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How does market concentration affect the potency of monetary policy? The ubiqui-

tous monopolistic-competition framework is silent on this issue. To tackle this ques-

tion we build a model with heterogeneous oligopolistic sectors. In each sector, a finite

number of firms play a Bertrand dynamic game with staggered price rigidity. Follow-

ing an extensive Industrial Organization literature, we focus on Markov equilibria

within each sector. Aggregating up, we study monetary shocks and provide a closed-

form formula for the response of aggregate output, highlighting three measurable

sufficient statistics: demand elasticities, market concentration, and markups. We cali-

brate our model to the empirical evidence on pass-through, and find that higher mar-

ket concentration significantly amplifies the real effects of monetary policy. To sepa-

rate the strategic effects of oligopoly from the effects this has on residual demand, we

compare our model to one with monopolistic firms after modifying consumer prefer-

ences to ensure firms face comparable residual demands. Finally, the Phillips curve

for our model displays inflation persistence and endogenous cost-push shocks.
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1 Introduction

The recent rise in product-market concentration in the U.S. has been viewed as a driving
force behind several macroeconomic trends. For instance, Gutiérrez and Philippon (2017)
document an increase in the mean Herfindahl-Hirschman index since the mid-nineties,
and argue that it has weakened investment. Autor, Dorn, Katz, Patterson and Van Reenen
(2017) and Barkai (2020) relate the rising concentration of sales over the past 30 years in
most US sectors to the fall in the labor share.1

What are the implications of trends in concentration or market power for the trans-
mission of monetary policy? Do strategic interactions in pricing between increasingly
large firms amplify or dampen the real effects of monetary shocks? The baseline New
Keynesian model is not designed to address these questions. Following the recognition
that some form of imperfect competition and pricing power is required to model nomi-
nal rigidities, the New Keynesian literature has been built on the tractable paradigm of
monopolistic competition, pervasive in other areas of macroeconomics and international
trade. Under monopolistic competition, markups only depend on tastes, through con-
sumers’ elasticity of substitution between competing goods, which leaves no room for
changes in concentration to affect markups or monetary policy.

In this paper, we provide a new framework to study the link between market structure
and monetary policy. We generalize the standard New Keynesian model by allowing for
dynamic oligopolistic competition between any finite number of firms in each sector of
the economy, also allowing for heterogeneity across sectors. In each sector, firms compete
by setting their prices, but they do so in a staggered and infrequent manner due to nom-
inal rigidities. We use this model to study the aggregate real effects of monetary shocks
and highlight the restrictions imposed by monopolistic competition. Departing from mo-
nopolistic competition to study oligopoly poses new challenges, because it requires solv-
ing a dynamic game with strategic interactions at the sectoral level and embedding it into
a general equilibrium macroeconomic model. We focus on Markov equilibria of our dy-
namic game, where the pricing strategy, or reaction function, of every firm is a function
of the prices of its competitors.

Despite these complexities, our first result derives a closed-form formula for the re-
sponse of aggregate output to small monetary shocks. Our formula inputs the cross-
sectoral distribution of three sufficient statistics: market concentration as captured by the
effective number of firms within a sector, demand elasticities, and markups. The intu-

1Rossi-Hansberg, Sarte and Trachter (2020) document, however, diverging trends in national and local
measures of concentration. We will discuss how to interpret our results in light of these two views.
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ition is based on the link between the steady state markup that can be sustained in an
oligopolistic equilibrium and the slope of the reaction function of each firm to the prices
of its competitors. All else equal, steeper reaction functions lead to higher equilibrium
markups: each firm has little incentives to cut prices when it knows that this would lead
its rivals to cut prices as well for some time. Inverting the logic, we can infer from high
observed markups that reaction functions are steep and therefore complementarities in
pricing are strong, which in turn implies a slow pass-through of monetary shocks into
prices and therefore large real effects on output. In this way, our formula encapsulates
a tight restriction between endogenous markups and stickiness, conditional on demand
elasticities.2

While our key sufficient statistics, demand elasticities and markups, can be estimated
at any given point in time, they are endogenous objects that change in reaction to shifts
in fundamentals. To perform counterfactual experiments, we take a more structural ap-
proach and solve numerically the oligopolistic equilibrium in terms of fundamentals. We
use a flexible Kimball (1995) demand system that allows us to parametrize separately
demand elasticities and superelasticities, as the latter can affect monetary policy trans-
mission through variable markups even under monopolistic competition.

In our main exercise, we vary the number of firms n in each sector while keeping pref-
erence parameters fixed. We find that higher concentration (lower n) can significantly
amplify or dampen the real effects of monetary policy, depending on how properties of
the residual demand vary with n. When preferences are CES, higher concentration am-
plifies monetary policy transmission, but the maximal effects, attained under duopoly, re-
main limited: the half-life of the price level in reaction to monetary shocks is around 40%
higher than under monopolistic competition. With Kimball preferences and sufficiently
high superelasticity, higher concentration dampens monetary policy transmission. More-
over, the dampening can be arbitrarily large. It is thus essential to first understand the
link between concentration and demand functions.

We use evidence on the heterogeneity in idiosyncratic cost pass-through across small
and large firms from Amiti, Itskhoki and Konings (2019) to calibrate how concentration
affects the shape of demand functions, and find substantial amplification. The rise in the
average Herfindahl index observed in the U.S. since 1990 increases the response of output
(and decreases the response of inflation) to monetary shocks by around 15%.

What explains these results? The number of competitors in a market has an effect on

2In the standard monopolistic competition model desired markups are constant and only a function of
the demand elasticity. However, in a strategic environment the endogenous markup is no longer a simple
function of the demand elasticity.
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firms’ strategic incentives, but also on the residual demand faced by each firm. We disen-
tangle these two ways through which oligopolistic competition differs from monopolistic
competition. On the one hand, “feedback effects” make each firm care about its rivals’
current and future prices when setting its price. On the other hand, “strategic effects”
arise because each firm realizes its current pricing decision can affect how its rivals will
set their prices in the future. Feedback effects are present in monopolistic competitive
models with non-CES demand, but strategic effects can only exist when the number of
firms is finite. To isolate these two effects for each n, we compare the oligopolistic model
with n firms to a “non-strategic” benchmark economy featuring monopolistic competition
and Kimball preferences modified to match the elasticity and superelasticity of the resid-
ual demand in the finite n model. We find that departures from monopolistic competition
are mostly working through feedback effects, that is changes in the shape of residual de-
mand. While strategic effects matter for the level of steady state markups, they only have
a modest impact on monetary policy transmission. Of course, this quantitative conclusion
can only be reached after solving the full, strategic, model.

It does not follow, however, that oligopoly is isomorphic to monopolistic competi-
tion. Besides its improved ability to map micro-evidence on pass-through and market
shares to the aggregate effects of monetary policy, the oligopoly model yields a unique
link between markups and monetary policy transmission, in the aggregate and in the
cross-section. Under monopolistic competition, demand superelasticities affect the price
response to monetary policy, but are irrelevant for markups, hence predictions of the
model depend on calibrating two independent parameters. Oligopolistic competition, on
the other hand, highlights a tight connection: the superelasticity of residual demand has
a positive effect on both markups and the pass-through of monetary policy. Therefore,
controlling for concentration and demand elasticities, our model predicts that monetary
policy is transmitted relatively more through sectors or regions with higher markups,
because they are the ones featuring the slowest price adjustment following monetary
shocks.

Moreover, the quantitative near-equivalence between the oligopoly model and the re-
calibrated non-strategic economy depends on the specific processes for real and mon-
etary shocks. In order to go beyond the permanent money supply shocks most com-
monly studied in the literature, we derive a three equations New Keynesian model with
an oligopolistic Phillips curve that allows for more general shocks and non-stationary dy-
namics. We find that strategic effects are quantitatively important once we allow for richer
dynamics. In particular, the oligopolistic Phillips curve features a form of endogenous in-
flation persistence (or equivalently, endogenous cost-push shocks) that can dampen fluc-
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tuations in inflation and output relative to the non-strategic model.

Related Literature

An important early exception to the complete domination of monopolistic competition in
the macroeconomics literature on firm pricing is Rotemberg and Saloner (1986), who pro-
pose a model of oligopolistic competition to explain the cyclical behavior of markups.
Rotemberg and Woodford (1992) later embed their model into a general equilibrium
framework with aggregate demand shocks driven by government spending. These two
papers assume flexible prices and abstract from monetary policy.3 Another important
difference is that we focus on Markov equilibria, in line with the more recent industrial
organization literature, rather than trigger-strategy price-war equilibria.

The first paper to combine non-monopolistic competition and nominal rigidities in
general equilibrium is Mongey (2018). This paper uses a rich quantitative model with
two firms, menu costs, and idiosyncratic shocks to show that duopoly can generate sig-
nificant non-neutrality relative to the Golosov and Lucas (2007) benchmark. It also finds
that duopoly is closer to monopolistic competition under Calvo price-setting than with
menu costs. Our paper takes a complementary approach, more analytical but assuming
Calvo pricing and abstracting from idiosyncratic shocks.4 This allows us to go beyond
two firms and explore different questions, in particular by changing industry concentra-
tion and separating strategic complementarities from residual demand effects.5 Model-
ing more than two firms also lets us incorporate recent evidence on cost pass-through
and market shares from Amiti, Itskhoki and Konings (2019) to infer the relation between
concentration and monetary non-neutrality. As we show, this evidence implies that even
under Calvo pricing, oligopoly leads to significant amplification.

The literature on variable markups in international trade (e.g., Atkeson and Burstein
2008) highlights the importance of market structure and for cost (e.g., exchange rate) pass-
through in static settings. We study a dynamic version of these models, as is needed to

3Rotemberg and Saloner (1987) study a static partial-equilibrium menu-cost model, comparing the in-
centive to change prices under monopoly and duopoly.

4Calvo pricing remains an important benchmark in the literature on price stickiness, due to its tractabil-
ity, but additionally, recent work on menu costs, such as Gertler and Leahy (2008), Midrigan (2011), Alvarez,
Le Bihan and Lippi (2016b) and Alvarez, Lippi and Passadore (2016a), show that certain menu-cost models
may actually behave close to Calvo pricing.

5Several papers, including Benigno and Faia (2016) and Corhay, Kung and Schmid (2020) with Rotem-
berg pricing and Etro and Rossi (2015) and Andrés and Burriel (2018) with Calvo pricing, consider models
of monopolistic competition that depart from the standard CES setting because the demand curve faced by
a firm depends on the number of competitors; but firms still behave atomistically, taking rivals’ current and
future prices as given.

5



analyze monetary policy, and show which properties of residual demand functions matter
in this context (see also Neiman (2011) for a partial equilibrium dynamic duopoly model
of exchange rate pass-through with menu costs). In particular, we use the evidence from
Amiti, Itskhoki and Konings (2019) on heterogeneous pass-through behavior across small
and large firms to calibrate our oligopolistic model.

Kimball (1995) introduced non-CES aggregators that generate variable markups even
under monopolistic competition. As we show in section 6, there is a close connection
between this class of models (e.g., Klenow and Willis 2016, Gopinath and Itskhoki 2010)
and our oligopolistic model. By making the market structure explicit, our paper provides
foundations for the dynamic pricing complementarities embedded in the monopolistic
Kimball aggregator, in a way consistent with the data on firm size and long-run pass-
through. Relative to this strand of the literature, the oligopolistic model also generates
unique predictions on the cross-sectional relation between markups, concentration, and
monetary policy transmission.

In addition to the dynamic pricing with staggered price stickiness we focus on, market
structure can affect the degree of monetary non-neutrality through other margins. Naka-
mura and Steinsson (2013) organize sources of complementarities in pricing into “micro”
(e.g., variable markups or decreasing returns to scale) and “macro” complementarities
(e.g., intermediate inputs). Afrouzi (2020) studies the incentives to acquire information in
a flexible prices rational-inattention oligopolistic model, while a large literature studies
the feedback between the cyclicality of markups and entry and exit dynamics (e.g. Bilbiie,
Ghironi and Melitz, 2007).

2 A Macro Model with Oligopolies

In this section we first describe the economic environment, preferences, technology, and
the market structure. We then define an equilibrium.

The household side of our model is standard. On the production side, we depart from
the atomistic monopolistic competitive framework in favor of oligopolies, with a finite
number of firms, producing differentiated varieties in each sector. These firms compete
with each other by setting prices at random intervals of time, resulting in a staggered set
of price changes.
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Basics. Time is continuous with an infinite horizon t ∈ [0, ∞).6 We abstract from aggre-
gate uncertainty. This suffices to study the impact and transitional dynamics induced by
an unanticipated shock. Following much of the menu-cost literature, we focus on such a
monetary shock, and our goal is to understand the degree of monetary non-neutrality it
induces.

There are three types of economic agents: households, firms and the government.
Households are described by a continuum of infinitely lived agents that consumes non-
durable goods and supplies labor to a competitive labor market.

Firms produce across a continuum of sectors s ∈ S. Each sector is oligopolistic, with
a finite number ns of firms i ∈ Is, each producing a differentiated variety. Firms can
only reset prices at randomly spaced times, so the price vector within a sector is a state
variable. By setting ns → ∞ or ns = 1 we obtain a standard monopolistic setup, where
each firm has a negligible effect on competitors. Otherwise, there are strategic interaction
across firms within a sector, but not across sectors (due to the continuum assumption).
We study the dynamic game within a sector and focus on Markov equilibria.

The government controls the money supply, provides transfers and issues bonds, to
satisfy its budget constraint.

Household Preferences. Utility is given by∫ ∞

0
e−ρtU(C(t), `(t), m(t))dt,

with real money balances m(t) = M(t)
P(t) and aggregate consumption

C(t) = Ψ({ci,s(t)}),

where {ci,s(t)} describes the consumption of all good varieties across sectors s ∈ S and
firms i ∈ Is and where Ψ is an aggregator function that is homogeneous of degree one.

Following Golosov and Lucas (2007), in most of the paper we adopt the specification

U(C, `, m) =
C1−σ

1− σ
+ α log m− `.

As is well known, these preferences help simplify the aggregate equilibrium dynamics;
we consider more general preferences in section 7.1.

In addition, we adopt a nested CES-Kimball aggregator: across sectors have a CES,

6Our analysis translates easily to a discrete-time setup, but continuous time has a few advantages and
permits comparisons with the menu-cost literature (e.g. Alvarez and Lippi, 2014).
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while across firms within a sector we have a Kimball (1995) aggregator:7

Ψ({ci,s}i∈I,s∈S) =

(∫
S

Cs
1− 1

ω ds
) 1

1− 1
ω

where Cs is the unique solution to

1
ns

∑
i∈Is

φs

(
ci,s

Cs

)
= 1 (1)

for some increasing, concave, function φs such that φs (1) = 1.
An important benchmark is the case where φs is a power function, in which case we

obtain the standard CES aggregator across firms, i.e. Cs =
(

1
ns

∑i∈Is c
1− 1

η

i,s

) 1
1− 1

η .

Firms. Each firm i ∈ Is in sector s ∈ S produces linearly from labor according to the
production function,

ys,i(t) = `s,i(t).

We assume a linear production function and no sectoral or idiosyncratic differences in
productivity for simplicity.

