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Abstract

We derive an optimal fiscal policy in a heterogeneous-agent model with capital
accumulation and aggregate shocks and where the government uses public debt,
and capital and labor taxes, to smooth technology and public spending shocks.
In order to perform this analysis, we provide a new representation of incomplete
insurance-market economies, based on a truncation theory in the space of idiosyn-
cratic histories. The steady-state capital tax is shown to be positive and to depend
on the severity of credit constraints. Labor tax is more volatile with heterogeneous
agents compared to a representative agent economy. The optimal public debt is
higher in the incomplete-market model and its dynamics are different from its
complete-market counterpart. Finally, the difference between the complete and in-
complete market economies is quantitatively significant for public spending shocks,
less so for technology shocks.
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1 Introduction

Incomplete insurance-market economies provide a useful framework for examining many
relevant aspects of inequalities and individual risk in general equilibrium. In these mod-
els, infinitely-lived agents face incomplete insurance markets and borrowing limits that
prevent them from perfectly hedging their idiosyncratic risk, in line with the Bewley-
Huggett-Aiyagari literature (Bewley 1983, Imrohoroğlu 1989, Huggett 1993, Aiyagari
1994, Krusell and Smith 1998). These frameworks are becoming increasingly popular
and are now widely used, since they fill a gap between micro- and macroeconomics and
enable the inclusion of aggregate shocks and a number of additional frictions on both
the goods and labor markets. However, in terms of normative analysis, little is known
about optimal policies in these environments, due to the difficulties generated by the
large and time-varying heterogeneity across agents. This is unfortunate, since a vast
literature, reviewed below, suggests that the interaction between wealth inequalities and
capital accumulation has first-order implications for the optimal design of time-varying
fiscal policies.

This paper presents a methodological contribution that offers a general and tractable
representation of incomplete insurance-market economies. This representation allows us
to easily solve the Ramsey problem in economies with both capital and aggregate shocks.
We apply our framework to provide a theoretical and quantitative analysis of optimal
fiscal policy. We derive new results about the optimal dynamics of public debt, distorting
capital and labor taxes, and transfers, considering rich trade-offs involving redistribution,
insurance, and incentives.

Heterogeneity increases with time in incomplete insurance market economies because
agents differ according to the full history of their idiosyncratic risk realizations. Huggett
(1993), using the results of Hopenhayn and Prescott (1992), and Aiyagari (1994) have
shown that economies without aggregate risk have a recursive structure when the dis-
tribution of wealth is introduced as a state variable. Unfortunately, the distribution of
wealth has infinite support, which is at the root of many analytical difficulties. Our
methodological contribution is to represent incomplete insurance-market economies as
economies with finite support. More precisely, we construct an environment where agent
heterogeneity depends only on a finite but arbitrarily large number, denoted N , of consec-
utive past realizations of idiosyncratic risk. As a theoretical outcome, agents having the
same idiosyncratic risk history for the previous N periods choose the same consumption
and wealth levels. The interest of this truncated representation of incomplete insurance-
market economies stems from four properties. First, the allocation can be represented
as a theoretical outcome with partial insurance, which ensures the existence of the equi-
librium in the presence of aggregate shocks. Second, the amount of insurance implicitly
provided by the truncation converges toward 0, for large N , under general conditions.
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Third, and more importantly, as our representation has a finite state space, we can use
a Lagrangian approach as in Marcet and Marimon (2011) to derive Ramsey problems.
These appear to be powerful tools with which to derive economic intuitions for optimal
policies in incomplete insurance-market economies. Finally, the finite state space greatly
simplifies the simulation of the model, as standard perturbation methods can be used.

The goal of our paper is to use this framework to analyze how incomplete insurance
markets for idiosyncratic risk change our understanding of optimal fiscal policy, both in
the steady state and after aggregate shocks. To do so, we derive the optimal fiscal policy
in a model with an incomplete insurance market for employment risk (“IM economy”,
hereafter) and with aggregate risk and compare the results with those generated in a
complete insurance-market economy (“CM economy”, hereafter). A natural benchmark
for this investigation is the economy studied in Chari, Christiano, and Kehoe (1994),
where: 1) the government has three instruments with which to finance public spending:
public debt and a linear tax on labor and on capital; 2) the government solves a Ramsey
problem with full commitment; and 3) both a technology and a public spending shock are
considered. Obviously, each of these assumptions has been relaxed in the vast literature
surveyed below, and could be introduced in our IM economy. Nevertheless, comparing
the IM and CM economies in this benchmark case delivers a number of new results on
the specific effect of market incompleteness on optimal fiscal policy. We provide both
theoretical and quantitative results, simulating CM and IM economies with standard
parameter values. Using the work of Chamley (1986) and Judd (1985a) (for the steady
state) and of Chari, Christiano, and Kehoe (1994) (for the dynamics), we can summarize
the main results in the CM economy as follows:1 a) optimal capital taxes are 0 in the
interior steady state; b) capital taxes vary considerably during the period of a shock;
c) the expected capital tax rate is close to its steady-state value one period after the
shock; d) labor taxes remain roughly constant after the shock; and e) public debt varies
to smooth taxes.

Market incompleteness changes the previous results as follows. a) We prove that
capital taxes are positive at the steady state if, and only if, credit constraints are binding
for some agents. We derive an expression for the optimal capital tax, enabling us to
discuss previous results in the literature ( Aiyagari 1995 among others). We show that
market incompleteness is not sufficient to provide a deviation from the Chamley-Judd
result of a zero capital tax at the steady state, which requires binding credit constraints.
In our quantitative investigation, we find that optimal average capital tax is around 8%.
b) and c) As in CM, the capital tax in IM varies in the period of the shock before going
back to its steady state value. However, we find that capital tax has a redistributive
effect in the IM economy, which limits its use along the business cycle. d) We find that

1The optimality of the interior solution has been analyzed in Straub and Werning (2014). We discuss
this in our setup in Section 4 below.
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labor taxes are more volatile in the IM economy than in the CM economy, although their
steady-state values are close to one other. The reason for this is that labor tax generates
additional redistributive effects (for which we provide an expression), increasing its use
along the business cycle. e) The optimal steady-state level of public debt is negative,
but different, in both economies. We find that optimal public debt is higher in the
IM economy, by 6 percentage points of GDP. This extra level of public debt is used as
liquidity by households to self-insure. In addition, the dynamics of public debt are very
different in the IM and CM economies, resulting from the different cyclical properties of
taxes. Finally, we quantitatively find that there are large differences between IM and CM
economies after a public spending shock (directly affecting the budget constraint of the
government) compared to a TFP shock.

Related literature. Our paper is related to two vast streams of literature. The first
is the theory and quantitative work on heterogeneous agent models. The second is the
literature on optimal fiscal policy.

This paper first provides a new tractable representation of incomplete insurance mar-
kets (i.e., a finite dimensional state-space representation). Some environments already
provide a tractable framework. This is the case for no-trade equilibria with permanent
idiosyncratic shocks (Constantinides and Duffie 1996), used for instance in Heathcote,
Storesletten, and Violante (2017). Krusell, Mukoyama, and Smith (2011) study a class
of no-trade equilibria in an economy without capital and with a tight-enough credit con-
straint, used in Ravn and Sterk (2017). Departing from no-trade equilibria, a class of
“small trade” equilibria, featuring “reduced heterogeneity” with a finite number of wealth
levels, has been studied (Challe and Ragot 2016, LeGrand and Ragot 2016, Challe, Math-
eron, Ragot, and Rubio-Ramirez 2017, Ragot 2018). The current paper extends these
previous works and provides a general theory of truncated representations of incomplete-
market economies, which are a consistent representation of Bewley economies. In addi-
tion, it derives new tools for studying optimal policies, based on the dynamic structure
of Lagrange multipliers.

Second, our paper contributes to the literature on distortions and optimal policies in
incomplete insurance-market models. Some papers have studied the effects of given fiscal
experiments in a heterogeneous agent framework, such as Heathcote (2005), who con-
siders aggregate shocks, and Kaplan and Violante (2014), who consider a fiscal transfer.
Heathcote and Perri (2017) analyze equilibrium multiplicity in an economy without cap-
ital. For the design of optimal policies, many contributions identify a number of relevant
trade-offs, but to the best of our knowledge, the general case with capital accumulation
and aggregate shocks has not yet been studied. In economies without aggregate shocks,
Aiyagari (1995) shows that the steady-state capital tax can be non-negative. Aiyagari and
McGrattan (1998) compute the optimal steady-state level of debt. Dávila, Hong, Krusell,
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and Ríos-Rull (2012) show that the steady-state capital stock can be too low, solving for
a constrained efficient allocation. Açikgöz (2015) solves a Ramsey problem to obtain the
steady-state fiscal policy and level of public debt. Gottardi, Kajii, and Nakajima (2015)
compute the Ramsey allocation in a model with human capital accumulation. Nuño and
Moll (2017) use a continuous-time approach and mean-field games to characterize dif-
ferences in inequalities for economies without aggregate shocks. Shin (2006) studies a
two-agent economy to derive additional results. Recently, Bhandari, Evans, Golosov, and
Sargent (2013, 2017b) have derived results about optimal policies in environments with
incomplete insurance markets and aggregate shocks. They study an economy without
capital, with lump-sum taxes, and where credit constraints are loose enough such that
they never bind in equilibrium. They show that public debt is irrelevant, which simplifies
the state space and allows for the introduction of additional features, such as nominal
frictions. Instead, we study an economy with capital (and capital tax) and we allow for
binding credit constraints.

Third, this paper is also related to the vast literature on optimal fiscal policy with
aggregate shocks. Seminal contributions consider a complete-market economy with a
representative agent (Barro 1979, Lucas and Stokey 1983, surveyed in Chari and Kehoe
1999). More recent contributions consider incomplete markets for the aggregate risk
(but with complete insurance markets), introducing non state-contingent public debt
(Aiyagari, Marcet, Sargent, and Seppälä 2002, Farhi 2010, Bhandari, Evans, Golosov, and
Sargent 2017a). Several papers have additionally introduced ex-ante agent heterogeneity
(see Bassetto 2014, Azzimonti, de Francisco, and Krusell 2008a and 2008b, Azzimonti and
Yared 2017, Correia 2010, Greulich, Laczó, and Marcet 2016). The New Dynamic Public
Finance literature focuses on optimal fiscal policy in environments with heterogeneous
and private information (Mirrlees 1971, Golosov and Tsyvinski 2007, Werning 2007 among
others). Here, we focus on a Ramsey approach, limiting the number of instruments,
which helps to identify some basic tradeoffs (see Farhi and Werning 2013, and Golosov,
Tsyvinski, and Werquin 2016 for a discussion).

This paper is also, but more indirectly, related to the computational literature study-
ing incomplete insurance markets with perturbation methods. Reiter (2009) uses pertur-
bation methods to solve for aggregate dynamics, by discretizing the wealth distribution to
obtain a finite-dimensional state space.2 Other authors have used truncation strategy for
aggregate shocks as an approximation device in computational procedures. Instead, we
construct economies that deliver a finite-dimensional state space in the space of idiosyn-
cratic histories, as a theoretical outcome. This last property is key to deriving optimal
Ramsey policies.

2Other numerical methods using perturbation methods are developed in Mertens and Judd (2018),
Preston and Roca (2007), Kim, Kollmann, and Kim (2010), or Winberry (2018), who approximates the
wealth distribution by a finite number of parameters.
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The rest of the paper is organized as follows. In Section 2, we present the environment.
We describe the family head problem and derive the associated allocation in Section 3. We
then show the decentralization mechanism in Section 3.2. We solve the Ramsey problem
in Section 4, where we introduce the complete-market economy. In Section 5, we provide
a numerical application illustrating our findings. Finally, conclusions are given in Section
6.

2 The environment

Time is discrete, indexed by t ≥ 0. The economy is populated by a continuum of agents
of size 1, distributed on a segment J following a non-atomic measure `: `(J) = 1.3

2.1 Risk

Aggregate risk. The aggregate risk is represented by a probability space (S∞,F ,P).
In any period t, the aggregate state, denoted st, takes values in the state space S ⊂ R+

and follows a first-order Markov process. The history of aggregate shocks up to time t is
denoted by st = {s0, . . . ., st} ∈ St+1. Finally, the period-0 probability density function
of any history st is denoted by mt(st).

