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Abstract3

The main advantage of price level stabilization compared with inflation stabilization

rests on the central bank’s ability to shape expectations. We show that stabilizing

prices is no longer optimal when the central bank can shape expectations of agents

with incomplete knowledge, who have to learn about the policy implemented. Disin-

flating in the short run more than agents expect generates short-term gains without

triggering an abrupt loss of confidence, because agents update expectations slug-

gishly. Following this policy, in the long run, the central bank loses the ability to

shape agents’ beliefs, and the economy converges to a rational expectations equi-

librium in which policy does not stabilize prices, economic volatility is high, and

agents suffer the corresponding welfare losses. However, these losses are outweighed

by short-term gains from the learning phase.
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No monetary authority sets price level stabilization4 as its official goal, despite5

a vast literature claiming that it is a serious contender as a good way to conduct6
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4Price level stabilization implies counteracting the effect of shocks on the price level, such that
in the long run it reverts to its original value. Hence equilibrium fluctuations in the price level are
stationary. In contrast, stabilizing inflation means engineering a stationary inflation but not caring
about the absolute level of prices. “Undoing” past deviations in prices would generate unnecessary
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monetary policy.5 This is not because policymakers do not take this recommendation7

seriously. In fact, Sweden in the 1930s even introduced price level stabilization as8

the official goal of its monetary policy, after a public debate in which economists9

supported it.6 However, this policy was abandoned within the same decade, and10

today the official goal of Swedish monetary policy is inflation stabilization. More11

recently, in the aftermath of the 2008 financial crisis, Canada considered introducing12

long-run price stability as its official monetary policy goal, but decided against it.13

Policymakers admit that their main concern with this policy recommendation is that14

the public may have difficulties in understanding it because of its complicated timing15

and response to shocks.7 This argument is not about whether the price level is an16

easier concept to communicate than inflation, but rather, it is about the complexity17

of price level targeting policies, which agents should understand for its advantages18

to materialize.19

We argue that this concern can indeed rationalize policymakers’ reluctance to20

implement price level stabilization. We show that in a standard macroeconomic21

model, if there is even a small chance that the private sector could misunderstand22

the policy regime, then price level stabilization is not optimal.23

In our setup, there is a stabilization role for monetary policy, i.e. reducing eco-24

nomic fluctuations by dampening the effect of shocks on aggregate variables. Firms25

and households know the structure of the economy, but do not perfectly understand26

fluctuations in inflation, therefore the policymaker “lets bygones be bygones”, and the price level
is allowed to drift to a permanently different level. (See Woodford [44] Ch 7.)

5In particular price level targeting entails history dependence, which turns out to be a robust
feature of optimal monetary policy in a wide range of models, see Hatcher and Minford [24].

6Swedish economists, such as Gustav Cassel, David Davidson and Eli Heckscher firmly supported
price level targeting in public debates, and had a great influence on the government. Knut Wicksell
in 1898 was the first in Sweden to present the view that the central bank should aim for price level
stabilisation.

7This is very transparent in the “Renewal of the Inflation-Control Target” document of the Bank
of Canada. The authors write: “[...] these models assume that agents are forward looking, fully
conversant with the implications of [price level stabilization] and trust policy-makers to live up to
their commitments.” (p14.) They argue that it is not clear that these conditions are “sufficiently
satisfied in the real world for the Bank to have confidence that price level [stabilization] could
improve on the current inflation targeting framework.”
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how aggregate allocations are impacted by monetary policy. If their understanding27

were perfect, they could form accurate expectations about how equilibrium alloca-28

tions depend on shocks. This is the standard rational expectations assumption, and29

in this case it is a well-established result (see for example Clarida et al. [8] and Vestin30

[41]) that it is optimal to stabilize prices. The advantage of this policy arises from31

its history dependence: after a temporary shock that increases the price level, the32

policymaker engineers a series of aggregate demand contractions in order to bring33

the price level back to its target; in other words, it can spread out the effect of the34

shock on the price level through several periods. If agents are aware of this history35

dependence, the policymaker can lower agents’ expectations about future inflation36

by contracting current output. Lower inflation expectations then decrease current37

inflation through the Phillips Curve.838

We depart slightly from the assumption of rational expectations by postulating39

that even if agents knew that aggregate variables depend on shocks, they do not40

know the exact mapping induced by monetary policy.9 We assume that agents learn41

the mapping between shocks and aggregate variables by extrapolating from historical42

patterns in observed data. More specifically, they rely on econometric methods to43

estimate a model of the economy and use it for forecasting future aggregate variables.44

In each period, as new observations are available, they update their model in order to45

have more precise beliefs. Therefore, they have a chance to learn the exact mapping46

(i.e., one that is consistent with rational expectations beliefs), provided they can47

collect enough data.48

Our paper develops further the literature featuring a rational policymaker that49

behaves optimally when the private sector does not have rational expectations. Like50

8Our model uses a sticky price framework. Inflation depends on inflation expectations because
firms know they might not be able to reset their price in the future, and therefore they must be
forward looking when setting their price.

9We find this assumption an appealing way to introduce agents’ misunderstanding in an other-
wise standard model. Agents’ knowledge of their own optimization problem does not imply they
can derive aggregate allocations that arise in equilibrium (Adam and Marcet [1]). Moreover, an
individual might be uncertain about other agents’ knowledge about the exact mapping, which in
turn would impact the evolution of aggregate variables.
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Gaspar et al. [21] and Molnar and Santoro [31] we consider a central bank that takes51

into account how its policy actions affect the data used in agents’ estimations, and52

how those data affect their future beliefs.10 Our main contribution with respect to53

their treatment is that the model of the economy estimated by the private sector54

is general enough to nest two different mappings, one consistent with price level55

stabilization and the other with inflation stabilization, while in their analysis it nested56

only the latter.57

This generalization has important implications for the policy design, which now58

features an equilibrium selection problem. In our setup the monetary authority can59