Firms receive opportunities to change their price pi,s at random intervals of time, de-
termined by a Poisson arrival rate λs > 0, the realizations of which are independent across
firms and sectors. Between price changes, firms meet demand at their posted prices.

Individual firm nominal profits are

Πi,s(t) = pi,s(t)yi,s(t)−W(t)`i,s(t)

and aggregate firm nominal profits Π(t) =
∫

∑i∈Is Πi,s(t) ds. Firms seek to maximize the
present value of profits,

E0

∫ ∞

0
Q(t)Πi,s(t)dt

where Q(t) = e−
∫ t

0 R(s)ds denotes the nominal price deflator between period t and 0.
Although there is no aggregate uncertainty, the expectation averages over the idiosyn-

cratic uncertainty about the dates at which changes are allowed for each firm and its im-
mediate competitors within a sector. (This firm objective can be justified in a number of
ways, such as by introducing an asset market for the stock price of firms.)

7When ω = 1 we set Ψ({ci,s}i∈I,s∈S) = exp
∫

S log Csds.
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Household Budget Constraints. The flow budget constraint can be summarized by

P(t)C(t) + Ḃ(t) + Ṁ(t) = W(t)`(t) + Π(t) + T(t) + R(t)B(t)

for all t ≥ 0, where B(t) are bonds paying nominal interest rate R(t), M(t) nominal money
holdings, W(t) the nominal wage, T(t) nominal lump-sum transfers, and P(t) the (ideal)
price index given by

P(t) = P({pi,s(t)}),

where P({pi,s}) ≡ min{ci,s}
∫

∑i∈Is pi,sci,sds s.t. Ψ({ci,s}) = 1. For ω 6= 1, we can write

P({pi,s}) ≡
(∫

P1−ω
s ds

) 1
1−ω with Ps = Ps(p1,s, p2,s, . . . , pns,s). 8

Let A(t) = B(t) + M(t) denote total nominal wealth. Households are also subject to
the No Ponzi condition limt→∞ Q(t)A(t) ≥ 0. This leads to the present value condition∫ ∞

0
Q(t)(P(t)C(t) + T(t) + R(t)M(t)−W(t)`(t)−Π(t))dt = A(0) = M(0) + B(0).

Demand. Define the vector of prices within a sector s as

ps(t) = (p1,s(t), p2,s(t), . . . , pns,s(t))

and let p−i,s(t) = (p1,s (t) , . . . , pi−1,s (t) , pi+1,s (t) , . . . , pn,s (t)) denote the vector that ex-
cludes pi,s(t). The demand for firm i ∈ Is can be written as

ci,s(t) = Di,s(pi,s(t), p−i,s(t); C(t), P(t)).

Given symmetry, constant returns and the CES structure across sectors, we obtain

Di,s(pi, p−i; C, P) = d(pi, p−i)CPω.

The demand faced by firm i is a stable function of the price vector di(pi, p−i). This de-
mand captures within-sector substitution as well as across-sector substitution. Firms un-
derstand that they can switch expenditure in both ways by changing their price.

Nominal profits are then∫ ∞

0
e−ρtC(t)P(t)ω d(pi,s(t), p−i,s(t)) (pi,s(t)−W(t)) dt

Markov Equilibria. A strategy for firm i specifies its desired reset price at any time
t should it have an opportunity to change its price. A Markov equilibrium involves a

8We have P({pi,s}) ≡ log
∫

exp Psds when ω = 1.
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strategy that is a function only of the price of its rivals and calendar time t,

gi,s(p−i; t).

Given that sectors are symmetric and firms are symmetric within sectors, we consider
strategies g(p−, t) that are symmetric, except in section 4.2.

Equilibrium Definition. Given initial prices {pi,s(0)}, an equilibrium is sequence for
the aggregate price P(t), wage W(t), interest rate R(t), consumption C(t), labor `(t) and
money supply M(t), as well as demand functions for consumers d(pi, p−i; t) and strategy
functions for firms g(p−i; t) such that: (a) consumers optimize quantities taking as given
the sequence of prices and interest rates; (b) the firm reset price strategy g is optimal, given
the path for P(t), C(t) and its rivals’ strategies g and demand function of consumers d;
(c) consistency: the aggregate price level evolves in accordance with the reset strategy g
employed by firms; (d) markets clear: firms meet demand for goods, the supply of labor
equals aggregate demand for labor

`(t) =
∫

∑
i∈Is

`i,s(t)ds

and the demand for money equals supply M(t).

3 Stationary Oligopoly Game within a Sector

We first focus on the dynamics within a sector, assuming all conditions external to the
sector are fixed and given: the wage, the nominal discount rate, aggregate consumption
and price are assumed constant. These assumptions imply that the oligopoly game within
an industry is stationary. This partial equilibrium analysis also characterizes a steady state
in general equilibrium.

We shall later explore conditions under which we can use the sectoral dynamics we
characterize here to study the aggregate macroeconomic adjustment to a monetary shock.

3.1 Prices, Demands and Profits

We now focus within a sector, suppressing the notation conditioning on s ∈ S we collect
prices within the sector in a vector

p = (p1, . . . , pn)
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and let p−i = (p1, . . . , pi−1, pi+1, . . . , pn) denote competitor prices for firm i. The profit
function for firm i is then

Πi(p) = di(pi, p−i)(pi −W).

Since R(t) = ρ we have Q(t) = e−ρt and firms maximize

E0

∫ ∞

0
e−ρtdi(pi, p−i)(pi −W)dt.

3.2 Markov Equilibria

In a Markov equilibrium firms i follow a strategy specifying the reset price

p∗i = gi(p−i)

they will chose in the event that they receive a price change opportunity. Together with an
initial price vector and the Poisson arrival rate this fully describes the stochastic dynamics
within the sector. We focus on differentiable symmetric Markov equilibria, where

gi = g.

Let Vi(p) denote the value function obtained by firm i, where the argument p is a vector
of n prices. The Bellman equation is then

ρVi(p) = Πi(p) + λ ∑
j

[
Vi (gj

(
p−j
)

, p−j
)
−Vi (p)

]
(2)

where Πi is the profit function of firm i and for each j

gj(p−j) = arg max
p′j

V j(p′j, p−j).

satisfying the optimality condition

V j
pj(gj(p−j), p−j) = 0. (3)

The right-hand side of (2) states that with Poisson rate λ, one of the firms indexed by j =
1, . . . , n (including firm i) will adjust its price to gj

(
p−j
)
, which will make firm i’s value

jump to Vi (gj
(

p−j
)

, p−j
)
, shorthand notation for Vi (p1, . . . , pj−1, gj

(
p−j
)

, pj+1, . . . , pn
)
.

Remark 1. There could be multiple equilibria even within the Markov class, but our main
results apply for any differentiable selection. The differentiability assumption rules out
“kinked demand curve” and “Edgeworth cycles” Markov equilibria studied by Maskin
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and Tirole (1988) in a Bertrand duopoly model with perfectly substitutable goods as firms
become infinitely patient, which in our setting is equivalent to the flexible prices limit
λ → ∞ as the model only depends on the ratio ρ/λ. Maskin and Tirole (1988) show
that firms can “collude” around the joint monopoly price in this limit. Firms can achieve
high profits in steady state, because if not, a firm could deviate to the monopoly price
knowing that its rival would follow suit and undercut by a small amount once it gets
to reset its price, which eventually ensures some large profit to the deviator once it gets
to reset its price again. Figure 19 in Appendix I shows that away from the joint limit of
perfect substitution and flexible prices, value function iteration converges to a standard
“smooth” (and monotone) MPE that corresponds to the one we study locally. We trace
out the locus of existence of equilibria in the (ε, λ)-space (where ε is the within-sector
elasticity of substitution), and find that our smooth equilibrium disappears as ε exceeds
9 for λ around 1. While the curse of dimensionality prevents us from solving numerically
for the full non-linear MPE with general n, we conjecture that the existence bounds are
tightest for n = 2, as increases in the number of firms lead to a smaller potential monopoly
profit (the case of monopolistic competition n→ ∞ being an extreme example). Similarly,
a higher outer elasticity ω lowers the joint monopoly profit, which enlarges the region of
existence of the smooth equilibrium.

3.3 A Steady State Condition

We now provide a key expression for the slope of the reset price strategy at a steady state.
Differentiating the Bellman equation (2) and making use of symmetry, we obtain at the
steady state p̄ of a symmetric equilibrium:

0 = Πi
pi
( p̄) + λ ∑

j 6=i

[
Vi

pj
( p̄)

∂gj

∂pi
( p̄)
]

Vi
pk
( p̄) =

Πi
pk
( p̄)

ρ + λ
+

λ

ρ + λ ∑
j 6=i,k

[
Vi

pj
( p̄)

∂gj

∂pk
( p̄)
]
∀k 6= i

Denote
∂gj
∂pk

( p̄) = β for all k 6= j . Using ∑k ∑j 6=i,k Vi
pj
( p̄) = (n − 2)∑k 6=i Vi

pk
( p̄), and the

symmetry of Πpk across k 6= i, we obtain

0 = Πi
pi
( p̄) +

λ (n− 1) β

ρ + λ [1− (n− 2)β]
Πi

pk
( p̄) (4)

With flexible prices, firms would continuously play the static Nash equilibrium price pNE

that solves 0 = Πpi(pNE). From (4) we see that the steady state price p̄ of the dynamic
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oligopoly game is above the static Nash price pNE if and only if β > 0. Therefore, un-
like under monopolistic competition, the steady state price is affected by the presence of
nominal rigidities. Moreover, as the influence of any single rival Πi

pk
vanishes when n in-

creases, the steady state price converges to the Nash price (i.e., monopolistic competition)
as n grows to infinity.

Sufficient Statistics: Markups and Elasticities. The main object of our analysis is the
slope (n− 1) β of the reaction function, where the term n− 1 scales the aggregate effect of
the rivals. We can further simplify (4) to write (n− 1) β in terms of observable sufficient
statistics. Use

Πi
pj

−Πi
pi

=
εi

j

(
pi−W

pj

)
−εi

i

(
pi−W

pi

)
− 1

where

εi
i =

∂ log di

∂ log pi
, εi

j =
∂ log di

∂ log pj

to rewrite in terms of demand own- and cross-elasticities

(n− 1) β =
ρ + λ

λ

1

n−2
n−1 +

εi
j

−εi
i−

p̄
p̄−W

Constant returns to scale imply that the cross-elasticity is related to the own-elasticity
through (n− 1)εi

j = −(1+ εi
i). For any n, we obtain the slope in terms of only two steady

state objects, the own-elasticity and the markup:

Proposition 1. In a sector with n firms, the slope of the reaction function around the steady state
β =

∂gj
∂pk

( p̄) satisfies

(n− 1)β =
λ + ρ

λ

1

n−2
n−1 +

1
n−1

(
−εi−1
−εi−

µ̄
µ̄−1

) (5)

where εi =
∂ log di

∂ log pi
and µ̄ = p̄

W .

Proposition 1 is our first main result, showing how to locally infer unobserved steady
state strategies from a small number of potentially observed sufficient statistics. Taking as
given market concentration n and the demand elasticity εi, a higher steady state markup
µ̄ is associated with a higher slope β. Conversely, for a given observed markup µ̄, a higher
elasticity (in absolute value) also reflects a higher slope.
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The intuition behind this result is based on reverse causality. Suppose that β is high.
Then, if firm i decreases its price below the steady state, its rivals will set low prices
as well, which undermines firm i’s incentives to cut prices. This threat of undercutting
allows to sustain a high equilibrium markup. On the other hand, when rivals do not
react, for instance in the limit where firm i is an infinitesimal player as in monopolistic
competition, then the equilibrium markup is low, equal to the static Nash level.

Turning the argument on its head, for a given elasticity εi, a high equilibrium markup
must then be a consequence of steep reaction functions; we will later analyze the factors
that govern these reactions. And conversely, for a given markup, a higher demand elastic-
ity would decrease the Nash markup that arises under monopolistic competition, hence
oligopolistic competition would imply a higher “abnormal markup” relative to monopo-
listic competition, that can again only be sustained through a steep reaction function. In
the next section, we will show that strong reaction functions imply a low pass-through of
aggregate cost shocks and thus persistent real effects of monetary policy.

Remark 2 (Markups and Reaction Functions: Dynamic vs. Static Oligopoly.). When sec-
tors or regions are heterogeneous in terms of concentration (holding demand elasticities
εi fixed to simplify this discussion), equation (5) implies a cross-sectional empirical rela-
tion between markup and response to aggregate and idiosyncratic shocks, conditional on
concentration, as captured by n. As we show in the next section, monetary non-neutrality
increases with (n− 1) β. Hence our model predicts that regressing a measure of sectoral
or regional non-neutrality (such as the cumulative output effect of a monetary shock) on
average markups, controlling for concentration, should yield a positive coefficient.

This conditional correlation is specific to our dynamic model, in which the markup
does not depend solely on demand elasticities, but is also affected by other properties of
demand such as superelasticities (see section 5.2), or the frequency of price changes (sec-
tion 5.4). This prediction provides a stark contrast with the case of dynamic monopolistic
competition, in which the steady state markup only depends on the demand elasticity
and is entirely disconnected from the slope of the reaction function, but also with static
oligopoly models such as Atkeson and Burstein (2008) and Amiti et al. (2019). While those
models may display an unconditional correlation between markup and slope of reaction
function (or, as we explain later on, markup elasticity), they predict that the correlation
disappears once controlling for elasticities and concentration.
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4 Aggregate Effects of Permanent Monetary Shocks: Suffi-

cient Statistics

We now study an unanticipated permanent shock to money. In particular, suppose initial
prices are all equal, ps,i = P−, and aggregates are at a steady state with constant M−, C−,
`−, W− and R− = ρ. Consider a permanent monetary shock arriving at t = 0 so that
M(t) = M+ = (1 + δ)M− for all t ≥ 0.

In general, firms would have to forecast the path of macroeconomic variables P (t) and
C (t) when choosing their reset price strategies gi,s. These strategies would in turn affect
the evolution of P (t) and C (t). It is possible to accomodate this fixed-point problem
numerically or under additional assumptions, as we do in section (7.1), but for now we
want to focus on clear analytical results. In the spirit of Golosov and Lucas (2007), our
assumptions on preferences lead to the following simplification:

Proposition 2. Equilibrium aggregates satisfy

W(t) = (1 + δ)W−

P (t)C(t)σ = ρM(t) = ρM+ (6)

R(t) = ρ

If in addition
ωσ = 1 (7)

then the game in each sector s along the transition is equivalent to the stationary oligopoly game
studied earlier.

Proposition 2 is very useful, as it shows when firms can ignore the transitional dynam-
ics of macroeconomic variables following the monetary shock, and therefore allows us to
extend results based on the partial equilibrium game in section 3 to general equilibrium.
This is an exact result, not an approximation for small monetary shocks as in Alvarez and
Lippi (2014). Unless otherwise noted, we set

ω = σ = 1

which implies condition (7).

Remark 3. The classic paper by Rotemberg and Saloner (1986) analyzes (non-Markov)
trigger strategies that sustain high “collusive” prices in bad times but lead to price wars
during booms, because the latter are periods with higher temporary profits to compete
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over. However, we just showed conditions under which, in general equilibrium, treating
the dynamic game as a repeated game can be misleading, as the effect of real interest
rates cancels out exactly the effect of higher aggregate demand C (t). Away from this
benchmark, the incentives to cut prices could be higher or lower in booms, depending on
the elasticity of intertemporal substitution 1/σ.