Idiosyncratic risk. At the beginning of each period, agents face an uninsurable
idiosyncratic labor productivity shock et that can take E + 1 values in the set E =
{0, . . . , E} ∈ RE+1

+ . Agents in state e ∈ E , e 6= 0, have a labor productivity θe > 0,
which is assumed to be increasing in e, without loss of generality. Agents in state e = 0
have a zero market productivity, i.e. θ0 = 0, but devote a fixed amount of δ > 0 labor
units to earn a home production of δ units of final goods. The first type of agents can
be considered as employed workers with various productivities, while the latter can be
considered as unemployed workers. This modeling choice enables us to cover the various
cases that can be found in the literature.

The productivity shock et follows a discrete irreducible and aperiodic first-order
Markov process with transition matrixM(st) ∈ [0, 1](E+1)×(E+1). The probabilityMe,e′(st)
is the probability that an agent switches from state e at date t to state e′ at date t + 1,
when the aggregate state is st in period t. The history of idiosyncratic shocks up to date
t is denoted by et = {e0, . . . , et} ∈ E t+1.

Remark 1 (Notations) For the sake of clarity, we will denote the realization in state
stof any random variable Xt : St → R by Xt, instead of Xt(st), and will denote the
realization in state (st, et) of any random variable Yt : St × E t → R, by Yt,et.

3We assume that the law of large numbers holds. See Green (1994) for a complete construction of J
and `. See also Feldman and Gilles (1985), Judd (1985b), and Uhlig (1996) for other solutions.
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2.2 Preferences

In each period, the economy has two goods: a consumption-capital good and labor.
Agents rank consumption c and labor l according to a smooth period utility function
U(c, l), satisfying standard regularity properties. As is standard in this class of models, we
consider a Greenwood-Hercowitz-Huffman (GHH) utility function, exhibiting no wealth
effect for the labor supply:4

U(c, l) = u

(
c− χ−1 l1+1/ϕ

1 + 1/ϕ

)
, (1)

where ϕ > 0 is the Frisch elasticity of labor supply, χ > 0 scales labor disutility, and
u : R+ → R is twice continuously derivable, increasing, and concave, with u′(0) =∞.

We further assume that the utility agents derive in each period can depend on their
idiosyncratic history. In each period t, the period utility of an agent with idiosyncratic
history et is assumed to be ξetU(c, l), where ξet : E t+1 → R++ can be interpreted as a
taste shock. Introducing taste shocks offers further flexibility, which is only used in the
quantitative exercise (Section 5). The model and results we present below are obviously
still valid in the standard case where ξet = 1 for all et.

Each agent ranks consumption and labor streams, denoted respectively by (ct)t≥0 and
(lt)t≥0, according to the intertemporal criterion ∑∞t=0 β

tξetU(ct, lt), where β ∈ (0, 1) is the
discount factor.

2.3 Production and assets

In any period t, a production technology with constant returns to scale (CRS) transforms
capital Kt−1 and labor Lt into F (Kt−1, Lt, st) units of output. The production function
is smooth in K and L and satisfies the standard Inada conditions. Capital must be
installed one period before production, and the state of the world may potentially affect
productivity through a technology shock. This formulation allows for capital depreciation,
which is subsumed by the production function F , as in Farhi (2010) for instance. Labor
Lt is measured in efficient units, and is equal to the sum of the individual labor efforts
expressed in efficient units: Lt =

´
i∈J θeitli,t`(di). The good is produced by a unique profit-

maximizing representative firm. We denote by w̃t the real before-tax wage rate in period
t and by r̃t the real before-tax rental rate of capital in period t. Profit maximization

4All our results can be derived with a general utility function U(c, l). A GHH utility function slightly
simplifies the algebra, especially when deriving the Ramsey problem in Section 4. Admittedly, and as
shown by Marcet, Obiols-Homs, and Weil (2007), considering an alternative utility function would affect
the optimal tax schedule, as aggregate labor supply would depend on wealth distribution.
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yields in each period t ≥ 1 are:5

r̃t = FK(Kt−1, Lt, st) and w̃t = FL(Kt−1, Lt, st). (2)

Finally, agents save buying claims on the capital stock and public debt, which will be
substitutes in equilibrium. Agents face borrowing constraints, and their asset holdings
must be higher than −ā ≤ 0. For important reasons discussed in Section 4, we focus
on the case where the credit limit is above the steady-state natural borrowing limit.6

In addition, some proofs below require us to assume that agents cannot save more than
amax. This maximal amount can be chosen to be arbitrarily large, in particular so that
it is never a binding constraint.7

2.4 Government, fiscal tools, and resource constraints

In each period t, the government has to finance an exogenous and possibly stochastic
public goods expenditure Gt ≡ Gt(st). The government can levy distorting taxes on
capital income τKt or on labor income τLt , or issue an amount Bt of a riskless one-period
public bond.8 As in Heathcote (2005), we assume that the public debt pays the economy-
wide interest rate r̃t for any aggregate history st ∈ St. The same tax rate τKt applies
to public bonds and capital shares. Consequently, both assets are perfect substitutes for
agents, which avoids the need to consider a portfolio choice.

As is standard, we also assume that the date-0 capital tax rate, borne by initial
capital, is set exogenously. Taxing capital in the first period is non-distorting, and the
government would heavily tax the initial capital stock (see Sargent and Ljungqvist 2014,
Section 16.7 for a discussion). The date-t budget constraint of the government is:

Gt + (1 + r̃t)Bt−1 ≤ τLt w̃tLt + τKt r̃tAt−1 +Bt. (3)

We denote the after-tax real interest and wage rates by:

rt = (1− τKt )r̃t and wt = (1− τLt )w̃t. (4)
5To simplify the notation, r and w denote the after-tax wage and interest rates, as in Aguiar and

Amador (2016) among others.
6See Aiyagari (1994) for a discussion of the relevant values of ā, called the natural borrowing limit in

an economy without aggregate shocks. See Shin (2006) for a discussion including aggregate shocks. A
standard value in the literature is ā = 0, which ensures that consumption is positive in all states of the
world.

7As for instance in Szeidl (2013), the assumption of the maximal bound amax enables us to consider
a general utility function. An alternative option would be to assume a bounded periodic utility function
u, as in Miao (2006).

8The question of the optimal mix of these financing tools will be the focus of the second part of the
paper and in particular of the Ramsey problem studied in Section 4.
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Using the CRS property of the production function, the budget constraint (3) becomes:

Gt + rtKt−1 + wtLt + (1 + rt)Bt−1 ≤ F (Kt−1, Lt, st) +Bt. (5)

Finally, if Ctot
t denotes the total consumption in period t, the economy-wide resource

constraint is Gt+Ctot
t +Kt ≤ F (Kt−1, Lt, st)+Kt−1 +St,0(st)δ, where St,0(st) denotes the

size of the population in state e = 0 at date t, thus producing δ. For the sake of clarity,
we present the formal definition of the equilibrium in the next section.

3 The truncated economy

In general, the previous economy features growing heterogeneity in wealth levels over
time, because agents with different idiosyncratic histories will choose different savings.
This heterogeneity can be represented by a time-varying distribution of wealth levels with
infinite support, which raises considerable theoretical and computational challenges. We
now present an environment in which the savings of each agent depend on the idiosyn-
cratic risk realizations for a given number of consecutive past periods, rather than on the
whole history. As an endogenous outcome, the heterogeneity among the population is
summarized by a finite (but possibly large) number of agent types.

To simplify the exposition, we present this economy in three steps. First, we use the
family and island metaphor (see Lucas 1975 and 1990, or Heathcote, Storesletten, and
Violante 2017 for a more recent reference) as a direct constraint on the environment. We
then derive a recursive decentralization. Finally, we present the risk-sharing arrangement
across households, which generates the given truncation. The advantage of this pre-
sentation strategy is that the existence of an equilibrium can be proved using standard
techniques.

We denote by N ≥ 0 the length of the truncation for idiosyncratic histories. We
assume that taste shocks ξet depend only on the past N periods’ shocks in period t, to
be consistent with the truncation structure.

3.1 The island metaphor

Island description. There are (E+1)N different islands, where the cardinal of the set
E of idiosyncratic risk realizations is E + 1. Agents with the same idiosyncratic history
for the last N periods are located on the same island. Any island is represented by a
vector eN = (eN−N+1, . . . , e

N
0 ) ∈ EN summarizing the N -period idiosyncratic history of

all island inhabitants. At the beginning of each period, agents face a new idiosyncratic
shock. Agents with history êN ∈ EN in the previous period are endowed with history
eN in the current period, and we denote eN � êN when eN is a possible continuation of
êN . The specification N = 0 corresponds to the full insurance case (only one island),
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and thus to the standard representative-agent assumption, which will be used below as
a benchmark. Symmetrically, the case N = ∞ corresponds to a standard incomplete-
market economy with aggregate shocks, in line with Krusell and Smith (1998). To simplify
the exposition, we assume that all agents enter the economy with identical initial wealth
(a−1,eN )eN∈EN = a0.

The family head. The family head maximizes the welfare of the whole family on all
islands, attributing an identical weight to all agents and behaving as a price-taker.9 The
family head can freely transfer resources among agents on the same island, but cannot
do so across islands. All agents belonging to the same island are treated identically and
will therefore receive the same allocation, as is consistent with welfare maximization. For
agents on any island eN ∈ EN , the family head will choose the per capita consumption
level ct,eN , the labor supply lt,eN , and the end-of-period savings at,eN (remember that
capital and public debt are substitutes).

Island sizes. The probability Πt,êN ,eN that an agent with history êN = (êN−N+1, . . . , ê
N
0 )

in period t experiences history eN = (eN−N+1, . . . , e
N
0 ) in period t+ 1 is the probability of

switching from state êN0 at t to state eN0 at t + 1, provided that histories êN and eN are
compatible. Formally, we have Πt,êN ,eN = 1eN�êNMêN0 ,e

N
0

(st), where 1eN�êN = 1 if eN is
a possible continuation of history êN and 0 otherwise. We can thus deduce the law of
motion of island sizes (St,eN )t≥0,eN∈EN :

St+1,eN =
∑

êN∈EN
St,êNΠt,êN ,eN , (6)

where the initial size of each island (S−1,eN )eN∈EN , with
∑
eN∈EN S−1,eN = 1, is given. The

law of motion (6) is thus valid from period 0 onwards.

Timing. At the beginning of each period t, agents learn their current idiosyncratic
shock and have to move from island êN to island eN . The family head cannot change the
allocation before agents leave the island. As a consequence, agents move by taking their
wealth with them, equal to the per capita saving at−1,êN . On island eN , the wealth of
all agents coming from island êN (equal to St−1,êNΠt−1,êN ,eNat−1,êN ) – and for all islands
êN– is pooled together and then equally divided among the St,eN agents of island eN .
Therefore, at the beginning of period t, each agent holds wealth ãt,eN equal to:

ãt,eN =
∑

êN∈EN

St−1,êN

St,eN
Πt−1,êN ,eNat−1,êN . (7)

9As the family head does not internalize the effect of its choice on prices, the allocation is not
constrained-efficient, and the distortions identified by Davila et al. (2012) are present in the equilibrium
allocation. The planner will reduce them with its instruments, defined in Section 4.
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The program of the family head can now be expressed as follows:10

max
(at,eN ,ct,eN ,lt,eN )

t≥0,eN∈EN

E0

∞∑
t=0

βt

 ∑
eN∈EN

St,eN ξeNU
(
ct,eN , lt,eN

) , (8)

at,eN + ct,eN = wtθeN0 lt,eN + δ1eN0 =0 + (1 + rt)ãt,eN , for all eN ∈ EN , (9)

ct,eN , lt,eN ≥ 0, at,eN ≥ −ā, for all eN ∈ EN , (10)

(S−1,eN )eN∈EN and a0 are given, (11)

and subject to lt,eN = δ if eN0 = 0, to the law of motion (6) for (St,eN )eN∈ENt≥0 , and to the
definition (7) of (ãt,eN )eN∈ENt≥0 .11

The family head maximizes aggregate welfare (8) subject to the budget constraints
(9) on all islands, to positivity and borrowing constraints (10), and to initial conditions
(11). As the objective function is increasing and concave, constraints are linear (i.e.,
the admissible set is convex), and allocations are bounded (amax guarantees a compact
admissible set), the existence of the equilibrium can be proved using standard techniques
(see Stokey and Lucas (1989, Chap. 15 and 16)). We therefore omit this proof in the
interest of conciseness.12 If βtνt,eNm(st) denotes the Lagrange multiplier of the credit
constraint of island eN , the first-order conditions are:

ξeNUc(ct,eN , lt,eN ) = βEt

 ∑
ẽN�eN

Πt,eN ,ẽN ξẽNUc(ct+1,ẽN , lt+1,ẽN )(1 + rt+1)
+ νt,eN , (12)

lt,eN =
(
wtθeN0

)ϕ
+ δ1eN0 =0, (13)

νt,eN (at,eN + ā) = 0 and νt,eN ≥ 0. (14)

To anticipate Section 3.2 below, the first-order conditions (12)–(14) have the same form
as those derived in standard incomplete insurance-market models. Although the family
head cares about agents moving across islands, the result is similar to that of individuals
self-insuring against income risk, due to the law of large numbers.