“teach” agents either of the two mappings: by choosing a particular policy response to60

shocks, the policymaker affects agents’ beliefs about the mapping, which in turn feed61

back into the evolution of aggregate variables, and thus into the mapping between62

shocks and aggregate variables. Hence, differently from the previous papers, agents63

can in principle learn price level stabilization, which is considered in the rational64

expectations literature the best policy to implement.65

As such, we refine the existing concept of learnability. Several authors have sug-66

gested that learning can be used for equilibrium selection, and examined how policy67

can guarantee a learnable equilibrium (see Evans and Honkapohja [16] and Eusepi68

and Preston [13] for extensive surveys). Our paper extends their analysis taking into69

account strategic interaction between a large, rational player and learning agents. We70

think that this extension of the policy problem with equilibrium selection is appeal-71

ing when there is a theoretical possibility of teaching different rational expectations72

equilibria.73

Our main result is that price level stabilization is no longer optimal, despite being74

feasible. This is a strong result, given that the policymaker could induce agents to75

learn stable prices, and anchor their expectations, but instead gives up the benefits76

of stabilizing the price level in favor of short-term gains.77

Under learning the CB can attain short-term gains because agents revise their78

10Eusepi et al. [12] derive the optimal long-run inflation rate in a New Keynesian model extended
to account for a low-frequency drift in beliefs.
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beliefs sluggishly. We show that under learning it is optimal to contract current79

output very aggressively, instead of spreading out the output contractions over several80

periods. The policymaker can do this because agents need to gather sufficient data81

to discover that the policy has become less history dependent. In the meantime the82

policymaker can still anchor inflation expectations, and lower current inflation by83

contracting output.84

These CB incentives arise due to a fundamental difference between learners and85

rational agents. Deviation from the price stabilizing policy would be immediately86

realized by rational agents, who in turn would change their beliefs abruptly and87

infer that the central bank is following an alternative policy. This off-equilibrium88

threat of rational agents can keep the CB from deviating from the price stabilizing89

policy (see Kurozumi [26]). In contrast, adaptive learners do not have separate off-90

equilibrium strategies. They only learn from realized outcomes, and their strategies91

are the same with a deviating and not-deviating CB. This lack of off-equilibrium92

strategies provides strong incentives for the rational policymaker to deviate from the93

price stabilization policy.94

In the long run, monetary policy completely loses its ability to engineer a history-95

dependent policy that could anchor agents’ inflation expectations, because agents96

eventually learn that the policymaker is not implementing a price level stabilization97

policy. This policy can be described as stabilizing inflation instead of the price level :98

the CB responds to shocks as long as they affect inflation. The long-run policy99

recommendation is therefore in line with what many CBs set as their official goal.100

What makes our result compelling is that the transition matters for the long run101

equilibrium; policy incentives during the transition inform the long-run behavior of102

optimal policy. The long-run benefit of anchoring prices has already been established103

in the literature, and under learning the mechanism is the same as under rational104

expectations, namely expectations are better anchored. The CB could attain price105

level stabilization in the long run simply by implementing it long enough. Yet, it106

is optimal to drive the economy away from stabilizing prices, because during the107

transition short-run policy incentives generate high welfare gains.108

The policymaker has no incentive to build credibility (in the sense that it can109
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anchor inflation expectations by contracting output). Along the transition, as long110

as the CB has some credibility, it also has an incentive to exploit it. In the long run,111

when agents learn to ignore output contractions in forming their inflation expecta-112

tions, temporarily revamping even little credibility becomes too costly for the CB,113

especially because it would lose it immediately.114

In our framework, the standard assumptions for proving convergence commonly115

used in the learning literature are not satisfied. This complication arises because116

of the interaction between atomistic learning agents and a rational strategic player117

(the CB), which the previous literature did not consider. We therefore derive a118

novel convergence theorem that can accommodate the interaction between updating119

rules for agents’ beliefs and the choices of the rational CB. This methodological120

contribution might be of separate interest to some readers, as our theorem and our121

line of proof could be applied to similar problems with a linear-quadratic setup.122

Our paper adds a new insight to the debate about price level targeting (PLT)123

without questioning its long-run benefits. We show the presence of new short-run124

policy incentives that can counterbalance long-run benefits of PLT when there is even125

a small chance that agents could misunderstand policy choices. In our setup it is not126

optimal to preserve those advantages of PLT that rest on the policymaker being able127

to use history-dependent policy to influence future beliefs.11 This history dependence128

was previously proven to be robust along several dimensions (for example output129

uncertainty in Gorodnichenko and Shapiro [23], and model uncertainty in Aoki and130

Nikolov [2]),12
131

We present the model in Section 1 and solve it in Section 2. We derive optimal132

policy in Section 3 and discuss how to approximate it with a simple rule in Section133

4. In Section 5 we relax our main assumptions; finally, Section 6 presents concluding134

remarks.135

11For a neat summary of the advantages of targeting prices and its practical aspects see Reis [35].
12PLT can also alleviate the risks of hitting the zero lower bound (Eggertsson and Woodford

[11], Wolman [42]). In some extensions of the baseline model a base-level drift of the price level is
optimal, for example when firms are indexing to past inflation, see Røisland [37].
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1. The Model136

We develop our idea by weakening the assumption on private sector expectations137

in the well-known monetary policy analysis of Clarida et al. [8]. This example is138

chosen because the policy implications under rational expectations are well-known139

to many readers.140

The CB can bring about any evolution of inflation πt, output gap xt and nominal

interest rate rt, consistent with the aggregate demand and supply equations

xt = E∗t xt+1 − σ−1(rt − E∗t πt+1), (1)

πt = βE∗t πt+1 + κxt + ut, (2)

where σ > 0, 0 < β < 1, and κ > 0.13 The cost-push shock is ut ∼ N(0, σ2
u).

14 E∗t141

denotes conditional expectations of the private sector, which are not necessarily ra-142

tional. The analysis is simplified by assuming that agents have common expectations,143

and have common knowledge about this; given this the linear aggregate relations can144

be derived with the usual log-linear approximation to equilibrium relations.15
145

The CB seeks to minimize a quadratic loss function 16
146

13σ is the household’s risk aversion parameter, β denotes the subjective discount rate, and κ is
a function of structural parameters. For details of the derivation of the structural equations of the
New Keynesian model see, among others, Yun [46] and Woodford [44].

14This assumption is supported by Milani [28] who estimates an i.i.d cost-push shock in the
presence of learning. It also makes the problem more tractable, and allows us to focus on the policy
implications of nonrational beliefs.

15As pointed out by Preston [32], for arbitrary nonrational beliefs satisfying standard probability
laws, the solutions to intertemporal optimization problems require agents to make infinite horizon
forecasts. Here, following Honkapohja et al. [25] we assume that agents understand that other
agents have the same tastes and beliefs; therefore, the law of iterated expectations holds and we can
simplify intertemporal decisions to one-step-ahead forecasts about their payoff-relevant variables.