4.1 Aggregation and Transitional Dynamics

We are interested in the speed of convergence of the aggregate price level to its new steady
state P̄ = (1 + δ) P−. From (6), this speed also tells us the effect of the monetary shock on
aggregate consumption.

After the shock, each sector follows stochastic dynamics displayed in Figure 1. When
firm i has an opportunity to adjust its price, it does so only when it wasn’t the last firm to
adjust. The sectoral price level Ps follows a stochastic process, and unlike with monopolis-
tic competition, there is no law of large numbers at the sector level with a finite number of
firms. However, aggregating across the continuum of (potentially heterogeneous) sectors
yields a deterministic law of motion for the first-order dynamics of the aggregate price
level:

Proposition 3. To first-order in the size of the monetary shock δ, the aggregate price level follows
for t ≥ 0

log P(t)− log P̄ = −δ
∫

s
e−λ(1−(ns−1)βs)tds, (8)

where βs is the slope ∂gi
∂pj,s

in sector s . Therefore the cumulative output effect of the shock is (for
arbitrary σ) ∫ ∞

0
log
(

C (t)
C̄

)
dt =

δ

σλ
×
∫

s

ds
1− (ns − 1) βs

. (9)

In the standard New Keynesian model with monopolistic competition and CES de-
mand, the half-life of the price level following a monetary shock (up to a factor ln 2) is
simply 1/λ (as in Woodford 2003).9 Suppose that sectors only differ in the number of
firms, that is, all sectors with n firms feature the same demand function. Then if νn is the
mass of sectors with n firms, the half-life of the aggregate price level in the oligopolistic
model is

hl =
1
λ
×∑

n

νn

1− (n− 1) βn
.

9With more general demand structures, for instance Kimball demand, the half-life can depart from 1/λ
even under monopolistic competition, see Proposition 7 below.
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Figure 1: Price dynamics within a sector following an aggregate monetary shock.

p̄

p(0)

g (p−i)

pi

p−i

Note: Illustration with n = 2. Both prices start from p(0) and converge stochastically to p̄ on a discrete grid
{p(0), g(p(0)), g(g(p(0))), . . . }. If a firm was the last one to adjust its price, nothing happens until its rival
can adjust. A steeper policy g implies slower convergence in expectation.

A higher average slope across sectors implies a slower convergence of the price level P (t)
to its new steady state, and larger real effects of monetary policy. If (n− 1) βn is low on
average, then firms in each sector will reset prices close to the new steady state when
given a chance, speeding up the convergence.

Combining the results from Propositions 1 and 3, we know the response of the ag-
gregate price level and thus of output to a permanent monetary shock as a function of
the distribution of three steady state statistics: markups, demand elasticities and indus-
try concentration. If we can observe or estimate these sufficient statistics and how they
evolve over time, for instance following trends in market power, then it is not necessary
to solve the full MPE to analyze how the real effects of monetary policy evolve.

For instance, our formula tells us that all else equal, higher observed markups imply
higher (unobserved) slopes (n− 1) βn. However, this is only true when fixing the demand
elasticity, and if instead higher markups reflect a decline in the elasticity of substitution
between competing varieties, then higher markups may be associated with lower slopes
instead, as we illustrate in section 5.2. Similarly, an increase in market concentration,
captured by a fall in the number of firms n, would also increase monetary non-neutrality
holding markups and demand elasticities unchanged. But equilibrium markups and elas-
ticities are likely to be affected by concentration, so our analysis highlights that it is crucial
to understand where observed markups come from to understand monetary policy trans-
mission.
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4.2 Within-Sector Heterogeneity

We now allow for permanent heterogeneity within sectors. Much of the menu-cost litera-
ture (e.g., Midrigan 2011, Alvarez and Lippi (2014)) assumes for tractability that there are
within-sector demand shocks offsetting perfectly the productivity differences between
firms, so as to keep market shares the same. Under this assumption, the model is isomor-
phic to one with homogeneous firms once we replace prices with markups.

Without these perfectly correlated demand and cost shocks, more productive or de-
manded firms have a larger market share, and this creates differences in residual demand
elasticities as in Atkeson and Burstein (2008), to which we come back in detail in section
5.3.

In general, computing the slopes ∂gi
∂pj

once we allow for heterogeneity requires a more
structural approach like the one in section (5). However, in the special case of n = 2 firms,
our sufficient statistic formula can be adapted to arbitrary heterogeneity stemming from
cost or demand differences:

Proposition 4. Consider a sector with two firms i = a, b, that can have different demand func-
tions di and different marginal costs MCi. Then the slopes of the reaction functions βa = ∂ga

∂pb
and

βb = ∂gb
∂pa

around the steady state ( p̄a, p̄b) are functions of steady state sufficient statistics:

βi =
λ + ρ

λ

−ε
j
j −

p̄i
p̄j−MCj

ε
j
i

where εi
k =

∂ log di

∂ log pk
.

All else equal, firm j’s high price can now be justified by either its rival i’s high slope
βi as before, or by its rival’s high price. The case of two firms allows us to capture any
Herfindahl-Hirschman Index (HHI) between 1/2 and 1; with more symmetric firms we
can also obtain HHIs of 1/3, 1/4, and so on. In the case of n ≥ 3 heterogeneous firms, we
cannot back out the slopes from the steady state prices. Intuitively, the system is under-
determined because there are multiple ways to generate the same steady state prices.

Given the slopes βi (whether they are given by Proposition 4 or computed in the full
model solution), we can aggregate the stochastic dynamics in each sector to obtain deter-
ministic aggregate dynamics of the price level as before. While the general case presents
no particular difficulty, most of the insights can be gleaned by assuming again that there
are two firms a and b:

Proposition 5. Suppose there are two heterogeneous firms a and b in each sector. The aggregate
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Figure 2: βa and βb as a function of firm a’s market share Sa. The half-life of the heteroge-
neous economy is 1

λ(1−β̄)
, where the dashed black line shows β̄.

price index evolves to first order in δ as

log P(t)− log P̄ = −δ

 1− Sa√
pb
pa
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pa
pb

βb


√

pb
pa
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− δ
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pb
pa
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+

Sa√
pa
pb

βb
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√

pb
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√

pa
pb
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2

 eµ−t.

where
µ+ = −λ

(
1 +

√
βaβb

)
, µ− = −λ

(
1−

√
βaβb

)
and Sa is the steady state market share of firm a.

Figure 2 shows how βa, βb respond to permanent multiplicative demand shocks, once
we solve the model as in section 5 below. Heterogeneity does not make a substantial
difference at the aggregate level, as shown by the relatively flat black dashed line β̄ that
gives the equivalent half-life with symmetric firms. The reason is that there are two off-
setting forces. As heterogeneity increases, firm a with a larger market share responds
more strongly to firm b’s price while firm b becomes less responsive, consistent with the
patterns documented by Amiti et al. (2019). This spread in β decreases the dominant

eigenvalue µ− due to the concavity of
√

βaβb. However, the aggregate (sales-weighted)
price index also puts more weight on firm a’s price, which is “more sticky”, as firm a will
not adjust by much if it gets to change its price first.
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5 The Effects of Rising Concentration and other Compara-

tive Statics

The sufficient static approach from the previous question answers the question: given
the observed markups, concentration and demand elasticities, how is price stickiness af-
fected?

In this section we seek to answer how stickiness would change when market concentra-
tion and other observables change. To do so, we take a more structural approach: instead
of using the observed equilibrium markup as a sufficient statistic, we seek to solve for
these variables given target elasticities. This allows us to perform counterfactual analy-
ses, and investigate in depth which factors cause the oligopolistic model to depart from
the standard monopolistic model. We are particularly interested in the effect of a change
in market concentration, captured by the number of firms n, as it is likely to affect both
the markup and the residual demand elasticity that enter formula (5).

5.1 Methodology

In general, solving for the steady state markup requires solving the full MPE. Since we
want a solution for any number of firms, the state space can become very large. Indeed,
the IO literature also acknowledges this challenge and employs approximate solution
concepts such as “oblivious equilibria” (Weintraub, Benkard and Van Roy, 2008) Here
we avoid the computational burden by approximating consumer’s utility in a way that
generates an equilibrium that we can solve analytically. Crucially, our approximation
leaves enough degrees of freedom to flexibly parametrize the elasticities of the demand
system that can be estimated in practice.

Our construction is detailed in Appendix F, and the main idea is as follows. Our ear-
lier sufficient statistic result stems from manipulating the envelope condition applied to
the Bellman equation (40) to get rid of derivatives of the value function. The outcome is
equation (4) that relates the steady state markup, the elasticity εi

i, and the first derivative
g′ of the equilibrium strategy. Differentiating (40) further with respect to all its arguments
will generate more such equations, that now relate the derivatives g′, g′′, and so on, to
the steady state markup, demand elasticity εi

i, superelasticity εi
ii, and so on. If we keep

iterating, we obtain an infinite system of equations, and the standard interpretation treats
the sequence of derivatives of g as unknowns, and the sequence of higher-order elastic-
ities (all evaluated at the steady state) as parameters. Instead, we take the view that it
is empirically impossible to know such fine properties of demand functions, since we
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can only estimate a finite number of elasticities. Acknowledging this limitation, we take
a dual view of the infinite system of envelope equations: we treat higher order elastic-
ities as flexible unknowns that can be perturbed to achieve some desired properties of
the derivatives of g. In particular, we seek to simplify the characterization of equilibrium
by making g locally polynomial, meaning that all its derivatives higher than an arbitrary
order vanish when evaluated at the steady state.

Formally, denote ε(k) is the kth-own-superelasticity evaluated at a symmetric p̄, i.e.,

ε(1) =
∂ log di (p)

∂ log pi
, ε(k) =

∂ε(k−1) (p)
∂ log pi

∀k ≥ 2.

Proposition 6. For any order of approximation m ≥ 1 and target elasticities
(

ε(1), . . . , ε(m)

)
,

there exist Kimball within-sector preferences φ̃ such that

(i) the resulting elasticities up to order m match the target elasticities, and

(ii) any MPE of the game with within-sector preferences φ̃, strategy g̃ and steady state p̃ satisfies
g̃(k) ( p̃) = 0 for k ≥ m.

Remark 4. Our approximation relates to the algorithm used in Krusell, Kuruscu and
Smith (2002) and later called “Taylor projection” by Levintal (2018). Krusell et al. (2002)’s
idea is to fix the parameters and approximate the unknown policy and value functions
by polynomials of order m. Instead, we take the view that we lack reliable estimates of
higher order elasticities that are taken as inputs to parametrize the game, and show that
we can take them as unknowns instead of parameters in the infinite system of equations,
while still matching the target elasticities up to order m.

In the remainder of the paper we will apply Proposition 6 in the case m = 2, which
makes the game linear-quadratic.10 For given elasticity εi

i and superelasticity εi
ii, we solve

for the steady state price p̄ and slope β = ∂gi
∂pj

given a locally linear equilibrium.

Corollary 1. In a locally linear equilibrium (m = 2), p̄ and β solve the system of two equations:

β =
(λ + ρ)Πi

i ( p̄)
λ(n− 2)Πi

i ( p̄)− λ(n− 1)Πi
j ( p̄)

0 = Aii (β)Πi
ii ( p̄) + Aij (β)Πi

ij ( p̄) + Ajj (β)Πi
jj ( p̄) + Ajk (β)Πi

jk ( p̄)

where Aii, Aij, Ajj, Ajk are given by system (39) in Appendix G.
10In a microeconomic context, Jun and Vives (2004) studied a linear-quadratic dynamic duopoly with

Bertrand and Cournot competition and quadratic adjustment costs in prices and quantities, focusing on
how dynamics can amplify or reverse static strategic complementarities.
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Parametrizing the Two Dimensions of Demand. In what follows, we use Klenow and
Willis (2016)’s functional form for the Kimball aggregator φs, which is simpler to define
through its derivative

φ′s(x) =
η − 1

η
exp

(
1− xθ/η

θ

)
. (10)

η and θ control the elasticity and the superelasticity of demand, respectively: in the limit
of monopolistic competition n → ∞, the demand own-elasticity εi

i converges to −η and

the ratio εi
ii

εi
i
, named the “superelasticity” of demand by Klenow and Willis (2016), con-

verges to θ. The limit θ → 0 corresponds to a standard CES demand with φs (x) = x
η−1

η .
With finite n, the perceived elasticities also depend on n because firms face a residual

demand that depends on the number of rivals they have, as is well known in the CES case
studied by Atkeson and Burstein (2008). We generalize the CES expressions for perceived
elasticities as a function of n to any Kimball aggregator in Appendix E, and also derive
new expressions for the perceived superelasticities. In particular, with the functional form
(10) we have:11

εi
i =

∂ log di

∂ log pi
= −η +

η − 1
n

(11)

εi
ii =

∂2 log di

∂ log p2
i
= −n− 1

n2

[
(η − 1)2 + (n− 2)θη

]
. (12)

These expressions imply a precise dependence on n for the elasticities εi
i, εi

ii, but they
stem from parametric assumptions made for tractability that have no particular empirical
grounding. In section 5.3 we turn to a more general non-parametric model that controls
the superelasticity εi

ii (n) directly (which is isomorphic to letting θ depend on n in (12)) to
match the heterogeneity in idiosyncratic cost pass-through observed in the data.

5.2 Preferences

We first consider changes in steady state markups driven by preferences, holding market
concentration (i.e., the number of firms n) fixed.

Changes in the Elasticity of Substitution η. We first highlight the importance of al-
lowing for more than two firms in each sector. The duopoly model is a knife-edge case,

11Recall that we set ω = 1; otherwise residual elasticities would be weighted averages of inner and outer
elasticities, for instance εi

i = −
[

n−1
n η + 1

n ω
]

which specializes to (11) with ω = 1.
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because in sectors with only two firms, the steady state markup and the demand elasticity
are related one-to-one, making it sufficient to know a single statistic, the markup, to infer
the half-life of monetary shocks. In other words, CES demand systems are without loss of
generality within the class of Kimball aggregators in the case n = 2, as can be seen from
expression (12) (or equation (32) in Appendix E for a non-parametric formulation). When
n is above 2, however, CES demand is not without loss, and knowing the markup is not
enough to infer the slope: we also need information on demand elasticities.

To illustrate this point, consider Figure 12, which shows the half-life as a function
of the steady state markup. Variation in markups is produced through variation in the
parameter η that captures the within-sector elasticity of substitution; higher η implies
lower markups. When n = 2, the value of the superelasticity parameter θ does not matter,
and we have a negative relation between the markup and the half-life. This pattern is also
present in the duopoly model with menu costs of Mongey (2018). However, as soon as
there are at least n = 3 firms, there is a crucial interaction between θ and η. When θ = 0
(CES), we have the same negative relation as in the duopoly case, but with a high enough
value of θ, the half-life becomes negatively related to the steady state markup. We will
provide an intuition behind this fact in section 6.