Labor market. On any island eN , the market labor supply in efficient units at date
t amounts to θeN0 St,eN lt,eN (we recall that θ0 = 0). Summing across all islands yields the
total labor supply:

Lt =
∑

eN∈EN
θeN0 St,eN lt,eN . (15)

10We denote by eN0 the current idiosyncratic state in island eN , and 1eN0 =0 equals 1 if eN0 = 0 and 0
otherwise.

11Note that Et[·] in (8) is the expectation operator at date t ≥ 0 over all future aggregate histories.
12Due to the finite heterogeneity representation, we could also prove the existence of a recursive

equilibrium. In the interest of conciseness, we do not present this recursive formulation, as it is not
necessary for deriving first-order conditions.
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Financial market. Total end-of-period savings of all agents, denoted by At at date t
are:

At =
∑

eN∈EN
St,eNat,eN =

∑
eN∈EN

St+1,eN ãt+1,eN , (16)

where the last equality stems from the pooling equation (7). The clearing of the financial
market at date t implies that at any date t, the following equality holds:

At = Bt +Kt. (17)

We can now state our sequential equilibrium definition, which is similar to Aiyagari,
Marcet, Sargent, and Seppälä (2002) and Farhi (2010).

Definition 1 (Sequential equilibrium) A sequential competitive equilibrium is a col-
lection of individual allocations

(
ct,eN , lt,eN , ãt,eN , at,eN

)
t≥0,eN∈EN

, of island population sizes(
St,eN

)
t≥0,eN∈EN

, of aggregate quantities (Lt, At, Bt, Kt)t≥0, of price processes (wt, rt, r̃t, w̃t)t≥0,
and of a fiscal policy (τKt+1, τ

L
t , Bt)t≥0, such that, for an initial distribution of island pop-

ulation and wealth
(
S−1,eN , a−1,eN

)
eN∈EN

, and for initial values of capital stock K−1 =∑
eN∈EN S−1,eNa−1,eN , of public debt B−1, of capital tax τ0, and of the initial aggregate

shock s−1, we have:

1. given prices, individual strategies
(
at,eN , ct,eN , lt,eN

)
t≥0,eN∈EN

solve the agents’ opti-
mization program in equations (8)–(11);

2. island sizes and beginning-of-period individual wealth
(
St,eN , ãt,eN

)
t≥0,eN∈EN

are con-
sistent with the laws of motion (6) and (7);

3. labor and financial markets clear at all dates: for any t ≥ 0, equations (15)–(17)
hold;

4. the government budget constraint (5) holds at any date;

5. factor prices (wt, rt, r̃t, w̃t)t≥0 are consistent with (2) and (4).

The equilibrium has a simple structure defined at each date by 6(E+1)N +8 variables
and 6(E+1)N +8 equations for a given fiscal policy (τKt+1, τ

L
t , Bt)t≥0, which is endogenized

below.

3.2 Decentralization and convergence properties

We now prove that the previous program can be decentralized through fiscal transfers,
which are shown to measure the degree of idiosyncratic risk sharing achieved by asset
pooling in the island economy. We prove that these transfers – as well as idiosyncratic
risk sharing – converge toward zero for large N , under general conditions. We start

12



with given factor prices and without aggregate shocks, and then introduce aggregate
shocks below. First, dropping aggregate shocks implies that we have existence proof of a
recursive representation (see Huggett 1993). Second, fixing factor prices avoids potential
issues relating to equilibrium multiplicity, as shown in Açikgöz (2016) for instance.

The economy is now similar to that in Section 2, except for the following differences.
First, we consider as given a constant after-tax interest rate r – with β(1 + r) < 1 –
and an after-tax wage w. Second, no family head imposes allocations, and agents are
expected-utility maximizers taking fiscal policy as given. Finally, at each date each agent
receives a lump-sum transfer ΓN+1(eN+1), which is contingent on her individual history
eN+1 over the previous N+1 periods. This is the actual difference compared to a standard
incomplete-market framework. Using standard techniques, the agents’ program can be
written recursively as:13

VN+1(a, eN+1) = max
a′,c,l

ξeNU(c, l) + βE

 ∑
(eN+1)′�eN+1

ΠeN+1,(eN+1)′VN+1(a′,
(
eN+1

)′
)
 , (18)

a′ + c = wθeN0 l + δ1eN0 =0 + (1 + r)a+ ΓN+1(eN+1), (19)

c, l ≥ 0, a′ ≥ −ā, (20)

with l = δ if eN0 = 0, and where VN+1 : [−a, amax] × EN+1 → R is the value function,
and eN0 the current idiosyncratic shock realization. With a slight abuse of notation,
Π denotes here the transition matrix for N + 1 histories derived from the matrix M

for idiosyncratic states. Compared to the economies studied by Huggett (1993) and
Aiyagari (1994), the individual history eN+1 is a state variable, as it determines the
transfer ΓN+1(eN+1). The Lagrange multiplier of the credit constraint a′ ≥ −ā is denoted
ν, and the solution of this program comprises the policy rules gN+1

c , gN+1
a′ , gN+1

l , and
gN+1
ν – defined over [−a, amax]×EN+1 – determining consumption, savings, labor supply,
and the Lagrange multiplier of the individual budget constraint, respectively. We now
propose our characterization result, which states that we can find a particular set of
transfers – denoted by (Γ∗N+1(eN+1))eN+1∈EN+1 – such that the decentralized economy
allocations match those of the family head economy.

Proposition 1 (Finite state space) There exists a set of balanced transfers, denoted
by (Γ∗N+1(eN+1))eN+1∈EN+1, such that any optimal allocation of the family head program
(8)–(11) is also a solution to the decentralized program (18)–(20).

The previous proposition states that the family head program presented in Section 3 can
be decentralized by the balanced lump-sum transfers (Γ∗N+1(eN+1))eN+1∈EN+1 (shortened
to Γ∗N+1 henceforth). This transfer is formally given in Appendix A, equation (46). It

13In line with the literature, we denote the savings choice in the current period by a′. The value a is
thus the beginning-of-period wealth.

13



involves pooling the resources of all agents with the same idiosyncratic history for N + 1
periods, and redistributing the same amount to agents with the same idiosyncratic history
for N periods, such that there are only (E+1)N possible wealth levels. Thus, the transfers
Γ∗N+1 mimic the wealth pooling of the island economy, formalized in equation (7), that
occurs when agents transfer from one island to another.

As stated in the following proposition, these transfers can be shown to converge to
zero for large N .

Proposition 2 (Convergence) For given factor prices and for a set of transfers equal
to Γ∗N+1, if κ ∈ (0, 1) and N ≥ 1 exist, such that for all N ≥ N , such that for all
(eN̄−1, . . . , e0) ∈ E N̄ , and (fN , . . . , fN̄), (gN , . . . , gN̄) ∈ EN−N̄+1 and a1, a2 ∈ [−a, amax]:∣∣∣gN+1

a′ (a1, (fN , . . . , fN̄ , eN̄−1, . . . , e0))−gN+1
a′ (a2, (gN , . . . , gN̄ , eN̄−1, . . . , e0))

∣∣∣ < κ |a1−a2|,
(21)

then:
lim
N→∞

sup
eN+1∈EN+1

∣∣∣Γ∗N+1(eN+1)
∣∣∣ = 0.

Although it may appear complicated, condition (21) has a simple meaning. It states
that the marginal propensity to save is always smaller than 1 for all agents, as soon
as N is high enough. When this condition is fulfilled, transfers tend toward 0 as the
length of idiosyncratic history N increases. If the saving propensity is strictly lower
than one, initial differences in wealth vanish and agents experiencing the same history
of idiosyncratic shocks end up having the same wealth over time. As a consequence, the
wealth pooling generated by the transfers Γ∗N+1 concerns wealth levels that tend to be
closer to one other, and the transfers Γ∗N+1 tend toward 0.

Although condition (21) involves the savings policy function rather than model ex-
ogenous parameters, the condition can be shown to hold for a large subclass of HARA
utility functions. More precisely, for any HARA utility function of the form c 7→ (c+b)1−σ

1−σ

(or c 7→ ln(c+ b)), with c > −b, 0 < σ 6= 1, we can prove that condition (21) holds with
κ = (β(1 + r))

1
σ ∈ (0, 1).14 Indeed, following the same steps as Açikgöz (2016), we can

show that the savings policy function is a contraction.15

Because of the mapping between the island economy and the decentralized one, the
absolute size of transfers Γ∗N+1 can be thought of as a measure of the insurance provided
by the wealth pooling operation during island transfers. As a result, when the length of
history becomes infinitely large, the insurance provided by pooling vanishes for long his-
tory lengths, as is the case in standard incomplete market economies. In the quantitative

14A more general expression for HARA utility functions is ( cσ+b)1−σ

1−σ , which includes the CARA utility
functions as a limit case when σ →∞. In this case, the proof does not hold.

15This is specifically the proof of Açikgöz (2016)’s Proposition 7. The proof relies first on a lemma
(Lemma H.1) that can be extended to HARA utility functions. The second part of the proof is based
on a result of Jensen (2017) stating that saving policy functions are convex, which also holds for HARA
utility functions.
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part of our article, set out in Section 5, we further analyze the convergence properties,
in particular the question of a “reasonable” value for N , the impact of aggregate shocks,
and the role of the taste parameters (ξeN )eN∈EN .

A risk-sharing arrangement. We have achieved decentralization through a set
of fiscal transfers Γ∗N+1, providing additional insights into the insurance provided by
truncation. This truncation is the outcome of a decentralized equilibrium. Assume that
1) agents have full commitment at period 0; 2) they are ex ante identical (and thus all
agree on a risk-reducing mechanism); and 3) they can enter risk-sharing agreements at
each period t ≥ N with other agents having the same history between period t−N and
period t. At each period t ≥ N + 1 agents with the same history for the last N periods
insure each other against heterogeneity in idiosyncratic risks prior to period t − N . As
an equilibrium outcome, agents insure themselves against the heterogeneous realization
of the risk at period t−N − 1 (because risk at periods t−N − 2 and before has already
been insured in period t− 1). Γ∗N+1(eN+1) is then the amount received by an agent with
history eN+1 from agents with history eN . As agents are identical in period 0, they all
agree to commit to this risk-sharing arrangement, which provides additional but limited
insurance. This risk-sharing arrangement mimics the fiscal transfer Γ∗N+1, which in turn
mimics the island structure. We do not attempt to provide a microfoundation for this
risk-sharing arrangement based on deeper informational frictions (such as the ability to
observe agents’ past idiosyncratic statuses). In line with the Bewley tradition, we simply
use this insurance structure, which provides an intermediate level of insurance between the
complete and incomplete insurance-market models, to derive new results about optimal
fiscal policies.

