζt+1

]
− 1

)
= 1 + λ

R̄
EZ1 − 1.

We also have that

Eu(cτ=0
i,2,t+1) = ln

(
w̄tR̄

)
+ E ln (ηi,1,tζt%t+1) .

Therefore:

Eu(cτ>0
i,2,t+1) = ln

(
w̄tR̄

)
+ E ln (ηi,1,tζt%t+1) +

(
1 + λ

R̄
EZ1 − 1

)
dτ.

For gPEc we accordingly get

1 + gPEc = exp
((

1 + λ

R̄
EZ1 − 1

)
dτ

)
.

Approximating the above in logs we get:

gPEc ≈
(

1 + λ

R̄
(1 + TR)− 1

)
dτ

which is the same as equation (30) for θ = 1.

Taking a first-order Taylor series expansion of equation (30) round TR = 0 we get

gPEc ≈
(

1 + λ

R̄
− 1 + θ

1 + λ

R̄
TR

)
· dτ.
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Supplementary Appendix

B Supplementary Computational Appendix

B.1 Overview

The numerical solution follows Gomes and Michaelides (2008), Storesletten, Telmer, and
Yaron (2007), and Krusell and Smith (1997, 1998). The algorithm consists of the following
steps, details of which are given in the next subsections.

1. Choose arguments and a functional form for the approximate law of motion, and
make an initial guess for its coefficients.

2. Given the approximate law of motion, solve the household’s problem.

3. Simulate the economy using the obtained optimal policy functions. In every period,
compute the market clearing prices.

4. Update the coefficients of the approximate law of motion by running a regression on
the simulated aggregate statistics.

5. If the coefficients have converged, and the R2 of the regression is sufficiently high,
stop, else go to 2.

6. Repeat steps 1 to 5 for different arguments and functional forms of the law of motion.
Select the one with the highest R2.

7. Given the functional form for the approximate law of motion that achieved the best
fit, calibrate the economy to match the targets.

(a) Provide an initial guess for the parameters to be calibrated.

(b) Given the parameters, repeat steps 2 to 5.

(c) Calculate the target statistics from the simulations. If they are close to the
targets in the data, stop, else update the guess for the parameters and go to 7b.

8. Given the calibrated parameters, increase the social security contribution rate and
compute the new general equilibrium by repeating steps 2 to 5.

9. Compute the welfare gains of the experiment in general equilibrium from the
simulated variables of the first and the second economy.
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10. Given the approximate laws of motion and the simulated prices of the first economy,
perform the risk decomposition analysis.

(a) Given the approximate law of motion of the first economy, solve the household’s
problem.

(b) Given the simulated prices of the first economy, simulate the economy using the
obtained optimal policy functions. (Do not compute market clearing prices.)

(c) Increase the social security contribution rate and repeat steps 10a and 10b.

(d) Compute the welfare gains of the experiment in partial equilibrium (PE) from
the simulated variables of the pre-experiment PE and the post-experiment PE.

(e) If this was the no-risk, deterministic economy, stop, else turn off a risk and
repeat steps 10a to 10d.

The numerical solution is implemented in Fortran, using an object-oriented approach
enabled since the Fortran 2003 standard. Given the accuracy described below and running
on 16 cores, it takes on average 4 days to get the solution even for a good initial guess.

B.2 Solving for the approximate law of motion

The idea behind the Krusell-Smith-method (1997, 1998) is to approximate the infinite
dimensional distribution, Φ, by a finite number of statistics. The household then uses
a law of motion of these statistics, Ĥ(·), as an approximation to the true law of motion
of the distribution, H(Φ, z). The statistics have to enable the household to forecast the
prices that it needs to solve its optimization problem. We follow Krusell and Smith
(1997), Gomes and Michaelides (2008), and Storesletten, Telmer, and Yaron (2007), and
choose mean aggregate capital, k, together with a second variable to forecast the bond
return. As this second variable, we choose the expected equity premium, µ = E (r′s − r′b)
(see Storesletten, Telmer, and Yaron (2007)).32 Thus, the approximate law of motion
becomes33

{k′(z′), µ′(z′)} = Ĥ(k, µ, z, z′).
32We choose µ instead of the bond price because this enables us to avoid E(rb) > E(rs) by construction.