Changes in the Superelasticity Parameter θ. A crucial difference between our frame-
work and a monopolistically competitive economy is that the superelasticity parameter θ

can generate variations in the steady state markup µ̄ while keeping η and hence the de-
mand elasticity (11) constant. Note that such an experiment that varies the markup while
fixing the demand elasticity is impossible with a duopoly, as θ becomes irrelevant in (12)
when n = 2.

Figure 13 shows an example with the minimal number of firms n = 3 that allows θ to
affect the steady state markup. The left panel shows that as θ increases, the markup under
dynamic oligopoly rises. Multiple factors determine equilibrium markups, so variation
in θ is the most transparent way to apply our formula (5), as in that case a higher markup
unambiguously implies a larger half-life, as on the right panel. In a model with mo-
nopolistic competition and Kimball (1995) demand, θ would also increase non-neutrality
through complementarities in pricing, but would have no effect on the markup, hence
markups would be uninformative about the strength of monetary policy. The link be-
tween markups and pass-through is a crucial difference between monopolistic models
with variable markups and our oligopoly model. In the next sections, we will build on
this distinction to calibrate the model to cost pass-through data and then define a precise
notion of dynamic strategic complementarities under oligopoly.
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Table 1: Parameter values.

Parameter Description Value

ρ Annual discount rate 0.05
λ Price changes per year 1
ω Cross-sector elasticity 1
η Within-sector elasticity 10

5.3 Market Concentration

We now turn to our main counterfactual exercise, in which we study how changes in mar-
ket concentration (the number of firms n in a sector) affect the transmission of monetary
policy. If we knew how our sufficient statistics changed with n, we could just plug them
into (5) and it would not be necessary to solve the model further. Absent this information,
we need to make assumptions on how these statistics depend on n, for instance by taking
a stand on what parameters to keep fixed when changing n. We start by holding “prefer-
ences” fixed, and exogenously shifting the number of firms and varieties. We then explore
an alternative, using available evidence on pass-through from costs to prices, calibrating
these preferences to the number of firms to match the available evidence.

Exogenous Changes in Number of Firms. We first interpret η and θ in the Klenow and
Willis (2016) functional form (10) as structural parameters that are robust to changes in
the number of firms and varieties. The remaining parameters are described in Table 1.

Higher market concentration in the sense of lower n increases monetary non-neutrality
in the CES case θ = 0. Yet even in the duopoly n = 2 case that maximizes the impact of
oligopolistic competition, the departure from monopolistic competition remains modest:
the half-life under oligopoly is only higher by 37%. But as the blue line in Figure 3 shows,
for high values of θ that generate strong demand complementarities and thus large ef-
fects of monetary policy under monopolistic competition n→ ∞, decreasing the number
of firms in each sector can dampen monetary policy. In theory, this dampening effect can be
arbitrarily large: the half-life under monopolistic competition is unbounded above when
θ increases, but the half-life under duopoly is invariant to θ, and thus always the same
as with CES demand. This example shows that there is no guarantee that oligopolistic
competition generates more non-neutrality than monopolistic competition: the direction
of the effect depends on finer properties of demand systems, in particular how concentra-
tion affects the superelasticity of demand. We show below how to infer these properties
from available pass-through estimates.
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Figure 3: Half-life as a function of n for different values θ =
0 (bottom red line), 5, 10, 15 (top blue line), with η = 10.

A Calibration Based on Pass-Through. Previously, we fixed preference parameters and
changed the number of firms. We now provide an alternative that recalibrates other pa-
rameters as we change the number of firms. In particular, the shape of demand is crucial
to understand how market structure impacts the transmission of monetary shocks, which
affect all firms at the same time. As Atkeson and Burstein (2008) emphasized in a static
setting, changes in residual demand also link market structure and the pass-through of
own cost shocks, hereafter simply “pass-through”. We now argue that the most recent and
detailed pass-through estimates imply that market concentration significantly amplifies
monetary non-neutrality.

Amiti et al. (2019) find considerable heterogeneity in pass-through.12 Small firms be-
have as under a CES monopolistic competition benchmark, passing through own marginal
cost shocks fully (and thus maintaining a constant markup) while not reacting to competi-
tors’ price changes orthogonal to their own cost. Large firms exhibit substantial strategic
complementarities: they only pass through around half of their own cost shocks, thus
letting their markup decline to absorb the other half. Amiti et al. (2019) show that this
pattern is consistent with a static model of oligopolistic competition that generalizes
the duopoly model of Atkeson and Burstein (2008). Importantly, they argue that with
nested CES demand, Cournot competition can match the degree of heterogeneity in pass-
through but Bertrand competition cannot. As already remarked by Krugman (1986) in
his seminal paper on pricing-to-market, under the nested CES assumption, Bertrand and
Cournot competition both imply qualitatively that the elasticity of residual demand de-
clines with market share, but quantitatively, Bertrand competition implies only a mild

12See also Berman, Martin and Mayer (2012), who show that the pass-through of exchange rates to export
prices is lower for larger firms.
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decline relative to Cournot.
We argued above that an increase in concentration (lower n) can dampen or amplify

monetary policy transmission once we depart from nested CES systems. For the same
reasons, in a static oligopolistic model with more general demand, an increase in market
share holding industry concentration fixed could dampen or amplify pass-through. Rein-
terpreting Amiti et al. (2019)’s estimates within our dynamic model, we show that the
empirical pattern of heterogeneity is consistent with a large superelasticity for large firms,
and a small superelasticity for small firms. Our results also highlight that the distinction
between Cournot and Bertrand is only meaningful under the CES restriction. With more
general preferences, Bertrand models, which are more common to model price-setting in
macroeconomics, can also match the sharp decline in pass-through.

Rewrite (2) as allowing for permanent cost shocks:

(ρ + nλ)Vi (p, mc) = Πi (p, mci) + λ ∑
j

Vi (gj
(

p−j, mc
)

, p−j, mc
)

(13)

where as usual mc = (mci, mc−i) is the vector of marginal costs. Pass-through, defined in
logs as in the empirical literature, is

α =
ci

pi

∂gi

∂ci

and can be computed following the same envelope arguments as before. It is actually
possible to express α in non-parametric closed form as a function of n, the markup and
the elasticity, just like in our sufficient statistic formula (5) for β; however the expression
is more complex and does not bring particular insight, so we directly describe the results.

When studying the relation between market share and pass-through, we vary n and
maintain the symmetry assumption, so that the number of firms is the only source of
variation in market share. The results would be very similar with variation in market
share stemming from within-sector heterogeneity instead. Indeed, under static Bertrand
or Cournot competition, market share is a sufficient statistic for pass-through: a large firm
with a given market share passes through its costs to its prices in the same way whether it
faces many small competitors or a few large ones. The same insight applies quantitatively
in the dynamic model: Figure 14 shows that pass-through as a function of market share is
essentially the same, whether variation in market share comes from varying the number
n of symmetric firms, or from heterogeneity among a fixed number of firms.

Remark 5. Amiti et al. (2019) also provide direct estimates of strategic complementari-
ties, defined as the coefficient γ of a firm’s price change on its competitors’ price change,
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controlling for own cost change:

∆pit = α∆mcit + γ∆p−it + εit

In a static oligopoly model, the regression coefficient γ corresponds exactly to the slope
of the firm’s best response function. In a dynamic model, however, estimates γ do not
directly reveal the slopes β that enter the transitional dynamics (8), even when looking
at long-run price changes. The discrepancy between γ and β stems from the fact that
competitors’ (current) prices p−i are not a sufficient statistic for firm i’s reaction gi in the
presence of cost shocks: as can be seen in the Bellman equation (13), competitors’ costs
mc−i matter independently for the value Vi, even though they do not affect the flow profit
Πi. Intuitively, competitors’ costs affect how they will change their own prices p−i in the
future, hence enter firm i’s decision when it gets to reset pi. Viewed through the lens of
our model, estimates of strategic complementarities γ could be used as alternative targets
in the calibration. We use estimates of own cost pass-through α because they are a more
widely studied empirical object.

Results. Figure 4 displays pass-through, computed in the dynamic model, under
three specifications for within-sector demand. “AIK” is our baseline calibration: the su-
perelasticity varies as a function of n through a variable parameter θ (n) (defined as in
(12)) so as to match the relationship between market share and pass-through in a static
Cournot model with η = 10 which, Amiti et al. (2019) argue, provides a good fit to their
Belgian data. In “KW”, θ is fixed at 10 as in Klenow and Willis (2016) and in standard
DSGE calibration such as Smets and Wouters (2007). In “CES” θ is fixed at 0. In all cases,
η equals 10, a common benchmark in the literature since Atkeson and Burstein (2008).

We hold η fixed to focus the discussion on how pass-through and hence the residual
superelasticity of demand changes with concentration, but there is no reason for the resid-
ual elasticity itself to vary exactly as in (11). Ideally, one would obtain non-parametric
estimates of εi

i (n) and εi
ii (n) from matching jointly the relation of markups and pass-

through with market shares. However, there is no direct counterpart to Amiti et al. (2019),
in part because markups are notably harder to estimate than pass-through. In the model
with constant η = 10, going from n = 4 to 5 firms decreases prices by around 2%, which
is broadly consistent with the evidence in Atkin, Faber and Gonzalez-Navarro (2018) and
Busso and Galiani (2019). Recent work by Burstein, Carvalho and Grassi (2020) examines
the relation between market shares and markups at the firm and sectoral levels. They find
that a linear regression of the inverse markup against the sectoral HHI yields a coefficient
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Figure 4: Pass-through as a function of market share 1/n. AIK: variable superelasticity
to match heterogeneity in pass-through from Amiti et al. (2019). KW: Fixed θ = 10. CES:
Fixed θ = 0. In all cases, η = 10.
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Figure 5: Half-life as a function of number of firms n. AIK: variable superelasticity to
match heterogeneity in pass-through from Amiti et al. (2019). KW: Fixed θ = 10. CES:
Fixed θ = 0. In all cases, η = 10.
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Figure 6: Half-life as a function of average Herfindahl index 1/n under the “AIK” cali-
bration.

of −0.44. In our dynamic model, the corresponding coefficient is −0.27 and gets closer to
their estimate than a CES model, which would yield −0.15. Allowing η to increase with
n instead of fixing η = 10 would improve the fit further.

Figure 6 shows that under the calibration consistent with the micro evidence on pass-
through, a rise in national concentration corresponding to an increase in the average
Herfindahl index 1/n from 0.05 to 0.1, reflecting the observed trends since 1990 in e.g.
Gutiérrez and Philippon (2017), amplifies the real effects of monetary policy by around
15%. Rossi-Hansberg et al. (2020), however, argue that rising national concentration goes
hand in hand with an even stronger decline in local concentration, as the entry of large
firms in local markets increases local competition but also these firms’ national market
share. An interesting open question is then which level of geographic or economic ag-
gregation (what we call “sectors” s) is most relevant for the competition that determines
consumer price inflation. If, for instance, competition at the county level matters the
most and the local HHI has fallen from 0.15 to 0.05, in line with the evidence from Rossi-
Hansberg et al. (2020), then our results would suggest that the half-life of monetary shocks
has fallen substantially, by around 25%.

5.4 Frequency of Price Changes

Steady State Markups. Another important feature captured by the dynamic oligopoly
model is that the frequency of price changes λ can affect steady state markups and pass-
throughs. Figure 7 shows that markups increase with λ, and more so for low n. Together
with the effect of the superelasticity in section 5.2, this finding confirms that equilibrium
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Figure 7: Steady state markup as a function of frequency of price changes λ. Dashed lines:
static Bertrand-Nash equilibrium markups.

markups are complex objects that depend on many features of the environment beyond
residual demand elasticities, something that dynamic monopolistic competition models
(n = ∞, 0 < λ ≤ ∞) and static oligopolistic models (n < ∞, λ = 0) fail to capture. Yet
recall that when observed, markups can be used as sufficient statistic in Proposition 1
exactly because we do not need to know exactly where they come from.

In the limit λ → 0, the dynamic oligopoly game converges to the static game, both
in terms of steady state markup and reaction function: as prices become infinitely sticky,
firms play the one-shot best-response, and so the equilibrium is the static Bertrand-Nash
equilibrium. When prices are fully flexible (which could be viewed as the case λ = ∞),
firms play the same static Bertrand-Nash equilibrium repeatedly at each instant. But
surprisingly, the limit of infinitely frequent price changes λ → ∞ does not equal the fric-
tionless (flexible price) model. This type of discontinuity in the limit of infinitely flexible
prices has been noted in other contexts, such as quadratic Rotemberg adjustment costs in
Jun and Vives (2004).

Heterogeneous Frequency of Price Changes and Monetary Policy Transmission. The
effect of the frequency of price changes on markups and therefore reaction functions is
magnified in the presence of sector heterogeneity in λ. Several papers have documented
correlations between frequency of price changes and market structure. Most recently,
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Figure 8: Half-life as a function of a sector’s average price duration 1/λ under the “AIK”
calibration.

Mongey (2018) shows that price changes are less frequent in more concentrated wholesale
markets. Given that market shares and pass-through are negatively correlated, this fact
is also consistent with Gopinath and Itskhoki (2010), who show price changes are less
frequent for goods with a lower long-run exchange rate pass-through. Models with menu
costs such as those proposed in these papers provide a microfoundation for the effect of
concentration on price flexibility. Although our Calvo framework does not endogenize
these correlations, interesting insights still arise from taking these correlations as given,
by letting λs in sector s vary with the number of firms ns and deriving implications for
the aggregate effects of monetary policy.

Figure 8 shows how exogenous changes in λ endogenously affect the half-life. We
have shown that in our baseline calibration “AIK” defined in section 5.3, higher concen-
tration increases the half-life for a given frequency of price changes. For instance, the
half-life of the price level in sectors with an effective number of firms n = 3 is more than
twice the average time between price changes. Moreover, concentration matters a lot if
prices do not change frequently (low λ, long price duration) but it makes little difference
if prices are very flexible. Generalizing (9), the cumulative output effect for a monetary
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shock of size δ is:

δ

σ
×
{

E
[

1
λs

]
E
[

1
1− (ns − 1) βs

]
+ Cov

(
1
λs

,
1

1− (ns − 1) βs

)}
. (14)

More concentrated sectors feature a higher slope (ns − 1) βs hence if they are also char-
acterized by a higher price duration 1

λs
, then the term Cov

(
1
λs

, 1
1−(ns−1)βs

)
is positive,

and thus contributes to increases non-neutrality further relative to a case with homoge-
neous frequency of price changes across sectors. This amplification effect is specific to the
oligopoly model, and differs from the role of heterogeneity under monopolistic competi-
tion, e.g., in Carvalho (2006) under Calvo pricing or Nakamura and Steinsson (2010) un-
der menu costs. Even under monopolistic competition and CES demand, the cumulative
output effect δ

σ E
[

1
λs

]
is convex in the sectoral frequencies {λs}, hence non-neutrality is

amplified relative to a homogeneous economy that matches the average frequency E [λs].
We point out an additional effect stemming from the empirical positive correlation be-
tween concentration and price duration.