16The period loss function is derived as a quadratic approximation to household utility. The
derivation is not affected by assuming nonrational expectations. For the derivation see Rotemberg
and Woodford [38] and Woodford [44]. The parameter α is a function of structural parameters.
The optimal output gap is zero, as distortions from firms’ monopolistic competition are assumed
to be corrected with an appropriate labor cost subsidy.
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E0(1− β)
∞∑
t=0

βt
(
π2
t + αx2

t

)
, (3)

where α > 0. Here the policymaker is considering the effects of alternative policies,147

and E0 denotes conditional expectation based on CB beliefs. We focus on a rational148

CB that knows the structure of the economy, including how agents form their expec-149

tations, which allows us to gauge how a learning private sector changes incentives150

for monetary policymaking.17
151

The novelty of this setup is that the policymaker can drive agents to certain equi-152

libria in the long run (Section 2) and also affects how they should learn during the153

transition (Section 3). In fact, early literature on adaptive learning motivated it as a154

way to select amongst multiple rational expectations equilibria. In our setup, learn-155

ability of an equilibrium is not sufficient for it to arise in the long-run; the strategic156

behavior of the rational policymaker can affect the optimal long-run equilibrium.157

It is undoubtedly a strong assumption that the CB knows how agents form their158

expectations; we relax this in Section 5.159

1.1. Price level targeting vs inflation targeting under RE160

When the agents are rational and the CB can credibly commit to future policy,

optimal allocations have the following law of motion18:

xt = bxxt−1 + cxut, (4)

πt = bπxt−1 + cπut, (5)

where bx =
κ2+α(1+β)−

√
(κ2+α(1+β))2−4α2β

2αβ
, cx = −κbx

α
and bπ = α

κ
(1− bx) , cπ = −α

κ
cx.161

This policy is equivalent to PLT: the CB responds to changes in the price level,162

and tries to keep prices close to a predetermined value. In equilibrium the price163

17Because the CB and the agents form expectations in different ways, the CB is not a benevolent
planner, and it does not maximize the expected utility perceived by agents.

18See Clarida et al. [8] and Vestin [41].
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level follows a stationary process.19 The advantage of price level stabilisation arises164

from its history dependence: in a forward-looking environment history dependence165

entails welfare gains, because the policymaker can lower agents’ expectations about166

future inflation by contracting current output and spreading the cost of adjustment167

to shocks over several periods. This history dependence is a robust feature of the168

optimal policy, even in setups more complicated than ours (see Hatcher and Minford169

[24]).170

When the CB cannot commit to future policy the optimal allocations are171

xt = − κ

α + κ2
ut (6)

πt =
α

α + κ2
ut (7)

We call this inflation targeting (IT in short), because Clarida et al. [8] show that the172

CB responds to changes in inflation, by trying to stabilize the inflation rate.173

These policies differ in a crucial respect. The PLT policy is an inertial policy in174

the sense of Woodford [43]: the current allocations depend on past levels of output175

gap. On the contrary, the IT policy only depends on current shocks.176

1.2. Learning specification177

In the remainder of the paper, we assume that agents are adaptive learners: they178

know their own optimization problem, observe aggregate variables and prices that179

are exogenous to their decision problem, and know that other agents are identical to180

them.20 However, based on the internal rationality concept of Adam and Marcet [1]181

we assume that agents’ knowledge of their own optimization problem does not imply182

they can derive aggregate allocations that arise in equilibrium. Our agents have an183

imperfect understanding of the prevailing policy regime, therefore even though they184

are able to calculate the rational expectations equilibrium, they are uncertain about185

19The equilibrium price level consistent with (4)-(5) is pt = δpt−1 + δut, where δ ≡ (1 −√
1− 4βγ)/(2γβ) ∈ (0, 1), and γ ≡ α/(α(1 + β) + κ2).
20See Preston [32] on infinite horizon learning that results when agents do not know others are

identical.
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the values of its parameters’, and estimate these adaptively by observing past and186

current allocations.187

More precisely, we assume that agents do not know the exact process followed188

by the endogenous variables, but recursively estimate a Perceived Law of Motion189

(PLM) consistent with the law of motion that they would observe if the CB followed190

the PLT policy under RE:21
191

πt = bπxt−1 + cπut (8)

xt = bxxt−1 + cxut, (9)

Under learning, agents estimate the coefficients in equations (8)-(9), and use their192

estimates of bπt−1 and bxt−1 and the i.i.d. nature of ut to make forecasts22:193

E∗t πt+1 = bπt−1xt, E∗t xt+1 = bxt−1xt (10)

A novel feature of (8)-(9) is that private expectations are consistent with both194

PLT and IT; hence, agents can learn both those policies, depending on the policy195

followed by the CB.196

At time t, the CB can impact private beliefs by engineering current output con-197

tractions or expansions. This makes a nice parallel to the case of CB credibility under198

rational private beliefs: current actions of the CB impact private beliefs immediately,199

as long as agents believe the CB can do so, i.e. as long as bx, bπ are bounded away200

from zero. Whereas under rational private beliefs a CB could also make promises201

about the future, under learning this is not possible. Rational agents would be able202

to think forward, thus promises of future output contractions impact current beliefs,203

21Agents could make use of more variables to make their forecasts or use an underparameterized
model. In the former case, depending on the CB policy, they could learn the RE equilibrium, while
in the latter case it is clear that they cannot. Although these scenarios are of interest, they are
beyond the scope of this paper.

22Agents forecast self-referential variables, i.e. ones that depend on the agents’ actions. In
this kind of models a rational Bayesian learner’s expectation has not yet been solved: she would
understand how her actions impact on the variable in question, and would not treat the posterior
as random, but instead would have to calculate the posterior as a complicated fixed point problem.
This makes adaptive learning especially useful, because agents simply infer from past allocations.
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as long as they are credible. Under learning, on the other hand, the impact of an204

output contraction depends solely on the learning coefficients bx, bπ, which in turn205

depend on the history of past CB actions.23
206

We assume that agents’ estimates are obtained with stochastic gradient learning207

(SG) (Barucci and Landi [3] and Evans and Honkapohja [15]), which is a plausible208

learning device from a bounded rationality standpoint, because it keeps the state209

space small by abstracting from the evolution of the estimated second moments of210

the regressors.24 The recursive updating formula for the estimated coefficients is211

bπt = bπt−1 + γtxt−1

(
πt − xt−1b

π
t−1

)
(11)

bxt = bxt−1 + γtxt−1

(
xt − xt−1b

x
t−1

)
, (12)

where γt is the so-called gain parameter, determining the rate at which older observa-212

tions are discounted. When deriving our analytical results, we use γt = 1
t

(decreasing213

gain learning). As t increases 1
t
→ 0, agents perceive all changes as temporary. This214

allows us to establish convergence to a nonstochastic point as t increases.25
215

The timing is as follows. At each period t agents inherit belief parameters216

bπt−1, b
x
t−1, determined by period t − 1 data. They use their forecast function (10)217

to form expectations about future variables. Agents use (11) to update the coef-218

ficient estimates bπt , b
x
t , based on their inherited coefficients bπt−1, b

x
t−1 and new data219

πt, xt. In the spirit of anticipated utility (Sargent [39]), agents do not take into ac-220

count that their beliefs will be updated in subsequent periods, and forecast as if their221

forecasting coefficients were fixed.222

23An alternative timing assumption is when agents cannot observe contemporaneous xt, which
would limit the CB’s ability to impact private beliefs.