This is desirable because such a situation would never arise in equilibrium.
33Ĥ(·) now has z′ as an argument because the distribution will be defined on cash-on-hand, as described

in the household problem below. Cash-on-hand at the beginning of a period depends on the realization of
the aggregate shock in that period through the aggregate stock return and CCV . Therefore, the shock z′
enters the law of motion.
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The functional form for Ĥ that gives the best approximation in our baseline economy is

ln kt+1 = ψk0,z + ψk1,z ln kt + ψk2,z(ln kt)2 (31a)

µt+1,z′ = ψµ0,z′ + ψµ1,z′ ln kt+1 + ψµ2,z′(ln kt+1)2 (31b)

This is similar to the best fit regression found by Storesletten, Telmer, and Yaron (2007).
Note that the forecast of capital, ln kt+1, enters as a regressor in eq. (31b). Effectively,
the forecast for µt+1,z′ , which is conditional on z′, depends on ln kt and z through the
forecast of ln kt+1. The discrete, aggregate shock, z, can take four values, so that
we estimate eight equations. Therefore, we report eight coefficients of determination,
which for the baseline economy are R2

k = {0.9998, 0.9999, 0.9998, 0.9998} and R2
µ =

{0.9918, 0.9945, 0.9584, 0.9695}. For the other economies, the R2 are always higher.34

To find the coefficients, we solve g(Ψ) = Ψ − Ψ̃(Ψ), where Ψ collects all the coeffi-
cients, i.e. Ψ =

{
ψml,z

}
l={0,1,2},z={1,2,3,4},m={k,µ}

. To solve this nonlinear equation system,
a multidimensional Broyden algorithm is used. During the solution, we normalize (and
subsequently de-normalize) the coefficients around unity. For these coefficients around
unity, the convergence criterion is max {|g(Ψ)|} < 1.0−7. The Newton-like update steps
are limited to a small length, and backtracking is used to find an update, if the first step
was too large.35

B.3 Solving the household’s problem

First, we rewrite the household problem in terms of cash-on-hand, x̃. This reduces the
state space by one dimension, so that the idiosyncratic state consists of (x̃, e). Second,
we recast the two control variables bond, b̃′, and stock, s̃′, as total savings, ã′, and the
portfolio share invested in stock, κ. This enables us to employ the endogenous grid method
proposed by Carroll (2006), as detailed below. And third, we replace the distribution, Φ,
by the approximation discussed in the previous section, so that the aggregate state consists
of (k, µ, z). With a slight abuse of notation,36 the optimization problem in recursive form

34For example, for the equity premium calibration with IES = 0.5, the coefficients of determination
are R2

k = {0.9999, 0.9999, 0.9999, 0.9999} and R2
µ = {0.9961, 0.9968, 0.9944, 0.9949}. This economy is the

closest to Storesletten, Telmer, and Yaron (2007) and Gomes and Michaelides (2008), and the R2 are
very close to the ones reported there.

35The Newton-like update step is Ψi+1 = Ψi − sJ(Ψ)−1g(Ψ), where J(Ψ) is a finite-difference
approximation to the Jacobi matrix of the system of equations and s determines the maximum step
length.

36Technically, some variables would need to be renamed, e.g. ỹ to ˜̃y, because the state space is now
different than the one in Definition 1. For sake of readability, we do not change the notation.
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then reads

max
c̃>0,ã′,κ

uj(x̃, e; k, µ, z)

=


(
c̃

1−θ
γ + β̃

(∑
z′
∑
e′ πz(z′|z)πe(e′|e)u1−θ

j+1

(
x̃′, e′; Ĥ(k, µ, z, z′), z′

)) 1
γ

) γ
1−θ

c̃ if j = J

s. t.