6 Inspecting the Mechanism: Strategic Behavior vs. Atom-

istic Feedback a la Kimball

The presence of a finite number of firms has two distinct effects on competition and pric-
ing incentives: “feedback effects” capture the fact that each firm cares about its rivals’
current and future prices when setting its price; “strategic effects” capture instead the fact
that each firm realizes its current pricing decision can affect how its rivals will set their
prices in the future. Feedback effects are what the literature with monopolistic competi-
tion calls strategic complementarities in pricing, that could arise from variable markups
as in our setting, or other channels such as intermediate inputs or decreasing returns in
production. The decomposition we propose is only meaningful under oligopoly, because
under monopolistic competition, no single firm can affect the sectoral price index hence
strategic effects are nil.

We disentangle the two effects through the lens of a “non-strategic” model. For each n,
the associated non-strategic model is an economy with monopolistic competition (n = ∞)
and modified Kimball preferences φ̃ (φ, n) that match the residual demand elasticity and
superelasticity of the oligopolistic model with Kimball preferences φ and n firms.13 The

13This non-strategic model also has a behavioral interpretation. Suppose that all firms are non-strategic in
the following sense: when resetting their price, they form correct expectations about the stochastic process
governing their competitors’ future prices, but incorrectly assume that their own price-setting will have no
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non-strategic model captures all the feedback (which in our context only arises from prop-
erties of the demand system), while suppressing strategic effects thanks to the monopo-
listic competition assumption.

We compute the half-life h̃l(n) of this non-strategic model, and then define strategic ef-
fects in the MPE as the increase in the half-life (relative to 1/λ, the half-life in the standard
New Keynesian model with monopolistic competition and CES demand) not explained
by the non-strategic model:

hl (n)
1/λ

=
h̃l (n)
1/λ︸ ︷︷ ︸

feedback effect

× hl (n)
h̃l (n)︸ ︷︷ ︸

strategic effect

.

As n goes to infinity, hl/h̃l goes to 1 and the strategic effect disappears; what is left is
the standard feedback effect that can stem from a Kimball (1995) demand with positive
superelasticity.

6.1 The Non-Strategic Model

The steady state price of the non-strategic model is the static Bertrand-Nash price pNE,
that solves Πi

i
(

pNE) = 0. We look for a symmetric equilibrium where, to first order, each
resetting firm i sets p∗i (t) = β̃ ∑j 6=i pj (t). When it resets, given other firms’ strategies β̃,
firm i chooses p∗i (t) to maximize

Et

[∫ ∞

t
e−(λ+ρ)(s−t)Πi(p∗i (t), p−i(t + s))ds

]
.

The key difference with the MPE defined by the Bellman equation (2) is that here, firm i
treats the evolution of rivals’ prices as exogenous to its choice p∗i . Define

Γn =
(n− 1)Πij

−Πii

Γn is a measure of static feedback effects: it is the slope of the best response of a firm to
a simultaneous price change by all its competitors in a static Bertrand-Nash equilibrium.
Under static monopolistic competition, Γ∞/ (1− Γ∞) is known as the markup elasticity
(Gopinath and Itskhoki, 2010) (as it measures the elasticity of a firm’s desired markup to
its own relative price) or responsiveness (Berger and Vavra, 2019). In Appendix D we show
the following:

effect on those competitors’ future prices.
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Proposition 7. The half-life of the aggregate price level in the non-strategic equilibrium is

h̃l (n) =
1

λ

(
1−

(
ρ+2λ

2λ

) [
1−

√
1− 4λ(ρ+λ)

(ρ+2λ)2 Γn

]) . (15)

We can reexpress Γn around the Nash markup in terms of the demand elasticities
εi

i =
∂ log di

d log pi
and εi

ii =
∂2 log di

∂ log p2
i

as:

Γn =

εi
ii(n)

εi
i(n)

εi
ii(n)

εi
i(n)
− εi

i (n)− 1
. (16)

In the standard CES case, as n goes to infinity and the model converges to monopolistic

competition, εi
ii(n)

εi
i(n)

goes to 0 hence h̃l converges to 1/λ. Away from CES, Γ can converge

to a positive limit. With a finite number of firms, even CES demand implies εi
ii(n)

εi
i(n)

> 0 and

thus h̃l > 1/λ.

Comparative Statics. The effect of oligopoly on monetary policy transmission is trans-
parent in the non-strategic model, as it is entirely captured by Γn that we can compute
in closed form. When Γn > 0, a higher own price leads to more elastic demand and
thus a lower desired markup; this force, known as “Marshall’s second law of demand”,
increases with Γn. In turn, (15) shows that higher Γn increases the feedback effect.

We can now see that the behavior of Γn plays a large part our earlier findings in section
5.2. Recall that in the Klenow and Willis (2016) specification, εi

i and εi
ii are given by (11)

and (12), respectively. Thus Γn decreases with the elasticity of substitution η (and thus the
observed markup) if and only if

θ <
n

n− 2
× (η − 1)2

1 + (n− 1) η2 ,

which explains why, in Figure 12, the half-life is decreasing in the markup µ̄ under CES
but not when θ is high enough.

Similarly, we can use the non-strategic model to understand how concentration affects
the half-life. As shown numerically in Figure 3, this depends again on the value of θ.
Indeed, feedback Γn is decreasing in n (increasing in concentration) if and only if

θ <
(η − 1)2

η + 1
.
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Figure 9: Strategic effect hl(n)/h̃l(n) as a function of n. AIK: variable superelasticity to
match heterogeneity in pass-through from Amiti et al. (2019). KW: Fixed θ = 10. CES:
Fixed θ = 0. In all cases, η = 10.

In theory, insights based on the non-strategic model could fail to be valid in the full MPE,
due to sufficiently strong strategic effects that work in the opposite direction. But as we
show next, we find that strategic effects hl/h̃l are quantitatively modest.

6.2 Measuring Strategic Effects

While strategic effects are important determinants of steady state markups, as we saw
in Figure 13, we find that quantitatively, they do not explain much of the aggregate re-
sponse to monetary shocks under oligopoly. Figure 9 displays the strategic effect, defined
as hl(n)/h̃l(n), as n varies. We contrast our baseline calibration “AIK” with variable su-
perelasticity (defined in section 5.3) with the CES case and a Kimball demand with fixed
θ = 10 “KW” (as in Klenow and Willis 2016). There is an interaction between strategic
effects and feedback effects: strategic effects are considerably stronger in the “AIK” cal-
ibration, which features stronger feedback effects as well. This interaction is intuitive:
the only reason a firm acts strategically is that its price will have a feedback effect on
competitors when they get to reset their prices. Yet in all specifications, strategic effects
are negligible as the half-life is always less than 5% higher than the non-strategic half-
life. Consistent with their definition, strategic effects vanish as n grows and the economy
approaches monopolistic competition: they fall below 1% when n exceeds 6.

Overall, our results suggest that oligopolistic competition can significantly amplify or
dampen the real effects of monetary shocks, but primarily through “feedback effects”,
that is changes in residual demand elasticities as measured by Γn. While this implies
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that a simpler model of oligopolistic that abstracts away from strategic interactions goes
a long way in explaining the economy’s response to monetary shocks, this quantitative
conclusion can only be reached after formulating and solving the fully strategic model.
Moreover, in the next section we show that strategic effects can play a much more impor-
tant role once we generalize the model to more complex monetary policy experiments.

7 A Three-Equation Oligopolistic New Keynesian Model

We focused so far on the dynamics following a permanent monetary shock, under the
Golosov and Lucas (2007) assumptions (7). In this section we take a step closer to the New
Keynesian framework. We leverage our perturbation argument from section 5.1 further,
to allow for general preferences as well as non-stationary dynamics. The main payoff is
an oligopolistic Phillips curve that maps any path of future real marginal cost shocks to
current inflation, and can be embedded in a standard DSGE model once combined with
an Euler equation and a monetary policy rule.

7.1 The Oligopolistic Phillips Curve

Denote k (t) = log MC (t)− log P (t) the log real marginal cost. In Appendix H we show
the following. In this section we denote i (t) the nominal interest rate.

Proposition 8. There exists a q× q matrix A with q ≤ 7 that depends on the steady state demand
elasticities, markup and slope β (described in Appendix H) such that inflation follows

π (t) =
∫ ∞

0
γk (s) k (t + s) ds +

∫ ∞

0
γc (s) c (t + s) ds +

∫ ∞

0
γi (s) (i (t + s)− ρ) ds (17)

where for each variable x ∈ {k, c, i}, γx (s) is a linear combination of
{

e−νjs
}q

j=1 with
{

νj
}q

j=1
the eigenvalues of A, e.g.,

γk (s) =
q

∑
j=1

γk
j e−νjs

for some constants
{

γk
j

}q

j=1
.

In general q = 7 but under condition (45) in Appendix H, which we assume in what
follows, q can be reduced to 3. Under monopolistic competition, even with Kimball pref-
erences parametrized by Γ (as in section 6), there is a single eigenvalue ν1 = ρ instead of
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Figure 10: γk (s) for n = 3 under the AIK calibration (red, solid), compared to the asso-
ciated non-strategic model (red, dashed) and the standard New Keynesian model with
CES monopolistic competition (black).

three, and γc = γi = 0, and the Phillips curve in integral form is simply

π (t) =
∫ ∞

0
e−ρs (1− Γ) λ (λ + ρ)︸ ︷︷ ︸

=γk(s)

k (t + s) ds. (18)

The slope of the Phillips curve is usually defined as the coefficient γk (0) that captures
how inflation reacts to current marginal cost. It is equal to λ (λ + ρ) (1− Γ) under monop-
olistic competition: higher feedback effects Γ flatten the Phillips curve, but are isomorphic
to a higher degree of stickiness λ.

In the case of oligopolistic competition, inflation is also determined by a weighted
average of future marginal costs, with two important differences. First, there are mul-
tiple eigenvalues. Second, inflation depends on more than future marginal costs, as the
second sum in (17) relates current inflation to future consumption and nominal interest
rates. In the standard New Keynesian model, real marginal costs capture all the forces
that influence price setting. Here, consumption and interest rates have an independent
first-order effect because they alter the strategic complementarities between firms, as in
Rotemberg and Saloner (1986). These two differences imply that oligopoly is not equiv-
alent to a higher stickiness parameter λ. As with our earlier permanent money supply
shocks, we can compare (17) to a “non-strategic” Phillips curve that corresponds to a mo-
nopolistic competitive economy with Kimball preferences that match the elasticity and
superelasticity of the oligopolistic economy, characterized by (18) with Γ = Γn given in
(16).

We can also get an equivalent scalar ordinary high-order differential equation for in-
flation:
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Corollary 2. Inflation π solves a third-order ODE

3

∑
j=0

γπ
j

djπ (t)
dtj =

2

∑
j=0

(
γk

j
djk (t)

dtj + γc
j
djc (t)

dtj + γi
j
dji (t)

dtj

)
(19)

with weights
{

γπ
j , γk

j , γc
j , γi

j

}
defined in (46) in Appendix H, and boundary conditions djπ(t)

dtj →
0 as t→ ∞ for all j = 0, 1, 2.

Numerically, it turns out that the oligopolistic Phillips curve (19) is essentially a second-
order ODE. For instance, for n = 3, under the AIK calibration and other parameters as in
Table 1, we have

π̇ = 0.08π − 0.2k + 0.37k̇ + 1.53π̈ + 0.03 (i− ρ) . (20)

The corresponding non-strategic Phillips curve and the standard CES Phillips curve un-
der the same parameters are respectively

π̇ = 0.05π − 0.17k, (21)

π̇ = 0.05π − 1.05k. (22)

Relative to (21), the oligopolistic Phillips curve (20) features (i) more discounting, (ii) in-
flation persistence in the term 1.53π̈, and (iii) a term that resembles an endogenous “cost-
push” shock

u = −
[
0.37k̇ + 0.03 (i− ρ)

]
. (23)

We study next how these differences can generate significant differences between the
oligopoly model and Kimball monopolistic competition, that is, significant strategic ef-
fects.

7.2 Three Equations Model

We can now analyze a three-equation New Keynesian model that combines the oligopolis-
tic Phillips curve (19) with an Euler equation

ċ = σ−1 (i− π − rn) ,

and a monetary policy rule

i = κρ + (1− κ) rn + φππ + εm,
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where rn (t) = ρ + εr (t) is the natural real interest rate and εm (t) is a monetary shock.
For simplicity, agents have perfect foresight over the shocks εr, εm.

Calibration. Wages are flexible, technology is linear in labor Y = ` and households have
preferences C1−σ

1−σ −
`1+ψ

1+ψ , hence k = (ψ + σ) c. We set standard values of σ−1 = 1 for the
elasticity of intertemporal substitution (as in our monetary shock experiments), ψ−1 = 0.5
for the Frisch elasticity of labor supply, and φπ = 1.5 for the Taylor rule coefficient on
inflation. 1− κ measures how well the central bank is able to track the natural rate; κ can
be thought of as monetary policy inertia. We set κ = 0.8.

One-time Shocks. Consider first geometrically decaying unanticipated shocks

εm (t) = εm
0 e−ξt, εr (t) = εr

0e−ξt

with the same decay ξ (a particular case being only one type of shock). It is a standard
result in the literature (Woodford, 2003) that under monopolistic competition, all the equi-
librium variables are proportional to e−ξt. The same applies to the oligopolistic model,
hence all the differences between economies are summarized by the impact effect, e.g.
c (t) = c (0) e−ξt and the cumulative output effect is c (0) /ξ. This contrasts with the
case of permanent money supply shocks, for which impact effects were common to all
economies and differences were summarized by the half-life.

Figure 11 displays the impact effect on consumption c (0) for a 100 bps monetary shock
εm

0 = −0.01 with ξ = 1. The message is consistent with what we found for permanent
shocks to the money supply: concentration amplifies monetary non-neutrality by a signif-
icant amount. As Figure 15 shows, a large part of the amplification can again be explained
by feedback effects. Denoting c̃ (0) the initial consumption jump in the monopolistic Kim-
ball economy calibrated to match the parameter Γn for each n, we find that c (0) is actually
lower than c̃ (0) (so that “strategic effects” are not amplifying) and can deviate from c̃ (0)
by around 5% when n = 3.

More General Shocks. The one-time shocks are not without loss of generality. For
instance, the common exponential decay leaves no room for the endogenous cost-push
shocks (23) to generate different inflation persistence across models.

Once we allow for a more general process for shocks, there are also meaningful dif-
ferences between the oligopolistic economy and the non-strategic economy. Consider for
instance paths for real and monetary shocks generated from an Ornstein-Uhlenbeck pro-
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Figure 11: Impact effect of a εm
0 = −1% monetary shock on consumption c (0) (log-

deviation from steady state) as a function of number of firms n. AIK: variable superelas-
ticity to match heterogeneity in pass-through from Amiti et al. (2019). KW: Fixed θ = 10.
CES: Fixed θ = 0. In all cases, η = 10.

cess (a continuous-time version of AR(1) processes)

dε = −aε + σdZ

where Z in a standard Brownian motion, and a, σr > 0 parametrize the speed of mean-
reversion and variance of the shocks, respectively.14 We set a = 0.3, σr = 0.01. Note
that we are still assuming perfect foresight about the path, as in the case of exponentially
decaying shocks. Figure 17 shows a sample path for real shocks εr, and Table 2 shows the
results for the two kinds of shocks. Here we see that the standard deviations of inflation
and consumption are smaller in the oligopolistic model than in the corresponding non-
strategic model. The higher-order terms in the oligopolistic Phillips curve smooth out
the path for inflation, which in turn makes the real rate and consumption less volatile.
This example demonstrates that the strong equivalence between oligopoly and Kimball
economies that we observe in the case of the literature’s benchmark shocks (permanent
money supply shocks and exponentially decaying interest rate shocks) does not necessar-
ily transpose to more general processes.