4 Optimal fiscal policy

4.1 The Ramsey problem

We now solve the Ramsey problem in our incomplete-market island economy with ag-
gregate shocks. The Ramsey problem requires the government to choose a fiscal policy
that maximizes aggregate welfare. This aggregate welfare, computed using a utilitarian
criterion, is simply the objective of the family head in equation (8).16 The following
definition formalizes this problem, using the notations of Section 3.

Definition 2 (Ramsey problem for a truncated economy) Let N > 0. Given ini-
tial conditions regarding the wealth distribution

(
S−1,eN , a−1,eN

)
eN∈EN

, the initial public
debt B−1, the initial capital tax τK0 , and the initial aggregate state s−1, the Ramsey prob-
lem consists in choosing, at date 0, a fiscal policy comprising capital and labor tax paths

16Alternative social welfare functions can be used, but we focus on the most standard case.
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(τKt+1, τ
L
t )t≥0, and public debt paths (Bt)t≥0, that maximizes the aggregate welfare defined

in (8) among the set of competitive equilibria characterized in Definition 1.

Since the period-0 capital tax rate is given, the capital tax path starts at date 1.
Equation (4) implies that the government is able to set the post-tax interest rate (rt)t≥1

and the post-tax wage rate (wt)t≥0 instead of the distorting taxes (τKt )t≥1 and (τLt )t≥0, as
in Chamley (1986). As a consequence, we can formalize the Ramsey problem as follows:

max
(rt+1,wt,Bt,(at,eN ,ct,eN ,lt,eN )

eN∈EN )
t≥0

E0

 ∞∑
t=0

βt
∑

eN∈EN
St,eN ξeNU(ct,eN , lt,eN )

 , (22)

Bt + F (Kt−1, Lt, st) ≥ Gt + (1 + rt)Bt−1 + rtKt−1 + wtLt, (23)

for all eN ∈ EN :

at,eN + ct,eN ≤ wtθeNt lt,eN1eN0 6=0 + δ1eN0 =0 + (1 + rt)ãt,eN , (24)

ξeNUc
(
ct,eN , lt,eN

)
− νt,eN = βEt

 ∑
ẽN∈EN

Πt+1,eN ,ẽN ξẽNUc
(
ct+1,ẽN,lt+1,ẽN

)
(1 + rt+1)

,
(25)

lt,eN ≥
(
wtθeNt

)ϕ
+ δ1eN0 =0, (26)

νt,eN (at,eN + a) = 0, (27)

At =
∑

eN∈EN
St,eNat,eN , Lt =

∑
eN∈EN

St,eN θeNt lt,eN , Kt = At −Bt, (28)

ct,eN , lt,eN , (at,eN + a) ≥ 0, (29)

with the law of motion (6) of (St,eN )t≥0,eN∈EN , and the definition (7) of (ãt,eN )t≥0,eN∈EN .
Constraints (23)–(29) should be understood to apply to all st ∈ St and all eN ∈ EN .17

Maximization devices in the Ramsey problem are both individual quantities – con-
sumption level, labor effort, and asset holdings – and fiscal instruments: public debt, and
post-tax interest and wage rates. Equation (23) is the government budget constraint,
while the individual budget constraint is given in equation (24). The individual Euler
equations for consumption and labor are provided in equations (25) and (26), respec-
tively. The complementary slackness condition is stated in equation (27). Equation (28)
gathers the aggregation for individual wealth and the labor supply, as well as financial
market clearing. Finally, positivity and borrowing constraints appear in equation (29).

A reformulation of the Ramsey problem. We simplify the formulation of the
Ramsey problem exposed in equations (22)–(29). We first denote by βtmt(st)St,eNλt,eN
the (discounted) Lagrange multiplier of the Euler equation of agent eN in state st. We
also define for all eN ∈ EN :

Λt,eN =
∑
êN∈EN St−1,êNλt−1,êNΠt,êN ,eN

St,eN
, (30)

17Again, Et[·] is the conditional expectation at date t with respect to aggregate shocks.
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which, for agents of island eN , can be interpreted as the average of their previous period
Lagrange multipliers for the Euler equation. Finally, we note that λt,eN = 0 if at,eN = −a:
λt,eN is zero when the credit constraint is binding. The product λt,eNνt,eN (for any t and
any eN) is thus always equal to 0. The following lemma summarizes our simplification of
the Ramsey problem.

Lemma 1 (Simplified Ramsey problem) The Ramsey problem in equations (22)–(29)
can be simplified into:

max
(rt+1,wt,Bt,(at,eN ,ct,eN ,lt,eN )

eN∈EN )
t≥0

E0

∞∑
t=0

βt
∑

eN∈EN
St,eN

(
ξeNU(ct,eN , lt,eN ) (31)

+ ξeNUc(ct,eN , lt,eN )
(
Λt,eN (1 + rt)− λt,eN

))
,

s.t. λt,eN = 0 if at,eN = −a, (32)

and subject to equations (6), (7), (23)–(26), (28)–(29), and (30).

The proof is provided in Section C of the Appendix. The simplification of the Ramsey
problem, which eases the computation of the maximization problem, is based on a re-
writing of the Lagrangian to introduce Lagrange multipliers into the objective, as in
Marcet and Marimon (2011). It could also provide a recursive formulation of the Ramsey
problem that we do not need, as the sequential representation allows us to derive first-
order conditions, expressed in a way that aids interpretation.

4.2 A benchmark: The complete market case

To understand how market incompleteness and heterogeneity affect the optimal tax sys-
tem, we introduce the CM benchmark, extensively studied since Chamley (1986) and
Judd (1985a). In the environment examined above, this corresponds to the case where
all agents are on the same island. For ease of exposition, variables for the CM case will
be denoted using an upper-script (0). For instance, µ(0) denotes the Lagrange multiplier
of the governmental budget constraint in the CM economy.

In the CM economy, complete insurance markets imply that the marginal utility of
consumption is the same for all agents, no matter their history, which implies that we
have ξeNUc

(
ct,eN , lt,eN

)
= ξfNUc

(
ct,fN , lt,fN

)
for eN , fN ∈ EN . Furthermore, with the

GHH utility function, we can easily find that lt,eN = (χwtθeN )ϕ. These two equalities can
be used to aggregate heterogeneity and to solve a standard representative agent problem.

Some of the results we present in both CM and IM economies depend on the con-
vergence of the economy toward an interior steady state (where aggregate variables are
constant). As shown by Straub and Werning (2014), this may not always be the case,
because Lagrange multipliers may not converge toward finite or non-zero values. Re-
cent contributions such as Chari, Nicolini, and Teles (2016) show that the behavior of
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Lagrange multipliers depends on the set of instruments available to the planner. In addi-
tion, Chen, Chien, and Yang (2017) show that the steady state optimal tax is interior in a
related model with incomplete-insurance markets. For the calibration provided in Section
5, we check that the interior steady-state is stable for both CM and IM economies. As
a consequence, and to simplify the exposition, we compare steady-state outcomes of the
CM and IM economies, assuming that they converge toward an interior steady-state.

The optimal fiscal system at the interior steady-state is easy to understand in this
environment, following the analysis of Chari, Christiano, and Kehoe (1994) and Aiyagari,
Marcet, Sargent, and Seppälä (2002) among others. In the CM allocation, households are
borrowing at the maximum borrowing limit, and their debt is held by the government,
which thus holds the highest possible quantity of assets (and thus a negative public debt).
The government finances public spending out of interest payments made by firms and
households. The key driver of this outcome is that the interest payments made by firms
and households are not distorting and are thus an efficient way for the government to
raise resources. The labor tax helps finance additional needs, when public spending is
too high to be exclusively financed out of interest payments. The capital tax is zero at
the steady-state, which is the traditional Chamley-Judd result. This environment is well
known (see Chari, Christiano, and Kehoe 1994 or Sargent and Ljungqvist 2014 Chap. 15
for a textbook treatment), and we solve it in Appendix F. Finally, setting a non-zero
credit constraint in the CM case is a requirement for having a non-zero tax base at the
steady-state, which appears to be important for the dynamics investigated below.

4.3 Results for the incomplete-market economy

We formally derive the first-order conditions for the government in the IM economy in
Section D of the Appendix. These equations – which are necessary conditions for the
optimality of the Ramsey allocation – can be simplified by introducing a new intuitive
concept, which we call the social valuation of liquidity for agents eN and denote by ψt,eN .
It is formally defined as:

ψt,eN ≡ ξeNUc(ct,eN , lt,eN )− ξeNUcc(ct,eN , lt,eN )
(
λt,eN − (1 + rt)Λt,eN

)
. (33)

The valuation ψt,eN differs from the marginal utility of consumption ξeNUc(ct,eN , lt,eN )
(which can be seen as the private valuation of liquidity for agents eN) since ψt,eN takes
into consideration the saving incentives from periods t−1 to t and from periods t to t+1.
An extra consumption unit makes the agent more willing to smooth out her consumption
between periods t and t+1 and thus makes her Euler equation more “binding”. This more
“binding” constraint reduces the utility by the algebraic quantity ξeNUcc(ct,eN , lt,eN )λt,eN ,
where λt,eN is the Lagrange multiplier of the agent’s Euler equation at date t. The
extra consumption unit at t also makes the agent less willing to smooth her consumption
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between periods t− 1 and t and therefore “relaxes” the constraint of date t− 1. This is
reflected in Λt,eN .

A similar expression can be derived in the CM economy. The social valuation of
liquidity for the representative agent can be written as:

ψ
(0)
t = ξ̄tUc(c(0)

t , l
(0)
t )− ξ̄tUcc(c(0)

t , l
(0)
t )

(
λ

(0)
t − (1 + r

(0)
t )λ(0)

t−1

)
, (34)

where ξ̄t is a new parameter coming from heterogeneous preferences and whose expression
is made explicit in Appendix F. Note that the expressions in the IM and CM economies,
(33) and (34), respectively, are analogous. We now present and discuss the first-order
conditions of the planner using these concepts for the three instruments: labor tax, capital
tax, and public debt.

Labor tax. In the CM economy, the optimal labor tax is characterized by:

ϕ
τ
L,(0)
t

1− τL,(0)
t

= 1− ψ
(0)
t

µ
(0)
t

. (35)

The left-hand side is a measure of the marginal cost of raising resources with the labor
tax, taking into account distortions, which are an increasing function of labor elasticity ϕ.
The right-hand side is a measure of the marginal gain. If the government and households
value liquidity identically, i.e. if ψ(0)

t = µ
(0)
t , then the right-hand side is null, and so is the

labor tax τL,(0). There is no use for a distorting tool. Conversely, when the government
has a greater liquidity need than that of households: µ(0)

t > ψ
(0)
t , the labor tax becomes

positive. From Chari, Christiano, and Kehoe (1994), and confirmed in our simulations
below, it is known that both valuations ψ(0)

t and µ
(0)
t move closely together along the

business cycles in the CM economy. As a consequence, the labor tax remains very stable
after either a technology or a public spending shock.

In the IM economy, the tax is defined by a similar equation. Before turning to the
formal equation, we define the efficient labor share of households with history eN as
ωLt,eN ≡

S
t,eN

l
t,eN

θ
eN
t

Lt
, which represents the share of workers with history eN in the labor-

tax base at date t. Note that ∑eN∈EN ω
H
t,eN = 1. The restriction on the labor tax is:

ϕ
τLt

1− τLt
= 1−

∑
eN∈EN ω

L
t,eNψt,eN

µt
. (36)

The two expressions (35) and (36) for the CM and IM economies, respectively, are
very similar. The distortions induced by the labor tax are equalized to the equilib-
rium gain of transferring resources from all households to the government. The house-
hold valuation of liquidity is now an average across households, which can be written
as ∑eN∈EN ω

L
t,eNψt,eN = ∑

eN∈EN ψt,eN + coveN (ωLt,eN , ψt,eN ). The covariance term (across
histories) highlights an additional net cost of using the labor tax, stemming from its
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redistributive effect. If the covariance is negative (as in the case in the quantitative in-
vestigation below), households with a high labor income have a low liquidity need. In
this case, the labor tax tends to be progressive and has a small redistributive cost. As
a result, when the covariance becomes increasingly negative, the labor tax will rise, all
other things being constant. The reverse holds when the covariance is positive.