x̃′ = ã′
(1 + rb

′ + κ(r′s − r′b))
1 + λ

+ ỹ′j+1 ,

ã′ ≥ 0 if j = J ,

where β̃ = β(1 + λ)
1−θ
γ , r′s = rs(Ĥ(k, µ, z, z′), z′), r′b = rb(Ĥ(k, µ, z, z′)), and income in

the next period is given by

ỹ′j+1 = ỹj+1(e′, Ĥ(k, µ, z, z′), z′)=

(1− τ)w̃(Ĥ(k, µ, z, z′), z′)εj+1η(e′, z′) if j + 1< jr

ỹss(Ĥ(k, µ, z, z′), z′) else

The budget constraint contains a growth adjustment of 1
1+λ , because x

′ is cash on hand at
the beginning of next period, while a′ is the savings choice made in the previous period.
In contrast, the budget constraint in the equilibrium definition of Subsection 3.5 contains
only contemporaneous variables, i.e., states and choices in the current period, so that no
growth adjustment is needed there.

Applying the envelope theorem and simplifying we get the two first-order-conditions37

E
[
uj+1(·)

(1−θ)(γ−1)
γ (c̃′)

1−θ−γ
γ (r′s − r′b)

]
= 0 , (32a)

c̃ =
(
β̃

1 + rb
′

1 + λ

(
E
[
uj+1(·)1−θ

]) 1−γ
γ E

[
uj+1(·)

(1−θ)(γ−1)
γ (c̃′)

1−θ−γ
γ

]) γ
1−θ−γ

. (32b)

To solve for the optimal choices (c̃, ã′, κ), we apply a variant of the endogenous grid
method proposed first by Carroll (2006). In fact, essentially we follow a simplified version
of the two-step procedure of Hintermaier and Koeniger (2010). The exogenous grid is
defined on total assets in the next period, ã′. For a given grid-point ã′i, we first solve
eq. (32a) for the portfolio share κ using Brent’s root-finding method. Then, given ã′i and

37See Weil (1989) for the envelope theorem with recursive Epstein-Zin preferences.
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the corresponding κ(ã′i), we use eq. (32b) to get the optimal consumption, c̃i(ã′i). Finally,
the budget constraint x̃ = c̃+ ã′ gives us the endogenous grid-point x̃i that corresponds
to the optimal choices (ã′i, c̃i).

When evaluating the expectations, we interpolate uj+1 and c̃′ by multidimensional
linear interpolation in the continuous states x̃, k, µ. The aggregate shock z and the
idiosyncratic shock e are both discrete and follow a discrete Markov chain. For both,
we construct the Markov transition matrix with the Rouwenhorst method (Kopecky and
Suen (2010)). With the Rouwenhorst method, it is straightforward to implement the
countercyclical cross-sectional variance, CCV , because the variances affect only the grid
and not the transition matrix, which in turn is determined purely by ρ.

As is standard in life-cycle models, we iterate backwards, starting with the last
generation J , for which the solution is c̃J = x̃J , since they do not leave bequests. In the
backwards iteration, we construct age-dependent, exogenous grids

{
ã′i,j
}
i,j

to improve the
approximation quality. The solution is parallelized in the dimension k, so that for each
generation, the solution for all values of k is computed in parallel.

We discretize the state space in the following way. The continuous state variables
cash-on-hand, x̃, aggregate capital, k, and equity premium, µ, have 20, 16, and 10 grid-
points, respectively. The discrete state variables, which are the number of generations,
J , the idiosyncratic shock, e, and the aggregate shock, z, have 58, 4, and 4 grid-points,
respectively. We check that this is sufficient by doubling each of the grid-points in turn
and find no change to our results. The first-order-condition in eq. (32a) is solved to an
accuracy of 1.0−10.

B.4 Simulating the economy

We simulate the economy 16 times for 4000 periods each time and throw away the first
1000 periods, so that we are left with a total 48.000 simulation periods.38 In each period,
we record the aggregates, the life-cycle profiles, and the distribution. The aggregates are
needed to estimate the laws of motion, and to calibrate the economy. Like in the solution
of the household problem, the optimal policy functions are interpolated in the dimensions
of the aggregate states k, µ by multidimensional linear interpolation.