14Technically we also multiply εr by a very slow exponential decay to ensure that the economy converges
towards the deterministic steady state as t→ ∞.
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Table 2: Standard deviations of inflation and consumption.

Number
of firms n

Model Std. dev. of π (%) Std. dev. of c (%)

εr εm εr εm

∞ Standard NK (CES) 2.2 2.7 0.8 1.0

∞ Klenow-Willis θ = 10 2.0 2.4 1.0 1.3

3 MPE 1.3 1.6 0.8 1.0
Non-strategic 1.8 2.2 1.4 1.8

10 MPE 2.2 2.8 1.1 1.4
Non-strategic 2.6 3.2 1.3 1.7

25 MPE 2.7 3.3 1.1 1.4
Non-strategic 2.8 3.5 1.2 1.5

8 Conclusion

In this paper, we studied how oligopolistic competition affects monetary policy transmis-
sion. We derived a closed-form formula for the response of aggregate output to monetary
shocks as a function of three measurable sufficient statistics: demand elasticities, market
concentration, and markups. Under our calibration, oligopolistic competition amplifies
monetary non-neutrality, but, in the case of the standard shocks to money supply or inter-
est rates studied in the literature, the response approximates a monopolistic competition
model with Kimball demand that matches the residual demand elasticity and superelas-
ticity of the oligopolistic model.

This does not imply, however, that oligopoly is isomorphic to monopolistic compe-
tition. First, a unique prediction of our model is the link between markups and subtle
properties of demand functions such as superelasticities. Under monopolistic compe-
tition, superelasticities affect cost pass-through and thus monetary policy, but are irrel-
evant for markups. Under oligopolistic competition, higher superelasticities raise both
markups and cost pass-through. Other factors, such as the frequency of price changes,
also affect markups and pass-through: we discuss new implications for the role of sec-
toral heterogeneity in the transmission of monetary policy. Second, in the context of our
three-equations oligopolistic New Keynesian model that allows for more general shocks
and non-stationary dynamics, we find that the oligopolistic model can depart signifi-
cantly from the recalibrated monopolistic model. In particular, the oligopolistic Phillips
curve features a form of endogenous inflation persistence (or equivalently, endogenous

41



cost-push shocks) that does not matter with standard shocks, but plays a role once we
allow for richer dynamics.

Our calibration relies on estimates of exchange rate pass-through, as we believe they
are the most relevant sources of information when studying strategic interactions. In the
menu costs literature, it is more common to target moments of the distribution of price
changes. The open economy literature on pass-through and the closed economy mone-
tary literature have thus evolved mostly in parallel, with different conclusions regarding
the strength of strategic complementarities in pricing. Our framework provides a natu-
ral way to reconcile these two strands: larger firms have more market power, only pass
through a fraction of their idiosyncratic shocks, but drive most of the aggregate price
stickiness. An interesting avenue for future empirical work would be to analyze how the
distribution of price changes itself depends on firm size and market share.
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Appendix

A Additional Figures
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Figure 12: Half-life as a function of resulting steady state markup when η varies.
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Figure 13: Markup and half-life when θ varies in a model with n = 3 and η = 10.
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Figure 14: Pass-through as a function of market share under CES. Black line: market
share varies through the number n = 2, 3, . . . of symmetric firms (black). Gray dashed
line: market share varies through heterogeneity in productivity among a fixed number
n = 4 of firms.
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Figure 15: Impact effect of a εm
0 = −1% monetary shock on consumption relative to non-

strategic model c (0) /c̃ (0) as a function of number of firms n under AIK calibration.
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Figure 16: Real interest rate under oligopoly (red), standard New Keynesian model
(black) given a path of natural rate rn (dashed gray).
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Figure 17: Consumption and inflation under oligopoly (red), non-strategic model (dashed
red), and standard New Keynesian model (black).
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B Stationary Dynamics after a Permanent M shock

If the consumer maximizes∫
e−ρt

[
C(t)1−σ

1− σ
− N(t)1+ψ

1 + ψ
+

m(t)1−χ

1− χ

]
dt

we have

˙C(t)
C(t)

=
1
σ
(i(t)− π(t)− ρ)

N(t)ψC(t)σ =
W(t)
P(t)

⇒ ψ
˙N(t)

N(t)
=

˙W(t)
W(t)

− i(t) + ρ

M(t)−χP(t)χC(t)σ = i(t)

We look for an equilibrium with constant nominal interest rate i(t) = i and nominal wage
W (t) = W following a permanent shock to M. Suppose ψ = 0 then we get

˙W(t)
W(t)

= i− ρ

To get constant wage W(t) = W we need i = ρ (this seems necessary, otherwise we would
get permanent wage inflation). The constant wage implies

P(t)C(t)σ = W

Then the third equation gives
ρMχ = P(t)χC(t)σ

So we need χ = 1 for our guess to be indeed an equilibrium.
The representative consumer’s expenditure in sector s at time t is

Es(t) = Ps(t)1−ω [C(t)P(t)ω]

where P(t) is the aggregate price level
(∫

s Ps(t)1−ωds
) 1

1−ω hence the real demand vector
in sector s is (given our within-sector CRS assumption as in Kimball)

d
({

pj,s(t)
}

, Es(t)
)
= d

({
pj,s(t)

}
, 1
)

Ps(t)−ωC(t)P(t)ω

where we have seen that Ps =
1

hs(d({ps},1)) where hs(x) is defined by the Kimball aggrega-
tor

1
n ∑

i
φ
(xi

h

)
= 1
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Ps solves
1
n ∑

i
φ ◦
(
φ′
)−1

(
φ′(1)

pi,s

Ps

)
= 1

Denote the function of prices in sector s only

D
({

pj,s
})

= d
({

pj,s
}

, 1
)

Ps
−ω

The nominal profit of firm i in sector s given all the other prices in the economy is

D
({

pj,s
})

C(t)P(t)ω
[

pi,s −MCi(t)
]

where p−i,s =
{

pj,s
}

j 6=i. Thus the real profit is

D
({

pj,s
})

C(t)P(t)ω−1
[

pi,s −MCi(t)
]

Firms maximize the present discounted value of this using Arrow-Debreu SDF, which
involves marginal utility, that is∫

e−ρtC(t)−σD
({

pj,s
})

C(t)P(t)ω−1
[

pi,s −MCi(t)
]

=
∫

e−ρtD
({

pj,s
})

C(t)1−σP(t)ω−1
[

pi,s −MCi(t)
]

so with σ = 1 and ω = 1, firms can ignore the behavior of aggregate variables P(t) and
C(t).

With general σ (but linear disutility of labor and log-utility of real balances, that are
needed to obtain constant nominal interest rate and wage) we have that

P(t)C(t)σ = W = constant

Therefore the demand shifter becomes

C(t)1−σP(t)ω−1 =
C(t)P(t)ω

W
= W

1
σ−1P(t)ω− 1

σ

so we need
ωσ = 1

for firms to ignore the behavior of aggregate variables during the transition to the new
steady state.
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C Aggregation

C.1 Homogeneous Firms

Fix n and a sector s ∈ [0, 1]. Define the state vs(t) as

vs = (z1, . . . , zn)
′

where zi = pi − p̄ (prices are in log). Denote first-order expansions of best responses by
p′i = α + β

(
∑j 6=i pj

)
or equivalently z′i = β

(
∑j 6=i zj

)
. When firm i adjusts its price, the

state of sector s changes to v′s(t) = Mivs(t) where Mi is the identity matrix except for row
i which is equal to (β, . . . , β, 0

↑
i

, β, . . . , β).

Define the aggregate state variable

V(t) =
∫

s∈[0,1]
vs(t)ds ∈ Rn

Between t and t + ∆t, a mass nλ∆t of firms adjusts prices so V evolves as

V(t + ∆t) = (1− nλ∆t)V(t) +
∫

a firm in s adjusts
vs(t + ∆t)ds

= (1− nλ∆t)V(t) + (λn∆t)∑i Mi

n
V(t)

therefore in the limit ∆t→ 0

V̇t = nλ

(
∑i Mi

n
− In

)
Vt

where

∑i Mi

n
− In =


−1
n

β
n · · · β

n
β
n

−1
n · · · β

n
...

... . . . ...
β
n

β
n · · · −1

n


The aggregate price level is then, to first order, log P(t) = LVt + p̄ where L = 1

n (1, . . . , 1).

The eigenvalues of nλ
(

∑i Mi
n − In

)
are:

• µ1(n) = −λ(1 + β(n)) with multiplicity n− 1,

• µ2(n) = −λ[1− (n− 1)β(n)] with multiplicity 1.

The vector (1, . . . , 1)′ is an eigenvector of µ2(n), so if we start from symmetric initial
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conditions
V(0) = (p0 − p̄, . . . , p0 − p̄)

we have
V(t) = V(0)eµ2(n)t

hence, to first order,

log P(t) = log P̄ + (log P (0)− log P̄) eµ2(n)t.

With heterogeneous sectors s differing in the number of firms ns (and potentially the
frequency of price adjustment captured by λs) we can just use the previous steps for each
positive mass ωn of sectors with n firms and aggregate to

log P(t) = log P̄ + (log P (0)− log P̄) e∑n ωnµ2(n)t.

C.2 Heterogeneous Firms

Suppose there are two types of firms a and b with na + nb = n. In general, we need to
solve for four steady state objects:

gi,a
ja , gi,a

jb
, gi,b

ja , gi,b
jb

Firms of type a’s Bellman equation is

(ρ + nλ)Vi,a (p) = Πi,a (p) + λVi,a
(

gi,a (p−i) , p−i

)
+ λ

{
∑
j∈A

Vi,a
(

gj,a (p−j
)

, p−j

)
+ ∑

j∈B
Vi,a

(
gj,b (p−j

)
, p−j

)}

and similarly for firms of type b. The envelope conditions evaluated at a symmetric steady
state pa, pb for firms of type a are

(ρ + nλ)Vi,a
i

= Πi,a
i
+ λ ∑

j 6=i

[
Vi

i
(gj(p−j), p−j) + Vi

j
(gj(p−j), p−j)gj

i(p−j)
]

0 = Πi,a
i
+ λ (na − 1)

[
Vi,a

i + Vi,a
ja gj,a

ia

]
+ λnb

[
Vi,a

i + Vi,a
jb

gj,b
ia

]
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(ρ + nλ)Vi,a
ka

= Πi,a
ka
+ λ ∑

j 6=ka

[
Vi,a

pj
(gj(p−j), p−j)

∂gj

∂pk
+ Vi,a

pk
(gj(p−j), p−j)

]
∀k 6= i

= Πi,a
ka
+ λ (na − 2)

[
Vi,a

ja gj,a
ka

+ Vi,a
ka

]
+ λ

[
Vi,a

ia
gi,a

ka
+ Vi,a

ka

]
+ λnb

[
Vi,a

jb
gj,b

ka
+ Vi,a

ka

]
(ρ + nλ)Vi,a

kb
= Πi,a

kb
+ λ ∑

j 6=kb

[
Vi,a

pj
(gj(p−j), p−j)

∂gj

∂pk
+ Vi,a

pk
(gj(p−j), p−j)

]
∀k 6= i

= Πi,a
kb
+ λ (na − 1)

[
Vi,a

ja gj,a
kb

+ Vi,a
kb

]
+ λ

[
Vi,a

ia
gi,a

kb
+ Vi,a

kb

]
+ λ (nb − 1)

[
Vi,a

jb
gj,b

kb
+ Vi,a

kb

]
hence by symmetry and using the FOC Vi

i = 0 we have:

(ρ + λ)Vi,a
ja = Πi,a

ja + λ (na − 2)Vi,a
ja gi,a

ja + λnbVi,a
jb

gi,b
ja

(ρ + λ)Vi,a
jb

= Πi,a
jb
+ λ (na − 1)Vi,a

ja gi,a
jb
+ λ (nb − 1)Vi,a

jb
gi,b

jb

and the equivalent equations for b:

(ρ + λ)Vi,b
jb

= Πi,b
jb
+ λ (nb − 2)Vi,b

jb
gi,b

jb
+ λnaVi,b

ja gi,a
jb

(ρ + λ)Vi,b
ja = Πi,b

ja + λ (nb − 1)Vi,b
jb

gi,b
ja + λ (na − 1)Vi,b

ja gi,a
ja

This is a linear system of 4 equations in 4 unknowns
{

Vi,a
ja , Vi,a

jb
, Vi,b

ja , Vi,b
jb

}
; we can then

inject the solutions into

0 = Πi,a
i
+ λ (na − 1)Vi,a

ja gi,a
ja + λnbVi,a

jb
gj,b

ia

0 = Πi,b
i
+ λ (nb − 1)Vi,b

jb
gi,b

jb
+ λnaVi,b

ja gj,a
ib

In general, we cannot solve for the slopes as functions of steady state elasticities.
However, when na = nb = 1, we obtain the formulas in Proposition 4. Then

0 = Πi,a
i
+ λ

Πi,a
jb

ρ + λ
gj,b

ia

which leads to Proposition 4 after simplifying

−Πi,a
i

Πi,a
jb

= −
di,a

i (pa −MCa) + di,a

di,a
b (pa −MCa)

=
1
εa

b

[
−εa

a −
pb

pa −MCa

]
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As before, V (t) =
∫

s∈[0,1] vs(t)ds follows

V̇ (t) = λ

(
−1 pb

pa
βa

pa
pb

βb −1

)
V (t) .

The two eigenvalues are µ+ = −λ

(
1 +

√
βaβb

)
and µ− = −λ

(
1−

√
βaβb

)
. Hence the

solution is

V (t) =

√
pb
pa

βa
(

pb (0)− p∗b
)
−
√

pa
pb

βb (pa (0)− p∗a)

2

 −1√
βb

1√
pb
pa βa

 eµ+t

+

√
pa
pb

βb (pa (0)− p∗a) +
√

pb
pa

βa
(

pb (0)− p∗b
)

2


1√
pa
pb

βb

1√
pb
pa βa

 eµ−t

hence (supposing the economy only features such sectors)

log P(t)− log P̄
log P (0)− log P̄

=

 1− Sa√
pb
pa

βa
− Sa√

pa
pb

βb


√

pb
pa

βa −
√

pa
pb

βb

2

 eµ+t

+

 1− Sa√
pb
pa

βa
+

Sa√
pa
pb

βb


√

pb
pa

βa +
√

pa
pb

βb

2

 eµ−t.

where Sa is the steady state market share of type a firms.