24This assumption also delivers analytical tractability with the new convergence theorem, which
we present in the next section.

25 As shown in Evans and Honkapohja [16], with a small constant γ, beliefs would be ergodically
distributed around the convergence point.
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2. Optimal monetary policy223

Following Molnar and Santoro [31], we posit that the CB is fully rational, it knows224

the structural equations that characterize the economy, and how private agents form225

and revise their beliefs; hence, it solves the following problem:226

sup
{xt,bπt ,bxt }

∞
t=0

E0(1− β)
∞∑
t=0

βt
{
−1

2

[(
(βbπt−1 + κ)xt + ut

)2
+ αx2

t

]}
(13)

s.t.

bπt = bπt−1 + γtxt−1

(
(βbπt−1 + κ)xt + ut − xt−1b

π
t−1

)
(14)

bxt = bxt−1 + γtxt−1

(
xt − xt−1b

x
t−1

)
, (15)

x−1, b
π
−1, bx−1, γ0 given (16)

where the IS curve does not appear because it is never a binding constraint (the CB227

can always choose an interest rate that satisfies it, given the allocations and beliefs),228

and we used the NKPC to substitute out πt.229

Assuming that the CB influences beliefs is customary when private agents are230

rational, but it is less frequent when private agents are learning.26 There is, however,231

a major difference between the two assumptions. Under RE, promises can influence232

beliefs. Under learning, the policymaker can influence beliefs exclusively through233

actions, i.e. by implementing output expansions and contractions (see (14) and234

(15)). With this assumption we address a common criticism of CB commitment,235

that it places too much faith on impacting private beliefs. We take the stance236

that it is important to understand the policy trade-offs at the other extreme, when237

only actions matter, because learning has been shown to be empirically relevant.27
238

Undoubtedly, in practice, both promises and actions are important. In Section 5, we239

extend our analysis to a framework where both play a role.240

26A few exceptions are Gaspar et al. [20] and Molnar and Santoro [31].
27There is no consensus yet on how to model learning, but several papers have shown its presence

in private expectations. See, among others Branch and Evans [6], Milani [29], and Molnar and
Ormeno [30].
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The existence of a recursive solution28 of the optimization problem (13) cannot241

be taken for granted, because of some nonstandard features: the updating rules for242

beliefs are not convex, the feasibility set is not compact-valued, and the quadratic243

return function is unbounded; however, in the Appendix we prove the following244

result:245

Proposition 1. There exists a time-invariant policy function for the CB that solves246

the optimization problem 13.247

Hence the solution to (13) can be characterized as the solution of the FOCs29:

0 =− αxt −
[
(βbπt−1 + κ)xt + ut

]
(βbπt−1 + κ)− λ1,tγtxt−1(βbπt−1 + κ)− (17)

− Et[λ1,t+1βγt+1((βbπt + κ)xt+1 + ut+1 − bπt 2xt)]

0 =λ1,t − βEtλ1,t+1(1− γt+1x
2
t )− β2Et[((βb

π
t + κ)xt+1 + ut+1)xt+1]− (18)

β2Et [λ1,t+1γt+1xtxt+1]

where λ1,t is the Lagrange multiplier on (14).30 These first-order conditions together248

with the law of motion for the learning coefficients constitute the necessary conditions249

for the optimal evolution of {xt, bπt , bxt }.31
250

A key insight is that in the FOCs (17)-(18) all the terms that come from the251

manipulation of beliefs are weighted by the gain, and thus become irrelevant as252

γt → 0, unless they grow unboundedly. In the Appendix we use this insight to253

rewrite the updating equations for beliefs as a stochastic recursive algorithm (SRA254

hereafter) in the standard form studied in Evans and Honkapohja [16]:255

θt = θt−1 + γtH (θt−1, Yt) + γ2
t ρ (θt−1, Yt) (19)

28Namely xt, b
π
t , b

x
t as a time-invariant function of the five states xt−1, b

π
t−1, b

x
t−1, ut, γt; note that

the learning dynamics implies that the parameters of beliefs (bπ, bx) become natural state variables.
29We do not prove uniqueness of the optimal policy function, but it is not essential: in the

analytical part we show asymptotic results valid for any optimal policy function, while in the
numerical part we check that only one solution of the FOCs can be found.

30The Lagrange multiplier on (15) does not appear in the FOCs, because it can be shown that it
is equal to 0 ∀t in equilibrium; the proof is available upon request.

31From the IS curve and the NKPC we can back out the optimal processes for inflation and the
nominal interest rate.
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where θt ≡ [bπt , b
x
t ]
′, Yt ≡ [xt, xt−1, ut, γt, ]

′, and all the terms coming from the manip-256

ulation of beliefs are grouped in the second-order term ρ.32
257

To study the asymptotic behavior of θt, we analyze the solutions and stability of258

the ordinary differential equation (ODE) associated to (19):259

dθ

dτ
= h (θ) ≡ EH (θ, Yt) (20)

where the expectation is taken over the invariant distribution of the process Ŷt (θ),260

which is the stochastic process for Yt obtained by holding θt−1 at the fixed value261

θt−1 = θ.33 Given the definition of H provided in the Appendix, we get:262

h (θ) =

(
−bπEx2

t−1 (θ)

−bxEx2
t−1 (θ)

)

The only possible rest point of the ODE (20) is clearly θ = 0. Moreover it is (locally)263

stable, because the Jacobian:264

Dh (θ) =

(
−Ex2

t−1 (θ)− bπ ∂Ex
2
t−1(θ)

∂bπ
−bπ ∂Ex

2
t−1(θ)

∂bx

−bx ∂Ex
2
t−1(θ)

∂bπ
−Ex2

t−1 (θ)− bx ∂Ex
2
t−1(θ)

∂bx

)
(21)

has both eigenvalues smaller than zero when evaluated in θ = 0.34 In the terminology265

commonly used in the adaptive learning literature, we can say that θ = 0 is the only266

E-stable equilibrium. From simple inspection of (21) we conclude that this E-stability267

result is independent of parameter values.268

Remark 1. The Jacobian (21) has negative eigenvalues for any value of the struc-269

tural parameters.270

Evans and Honkapohja [16] derive an equivalence result between E-stability and271

convergence under learning. This theorem, which draws on arguments contained in272

32For the exact definition of H and ρ, see the Appendix.
33It is possible to prove that there exists an invariant distribution to which the Markov process

Ŷt (θ) converges weakly from any initial conditions; hence, the function h (θ) is well defined. The
proof is available from the authors upon request.