The distribution over households is normalized to a mass of one. We do not simulate
38We found that a large number of simulation periods is necessary for the distribution to converge in

the sense that increasing the number of simulation periods does not change the results. In particular, we
found that for less than 30.000 simulation periods, the means and standard deviations of the aggregates
as well as the estimates of the laws of motion are still sensitive to the number of periods.
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many, discrete household units; instead we keep the continuum of households and approx-
imate the distribution with continuous methods. As described in Subsection 3.1, the Law
of Large Numbers implies that πe(e′|e) represents the fraction of the population moving
from idiosyncratic state e to e′. Therefore, we get a nearly exact approximation in that
dimension. In the cash-on-hand dimension, the distribution is discretized on a much finer
grid than the policy functions obtained in the household solution, as proposed by Ríos-Rull
(1999). This finer discretization improves the approximation quality substantially and
helps in ensuring that no households are stuck on the bounds of the distribution. If the
lowest or the highest points of the distribution have positive mass, then the cash-on-hand
grid is extended and the discretization is made finer.

In each period, the beginning-of-period distribution is iterated forward by using the
computed optimal policy functions and the realizations of the shock. For a given cash-on-
hand at the beginning of the period, the implied cash-on-hand in the following period
will almost always lie between two grid points. Since we are dealing with a continuum of
households, we assign a fraction (1− f) to the lower grid point and f to the upper grid
point of the interval which contains the implied cash-on-hand, where f is the distance to
the lower grid point.

In each period t, we calculate the market-clearing prices. The current stock return,
rs(Φt, zt) is given by the contemporaneous aggregate capital and aggregate shock. The
current bond return, rb(Φt), is determined one period before by the bond market clearing
condition. We compute it with a nonlinear equation solver to an accuracy of 1.0−8.

We make sure that the grid for the aggregate states is large enough by checking
whether the realized values lie on the bounds of the grid. If they do, the grid is increased.
To get good initial guesses for the bounds of the aggregate grids and the distribution over
households, we compute a degenerate equilibrium, where the realization of the aggregate
shocks in the simulations is always equal to their mean. We call this a mean-shock
equilibrium.

To check the accuracy of the solution, we compute in each period the ’aggregation
error’ and the ’income error’. The aggregation error eaggt = Yt−Ct−It

Yt
says by how much

the aggregate budget constraint is violated due to interpolation and aggregation errors,
expressed in percent of output. For all economies, the maximum aggregation error is
in the order of 1.0−6 and the average is in the order of 2.0−9. The income error comes
from Euler’s formula, which says that total output must equal total factor income. Again
expressed in terms of output, we find that it never exceeds 1.0−14.
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B.5 Calibrating the economy

The calibration procedure is cast as a system of nonlinear equations. Let T denote the
target statistics in the data and P the model parameters to be calibrated. For given
P, T̂ (P) are the model-generated statistics, which we get from the simulations. Then
the calibration procedure tries to find a root of T − T̂ (P) = 0. We use Broyden’s
multidimensional secant method to solve the system to an accuracy of 1.0−4.

C Supplementary Calibration Appendix

C.1 Households

We compute the age-specific productivity profile εj from PSID data by applying the
method of Huggett, Ventura, and Yaron (2011).39 Figure 2 displays the raw data and the
smoothed profile. The graphs shows the data when identifying cohort effects, but it looks
very similar for time effects.

Figure 2: Life-cycle Productivity
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Notes: Age-specific productivity profile εj from PSID data.

39The data is taken from Ludwig, Schelkle, and Vogel (2012).
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C.2 Firms

To estimate α, we take data on total compensation of employees (NIPA Table 1.12) and
deflate it with the GDP deflator (NIPA Table 1.1.4). In the numerator, we adjust GDP
(NIPA Table 1.1.5), again deflated by the GDP deflator, by nonfarm proprietors’ income
and other factors that should not be directly related to wage income. Without these
adjustments, our estimate of α would be considerably higher (at α = 0.43).

To measure capital, we take the stock of fixed assets (NIPA Table 1.1), appropriately
deflated. We relate this to total GDP.