It is noteworthy that the labor tax is not a sufficient statistic for the distortions in
the economy. CM and IM economies can in fact face similar labor taxes that give rise to
very different distortions. The two ratios ψ

(0)
t

µ
(0)
t

and
∑

eN∈EN ωL
t,eN

ψ
t,eN

µt
can be similar with∑

eN∈EN ω
L
t,eNψt,eN much higher than ψ(0)

t , if it is also the case for µt and µ(0)
t .

Capital tax. In the CM economy, the first-order condition for the capital tax can be
expressed as:

ξ̄tUc(c(0)
t , l

(0)
t )λ(0)

t−1

µt(0)A
(0)
t−1

= 1− ψ
(0)
t

µt(0) . (37)

The first order condition (37) for the capital tax closely parallels that (35) for the labor
tax. This equation states that the (intertemporal) cost of of transferring one unit of
resources to the government (left-hand side) is equal to the marginal benefit. The in-
tertemporal distortion generated by the capital tax is a decreasing function of the capital
stock, as one additional unit of resources is generated by a smaller marginal increase
in the capital tax when the capital tax base, At−1, is higher. The distortion is also an
increasing function of the Lagrange multiplier λ(0)

t−1 as it affects capital accumulation from
periods t− 1 to t.

Before turning to the first-order condition in the IM economy, we first define, as we
did in the labor tax case, ωKt,eN ≡

S
t,eN

ã
t,eN

At−1
. This is the share of households with history

eN in the period-t tax base. The first-order condition in the IM economy can now be
expressed as

∑
eN∈EN

St,eN
Uc(ct,eN , lt,eN )Λt,eN

µtAt−1
= 1−

∑
eN∈EN ω

K
t−1ψt,eN

µt
. (38)

Once again, first-order conditions (37) and (38) have a similar expression in the CM
and IM cases. In the CM case, the cost of levying resources depends on the term∑
eN∈EN ω

K
t−1ψt,eN = ∑

eN∈EN ψt,eN + coveN (ωKt,eN , ψt,eN ), where the covariance term again
captures the redistributive effect of the capital tax. The more negative the covariance
term, the less costly it becomes to levy resources with capital tax. The covariance term
is negative (as it is in our quantitative investigation below) when wealthier households
have lower liquidity needs.
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Public debt. The first-order condition for public debt in the IM economy pinning down
the dynamics of µt is:

µt = βEt [µt+1 (1 + r̃t+1)] . (39)

Equation (39) sets equal the marginal benefit of one additional unit of debt at date t to
the marginal extra cost at date t + 1, using the before-tax return r̃t to value the next
period. This expression is exactly the same as in the CM economy, and so we omit it.
Public debt is a residual in the CM economy that can be obtained from the government’s
budget constraint. The rationale for public debt dynamics is that they can smooth
tax distortions, but the precise dynamics are hard to characterize theoretically, as they
depend on the volatility of taxes and therefore on underlying shocks (Chari, Christiano,
and Kehoe 1994). The same reasoning prevails in the IM economy, as will be shown in
the quantitative analysis below.

Steady-state capital tax. The first-order condition of the planner program enables
us to derive additional results regarding the steady-state fiscal policy. The main results
are gathered in the following proposition.

Proposition 3 (Steady-state) In the interior steady-state of the Ramsey equilibrium:

1. the marginal productivity of capital is determined by the discount factor β:

1 + FK(K,L) = 1
β
, (40)

2. the capital tax is non-negative; it is positive if, and only if, credit-constraints bind
for some agents, or more formally:

τK =
∑
eN∈C SeNνeN

(1− β)∑eN∈EN SeNUc (ceN , leN ) , (41)

where we recall that C is the set of islands where credit constraints bind at the
steady-state, and νeN is the Lagrange multiplier of credit constraint for island eN .

The first item in equation (40) of Proposition 3 is a direct implication of the gov-
ernment Euler equation (39). As a consequence, the marginal productivity of capital is
determined solely by the discount factor β, as originally explained by Aiyagari (1995).
This important restriction is the so-called “modified golden rule”. The second item in
Proposition 3 is new in the literature in this form.18 The capital tax is always non-
negative and its value is determined by the Lagrange multipliers on the households’
credit constraints. The steady-state capital tax will be positive if, and only if, some
agents are credit-constrained. In this case, some agents do not internalize the effect of

18This expression does not depend on truncation, and we checked that the same expression can be
obtained in the steady state in the case where N =∞.
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the interest rate on their saving decision. They thus save to self-insure, generating an
overall oversupply of liquidity, as identified by Woodford (1990).19 In other words, it
is not market-incompleteness but binding credit constraints that justify positive capital
taxation at the interior steady-state.

In the previous analysis, we assumed that the credit constraint was tighter than the
natural borrowing limit, which is the case in most quantitative works. The motivation
for this assumption is the previous capital tax result, which raises a difficulty in the
case where the credit constraint is below the natural borrowing limit. In this case, no
household is credit-constrained, the capital tax is 0 (Item 2 of the Proposition),20 and
households thus face a post-tax interest rate of 1 + r = 1

β
(item 1). In this case, an

interior steady-state equilibrium may not exist when N becomes large enough, because
household savings tend toward infinity, while the capital stock is finite. This was already
discussed in Bewley (1983) in a monetary environment, and in Aiyagari (1995) with
capital accumulation.21

5 Quantitative properties of the optimal tax system

We now provide a quantitative investigation of the optimal tax system, after both a
technology and a public spending shock, to further understand the effect of market in-
completeness.

5.1 Parameter calibration

We first provide a calibration for standard parameters, before explaining the choice of
the truncation length N and of taste shocks (ξeN )eN∈EN .

First, the utility function is u
(
c− χ−1 l1+ 1

ϕ

1+ 1
ϕ

)
= log

(
c− l

1+ 1
ϕ

1+ 1
ϕ

)
, with a Frisch elasticity

of labor supply set to ϕ = 0.5, which is consistent with empirical estimates (Chetty,
Guren, Manoli, and Weber 2011). The period is a year, and the discount factor is
β = 0.96.

19Davila et al. (2012) use perturbation methods to show that capital stock can be either too high or
too low in the steady state. We characterize the capital tax as a tool used to affect capital accumulation.
The proposition states that this tax is not used to subsidize capital accumulation. Note that, in our
analysis, this result depends on the commitment assumption. See Benhabib and Rustichini (1997) for
the case without commitment and with complete markets. Finally, Piketty and Saez (2013) also argue
in their Appendix A.3 that capital tax may be positive if some households do not leave a bequest, which
is the equivalent of credit constraints being binding in our environment.

20The denominator in equation (41) is bounded away from zero because the economy is finite as the
marginal productivity of capital is bounded away from 0 (from item 1 of the Proposition), i.e., not all
marginal utilities can be simultaneously zero.

21Note that Aiyagari (1995) proves that if an interior steady-state equilibrium exists, then capital
tax is positive in a Bewley model with capital accumulation. The difficulty is that such an equilibrium
may not exist. The structure of the equilibrium with optimal taxes, capital accumulation, and credit
constraints below the natural borrowing limit is left for future research.
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The production function is Cobb-Douglas with a constant capital depreciation ς:
F (K,L, z) = Ψ(z)KαL1−α − ςK, where Ψ(z) = exp(z) is the technology level. As is
standard, the capital share is set to α = 0.33, and the depreciation rate to ς = 10%. The
technology shock is assumed to follow an AR(1) process: zt = ρzzt−1 + εzt , where (εzt )t≥0

is a white-noise process with a distribution N (0, σ2
z). We set the annual persistence of

the technology shock to ρz = 0.81, which corresponds to a quarterly persistence of 0.95.
The standard deviation is set to σz = 1%. Public spending is assumed to be of the form
Gt = G exp(gt), where gt follows an AR(1) process: gt = ρggt−1 + εgt , where (εgt )t≥0 is a
white-noise process with a distribution N (0, σ2

g). We set the annual persistence of the
technology shock to ρg = 0.89 and the standard deviation to σg = 7%, following Chari,
Christiano, and Kehoe (1994) and Farhi (2010).

We calibrate the idiosyncratic risk to the unemployment risk, as in Imrohoroğlu (1992)
or Krusell and Smith (1998) among others. Households can be either employed, in which
case they choose their labor supply, or unemployed, in which case they obtain δ consump-
tion units from home production. For employment risk, we derive transition probabilities
using a calibration based on the strategy of Shimer (2003). The annual transition matrix

is M =
 0.057 0.943

0.056 0.944

.22 The home production parameter δ is set such that home

production amounts to 50% of market income. Finally, steady-state public spending is
set to G = 0.38, which implies a steady-state public spending-to-GDP ratio roughly equal
to 33%, which is US average public spending in early 2000 net of unemployment benefits,
to be consistent with the model.23

The credit limit is set to ā = 0.01. In incomplete market models, this credit limit is
often set to 0 for computational speed. However, as was explained above, the case ā = 0
happens to be a very special case when deriving optimal fiscal policy under complete
markets, as the steady-state capital tax base is 0. This small deviation from the standard
case is sufficient to properly characterize the properties of fiscal policy under complete
markets, so as to be able to compare them with our results under incomplete markets.

Table 1 summarizes our calibration for standard parameters.

β φ α ς δ/(wl) G ρz σz ρg σg ā

0.96 0.5 0.33 10% 50% 0.38 0.81 0.01 0.89 0.07 0.01

Table 1: Parameter values
22More precisely, we consider the quarterly matrix derived by Challe and Ragot (2016) compounded

four times to obtain annual transitions. Roughly, the quarterly job finding rate is 80% and the quarterly
job separation rate is 5%.

23An alternative strategy would be to target government consumption, which is lower than public
spending. This may under-estimate the distortions of the tax system. For our exercise, the financing of
total spending seems to be a more relevant target.
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Choosing N and (ξeN )eN∈EN . The remaining coefficients are the truncation parameter
N , which characterizes the magnitude of insurance – through pooling – for the idiosyn-
cratic risk, and the preference parameters (ξeN )eN∈EN . As we consider an unemployment
risk with two states, we have 2N different individual histories. We must also calibrate the
2N history-dependent preference parameters (ξeN )eN∈EN . Although the model can be eas-
ily simulated for the case ξeN = 1 for all eN , we nevertheless use the model’s flexibility to
calibrate these parameters to match a specific distribution. The interest of this strategy is
twofold. First, it provides a solution that makes the model more quantitatively relevant,
which is of independent interest. Second, this strategy also fastens the convergence of the
optimal tax system, especially for small values of the parameter N , which helps speed up
the convergence.

How do we calibrate (ξeN )eN? We begin by simulating a Bewley economy (i.e., without
aggregate shock Ψ = 1 and Gt = G) for the same period utility function but with ξeN = 1
for all eN ∈ EN and for exogenous prices, to generate a benchmark distribution of wealth.
For our simulation, we consider a post-tax annual interest rate of r = 4% and a post-tax
wage rate of w = 0.684. This last value is consistent with the Cobb-Douglas production
function calibrated with the values of Table 1, together with a realistic tax system.24

Then, for a given N , we simulate the island economy with the same exogenous prices and
determine the (ξeN )eN∈EN – with the normalization ∑eN∈EN SeN ξeN = 1 – such that the
distribution of wealth in the island economy is close to that of the Bewley economy (see
Section G of the Appendix for details of the computational method).25

For any given N , we can therefore determine the (ξeN )eN∈EN and deduce the wealth
equilibrium distribution (with endogenous prices), as well as the amount of risk sharing.
We proxy risk sharing by the standard deviation across agents of the “pooling” transfers
Γ∗(eN+1), normalized by the total income InceN+1 of agents with history eN+1 (InceN+1 =
wθeN+1

0
leN+1 + δ1eN+1

0 =0 + (1 + r)aeN+1), which will be denoted by sdΓ. A value equal to
5% means that the standard deviation of the value of pooling transfers relative to agents’
own individual income is 5%, which is low.