34We are implicitly assuming that Ex2t−1 (θ) admits partial derivatives, and that they are finite.
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Benveniste et al. [4], cannot directly be applied to our problem, because the state273

variables’ law of motion does not satisfy the required assumptions.35 However, we274

can prove the following result.36
275

Proposition 2. Let θ evolve according to (19). If θ is E-stable, then it is locally276

stable under adaptive learning.37
277

Proposition 2 implies that in the limit θt = [bπt , b
x
t ]
′ → 0. This is the only possible278

E-stable equilibrium and it is locally stable. Equation (10) then shows that in the279

limit agents expect zero inflation and output gap. Substituting this together with280

γt → 0 into the FOC (17) and the PC (2) implies that both output and inflation281

converge to the IT equilibrium (6)-(7).282

Main result 1. The optimal policy drives the economy to the inflation targeting
equilibrium

xt = − κ

α + κ2
ut, πt =

α

α + κ2
ut.

There are three striking features of our main result. First, it is optimal to imple-283

ment an equilibrium that would be suboptimal under RE. In the limiting equilibrium,284

as private agents learn bx = bπ = 0, the CB loses its ability to impact future alloca-285

tions through current output contractions and expansions (see (8)-(9)), even though286

the CB would be able to retain this ability by implementing the PLT equilibrium.287

Second, although our result is valid only locally, our numerical simulations show that288

it holds irrespective of initial beliefs. No matter how close private beliefs are to the289

PLT equilibrium, even if initially the CB has “credibility” to implement PLT, it is290

optimal to drive the economy away from this equilibrium (for more on the role of291

35From a technical point of view, the Markov chain followed by our state variables Y is not
necessarily geometrically ergodic; hence, the assumption A.4 as stated on page 216 of Benveniste
et al. [4] is not satisfied (we cannot prove the existence of a solution to the Poisson equation).

36Strictly speaking, the following result does not establish an equivalence between E-stability and
convergence under learning, because it does not guarantee that any locally stable equilibrium is
E-stable. However, our numerical investigation shows that this is the case.

37For an explicit definition of what “locally stable under adaptive learning” means, see Evans
and Honkapohja [16] page 275.

15



“credibility”, see Section 3).38 Finally, our main result holds for any α in the welfare292

loss function. Even if the central banker cares strongly about dampening inflation293

fluctuations, i.e. α is low, it is optimal to deviate from PLT. Therefore the main294

result cannot be turned around by appointing a conservative central banker, in a295

way analogous to what was suggested in Rogoff [36].296

3. Policy Implications297

Policy incentives behind our main result are best illustrated by the unfolding298

dynamics. For presentational purposes, we will discuss simulations with constant299

gain learning, because it allows us to focus on the policy trade-offs while abstracting300

from the role of a changing gain parameter.39 For our baseline simulations we set301

γ = 0.05, which is a value consistent with estimates for the US economy40, and302

examine the role of the gain parameter at the end of Section 3.303

3.1. Long- versus short-run policy trade-offs304

Figure 1 illustrates our main result in welfare terms: as OP drives expectations305

asymptotically to the IT equilibrium, expected welfare losses increase to those of IT.306

For each time t, the figure plots the expected consumption equivalent (CE) measure of307

welfare losses (percentage of steady-state consumption) for an economy starting from308

period-t average beliefs; at time zero we start from PLT beliefs.41 For comparison309

we plot the same CE measure for two Taylor-type rules, that Evans and Honkapohja310

[18] and Evans and Honkapohja [17] have proven to drive beliefs respectively to PLT311

38In other words, imagine that a central banker inherits “credibility” from his predecessor in the
sense that private expectations react to his policy as the PLT equilibrium prescribes. Our result
then implies that, also in this case, there is an incentive to give up this ability.

39We simulate our economy with structural parameters of Woodford [43]: β = 0.99, σ = 0.157, κ =
0.024, α = 0.04, σu = 0.07. Decreasing gain results are qualitatively similar to constant gain, but
quantitatively sensitive to the exact timing. Results with decreasing gain are available upon request.

40See Milani [29] and Slobodyan and Wouters [40]
41We simulate 10,000 draws of 2000-period-long series, starting from beliefs corresponding to

PLT at time 0, and we calculate the CE welfare loss. Then, we take the beliefs in period 1 for each
one of the 10,000 draws, and from those beliefs we simulate 10,000 draws of 2000-period-long series,
and then we calculate the CE welfare loss. We repeat this process for 8000 periods.
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and IT equilibria. For the IT rule we set the initial beliefs at IT in order to illustrate312

the long-run welfare implications of keeping expectations in the IT equilibrium.42
313

The figure illustrates well why our main result is striking: the policymaker is fully314

rational and could induce the PLT equilibrium, which would be welfare enhancing315

in the long run, it is simply suboptimal to do so.316

The long-run benefits of PLT would be similar to the case with rational agents, i.e.317

it anchors agents’ inflation expectations once learning expectations have settled on318

the equilibrium; “keeping” learning expectations in the PLT equilibrium is superior to319

“keeping” them in the IT equilibrium. Similar results can be found also in different320

setups, which all show that expectations are better anchored under PLT. Preston321

[34] shows the robustness of long-term benefits of PLT to misinformation about322

agents learning43; in a framework featuring near-rational expectations, Woodford323

[45] argues that benefits of engineering a history-dependent policy are present also324

when expectations differ from RE with a nonspecified error structure.325

However, it is optimal to sacrifice long-run efficiency for short-run gains. By326

starting from PLT beliefs we are implicitly assuming that initially the CB has “cred-327

ibility”, i.e. it can reduce inflation expectations by contracting output. It is in these328

initial periods that our optimal policy can generate lower welfare losses than PLT,329

because it can exploit the sluggish nature of expectations. While PLT anchors fu-330

ture inflation expectations by committing to spread out the effect of shocks, OP can331

respond more aggressively to shocks because the policymakers’ credibility will not be332

harmed in the short-run. Agents need to gather enough data to uncover a deviation333

from the PLT. Even if credibility is lost in the long run, short-run gains far outweigh334

long-run losses: expected CE of PLT is 63% higher than that of OP when agents335

42The main appeal of these rules is that besides ensuring stability under learning, they also
guarantee determinacy under RE. A caveat shown in Preston [33] is that under infinite horizon
learning, these rules can induce divergent learning dynamics, because the CB does not give enough
attention to future private expectations.