We determine the growth rate of technology λ by estimating the Solow residual from
the production function, given our estimate of α, our measure for capital, and a measure
of labor supply determined by multiplying all full- and part-time employees in domestic
employment (NIPA Table 6.4A) with an index for aggregate hours (NIPA Table 6.4A).
Notice that we ignore age-specific productivity which should augment our measure of
employment. We then fit a linear trend specification to the Solow residual. Acknowledging
the labor augmenting technological progress specification chosen, this gives our point
estimate.

C.3 Aggregate Risk

First, we discuss the correlation of TFP and stock returns, σ(ζt, rs,t), a second-stage
calibration target. Linear detrending of the data, as done, e.g., by Krueger and Kubler
(2006), results in σ(ζt, rs,t) < 0 as well as a negative correlation of wages and asset returns,
i.e., σ(wt, rs,t) < 0. Not only does this seem counter to economic intuition in an annual
RBC model, but our estimate for σ(ζt, rs,t) is also statistically insignificant.

Assuming, on the contrary, a unit root process for the log of TFP and detrending
by first differences yields a highly significant positive correlation of σ(ζt, rs,t) = 0.50
(p-value 0.00). Now also σ(wt, rs,t) is positive and significant with σ(wt, rs,t) = 0.306
(p-value 0.025), which coincides with our economic intuition as we would expect these
variables to co-move over the cycle. To make this estimate consistent with the model
setup, we transform the numbers to an equivalent deterministic trend specification in the
following way. We compute the implicit average horizon h in the unit root specification so
that the unconditional variance over h periods coincides with the specification of Krueger
and Kubler (2006). This gives an average horizon of h = 19.2751 years.40

40Observe that the unit root estimates in fact imply even stronger aggregate fluctuations. Adjusting
the variance in the linear trend specification such that the average horizon equals the average horizon
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D Supplementary Appendix: Additional Proofs

Proof of Observation 1. The property follows from homotheticity of Epstein-Zin pref-
erences. To prove it we proceed by induction. We look at two alternative (expected)
consumption streams c̃A and c̃B. One can think of them as optimal consumption under pol-
icy regime A and B. We ask how big the percentage increase of consumption stream c̃A in
each period has to be to reach the same utility level as reached for consumption stream ˜̃cB.
For sake of simplicity we drop indices t and i and adopt the notation ũXj ≡ ũj(cX)
for X ∈ {A,B}.

1. Induction claim: At each age j we have that

ũBj = (1 + gc)ũAj .

2. Induction start: For our Epstein-Zin utility specification (cf. equation 10), at age J
we have that

ũAJ = c̃AJ and ũBJ = c̃BJ .

Hence, by the induction claim, we get

ũBJ = (1 + gc)ũAJ = (1 + gc)c̃AJ

and, correspondingly,

ũBJ−1 =
[
(c̃BJ−1)

1−θ
γ + β

(
EJ−1(ũBJ )1−θ

) 1
γ

] γ
1−θ

=
[
((1 + gc)c̃AJ−1)

1−θ
γ + β

(
EJ−1((1 + gc)c̃AJ )1−θ

) 1
γ

] γ
1−θ

= (1 + gc)
[
(c̃AJ−1)

1−θ
γ + β

(
EJ−1(c̃AJ )1−θ

) 1
γ

] γ
1−θ

= (1 + gc)ũAJ−1.

3. Induction step: Using the induction claim for any period j < J − 1 we therefore

of households in our model, appropriately adjusted to account for the correlation of TFP innovations,
gives an average horizon of 34.88 years. This implies a standard deviation of 0.039. Relative to our
baseline calibration this means that the standard deviation of innovations increases by roughly 76 percent.
However, the overall effects of this additional increase in risk are small. Results are available upon request.
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have:

ũBj =
[
(c̃Bj )

1−θ
γ + β

(
Ej(ũBj+1)1−θ

) 1
γ

] γ
1−θ

=
[
((1 + gc)c̃Aj )

1−θ
γ + β

(
Ej((1 + gc)ũAj+1)1−θ

) 1
γ

] γ
1−θ

= (1 + gc)
[
(c̃Aj )

1−θ
γ + β

(
Ej(ũAj+1)1−θ

) 1
γ

] γ
1−θ

= (1 + gc)ũAj .