In Table 2, we report for different values of N the wealth distribution (in deciles,
noted from D1 to D10), the standard deviation sdΓ, and the standard deviation of the
taste shocks (ξeN )eN∈EN , which we denote by sdξ. For each wealth decile, we report the
cumulative share of the total wealth held by agents in the deciles up to and including
the given decile (so as to provide a simplified Lorenz curve). For instance, column D6
corresponds to the share of total wealth held by agents belonging to the first 6 deciles.

24More precisely, we consider a capital tax τK = 36% and a labor tax τL = 28% (taken from Trabandt

and Uhlig 2011) and we define w by w =
(
1− τL

)
w̃ =

(
1− τL

)(
α

r

1−τK
+µ

) α
1−α

.
25We use a general algorithm that derives results for any N . Admittedly, for a given truncation

N , distributions could be more closely matched by using more elaborated methods such as simulated
methods of moments. We leave these improvements for future work.
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N D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 sdΓ
(%)

sdξ
(%)

4 2.13 6.44 17.74 29.49 41.24 52.99 64.75 76.50 88.25 100 8.40 0.69
5 2.17 6.65 15.48 27.55 39.63 51.70 63.78 75.85 87.92 100 7.42 0.70
6 2.18 6.76 13.39 25.76 38.13 50.50 62.88 75.25 87.63 100 6.65 0.72
7 2.24 6.90 13.33 24.20 36.84 49.47 62.10 74.73 87.37 100 5.95 0.72
7

(ξ = 1) −0.48 2.98 8.76 19.79 33.16 46.53 59.90 73.26 86.63 100 1.48 0

∞ 1.49 6.42 13.20 21.53 31.30 42.50 55.04 68.87 83.87 100 - -

Table 2: Simulation results. D1 to D10 represent deciles in the cumulative wealth dis-
tribution. sdΓ is the standard deviation sd(Γ∗(eN+1)/InceN+1), while sdξ is the standard
deviation of (ξeN )eN (see the text for further details).

We report all of these quantities for various values of N , starting with N = 4 for the sake
of conciseness. We stop the simulations at N = 7, because the optimal tax system has
roughly converged (see Table 3 below). Finally, in the last row we report the distribution
generated by the Bewley model, labeled ∞.

From Table 2, we observe that as N rises, the wealth distribution gets closer to the
Bewley distribution and that the standard deviation of the pooling transfer falls. This
confirms that as N rises, the idiosyncratic risk sharing provided by asset pooling falls.
For N = 7, the standard deviation of pooling transfers is relatively low, and below 6%.
To provide a comparison, we also report the simulated distribution for N = 7 and for
ξeN = 1 (labeled as row “7(ξ = 1)”). In this case, poor agents hold too little wealth.
Finally, the standard deviation of the taste shocks (ξeN )eN∈EN remains low, and below
1% for all simulations.

Numerical methods. To solve the model, we first solve for the steady state. This
is not difficult, as the above equations define an almost linear system. We provide the
Algorithm in Section H of the Appendix. Second, we write a code that writes the set of
dynamic equations in Dynare for an arbitrary N . This allows us to use the Dynare solver
to double-check our steady-state computations and to simulate the model. We check that
the standard stability and credit-constraint conditions are fulfilled and that all variables
converge back to their steady state value after the shocks. Simulating the model takes a
couple of seconds once the steady-state is found.

5.2 Steady-state tax system

We simulate the island economy – with properly calibrated taste shocks for each N – to
determine the steady state optimal fiscal system, consisting of capital τK and labor taxes
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τL, and the optimal public debt. We report the results in the first part of Table 3 for
different values of N , including N = 0, which corresponds to the complete market case
discussed in Section 4.2. For the debt, we report the debt-to-GDP ratio B/Y . We also
report the standard deviation of the normalized pooling transfers sdΓ, which differ from
those in Table 2, because the tax system and prices are different.

N τK (%) τL (%) B/Y sdΓ (%)
0 0.0 34.5 −2.35 −
4 7.4 34.9 −2.29 1.6
5 7.5 34.9 −2.29 1.3
6 7.6 34.9 −2.29 1.0
7 7.6 34.9 −2.29 0.7

Sensitivity analysis
7 (ξ = 1) 7.8 34.8 −229 1.3
7 (δ/wl = 0.55) 5.1 34.9 −230 0.7
7 (φ = 0.6) 7.1 34.8 −230 0.5

Table 3: Steady-state optimal fiscal system

In the complete-market case (N = 0), public debt is negative. As already explained in
Section 4.2, the government holds all the capital stock and finances its residual financial
needs with labor taxes, which amount to τL = 34.5%. Capital taxes are zero, as is
standard in complete-market environments.26 The fiscal system converges rapidly with
N and the standard deviation of the pooling transfer is low, and smaller than 1% for
N = 7. We now discuss the results for the case N = 7. First, the labor tax amounts
to 34.9%, which is slightly higher than with complete markets (34.5%). The government
does not significantly rely on the labor tax for redistribution, because distortions are high
in the incomplete-market economy. To see this, we need to use equations (35) and (36)
defining the labor tax in complete and incomplete economies. Labor tax rates are very
similar in both types of economy: the ratio

∑
eN∈EN ωL

eN
ψ
eN

µ(N) = 0.73 in (36) for IM is close
to the ψ(0)

µ(0) = 0.74 in (35) for CM. However, the close tax rates mask significant differences
between IM and CM. For example, both the need to levy resources and the distortions
generated by the labor tax are higher in the IM economy than in CM economy. We have∑
eN∈EN ω

L
eNψeN (2.85) > ψ(0)(2.79) for household liquidity needs and µ(3.92) > µ(0)(3.79)

for governmental liquidity needs: both households and governments have higher liquidity
needs. The redistribution motive tends to increase the labor tax, because the covariance

26We checked whether the steady-state was an interior solution by studying the government’s optimal
policy. It was indeed found to converge back to the steady state after both a technological and a public
spending shock.
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is negative corr(ωLeN , ψeN )(−0.40) < 0, but the high level of household liquidity needs∑
eN∈EN ω

L
eNψeN (2.85) makes tax labor costly to use and limits its magnitude.

Second, the capital tax is zero as expected in the CM economy, and it is small but
positive (7.6%) in the IM economy. In the IM economy, a positive though small number
of agents (roughly 5%) face a binding credit constraint. Households save too much in
this case, because credit-constrained households do not internalize the interest rate effect
into their borrowing decision.

Finally, the public debt-to-GDP ratio is 6 percentage points higher in IM than in
CM. Following the analysis of Woodford (1990), this difference stems from the fact that
public debt is a useful device that enables private agents to self-insure in the absence of
complete insurance markets. The cost of higher (i.e. less negative) public debt is that
more resources must be obtained from distorting tools, as in Aiyagari and McGrattan
(1998).27

Sensitivity analysis. The second part of Table 3 provides a sensitivity analysis for
three sets of parameters for N = 7. First, we provide the optimal fiscal system for all
ξeN = 1 (everything else is held constant) in line 7. The capital tax is a little higher and
the labor tax a little lower, whereas public debt does not vary. Thus, the fiscal system does
not significantly depend on the matching of the wealth distribution. Second, we increase
home production from 50% to 55% of labor income in line 8. As there is less need to
self-insure, capital tax falls, as does public debt (there is less liquidity to self-insure). The
labor tax remains constant, because there is little net effect on liquidity needs. Third,
we increase the Frisch elasticity to 0.6, instead of 0.5. To make the economy comparable,
we adjusted the labor supply parameter (χ = 1.07) to ensure the same average steady-
state labor supply. The steady-state labor tax is lower (34.8%) than in the benchmark
(34.9%). For our preference, this change reduces the difference in marginal utility between
employed and unemployed agents. As a consequence, there is a lower insurance need and
both public debt and capital tax fall. Finally, the dynamics of the fiscal system that we
report below for the benchmark calibration do not significantly vary in the sensitivity
analysis we consider.

5.3 Negative public spending shock

We now simulate the optimal change in the fiscal system after a negative public spending
shock (to obtain an expansion in all our simulations). We consider an unexpected fall in
the ratio of public spending-to-GDP of 1 percentage point and then let public spending

27Note that Aiyagari and McGrattan (1998) determine the optimal level of public debt by numerically
maximizing steady-state welfare, whereas we solve for the steady-state of the Ramsey problem, which
is a different exercise. For this reason, it is not possible to compare the optimal level of debt for these
different exercises.
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converge back to its equilibrium value.

Figure 1: Aggregate IRFs after a 1 pp decrease in the ratio of public-spending-to-GDP
(G/Y). See the text for a description of the variables. Solid line: IM economy with N = 7;
dashed blue line: CM economy.

We compare the responses in IM and CM economies (for N = 7) and report the results
in Figure 1, where we focus on key variables in order to understand the main mechanisms.
The first line of panels plots the shock (G/Y), the GDP (Y), and the capital stock (K).
The second line represents the before-tax wage rate (wt), the before tax real interest rate
(rt), and total labor (L). The third line plots the government’s fiscal instruments: the
labor tax (taul), a transformation of the capital tax (tauk*A0, which we discuss below),
and public debt (B). All variables are given in proportional deviation from steady-state
values, except for taxes and the interest rate, where we report level deviations. For each
variable, the dashed blue line corresponds to CM, and the solid black line to IM.

The outcome of the CM economy is now well understood (see Chari, Christiano, and
Kehoe 1994, among others). The reduction in public spending is a positive wealth shock.
The government transfers wealth back to households with an initial large change in the
capital tax for one period, as this is not distorting. The labor tax is almost unaffected
during these dynamics. For the sake of interpretation, the capital tax is represented in
Figure 1 as the tax rate multiplied by the steady-state total household saving: τKt ×A(0)

ss
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where A(0)
ss = −0.01, to aid interpretation. A fall in this product means that resources

are transferred to households. Indeed, as households hold a negative amount of assets,
an increase in the capital tax τK (and thus a reduction in the product) actually reduces
households’ interest payment, enabling the government to transfer resources to house-
holds.28

The main difference in the IM economy is that the government reduces the labor tax
to transfer resources to households. This contributes to an increased labor supply (L)
and thus further drives up the GDP (Y) compared to the CM economy. By examining
the mechanisms pinning down the labor tax in equations (35) and (36), we observe that
the fall in the labor tax stems from a bigger fall in µt compared to ∑eN∈EN ω

L
eN ,tψt,eN ,

whereas the fall in µ(0) is the same order of magnitude as the fall ψ(0)
t in CM. In other

words, in the IM economy, the government’s liquidity need is higher in the steady state
compared to the CM economy, but falls more after the shock compared to the fall in
agents’ needs. This incentivizes the government to reduce labor tax.

Another feature of the IM economy is that public debt is countercyclical, while it is
procyclical in the CM economy. Public debt is used in the CM economy to frontload the
transfer to households, through the capital tax, and to smooth out tax distortions. In the
IM economy, there is no such frontloading, as the labor tax falls during the dynamics.

Concerning the capital tax, in the IM economy, steady-state savings are positive
(Ass = 0.05). The product τKt × Ass is lower because capital tax falls to transfer re-
sources to households. In addition, capital tax generates some redistributive effects,
which makes capital tax less attractive for transferring wealth to households in the IM
economy. The correlation measuring the redistributive effects of capital tax in the IM
economy, corr(ωKeN , ψeN ), is negative (−0.41 in the steady state) (see equation 38). In
other words, transferring resources though the capital tax means transferring large re-
sources to agents who have low liquidity needs. It is therefore regressive.

5.4 Positive TFP shock

We now study the impact on the fiscal system of a positive TFP shock. Figure 2 plots
the same variables as in Figure 1, except in the first panel, which plots the TFP shock
in both economies.

First, the mechanisms in the CM economy are similar to those following a drop in
public spending, discussed above. The economy experiences a positive wealth effect and
the government transfers resources using the capital tax, while the labor tax barely moves.
Public debt is used to smooth out tax distortions.