43Preston [34] examines one-period-ahead expectations-based Taylor rules, whereas agents have
infinite horizon learning. We will relax the assumption of perfect knowledge of agents’ learning in
Section 5.
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initially believe in a PLT policy (see Table 1).44
336

Even though the CB takes advantage of its credibility during the transition, it has337

no incentive to build credibility at any point in time. As the CB keeps engineering338

surprise output contractions, expectations keep getting further away from PLT, and339

agents believe less and less in a history-dependent policy (see Figure 2). OP is340

however careful not to lose credibility too fast, in order to maintain its ability to341

disinflate through lowering inflation expectations (i.e. keep bπ > 0, such that Êπt+1 =342

bπxt can be lowered by lowering xt). Based on forecast errors, it would not be easy343

for agents to conclude that the CB deviated from PLT (for more on this, see Section344

5). First, they are small during the transition, similar in size to what would arise345

in the PLT equilibrium (Figure 3).45 Second, there is no systematic pattern in346

forecast errors: agents sometimes overpredict, sometimes underpredict the outcome347

(see Figure 4). Only when the economy converges close enough to IT do forecast348

errors increase, as the CB loses its incentive to keep inflation expectations history349

dependent. Where the CB really fools agents is in output expectations, but these350

have a small impact on welfare losses.46 As the economy converges on IT, forecast351

errors become similar to those of a rational agent in IT. All these forecast errors are352

however very small in magnitude.353

The way CB credibility is lost is fundamentally different for learning and rational354

agents. Any deviation from a commitment is immediately spotted by rational agents,355

making any future commitment of the CB not credible anymore. This off-equilibrium356

threat helps maintain the PLT equilibrium. Learners lack off-equilibrium strategies,357

as they learn only from realized outcomes, and during this learning process the358

policymaker has an incentive to deviate from PLT. Speeding up learning does not359

eliminate these CB incentives, it merely reduces them. We can see this in Figure360

44Note, that in our setup PLT and IT consumption equivalents are both small, albeit in the range
of the original estimates of Lucas [27].

45A rational agent in the PLT equilibrium would have an expected squared forecast error of
cPLTσ2

u = 0.0039.
46For a bigger weight of output in the welfare loss function, α, forecast errors of output decrease,

and of inflation increase.
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5: for a bigger γ OP engineers less-aggressive output contractions in response to a361

positive cost-push shock.47
362

The loss of credibility in the long run cannot be solved by delegation, in the363

spirit of Rogoff [36], by appointing a more patient central banker (higher β).48 As364

long as future losses are discounted, β < 1, in the long run IT is the resulting365

equilibrium. We can observe in Figure 7b that all a more patient central banker366

achieves is keeping the economy close to the welfare-improving PLT equilibrium for367

a longer period, i.e. retaining “credibility” longer, because she is exploiting less the368

short-run policy trade-offs.49
369

Table 1: Consumption equivalents

OP PLT ratio PLT/OP

Initial beliefs:

PLT 0.000413 0.000675 1.63

IT 0.000747 0.001004 1.34

3.2. Short-run policy incentives370

The short-run gains of OP come from the well-known time-inconsistency problem371

of PLT and the sluggishness of agents’ beliefs. The time inconsistency is standard:372

if given the chance, the CB has an incentive to renege its commitments and choose373

a different policy that is optimal at the time the decision is taken.374

This incentive to deviate from PLT can be easily illustrated in a simple case,

when agents do not update their learning coefficients (γt = 0). The joint FOCs do

not depend on xt−1, as in the PLT equilibrium; instead the strategy is similar to that

47In Section 5 we return to examine whether these CB incentives would survive with other
expectation formations.

48In contrast to the original Rogoff [36] problem, where delegation aims to solve the inflation
bias, here we think of a delegation that aims to solve the bias for short-term gains.

49A higher resemblance to credibility with higher patience is also shown in Sargent [39] and
Molnar and Santoro [31], who also analyze learning environments. Sargent [39], Chapter 5, obtains
the remarkable result that the optimal policy in the Phelps problem is such that a CB which is
patient enough (β → 1) can replicate the commitment solution under RE asymptotically. Eusepi
et al. [12] obtain similar results in a New Keynesian model investigating the optimal long-run
inflation rate, rather than dynamic responses to shocks, as we do in this paper.
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of the “leaning against the wind” of IT: after a positive shock, the CB decreases the

current output gap in order to avoid a huge increase in current inflation.

xt = − βbπ + κ

α + (βbπ + κ)2ut

πt =
α

α + (βbπ + κ)2ut.
(22)

The output contraction is stronger the more credible the CB is: the higher is bπ, the375

stronger is the trade-off between inflation and output (from (2)), and therefore the376

stronger is the incentive of the CB to “fool” agents.377

Similar incentives arise when agents are learning, because learning takes time.378

Agents need to collect sufficient data to understand if the CB deviates from PLT.379

As in the case with γ = 0, the further beliefs are from the IT equilibrium, the larger380

is the surprise output contraction engineered by the CB, because the larger is the381

policy incentive to exploit the inflation-output trade-off (Figure 5).382

As OP aims to lower inflation, it lets prices absorb shocks in a permanent way:383

after a positive cost-push shock the price level raises permanently (see Figure 6c).384