D Non-Strategic Model

The quadratic approximation of profit Πi of firm i around the non-strategic steady state
which is the static Nash pNE writes (in log deviations)

πi(pi, Qi, Ri) = BQi + CQ2
i + DpiQi + Ep2

i + FRi

where
Qi = ∑

j 6=i
pj

Ri = ∑
j 6=i

p2
j
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There is no term Api because we are approximate around the Nash price pNE(n) where
Πi

i = 0 for all i. The most important coefficients D and E are

D = Πij

(
pNE(n)

)
E =

Πii

2

(
pNE(n)

)
We look for a symmetric equilibrium where each resetting firm j sets

p∗j (t) = βQj(t)

Then between s and s + ∆s we have

EtQi(s + ∆s) = (1− (n− 1)λ∆) EtQi(s) + λ∆Et ∑
j 6=i

[
Qi(s)− pj(s) + βQj(s)

]
hence taking the limit ∆s→ 0

d
ds

EtQi(s) = λ

{
β ∑

j 6=i
EtQj(s)− EtQi(s)

}

thus the variable Z(s) = ∑i EtQi(s) follows

d
ds

Z(s) = −λ [1− β(n− 1)] Z(s)

Therefore, by symmetry

EtQi(s) = Qi(t)e−λ[1−β(n−1)](s−t)

When it resets, firm i chooses p∗i (t) such that

max
p∗i (t)

Et

[∫ ∞

t
e−(λ+ρ)(s−t)πi(p∗i (t), Qi(t + s), Ri(t + s))ds

]
The FOC is

p∗i (t) = −
∫ ∞

t e−(λ+ρ)(s−t)DEt [Qi(s)] ds∫ ∞
t e−(λ+ρ)s2Eds

= −

∫ ∞
t e−(λ+ρ)(s−t)

(
DQi(t)e−λ(1−(n−1)β)(s−t)

)
ds∫ ∞

t e−(λ+ρ)(s−t)2Eds

= − D(λ + ρ)

2E [λ + ρ + λ(1− (n− 1)β)]
Qi(t)
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So we need

(n− 1)β =

(
(n− 1)D
−2E

)
1

1 + λ
ρ+λ [1− (n− 1)β]

=

(
(n− 1)Πij

−Πii

)
1

1 + λ
ρ+λ [1− (n− 1)β]

Note that in a static model, the ratio
(n−1)Πij
−Πii

would be the slope of the static best response
to a simultaneous price change by all firms j 6= i and we need it to be strictly lower than 1
for a static symmetric Nash equilibrium to exist. The slope of the dynamic non-strategic
best response at a stable steady state, if one exists, is always smaller than the slope of
the static best response. Thus we already see a form of dynamic complementarity. n
affects demand functions and hence the level of the non-strategic steady state, just like it
affects the level of the static Nash equilibrium (they are the same). n also affects profit
complementarities (potentially in an independent way, away from CES) and thereby the
slope of the reaction functions in the static and dynamic (non-strategic) models. But there
is a stable relation between the two across n, described by the solution below.

The second-order polynomial

X2 −
(

ρ + 2λ

λ

)
X +

(
ρ + λ

λ

)(
(n− 1)D
−2E

)
has a real root if

(n− 1)D
−2E

<
(ρ + 2λ)2

4λ(ρ + λ)
= 1 +

ρ2

4λ(ρ + λ)

The stable root in (0, 1) can only be

(n− 1)β =

(
ρ + 2λ

2λ

)[
1−

√
1− 4

(
(n− 1)D
−2E

)
λ(ρ + λ)

(ρ + 2λ)2

]

E Demand Elasticities

In what follows recall that we assume an outer elasticity ω = 1. From budget exhaustion,
for any i and p

ci + ∑
j

pj
∂cj

∂pi
= 0 (24)

57



Then Slutsky symmetry and constant returns to scale imply

εi
i + ∑

j 6=i
εi

j = −1 (25)

where εi
j =

∂ log ci

∂ log pJ
. At a symmetric price, this becomes

εi
j = −

1 + εi
i

n− 1

so the convergence to Nash holds as long as the own elasticity εi
i is bounded. Call for any

pair j, k

εi
jk =

∂2 log di

∂ log pk∂ log pj

We can differentiate (25) with respect to log pi to get

εi
ii + ∑

j 6=i
εi

ij = 0

hence at a symmetric price,
εi

ii + (n− 1)εi
ij = 0

Differentiating once more the budget constraint with respect to pi

2
∂ci

∂pi
+ ∑

j

∂2cj

∂p2
i
= 0 (26)

Elasticities and second-derivatives are related by

∂2ci

∂pk∂pj
=

ci

pk pj

[
εi

jk + εi
jε

i
k

]
for any j 6= k

∂2ci

∂p2
j
=

ci

p2
j

[
εi

jj − εi
j +
(

εi
j

)2
]

for any j

At a symmetric price (using ε
j
ii = εi

jj), we have from (26)

εi
jj = εi

j

(
1− εi

j

)
− 1

n− 1

[
εi

ii + εi
i

(
1 + εi

i

)]
(27)

Finally, differentiating (24) with respect to pk for some k 6= i gives

∂ci

∂pk
+

∂ck

∂pi
+ ∑

j 6=i,k
pj

∂2cj

∂pk∂pi
+ pi

∂2ci

∂pk∂pi
+ pk

∂2ck

∂pk∂pi
= 0
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and at a symmetric price p

2
p

∂ci

∂pk
+ (n− 2)

∂2ci

∂pk∂pj
+ 2

∂2ci

∂pk∂pi
= 0

Therefore, in elasticities at a symmetric price,

2εi
j + (n− 2)

[
εi

jk +
(

εi
j

)2
]
+ 2

[
εi

ij + εi
jε

i
i

]
= 0 (28)

for k 6= j, i, j 6= i. The own-superelasticity is defined as the elasticity of (minus the)
elasticity:

Σi =
∂ log(−εi

i)

∂ log pi
=

εi
ii

εi
i

So in the end we have two degrees of freedom:
{

εi
i, εi

ii
}

to parametrize a symmetric steady
state.

Special case: n = 2. If n = 2 there is only 1 degree of freedom, so CES is without loss of
generality (locally). From (28), the cross-superelasticity εi

ij, hence the own-superelasticity
εi

ii = −(n− 1)εi
ij is determined by elasticities.

E.1 Special case: CES

With CES utility

h(x) =

(
1
n

n

∑
j=1

x
ε−1

ε
j

) ε
ε−1

we have only one degree of freedom ε > 1 and at any symmetric price

εi
i = −ε +

ε− 1
n

εi
ii = −(ε− 1)2 n− 1

n2

εi
jj = εi

ii

which implies from the equalities above

εi
j =

ε− 1
n

εi
jk =

(ε− 1)2

n2
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E.2 Special case: Kimball Demand

Start with a general Kimball (1995) aggregator that defines C as

1
n ∑

i
Ψ
( ci

C

)
= 1 (29)

where Ψ is increasing, concave, and Ψ(1) = 1 which ensures the convention that at a
symmetric basket ci = c, we have C = c. The consumer’s problem is

min
{ci}

∑
i

pici s.t.
1
n ∑

i
Ψ
( ci

C

)
= 1

There exists a Lagrange multiplier λ > 0 such that for all i

pi = λΨ′
( ci

C

) 1
C

(30)

If we define the sectoral price index P by

1
n ∑

i
ϕ
(

Ψ′(1)
pi

P

)
= 1

where
ϕ = Ψ ◦ (Ψ′)−1

then at a symmetric price pi = p we have P = p, and λΨ′(1) = PC so we can rewrite (30)
as

pi

P
Ψ′(1) = Ψ′

( ci

C

)
Taking logs and differentating (30) with respect to log pi yields

1 =
∂ log P
∂ log pi

+
Ψ′′
( ci

C
)

Ψ′
( ci

C
) ci

C

[
εi

i −
∂ log C
∂ log pi

]
Differentiating (29) yields

∑
j

Ψ′
(

cj

C

)
cj

C

[
∂ log cj

∂ log pi
− ∂ log C

∂ log pi

]
= 0

hence

∂ log C
∂ log pi

=
∑j Ψ′

(
cj
C

)
cj
C ε

j
i

∑j Ψ′
(

cj
C

)
cj
C
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Using Slutsky symmetry pjε
j
i = piε

i
j to express this using demand elasticities for good i

only, we can reexpress as

∂ log C
∂ log pi

=
∑j Ψ′

(
cj
C

)
cj
C

pi
pj

εi
j

∑j Ψ′
(

cj
C

)
cj
C

At a symmetric price, budget exhaustion with constant returns implies

∂ log C
∂ log pi

=
1
n ∑

j
εi

j =
−1
n

For any k 6= i we can differentiate

log Ψ′
(

ci

C

)
− log Ψ′

(
ck

C

)
= log pi − log pk

with respect to log pi to get

Ψ′′
(

ci

C

)
Ψ′
(

ci

C

) ( ci

C

)
∂

∂ log pi

[
log ci − log C

]
−

Ψ′′
(

ck

C

)
Ψ′
(

ck

C

) ( ck

C

)
∂

∂ log pi

[
log ck − log C

]
= 1

or, defining

R(x) =
xΨ′′ (x)
Ψ′ (x)

R
(

ci

C

) [
εi

i −
∂ log C
∂ log pi

]
− R

(
ck

C

)[
εk

i −
∂ log C
∂ log pi

]
= 1 (31)

Hence at a symmetric steady state, using εk
i = εk

i = −
1+εi

i
n−1 we have

εi
i =

n− 1
n

1
R(1)

− 1
n

Differentiating once more with respect to log pi,

R′
(

ci

C

) [
εi

i −
∂ log C
∂ log pi

]2

− R′
(

ck

C

)[
εk

i −
∂ log C
∂ log pi

]2

+ R
(

ci

C

) [
εi

ii −
∂2 log C
∂2 log pi

]
− R

(
ck

C

)[
εk

ii −
∂2 log C
∂2 log pi

]
= 0

At a symmetric steady state,

R′ (1)
[

εi
i +

1
n

]2

− R′ (1)
[

εk
i +

1
n

]2

+ R (1)
[
εi

ii − εk
ii

]
= 0

R′ (1)
[

εi
i +

1
n

]2

− R′ (1)
[

εk
i +

1
n

]2

+ R (1)
[
εi

ii − εi
jj

]
= 0

61



Using (27) we get

R′ (1)
[

n− 1
n

1
R(1)

+
1
n

]2

− R′ (1)

[
−

1 + εi
i

n− 1
+

1
n

]2

+ R (1)
[

εi
ii

n
n− 1

− εi
j

(
1− εi

j

)
+

1
n− 1

[
εi

i

(
1 + εi

i

)]]
= 0

Now differentiating (31) with respect to log pj for some j 6= i, k

R′
(

ci

C

)[
εi

j −
∂ log C
∂ log pj

] [
εi

i −
∂ log C
∂ log pi

]
+ R

(
ci

C

)[
εi

ij −
∂2 log C

∂ log pi∂ log pj

]

−R′
(

ck

C

)[
εk

i −
∂ log C
∂ log pi

] [
εk

j −
∂ log C
∂ log pj

]
− R

(
ck

C

)[
εk

ij −
∂2 log C

∂ log pi∂ log pj

]
= 0

At a symmetric price,

R′ (1)
[

εi
j +

1
n

] [
εi

i +
1
n

]
+ R (1) εi

ij = R′ (1)
[

εi
j +

1
n

]2

+ R (1) εi
jk

Therefore, using (28) we have

εi
ii = −

n− 1
n2

[
R(1)(1 + R(1))2 + R′(1)(n− 2)

R(1)3

]
(32)

εi
jj =

(n− 2)R′(1)− (n− 1)R(1) [1 + R(1)]2

n2R(1)3 (j 6= i)

εi
ij =

R(1) [1 + R(1)]2 + (n− 2)R′(1)
n2R(1)3 (j 6= i)

εi
jk =

R(1) [1 + R(1)]2 − 2R′(1)
n2R(1)3 (j 6= k, n ≥ 3)

Klenow and Willis (2016) use the functional form

Ψ′(x) =
ε− 1

ε
exp

(
1− xθ/ε

θ

)

Ψ′′(x) = −x
θ
ε−1

ε
Ψ′(x)

Ψ′′′(x) =

(x
θ
ε−1

ε

)2

−
(

θ − ε

ε2

)
x

θ
ε−2

Ψ′(x)

Therefore

R(1) = −1
ε

R′(1) = − θ

ε2
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so that this nests CES with θ = 0. We thus have

εi
i = −ε +

ε− 1
n

εi
j =

ε− 1
n

εi
ii = −

n− 1
n2

[
(ε− 1)2 + (n− 2)θε

]
εi

ij =
(ε− 1)2 + θε(n− 2)

n2

εi
jj =
−(n− 1)(ε− 1)2 + θε(n− 2)

n2

εi
jk =

(ε− 1)2 − 2θε

n2

The superelasticity, defined as εi
ii

εi
i
, satisfies

εi
ii

εi
i
=

1
S

1−S + η

[
θη +

(
(η − 1)2 − 2θη

)
S
]

≈ θ +

[
(η − 1)2

η
− 2θ

]
S

with S = 1/n denoting the market share. The approximation in the second line holds if S
is small relative to η/ (1 + η), as is the case in a calibration with η = 10. With constant θ

and η, the superelasticity is approximately linear in the Herfindahl index, as in Figure 18.

If θ is lower than (η−1)2

2η which equals 4.05 when η = 10 (as in the CES case θ = 0) then εi
ii

εi
i

increases with S. With high enough θ, it can actually decrease with S, but a high fixed θ

is at odds with pass-through being larger for smaller firms.

F Perturbation of utility

Proof of Proposition 6. We start from the system that defines an MPE:

(ρ + nλ)V (p) = Π (p) + λ ∑
j

V
(

g
(

p−j
)

, p−j
)

(33)

Vp (g (p−i) , p−i) = 0 (34)

Differentiating k times the Bellman equation (33) gives us for each k ≥ 1 a linear system
in the kth-derivatives V(k) = (V11...11, V11...12, V11...22, . . . ) of the value function V (eval-
uated at the symmetric steady state p̄), which we can invert to obtain these derivatives
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Figure 18: Superelasticities εi
ii/εi

i as a function of market share 1/n. AIK: variable su-
perelasticity to match heterogeneity in pass-through from Amiti et al. (2019). KW: Fixed
θ = 10. CES: Fixed θ = 0. In all cases, η = 10.

as a function of the profit derivatives Π(k) = (Π11...11, . . . ) and derivatives of the policy
function (there are k + 1 such equations in the case of n = 2 firms).

We can then compute Π(k) as a function of p̄ and own- and cross-superelasticities of
the demand function d of order up to k.

Combining the solution V(k) with the k − 1th-derivative of the FOC (34) gives us a
sequence of equations that must be satisfied at a steady state

Fk
(

p̄, g′ ( p̄) , g′′ ( p̄) , . . . , g(k) ( p̄) ; ε(0), ε(1), ε(2), . . . , ε(k)

)
= 0

where Fk is linear in ε̃(k). Thus we can construct recursively a unique sequence ε̃(k) starting
from k = m + 1, using

Fm+1
(

p̄, g′, . . . g(m−1), 0, 0; ε(1), ε(2), . . . , ε̃(m+1)

)
= 0

Fm+2
(

p̄, g′, . . . g(m−1), 0, 0, 0; ε(1), ε(2), . . . , ε̃(m+1), ε̃(m+2)

)
= 0

and so on. Section F.1 below shows that there are indeed enough degrees of freedom to
make the equations Fm, Fm+1, . . . independent.