The striking result is that the IM outcome is now very similar to the CM one. The
28This transformation avoids representing an increase in taxes as a reduction in interest payments. We

can thus easily find the time path of the capital tax from the quantity τKt ×A
(0)
ss .
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Figure 2: Aggregate IRFs after a 1 pp increase in TFP. See the text for a description of
the variables. Solid line: IM economy with N = 7; dashed blue line: CM economy.

labor tax (taul) barely moves in the IM economy, such that the labor supply (L) is close
to that of the CM economy. Examining the mechanisms reveals that the fall in the
governmental budget Lagrange multiplier, µ, is higher in the IM than in the CM, but
that this is offset by a fall of the same order of magnitude in ∑eN∈EN ω

L
eNψeN . Overall,

the government’s reduced liquidity need is accompanied by the similarly reduced liquidity
needs of households, which allows the labor tax to remain largely unchanged. The only
difference between the CM and IM economies is related to the response of public debt,
which is countercyclical in the IM economy and procyclical in the CM economy.

Summarizing our results, we first observe that capital taxes are very volatile in the CM
and IM economies for both shocks, as they represent a non-distorting way of transferring
resources to households (at least on impact). For the CM case, this finding was already
present in Chari and Kehoe (1999) and Farhi (2010). This happens to also be the case
for incomplete insurance markets. Second, the main difference between the IM and CM
economies stems from the labor tax, which is more volatile in the IM economy because
of redistribution constraints. Third, the difference between the IM and CM economies
is particularly significant after a public spending shock, but less so after a TFP shock.
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Finally, public debt in the IM and CM economies exhibits different dynamics for the
two shocks, as public debt can be used to frontload transfers to households in the CM
economy, while this is less the case in the IM economy.

6 Concluding remarks

The market equilibrium in an incomplete insurance-market economy with aggregate
shocks can be represented as the allocation of a family-head program. We use this repre-
sentation to generate a finite-dimensional state-space equilibrium, in which the Ramsey
outcome can be studied with aggregate shocks and various fiscal tools. We employ this
framework to study optimal fiscal policy when positive transfers, distorting taxes on
capital and labor, and public debt are available. The first interest of this framework
is that it can be used to analytically derive various properties of the tax system, such
as the steady-state level of capital and labor taxes. A second interest is its ability to
simply simulate these economies. We apply this quantitative investigation to a standard
economy, where the employment risk is uninsurable, and show that the dynamics of the
fiscal system are different when agents are heterogeneous, compared to the representative
agent case. We investigate the convergence of this economy as a function of N and show
that a reasonably small value of N is sufficient to capture the main characteristics of the
fully-fledged incomplete market economy.

The methodology presented in this paper could be applied to different settings with
incomplete insurance-markets and aggregate shocks. In the general case, these environ-
ments are difficult to analyze and our simplified theoretical representation could help to
derive new results. We thus consider our truncated representation as a complement to
alternative approaches. To take a concrete example, we could first increase the number of
instruments available to the government, such as non-linear tax schedules to model pro-
gressive or regressive fiscal systems, or explicit unemployment benefits, considering cap-
ital accumulation. Second, additional heterogeneity, such as the qualification structure
or limited participation in financial markets to model wealthy hand-to-mouth households
could be introduced to make more extensive use of empirical estimates of key parameters.
Third, and just as importantly, it is also possible to include other distortions, such as
nominal frictions or frictional labor markets, in order to derive optimal monetary policy
in these richer environments.
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Appendix

A Proof of Proposition 1

Consider an agent endowed with the N + 1-period history eN+1 = (êN , e) ∈ EN+1, which
can also be written as eN+1 = (eN , eN). In the former notation, eN+1 is seen as the
history ẽN ∈ EN with the successor state e ∈ E , while in the latter notation, eN+1 is seen
as the state eN ∈ E followed by history eN ∈ EN . The solutions to the program (18)–(20)
are the policy rules c = gN+1

c (a, eN+1), a′ = gN+1
a′ (a, eN+1), l = gN+1

l (a, eN+1) and the
multiplier ν = gN+1

ν (a, eN+1) satisfying:

Uc (c, l) = βE

∑
e′∈E

Me,e′Uc (c′, l′) (1 + r)
+ ν, (42)

l = (χwθe)ϕ1e>0 + δ1e=0, (43)

ν(a′ + ā) = 0 and ν ≥ 0. (44)

We use a guess-and-verify strategy. The transfer is constructed such that all agents with
the same N -period history have the same after-transfer wealth. The measure of agents
with history eN follows the same law of motion as (6) in the island economy and is equal
to SeN . If agents with the same history (êN , e), e ∈ E have the same beginning-of-period
wealth aêN , the after-transfer wealth, denoted by âeN , of agents with history eN � êN is:

â′eN =
∑

ẽN∈EN

SẽN

SeN
ΠẽN ,eNa

′
ẽN , (45)

such that agents with the same history hold the same wealth. By construction, âeN follows
dynamics similar to the “after-pooling” wealth ãt,eN in the island economy of equation
(7). The transfer scheme denoted by

(
Γ∗N+1(eN+1)

)
eN+1∈EN+1

that enables all agents with
the same history to have the same wealth is:

Γ∗N+1(eN+1) = (1 + r) (âeN − aêN ) , (46)

where we use eN+1 = (êN , e) = (eN , eN). The transfer Γ∗N+1(eN+1) defined in (46) replaces
the beginning-of-period wealth (1+r)aêN with the average wealth (1+r)âeN . Since there
is a continuum with mass SẽN of agents with history ẽN , in which each individual agent
is atomistic, all agents take the transfer Γ∗N+1 as given.

Finally, it is easy to check that the transfer scheme is balanced in each period. Us-
ing the definition (45) of âeN , we obtain for eN = (eNN−1, . . . , e

N
1 , e

N
0 ) ∈ EN , SeN âeN =∑

êN∈EN SêNΠêN ,eNaêN = ∑
ê∈E S(ê,eNN−1,...,e

N
1 )M eN1 ,e

N
0
a(ê,eNN−1,...,e

N
1 ). Therefore, we deduce:∑

ẽ∈E S(ẽ,eN )Γ∗N+1(ẽ, eN) = (1 + r)
[∑

ẽ∈E S(ẽ,eN )

(
âeN − a(ẽ,eNN−1,...,e

N
1 )

)]
= 0, where the last

equality comes from the definition of âeN in equation (45).
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B Proof of Proposition

The proof comprises three steps. In the remainder, we use the following notation. For
N > k > 0, ek = (ek−1, . . . , e0) ∈ Ek, eN,k = (eN , . . . , ek) ∈ EN+1−k, and (eN,k, ek) =
(eN , . . . , ek, ek−1, . . . , e0).

B.1 A contraction lemma

We denote by Conv(A) the convex hull of the set A ⊂ R, and by µL the Lebesgue measure
on R.

Lemma 2 (Contraction lemma) Assume that A ⊂ [−ā, amax] and that the conditions
of Proposition 2 are fulfilled. Let B =

{
gN+1
a′ (a, (êN,N̄ , eN̄))|êN,N̄ ∈ EN+1−N̄ , a ∈ A

}
for

any eN̄ ∈ E N̄ . We then have µL (Conv(B)) ≤ κ× µL (Conv(A)).

Proof. SinceB ⊂ R, we have by definition of the convex hull, Conv(A) = [min(A),max(A)]
and Conv(B) = [min(B),max(B)]. Let a′ = max(A) and a = min(A), then µL (Conv(A)) =
a′ − a and B ⊂ [gN+1

a′ (a, (êN,N̄ , eN̄)), g(a′, (ẽN,N̄ , eN̄))] for some êN,N̄ , ẽN,N̄ ∈ EN+1−N̄ .
Therefore, we obtain µL (Conv(B)) ≤ gN+1

a′ (a′, (ẽN+1−N̄ , eN̄)) − gN+1
a′ (a, (êN+1−N̄ , eN̄)).

Applying the Lipschitz property (21) yields µL (Conv(B)) ≤ κ× µL (Conv(A)).

B.2 Proof of the convergence of Γ∗N+1

Let N > 0. Proposition 1 shows that when the transfer is Γ∗N+1, there are (E + 1)N

possible end-of-period asset holdings denoted by (a′êN )êN∈EN . Let AN,−1 be the set of all
possible end-of-period asset holdings in the previous period. We define:

A
(N)
N (eN) = {a′êN ∈ AN,−1|eN � êN}, for eN ∈ EN , (47)

as the set of all possible beginning-of-period and before-transfer asset holdings of agents
with current history eN . In other words, it is the set of all possible previous-period wealth
levels of agents with current history eN . Since the after-transfer wealth level âeN of (45)
is an average of before-transfer wealth levels a′êN , we have âeN ∈ Conv

(
A

(N)
N (eN)

)
.

We define as π(eN) = {êN |eN � êN} the set of possible predecessors of eN . We rewrite
(47) as: A(N)

N (eN) = {a′êN ∈ AN,−1|êN ∈ π(eN)}. For any a′êN ∈ A
(N)
N (eN), there exists

ẽN ∈ EN such that êN � ẽN and a′êN = gN+1
a′ (aẽN , (ẽN , êN0 )) = gN+1

a′ (aẽN , (ẽN , eN1 )) – since
eN1 = êN0 . In other words, a′êN is the optimal choice of an agent who, in the previous
period, had the N -history ẽN , which is thus a possible past of eN . Using the notation
π2 = π ◦ π, ẽN ∈ π2(eN), we can define:

A
(N)
N−1(eN) = {a′ẽN ∈ AN,−2|ẽN ∈ π2(eN) and gN+1

a′ (a′ẽN , (ẽN , eN1 )) ∈ A(N)
N (eN)},
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which is the set of all possible end-of-period asset holdings two periods ago of agents with
current history eN . Similarly, we define for any 0 < k < N :

A
(N)
N−k(eN) = {a′ẽN ∈ AN,−k−1|ẽN ∈ πk+1(eN) and gN+1

a′ (a′ẽN , (ẽN , eNk )) ∈ A(N)
N−k+1(eN)},

which allows us to construct a sequence of sets (A(N)
N−k)k=0,...,N . In other words, A(N)

N−k(eN)
is the set of all possible end-of-period asset holdings k periods ago of agents with current
history eN . Iterating backward to construct those sets, we thus go back in time to
construct sets of possible wealth levels (instead of histories). In the previous notation,
πk+1 denotes π ◦ . . .◦π (k+ 1 times). Note that we could equivalently define A(N)

N−k+1(eN)
as:

A
(N)
N−k+1(eN) = {gN+1

a′ (a′ẽN , (ẽN , eNk ))|ẽN ∈ πk+1(eN) and a′ẽN ∈ A
(N)
N−k(eN)}.

In other words, A(N)
N−k+1(eN) is the set of successors (with relevant histories) of agents

with wealth levels in A
(N)
N−k(eN). If 1 ≤ k ≤ N − N̄ , we deduce, applying Lemma (2),

µL
(
Conv

(
A

(N)
N−k+1(eN)

))
≤ κµL

(
Conv(A(N)

N−k(eN))
)
, and iterating forward:

µL
(
Conv(A(N)

N (eN))
)
≤ κN−N̄µL

(
Conv(A(N)

N̄
(eN))

)
. (48)

Since amax (−ā) is by definition the highest (lowest) wealth level, AN ⊂ [−ā, amax] and
for all k, A(N)

N−k(eN) ⊂ AN ⊂ [−ā, amax]. This implies that µL
(
Conv(A(N)

N̄
(eN))

)
≤

amax + ā. Second we have shown that âeN , aêN ∈ Conv
(
A

(N)
N (eN)

)
for any êN ∈ π(eN),

meaning that |âeN − aêN | ≤ µL
(
Conv

(
A

(N)
N (eN)

))
. As a result, we have from equation

(48):|âeN − aêN | ≤ κN−N̄(amax + ā), which can be made arbitrarily small (0 < κ < 1),
when N increases. We deduce from (46) that lim N→∞ supeN+1∈EN+1 |Γ∗N+1(eN+1)| = 0.