This is similar to an IT rule, which would treat a cost-push shock as bygone. In385

contrast, under PLT the CB would bring the price level back to the target.386

The main difference between our policy and previously proposed Taylor rules,387

is that our policy is nonlinear in agents’ beliefs. (see Figure 5). OP exploits the388

fact that the closer households’ beliefs are to the PLT equilibrium, the larger is the389

output contraction that can be engineered without loss of “credibility”. In contrast,390

the Taylor rule that implements PLT is a linear: the further away beliefs are from391

the PLT equilibrium, the larger the output contraction that PLT policy engineers,392

in order to drive beliefs back to the PLT equilibrium.393

4. Implementation with a simple rule394

We now turn to the question of how policy should be conducted. Deriving an395

analytical policy rule for the optimal state-contingent interest rate path is a nontrivial396

task, because it is a highly nonlinear rule in agents’ beliefs and their speed of learning.397
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This nonlinearity would also make its implementation impractical. Moreover, such a398

rule would require detailed knowledge of how agents learn. Such superior knowledge399

on the part of the policymaker is a very strong assumption (see Woodford [45]).400

However, it turns out the OP can be well approximated without knowing the exact

form of agents’ learning. Consider the following simple belief-dependent Taylor-type

policy rule, which is obtained by solving problem (13) when γ = 0.

it = δπ(bπt−1)E∗t πt+1 + δxE
∗
t xt+1 + δu(b

π
t−1)ut, (23)

where the coefficients are

δπ(bπt−1) = 1 + σβ
βbπt−1 + κ

α + κ2 + κβbπt−1

, δx = σ, δu(b
π
t−1) = σ

βbπt−1 + κ

α + κ2 + κβπt−1

(24)

This rule satisfies the Taylor principle, and guarantees both determinacy under401

RE and E-stability50, hence yielding convergence under learning.402

A desirable property of this rule is that it achieves most of the welfare gain that403

OP achieves: its CE is less than 5% higher than that of OP, when initial beliefs are404

at PLT.51 Moreover, it is simple: the policymaker only needs to monitor inflation405

and output gap expectations at each point in time, without the need to gauge the406

effect on the evolution of future expectations. To determine the coefficients of this407

rule, the policymaker also needs to know that agents understand monetary policy-408

making to some extent, so that an output contraction lowers inflation expectations.409

Central banks do indeed dedicate substantial time and effort to both: they monitor410

expectations and also educate the general public about the conduct of monetary411

policymaking.52.412

The main difference with respect to the expectations-based rule suggested in413

Evans and Honkapohja [14] is that our policymaker also exploits the knowledge that414

agents understand policymaking to some extent, i.e. they reduce inflation expecta-415

50The eigenvalues of the reduced form are 0 and 0 < βα
α+κ2+κβbπt−1

< 1, for bπIT < bπt−1 < bπPLT .
51Details available upon request.
52 Carvalho and Nechio [7] show evidence from survey expectations that people do understand

monetary policy: this educational effort seems to work.
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tions when output contracts. As a consequence, our simple rule contracts output416

somewhat more aggressively to bring down inflation expectations (higher δπ).417

5. Extensions418

A few of our assumptions play an important role in our findings, and thus we419

would like to discuss and examine their limitations.53
420

5.1. Generalizability421

We conduct our analysis by assuming a specific learning algorithm. This algo-422

rithm can be justified on several grounds54 but it might seem arbitrary because it is423

just one out of many. Yet, it is equally arbitrary to assume that there is no learning424

component to private expectations, especially because this is at odds with recent425

empirical findings.55 Ultimately, how people form expectations is a yet unsettled is-426

sue, which presents an important challenge for policymakers. Would they know the427

exact expectation formation of agents, policy would be much easier. Then emerges428

the question on what are the limits of our results, and whether they are robust to429

the existence of different classes of beliefs.430

We expand our analysis to a general class of learning algorithms, where belief

updating is a general function of past output gaps, forecast error and the cost-push

shock.56We build beliefs updating on Selten’s directional learning : we simply assume

that learners have enough knowledge to determine myopically in which direction

53We refer the reader to the Appendix for details.
54It is widely used in the literature, consistent with the rational expectation equilibrium, and

empirically relevant.
55See for example [5] on evidence from survey expectations and [9] on experiments.
56Mπ,Mx twice continuously differentiable, equal to zero if and only if the forecast errors are

equal to zero, and increasing in the forecast error if and only if xt−1 > 0: if agents expect a positive
πt, i.e. bπt−1xt−1 is positive, and πt turns out to be even more positive, agents want to increase bπt xt
to track π.
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better forecasts can be found.57

bπt = bπt−1 + γtM
π
(
xt−1, πt − bπt−1xt−1, ut

)
(25)

bxt = bxt−1 + γtM
x
(
xt−1, xt − bxt−1xt−1, ut

)
,

This general formulation includes, as special cases, the stochastic gradient we used431

in the baseline specification and the generalized stochastic gradient introduced in432

Evans et al. [19].433

We find that, consistent with our main result, learning PLT is never optimal434

when agents use (25) to update beliefs. As in the baseline analysis (see Section 3.2),435

the incentives for the CB to deviate from PLT are related to the result that in the436

limit for t → ∞ the trade-off between inflation and output gap is not affected by437

learning ; in other words, CB cannot manipulate beliefs anymore, and it pursues a438

“lean against the wind” policy: whenever inflation is high, contract demand below439

capacity (and vice versa).58
440

πt = − α

βbπ + κ
xt (26)

This result is therefore not specific to the form of learning we adopted in the baseline441

analysis, but is more general: what matters is that off-equilibrium, when the CB442

deviates from PLT, agents change their beliefs in a gradual and adaptive manner,443

and not abruptly as a rational agent would do. However, the linearity of M in the444

forecasting error is necessary for IT to be an equilibrium. In this case bπ = bx = 0445

is a solution to h (θ) = 0. For a nonlinear updating this is not necessarily the case,446

which implies that, theoretically, nonlinear learning can converge to an equilibrium447

different from IT.448

Next, we examine robustness to the presence of rational agents next to learners.449

57An alternative interpretation of directional learning which works even if subjects have very little
information is trial-and-error learning. It simply says that an agent would not repeat a mistake,
i.e. if forecasts last period have overestimated the outcome then one would not increase forecasts
again.