Proof of Observation 2. The property follows from linearity of consumption policy func-
tions in initial wealth which we first establish. We again simplify notation and drop the i
and t indices. Recursive substitution from j = J, . . . , 1, using that ũJ = cJ gives

ũ1 =
 J∑
j=1

β̃j−1c̃
1−θ
γ

j


γ

1−θ

.

As for the resource constraint, write

J∑
j=1

ỹj

( 1
1 + r

)j−1
−

J∑
j=1

c̃j

( 1
1 + r

)j−1
≥ 0

where, in slight abuse of notation, we use ỹj to denote labor income during the working
period and retirement income thereafter (see main text).

The Lagrangian writes as

L =
 J∑
j=1

βj−1c̃
1−θ
γ

j


γ

1−θ

+ λ

ã1 +
J∑
j=1

ỹj

( 1
1 + r

)j−1
−

J∑
j=1

c̃j

( 1
1 + r

)j−1
 .

First-order conditions give:

β̃j−1 1− θ
γ

c̃
1−θ−γ
γ

j − λ̃
( 1

1 + r

)j−1
= 0

where λ̃ ≡ λ

(
γ

1−θ

[∑J
j=1 β̃

j−1c̃
1−θ
γ

j

] γ
1−θ−1)−1

. Using the FOC for any two ages j and j + 1
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gives the standard Euler equation

c̃j+1

c̃j
=
(
β̃(1 + r)

) γ
θ+γ−1 =

(
β̃(1 + r)

)ψ
.

where ψ is the IES. We consequently have

c̃j
c̃1

= (β(1 + r))ψ(j−1) .

Using this in the resource constraint, which holds with equality in the optimum, and
defining by p̃vi1 total (human) wealth of the household, we get

p̃vi1 ≡
J∑
j=1

ỹj

( 1
1 + r

)j−1
= c̃1

J∑
j=1

c̃j
c̃1

( 1
1 + r

)j−1

⇔ p̃vi1 = c̃1

J∑
j=1

((
β̃(1 + r)

)ψ ( 1
1 + r

))j−1
= c̃1

J∑
j=1

bj−1 = 1
m1

c̃1

where b ≡
(
β̃(1 + r)

)ψ ( 1
1+r

)
and m1 ≡

(∑J
j=1 b

j−1
)−1

is the marginal propensity to
consume out of initial wealth in period 1. We accordingly get, for any age j, that

c̃j = mj p̃vi1, where mj ≡ β̃(1 + r)ψ(j−1)m1.

Using this in the utility function we get

ũ1 =
 J∑
j=1

βj−1
(
mj p̃vi1

) 1−θ
γ


γ

1−θ

=
 J∑
j=1

βj−1 (mj)
1−θ
γ


γ

1−θ

p̃vi1,

establishing linearity of the utility function in initial wealth.
Consequently, the CEV in partial equilibrium—where mj does not change between any

two policies A and B because it is only a function of the constant parameters r, β, ψ—is
equal to the percentage change in wealth and given by

gc = ũA1
ũB1
− 1 = p̃vi

A

1

p̃vi
B

1

− 1.

Derivation of equations (18a-18b). Here, we derive the stock and bond return in the
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quantitative model. Recall that κf is the exogenous and constant debt-equity ratio. First,
we restate eq. (17),

K(zt) = S(zt) +B(zt) = S(zt)(1 + κf ), (33)

S and B denote the quantities of stock and bond, respectively. The return on capital
then satisfies

r(zt)K(zt) = r(zt)S(zt)(1 + κf ).

The return on capital equals the standard first-order condition of the firm, as shown in
equation (16b). Out of this total return on capital, bondholders receive

rb(zt−1)B(zt) = rb(zt−1)κfS(zt),

where the bond return is determined one period ahead, since it is one-period risk-free.
Stock holders receive the remainder, which is

rs(zt)S(zt) = r(zt)S(zt)(1 + κf )− rb(zt−1)κfS(zt).

From the last equation, we immediately get (18b). Taking expectations and rearranging
yields (18a).
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