C Proof of Lemma 1

If we denote by βtmt(st)St,eNλt,eN the Lagrange multiplier of the Euler equation for island
eN at date t, the objective of the Ramsey problem (22)–(29) can be rewritten as:

J = E0

∞∑
t=0

βt
∑

eN∈EN
St,eNU(ct,eN , lt,eN )− E0

∞∑
t=0

βt
∑

eN∈EN
St,eNλt,eN (49)

×

Uc(ct,eN , lt,eN )− νt,eN − βEt

 ∑
êN∈EN

Πt+1,eN ,êNUc(ct+1,êN , lt+1,êN )(1 + rt+1)


With λt,eNνt,eN = 0 and definition (30) of Λt,eN , (49) yields (after some manipulations) the
objective in (31), which is maximized subject to constraints (23)–(29), with the exception
of (25).
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D First-order conditions of the Ramsey problem

Let βtmt(st)µt be the Lagrange multiplier of the government budget constraint (23). The
Lagrangian is:

L = E0

∞∑
t=0

βt
∑

eN∈EN
St,eN

(
U(ct,eN , lt,eN ) + Uc(ct,eN , lt,eN )

(
Λt,eN (1 + rt)− λt,eN

))
(50)

− E0

∞∑
t=0

µtβ
t (Gt +Bt−1 + rtAt−1 + wtLt −Bt − F (At−1 −Bt−1, Lt, st−1)) ,

where ct,eN = wtθeNt lt,eN + δ1eN0 =0 + (1 + rt)ãt,eN − at,eN , for all eN ∈ EN , and lt,eN =
(χwtθeN )ϕ1eN0 >0 + δ1eN0 =0 (using (7), (24), and (26)).

Derivative with respect to Bt. We obtain the Euler equation for µt:

µt = βEt [µt+1 (FK(At −Bt, Lt+1) + 1)] . (51)

Derivative with respect to rt. Computing the derivative of the Lagrangian (50) with
respect to rt yields

∂L
∂rt

= −µtβtAt−1 + βt
∑

eN∈EN
St,eNUc(ct,eN , lt,eN )Λt,eN

+ βt
∑

eN∈EN
St,eN

∂ct,eN

∂rt

(
Uc(ct,eN , lt,eN ) + Ucc(ct,eN , lt,eN )

(
Λt,eN (1 + rt)− λt,eN

))
.

Noting that ∂c
t,eN

∂rt
= ∑

êN∈EN
S
t−1,êN

S
t,eN

Πt,êN ,eNat−1,êN , we deduce:

µtAt−1 =
∑
e∈EN

St,eNUc(ct,eN , lt,eN )Λt,eN +
∑
e∈EN

 ∑
êN∈EN

St−1,êNΠt,êN ,eNat−1,êN

ψt,eNt (ct,eN ). (52)

Derivative with respect to at,eN . For all eN ∈ EN \ Ct, this yields:

ψt,eN =βEt
∑

ẽN∈EN
(1 + rt+1)Πt+1,eN ,ẽNψt+1,eN − βEtµt+1(rt+1 − r̃t+1). (53)

Combining (39) with (53) yields:

∀eN ∈ EN \ Ct, µt − ψt,eN = βEt

 ∑
ẽN∈EN

(1 + rt+1)Πt+1,eN ,ẽN
(
µt+1 − ψt+1,ẽN

) . (54)

Derivative with respect to wt. We obtain:

µtLt

(
1 + ϕ

wt
(wt − FL(Kt−1, Lt, st−1))

)
=

∑
eN∈EN

St,eN θeN lt,eNψt,eN . (55)
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Using wt−FL(Kt−1, Lt, st−1) = wt−w̃t = − τLt
1−τLt

w̃t, equation (55) becomes: µtLt
(
1− ϕ τLt

1−τLt

)
=∑

eN∈EN St,eN θeN lt,eNψt,eN . Since Lt = ∑
eN∈EN St,eN θeN lt,eN , we deduce:

∑
eN∈EN

St,eN lt,eN θeN

Lt

(
µt − ψt,eN

)
= µtϕ

τLt
1− τLt

. (56)

E Proof of Proposition 3

First-order conditions (39) and (56) immediately imply (40) at the steady-state. We now
sum individual consumption Euler equations (25) for all eN ∈ EN \C (i.e., when νeN = 0):

∑
eN∈EN\C

SeNUc(ceN , leN ) = β(1 + (1− τ k)r̃)
 ∑
ẽN∈EN

∑
eN∈EN\C

SeNΠeN ,ẽNUc(cẽN , lẽN )
 .

We now split the sum as ∑eN∈EN\C = ∑
eN∈EN −

∑
eN∈C. We finally obtain:

βτ kr̃
∑

eN∈EN
SeNUc(ceN , leN ) =

∑
eN∈C

SeN

×

Uc(ceN , leN )− β(1 + (1− τ k)r̃)
 ∑
ẽN∈EN

ΠeN ,ẽNUc(cẽN , lẽN )
 ,

where we recognize the “Euler inequality” for constrained agents in the right-hand side.
Using equation (25) and βr̃ = 1− β, we obtain equation (41).

F First-order conditions in the CM economy

We first transform the problem in which all agents belong to the same island into a
standard representative agent model. This yields the complete-market outcome if agents
have the same wealth in period 0 (in the general case, the ratio of marginal utilities
across agents would be constant but depends on initial wealth). Denote by ENu the set
of N -period histories for which households are currently unemployed (i.e., of the form
(eN−1, 0) ∈ EN) and earn the fixed amount δ. Denote by ENe the complement of ENu in
EN . In the case when all agents belong to the same island, the problem faced by the
family head is:

max
(At,ct,eN ,lt,eN )

t≥0,eN∈EN

E0

∞∑
t=0

βt

 ∑
eN∈EN

St,eN ξeNU
(
ct,eN , lt,eN

) ,
∑

eN∈EN
St,kct,k + At = wt

∑
eN∈ENe

St,eN θeN lt,eN +
∑

eN∈ENu

St,eN δ + (1 + rt)At−1,

lt,eN = δ, if eN ∈ ENu ,

At ≥ −ā.
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Consider agents EN , who are the agents with the highest productivity for the last N
periods and whose history is {E, . . . , E}. We denote by S(0)

t , c
(0)
t , and l(0)

t the population
size, consumption, and labor supply of these agents. We can re-write all equations as
a function of c(0)

t and l
(0)
t . For instance, the first-order condition for labor is, for all

eN ∈ ENe , l(0)
t,eN =

(
θ
eN

θE

)ϕ
l
(0)
t , from which we deduce the total labor supply:

Lt =
∑

eN∈ENe

St,eN θeN l
(0)
t,eN = S

(0)
t θ̄tl

(0)
t ,

where: θ̄t ≡ θE
∑

eN∈ENe

St,eN

S
(0)
t

(
θeN

θE

)1+ϕ

.

First-order conditions for consumption imply that marginal utilities are equalized. Hence
for all eN ∈ EN , ξeNUc

(
c

(0)
t,eN , l

(0)
t,eN

)
= ξENUc

(
c

(0)
t , l

(0)
t

)
. We can now express the family

head’s program as a function of the consumption and labor choice for EN -agents, from
which we can deduce the consumption and labor choices of all other agents (using the
two previous equalities). First-order conditions of the family head are:

ξ̄tc
(0)
t + A

(0)
t = wtSt,EN θ̄tl

(0)
t + (1− n̄t) δ + (1 + r

(0)
t )A(0)

t−1 (57)

− 1
χ

1
1 + 1/ϕ

[(
St,EN

θE
θ̄t − ξ̄t

)(
l
(0)
t

)1+1/ϕ
+ (1− n̄t) δ1+1/ϕ

]
l
(0)
t = (χwtθE)ϕ , (58)

ξ̄tUc(c(0)
t , l

(0)
t ) ≥ βE

[
(1 + r

(0)
t+1)ξ̄t+1Uc(c(0)

t+1, l
(0)
t+1)

]
(59)

A
(0)
t ≥ −ā (60)

where 1 − n̄t = ∑
eN∈ENe St,k is the measure of employed households and where ξ̄t ≡(∑

eN∈EN St,eN
(
ξ
EN

ξ
eN

)− 1
σ

)
is a parameter aggregating preference heterogeneity. Next,

using the first-order conditions of the family head, we can write the Ramsey problem as:

max(
r

(0)
t+1,w

(0)
t ,B

(0)
t ,A

(0)
t, ,c

(0)
t ,l

(0)
t

)
t≥0

E0

∞∑
t=0

βtξ̄tU(c(0)
t , l

(0)
t ),

subject to the first-order conditions of the family head (57)–(60), as well as to the gov-
ernment budget constraint and the market clearing condition, which can be expressed
as:

B
(0)
t + F (K(0)

t−1, L
(0)
t , zt) ≥Gt + (1 + r

(0)
t )B(0)

t−1 + r
(0)
t K

(0)
t−1 + w

(0)
t L

(0)
t ,

L
(0)
t =St,EN θ̄tl(0)

t , K
(0)
t = A

(0)
t −B

(0)
t .
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Deriving first-order conditions of the Ramsey problem (with the same notation as in the
main text), we obtain:

µ
(0)
t = βEt

[
µ

(0)
t+1

(
1 + r̃

(0)
t+1

)]
,

µ
(0)
t − ψ

(0)
t = β(1 + r

(0)
t+1)Et

[
µ

(0)
t+1 − ψ

(0)
t+1

]
+ ν

(0)
t ,

µ
(0)
t − ψ

(0)
t = ϕµ

(0)
t

τ
L,(0)
t

1− τL,(0)
t

,

µ
(0)
t − ψ

(0)
t = ξ̄tUc(c(0)

t , l
(0)
t )λ(0)

t−1

A
(0)
t−1

,

where ψ(0)
t ≡ Uc(c(0)

t , l
(0)
t ) + Ucc(c(0)

t , l
(0)
t )

(
(1 + r

(0)
t )λ(0)

t−1 − λ
(0)
t

)
.

Steady state. It is easy to check that the interior steady-state equilibrium has the
following properties: τK,(0) = 0, A(0) = −ā, together with ν(0) = 0. Moreover, we have
τL,(0), λ(0) > 0 if and only if µ(0) > ψ(0).

G Algorithm for matching distributions

We explain how to match a steady-state wealth distribution using (ξeN )eN∈EN , for a given
N . Transition probabilities (ΠeN ,ẽN )eN ,ẽN∈EN and population sizes (SeN ) are constant. We
first simulate a Bewley model with the prices given in the text and derive end-of-period
wealth levels (aeN )eN∈EN using the policy rules. We also obtain the set C of credit-
constrained histories. This set has to be non-empty for the following algorithm to work.
In our simulations, it is the case for not too short truncations. Other steps are:

1. Derive the beginning-of-period wealth level from (7). Then, derive the consumption
for each history, ceN , using the labor supply (13) and the budget constraints (9).

2. Use consumption levels and labor choices to derive the values Uc(ceN , leN ).

3. Set parameters ξeN for constrained histories eN ∈ C to ξc. Then use (12) to de-
rive the following ξeNUc(ceN , leN ) = β

[∑
ẽN�eN ΠeN ,ẽN ξẽNUc(cẽN , lẽN )(1 + r)

]
for all

unconstrained histories eN ∈ EN \ C.

4. Solve the previous equations, which form a linear system in ξeN for eN ∈ EN \ C, as
a function of ξc. Then iterate over ξc until

∑
eN∈EN SeN ξeN = 1.

H Algorithm to find the steady state

1. We guess the set C of islands that are credit-constrained. We choose a post-tax
interest rate r and a post-tax wage rate w. Then:
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(a) We compute the labor supply on each island eN , using agents’ first-order condi-
tions (26). We then deduce the aggregate labor L. We compute the aggregate
capital K with FK(K,L) = β−1 − 1.

(b) We determine individual consumption levels and asset holdings using equations
(24), (25), and (7). We deduce a corresponding value for public spending, given
by G = F (K,L)− rA− wL− T .

(c) We set a value of µ. We set values ψeN , eN ∈ C (for credit-constrained islands).
Using (54), we then solve for ψeN , eN ∈ EN \ C (unconstrained islands). We
then obtain λeN , eN ∈ EN using (33) defining ψeN . We finally iterate on ψeN ,
eN ∈ C, until we have λeN = 0 for eN ∈ C (constrained islands). We iterate on
µ until equation (38) holds at the steady-state.

(d) We iterate on w until (56) holds at the steady-state.

2. We iterate on r until G/Y matches its target. We finally verify that the Euler
inequalities are strict for islands eN ∈ C to check that the set C of constrained
islands is correct. Otherwise, we iterate on C.
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