58Mathematically this result is a consequence of the following: (under suitable technical condi-
tions) all the terms which come from beliefs’ manipulation are weighted by the learning gain. In the
limit they become irrelevant as t goes to zero, unless they grow unboundedly (proof in Appendix).
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If the CB has commitment with respect to the rational agents (who have a (1− ψ)450

population weight), the optimality condition in the limit is similar to (26), with an451

additional path dependent term that is introduced as a consequence of the promises452

made by the central bank and trusted by the rational agents453

πt = − α

βψbπ + κ
xt + (1− ψ)

α

βψbπ + κ
xt−1. (27)

In the long run the economy converges somewhere between IT and PLT: optimal454

allocations have some history dependence. This means the CB can retain some455

credibility, but quantitatively the impact is very small even when there are many456

rationals in the population. When half of the population is rational, for example, in457

the limiting equilibrium the bπ is an order of magnitude smaller than in PLT. Thus458

deviation from PLT is a robust result, unless all agents are rational.459

5.2. Uncertainty about learning, and evolutionary dynamics460

Our main result also relies on the assumption that policymakers perfectly under-461

stand agents’ belief formation. This assumption is routinely made under RE but is462

less innocuous under learning: there is one way to be rational, but infinite ways to463

be nonrational. To examine robustness, we hypothesize a CB that can face several464

empirically relevant learning algorithms,59 and find that using our baseline OP rule465

outperforms PLT. For policymaking, it is more important to know agents learn than466

to gauge how exactly they do it.467

Finally, in our main analysis we presumed little thinking on the agents side, while468

the policymaker is strategic.60 This raises the question, whether agents would leave469

their expectation formation if they could. We endow agents with such “evolutionary”470

59 We assume OP with our baseline learning specification (γ = 0.05) whereas agents learning is
different (they can have a different γ, or learn with a decreasing gain).

60See Woodford [45] who cautions about strategic manipulation by the policymaker of agents’
learning rules:“... the CB can induce systematic forecasting errors of a kind that happen to serve
the central bank’s stabilization objectives. But if such a policy were shown to be possible under
some model of learning considered to be plausible (or even consistent with historical data), would it
really make sense to conduct policy accordingly, relying on the public to continue making precisely
the mistakes that the policy is designed to exploit?”
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skills and find that even if they can switch towards a fully rational expectation471

formation (if it forecasts better) in the limiting equilibrium learning survives. The472

reason for this is that the learning mechanism produces good forecasts compared to473

RE: initially the policymaker keeps learners’ forecast errors small (similar to Section474

3), and in the limit learners learn to forecast as well as rational agents.475

6. Concluding remarks476

We have argued that the benefits of PLT hinges not only on a skillful management477

of expectations but also on agents being rational. If we relax rationality bounds478

on agent’s understanding, stabilizing prices is a bad strategy. In the context of479

adaptively learning agents we contend that monetary policy has strong short-run480

incentives to deviate from PLT, despite its benefits in effectively anchoring inflation481

expectations. These incentives arise because learning agents need time to discover482

that the CB has deviated from PLT, and in the meantime the policymaker can exploit483

the inflation-output trade-off and disinflate by aggressively contracting output. This484

policy comes at a cost: private agents eventually gather enough data and understand485

that the CB is deviating from PLT. The economy converges on IT and the CB loses486

its ability to anchor private expectations. We show that the short-run gains of this487

policy outweigh long-run losses, and therefore it is optimal for the CB to succumb488

to the temptation and deviate from PLT.489

In our main analysis we assume the CB knows the exact learning algorithm, which490

is a strong assumption.61 Therefore we have also established that for policymaking,491

the most important welfare gains arise from knowing that agents learn, and it is of492

second order to gauge how exactly agents update beliefs. Finally, we have shown493

generalizability of short-run incentives to deviate from PLT for a general learning494

algorithm, and for a hybrid model, with intermediate forms of rationality mixing495

61Note that an analogously strong assumption is regularly made in optimal policy research with
rational agents, where the policymaker knows that agents are rational. We think it is worth making
our extreme assumption in order to understand optimal policy under the polar case of adaptive
learning, given the empirical relevance of learning in survey and experimental evidence (see for
example Del Negro and Eusepi [10], Slobodyan and Wouters [40], Molnar and Ormeno [30]).
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rational and adaptive agents.496

The CB incentives that arise in our framework have previously been ignored by497

proponents of PLT under learning (see Evans and Honkapohja [18], Aoki and Nikolov498

[2], Gaspar et al. [22]). Those authors showed that PLT is a learnable equilibrium:499

if expectations are perturbed out of the PLT equilibrium, the CB can implement500

a policy that makes agents learn the PLT equilibrium again. However, once CB501

incentives are taken into account, PLT is no longer optimal if agents are learning.502

A general message from our results is that in a heterogenous agents setup, it is503

not enough to examine the learnability of an equilibrium, as it is traditionally done in504

the literature (see Evans and Honkapohja [16]). Even a learnable equilibrium might505

not arise when interactions between agents are taken into account. The incentives506

of a rational player (in our model the CB) depend on what type of other player507

she interacts with. Adaptive players are different from rational players even after508

they learned a rational expectations equilibrium, and their forecasts could not be509

distinguished from those of a rational agent. One difference is the speed of revising510

beliefs. A rational agent would immediately understand if the CB has deviated from511

PLT and would immediately switch to the IT equilibrium. A learning agent on the512

other hand needs time to gather a sufficient amount of data to understand that the513

CB deviated from PLT. A second, more subtle difference is that rational agents can514

choose a strategy that prescribes totally different behavior on- and off-equilibrium,515

and the off-equilibrium threat of rational private agents can keep a rational bank from516

deviating from PLT (see Kurozumi [26]). For learning agents, on the other hand,517

off-equilibrium threats are not possible, because they simply form beliefs based on518

realized outcomes. A rational opponent to learning agents takes this into account519

and chooses her strategy accordingly.520

Finally, let us note that we do not mean to give precise policy prescriptions521

to central banks. We are aware that policymaking in reality is more complex and522

challenging than in our simple framework. Our results however should highlight that523

the incentives of the CB change with the belief structure of the private sector, and524

policy prescriptions derived without acknowledging this fact can be misleading.525
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7. Figures and Tables630

Figure 1: Consumption equivalents losses, on a rolling window
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Montecarlo of 10000 simulations. Initial beliefs at price level targeting for OP and PLT, at inflation
targeting for IT, γ = 0.05.

Figure 2: Evolution of learning coefficient over time for different initial beliefs, ranging from IT to
PLT
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Figure 3: Squared forecast errors
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(a) Squared forecast errors for inflation, for OP
starting from different initial conditions and for
PLT
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Figure 4: Forecast errors for output gap and inflation for one series, OP starting from PLT
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Figure 5: On-impact output gap responses with different private sector beliefs (to a one standard
deviation cost-push shock)
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Figure 6: Impulse responses after a one standard deviation cost-push shock, under optimal policy
under learning (OP ) and price-level targeting policy (PLT ) , starting with initial beliefs corre-
sponding to the rational expectations PLT equilibrium, with γ = 0.05.
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Figure 7: Consumption equivalents
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(a) Slow and fast learning (low and high γ)
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