Define ϕ̃ as

ϕ̃ (x) =
∞

∑
k=0

ϕ̃(k) (1)
k!

(x− 1)k

where ϕ̃(k+1)(1) is characterized by
(

ε(1), . . . , ε(m), ε̃(m+1), . . . , ε̃(k)

)
through the same com-

putations as in Appendix E.
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Given this construction, p̄, g′, . . . , g(m−1) are pinned down by
(

ε(1), . . . , ε(m)

)
as the

solution to the system of equations Fk for k = 1, . . . , m.

F.1 Counting the degrees of freedom

The main potential impediment to the proof above is that demand integrability (e.g.,
demand functions being generated by actual utility functions) imposes restrictions on
higher-order elasticities that would prevent us from constructing the sequence ε̃. Indeed,
in Appendix E we saw that with n = 2 firms, general Kimball demand functions cannot
generate superelasticities beyond those arising from CES demand. We now show that as
long as n ≥ 3, this is not the case, by proving that the number of elasticities exceeds the
number of restrictions.

Formally, we want to compute #n (m), the number of cross-elasticities of order m, that
is derivatives

∂m log d1 (p)
∂i1 log p1∂i2 log p2 . . . ∂in log pn

where

0 ≤ i1, . . . , in ≤ m

i1 + · · ·+ in = m

as functions of the own-mth-elasticity ε1
11 . . . 1︸ ︷︷ ︸

m times

, and compare #n (m) to the number of

restrictions imposed by demand integrability and symmetry arguments.

Step 1: Computing #n (m). By Schwarz symmetry, in a smooth MPE, we can always
invert 2 indices in the derivatives. Moreover, from the viewpoint of firm 1 (whose demand
d1 we’re differentiating), firms 2 and 3 are interchangeable. For instance, in the case of
n = 3 firms and order of differentiation m = 3, these symmetries reduce the number of
potential elasticities nm = 27 to only 6 elasticities

ε1
111, ε1

112, ε1
122, ε1

123, ε1
222, ε1

223.

Denote
qn (M)

the number of partitions of an integer M into n non-negative integers. For M ≥ n we
have

qn (M) = pn (M + n)
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where pn (M) is the number of partitions of an integer M into n positive integers. We can
see this by writing, starting from a partition of M into n non-negative integers i1, . . . , in:

M + n = (i1 + 1) + · · ·+ (in + 1)

We can then compute pj (M) using the recurrence formula

pj (M) = pj (M− j)︸ ︷︷ ︸
partitions for which ik ≥ 2 for all k

+ pj−1 (M− 1)︸ ︷︷ ︸
partitions for which ik = 1 for some k

Lemma 1. For any n ≥ 1 and m ≥ 1 the number of elasticities of order m is

#n (m) =
m

∑
k=0

qn−1 (m− k) (35)

hence #n (m + 1) = #n (m) + qn−1 (m + 1).

Proof. Firm 1 is special, so we need to count the number of times we differentiate with
respect to log p1, which generates the sum over k. Then we get each term in the sum by
counting partitions of m− k into n− 1 non-negative integers.

Step 2: Computing the number of restrictions arising from demand integrability. Next,
we want to use economic restrictions to reduce the number of degrees of freedom, ideally
to 1, by having #n (m)− 1 independent equations. Our restrictions are

Φ (p) = ∑
j

pjdj (p) = 0 ∀p (36)

di
j (p) = dj

i (p) ∀p, ∀i, j (37)

The first equation is the budget constraint. The second equation is the Slutsky symmetry
condition (constant returns to scale allow to go from Hicksian to Marshallian elasticities).
Note that Φ defined in (36) is symmetric, unlike the demand function d1 we are using to
compute elasticities. Therefore Φ’s derivatives give us fewer restrictions than what we
need in (35), leaving room for restrictions to come from the Slutsky equation.

We need to differentiate these two equations to obtain independent equations that
relate the mth-cross-elasticities to the mth-own-elasticity. The number of restrictions com-
ing from derivatives of Φ at order m is simply the number of partitions of m into n non-
negative integers

qn (m)
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How many restrictions [n (m) do we have from derivatives of the Slutsky equation? The
initial equation

d1
2 = d2

1

is irrelevant at a symmetric steady state; it only starts mattering once we differentiate it.
The first terms are (see in next subsection)

[n (1) = 0

[n (2) = 1

[n (3) =

2 if n ≥ 3

1 if n = 2

[n (4) =


5 if n ≥ 4

4 if n = 3

3 if n = 2

Step 3: Comparing the two. We actually do not need to compute [n (m) exactly. The fol-
lowing lemma shows that there are always enough degrees of freedom #n (m) to construct
the Kimball aggregator in 6:

Lemma 2. For n ≥ 3 and any m we have

qn (m) + [n (m) + 1 ≤ #n (m) (38)

Proof. We know by hand that (38) holds for m = 1, 2 so take m ≥ 3. Then all the Slutsky
conditions can be written as starting with

d1
12... = . . .

hence we have

[n (m) ≤ #n (m− 2) = #n (m)− pn−1 (n + m− 1)− pn (n + m− 2)

hence the number of equations is bounded by

qn (m) + [n (m) ≤ pn (n + m) + #n (m)− pn−1 (n + m− 1)− pn (n + m− 2)
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Then we have (38) if

pn (n + m) < pn−1 (n + m− 1) + pn (n + m− 2)

⇔pn−1 (n + m− 1) + pn (m) < pn−1 (n + m− 1) + pn (n + m− 2)

⇔pn (m) < pn (n + m− 2)

which holds for n ≥ 3.

Note that so far we have considered general CRS demand functions. Restricting atten-
tion to the Kimball class makes the inequality (38) bind, meaning that we can parametrize
all the cross-elasticities of order m using the own-elasticity of order m.

What fails in the knife-edge case n = 2? Slutsky symmetry imposes too many restric-
tions: at m = 2 we only have 3 elasticities ε1

11, ε1
12, ε1

22 and also 3 restrictions, so we can
solve out all the superelasticities as functions of ε1

1, which prevents us from constructing
the Kimball aggregator in Proposition 6.

F.2 Example with m = 3 and any n ≥ 3

The potential elasticities are

m = 1 : ε1
1, ε1

2

m = 2 : ε1
11, ε1

12, ε1
22, ε1

23

m = 3 : ε1
111, ε1

112, ε1
122, ε1

123, ε1
222, ε1

223, ε1
234

Differentiating the budget constraint (36) Φ (p) = 0 with respect to any i, we get

Φi (p) = di + pidi
i + ∑

j 6=i
pjd

j
i = 0

Then differentiating with respect to i and any k 6= i

Φii (p) = 2di
i + pidi

ii + ∑
j 6=i

pjd
j
ij = 0

Φik (p) = 2di
k + pidi

ik + pkdk
ik + dk

i + ∑
j 6=i,k

pjd
j
ik = 0
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Then differentiating the first equation with respect to i and k and the second equation
with respect to any l 6= i, k

Φiii (p) = 3di
ii + pidi

iii + ∑
j 6=i

pjd
j
iij = 0

Φiik (p) = 2di
ik + pidi

iik + dk
ik + pkdk

ikk + ∑
j 6=i,k

pjd
j
ijk = 0

Φikl (p) = 2di
kl + pidi

ikl + pkdk
ikl + dk

il + dl
ik + pldl

ikl + ∑
j 6=i,k,l

pjd
j
ikl = 0

(by symmetry of Φ we have Φiik = Φikk and Φiii = Φkkk).
Differentiating the Slutsky equation (37)

di
ij = dj

ii

(
= di

jj

)
(di

jk = dj
ik is irrelevant) then

di
iij = dj

iii

(
= di

jjj

)
di

ijk = dj
iik

(
= di

jjk

)
, k 6= i, j

(di
ijj = dj

iij is irrelevant)

di
iiij = dj

iiii

(
= di

jjjj

)
di

iijj = dj
iiij

(
= di

ijjj

)
di

iijk = dj
iiik

(
= di

jjjk

)
di

ijkk = dj
iikk

(
= di

jjkk

)
, k 6= i, j

di
ijkl = dj

iikl

(
= di

jjkl

)
, k 6= i, j, l 6= k, i, j

(di
ijjk = dj

iijk and di
ijjj = dj

iijj are irrelevant)
So overall we get 1 restriction for m = 1, 3 restrictions for m = 2, and 5 restrictions for

m = 3.
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G Locally Linear Equilibrium

G.1 Homogeneous Firms

We first solve the linear system in
{

Vi
j , Vi

ii, Vi
ij, Vi

jj, Vi
jk

}
obtained from envelope conditions

(ρ + λ)Vi
j = Πi

j + λ (n− 2)Vi
j β

(ρ + λ)Vi
ii = Πi

ii + λ (n− 1)
(

Vi
jjβ

2 + 2Vi
ijβ
)

(ρ + 2λ)Vi
ij = Πi

ij + λ (n− 2)
(

Vi
jjβ

2 + Vi
ijβ + Vi

jkβ
)

(ρ + λ)Vi
jj = Πi

jj + λ (n− 2)
(

Vi
jjβ

2 + 2Vi
jkβ
)
+ λ

(
Vi

iiβ
2 + 2Vi

ijβ
)

(ρ + 2λ)Vi
jk = Πi

jk + λ (n− 3)
(

Vi
jjβ

2 + 2Vi
jkβ
)
+ λ

(
Vi

iiβ
2 + 2Vi

ijβ
)

Injecting the solution into the derivative of the first-order condition sub

Vi
iiβ + Vi

ij = 0

yields
0 = AiiΠi

ii ( p̄) + AijΠi
ij ( p̄) + AjjΠi

jj ( p̄) + AjkΠi
jk ( p̄)

with coefficients

Aii = β
(
(β + 1)λ3

(
β2
(
−2n2 + 9n− 10

)
+ β3(n− 2) + 6β(n− 2)− 4

)
− λ2ρ

(
β3
(

n2 − 5n + 6
)
+ β2

(
2n2 − 15n + 22

)
+ β(24− 9n) + 8

)
+ λρ2

(
β2(n− 2) + β(3n− 8)− 5

)
− ρ3

)
(39a)

Aij = −
(

2(β + 1)λ3
(
−2β3

(
n2 − 3n + 2

)
+ β4(n− 1) + 2β2(n− 1)− β(n− 2) + 1

)
+ λ2ρ

(
β4
(
−2n2 + 7n− 5

)
− 4β3

(
n2 − 4n + 3

)
+ 3β2n− 4β(n− 3) + 5

)
+ λρ2

(
β2n− 2β(n− 3) + 4

)
+ ρ3

)
(39b)

Ajj = β2λ
(
(β + 1)λ2

(
2
(

β2 + 3β + 2
)
+ β(β + 1)n2 −

(
3β2 + 7β + 2

)
n
)
+ λρ

(
4β2 + 10β + β(β + 1)n2 −

(
5β2 + 9β + 3

)
n + 6

)
+ ρ2(β− (β + 1)n + 2)

)
(39c)

Ajk = −βλ(n− 2)
(
(β + 1)λ2

(
−β + β3(n− 1) + 3β2(n− 1) + 1

)
+ λρ

(
2β3(n− 1) + β2(3n− 4) + 2

)
+ ρ2

)
(39d)

G.2 Heterogeneous Firms

Suppose as in section C.2 that there are two types of firms, a and b, with n = na + nb. a
and b firms can differ permanently in their marginal costs, their demand, or both.

We know need to solve for six unknowns
{

βa
a, βa

b, βb
a, βb

b, pa, pb
}

where βi
j is the reaction

of a firm of type i to the price change of a firm of type j. The envelope conditions for firms
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of type a are

(ρ + λ)Vi,a
i = Πi,a

i + λ (na − 1)Vi,a
ja βa

a + λnbVi,a
jb

βb
a

(ρ + λ)Vi,a
ja = Πi,a

ja + λ (na − 2)Vi,a
ja βa

a + λnbVi,a
jb

βb
a

(ρ + λ)Vi,a
jb

= Πi,a
jb
+ λ (na − 1)Vi,a

ja βa
b + λ (nb − 1)Vi,a

jb
βb

b

and

(ρ + λ)Vi,a
ii = Πi,a

ii + λ (na − 1)
[
Vi,a

ja ja (βa
a)

2 + 2Vi,a
ija βa

a

]
+ λnb

[
Vi,a

jb jb

(
βb

a

)2
+ 2Vi,a

ijb
βb

a

]
(ρ + 2λ)Vi,a

ija = Πi,a
ija + λ (na − 2)

[
Vi,a

ja ja (βa
a)

2 + Vi,a
jaka

βa
a + Vi,a

ija βa
a

]
+ λnb

[
Vi,a

jb jb

(
βb

a

)2
+ Vi,a

jakb
βb

a + Vi,a
ijb

βb
a

]
(ρ + 2λ)Vi,a

ijb
= Πi,a

ijb
+ λ (na − 1)

[
Vi,a

ja ja βa
aβa

b + Vi,a
jakb

βa
a + Vi,a

ija βa
b

]
+ λ (nb − 1)

[
Vi,a

jb jb
βb

aβb
b + Vi,a

jbkb
βb

a + Vi,a
ijb

βb
b

]
(ρ + λ)Vi,a

ja ja = Πi,a
ja ja + λ

[
Vi,a

ii (βa
a)

2 + 2Vi,a
ija βa

a

]
+ λ (na − 2)

[
Vi,a

ja ja (βa
a)

2 + 2Vi,a
jaka

βa
a

]
+ λnb

[
Vi,a

jb jb

(
βb

a

)2
+ 2Vi,a

jakb
βb

a

]
(ρ + 2λ)Vi,a

jakb
= Πi,a

jakb
+ λ

[
Vi,a

ii βa
aβa

b + Vi,a
ijb

βa
a + Vi,a

ija βa
b

]
+ λ (na − 2)

[
Vi,a

ja ja βa
aβa

b + Vi,a
jakb

βa
a + Vi,a

jaka
βa

b

]
+ λ (nb − 1)

[
Vi,a

jb jb
βb

aβb
b + Vi,a

jbkb
βb

a + Vi,a
jakb

βb
b

]
(ρ + λ)Vi,a

jaka
= Πi,a

jaka
+ λ

[
Vi,a

ii (βa
a)

2 + 2Vi,a
ija βa

a

]
+ λ (na − 2)

[
Vi,a

ja ja (βa
a)

2 + 2Vi,a
jaka

βa
a

]
+ λnb

[
Vi,a

jb jb

(
βb

a

)2
+ 2Vi,a

jakb
βb

a

]
(ρ + λ)Vi,a

jb jb
= Πi,a

jb jb
+ λ

[
Vi,a

ii (βa
b)

2 + 2Vi,a
ijb

βa
b

]
+ λ (na − 1)

[
Vi,a

ja ja (βa
b)

2 + 2Vi,a
jakb

βa
b

]
+ λ (nb − 1)

[
Vi,a

jb jb

(
βb

b

)2
+ 2Vi,a

jbkb
βb

b

]
(ρ + 2λ)Vi,a

jbkb
= Πi,a

jbkb
+ λ

[
Vi,a

ii (βa
b)

2 + 2Vi,a
ijb

βa
b

]
+ λ (na − 1)

[
Vi,a

ja ja (βa
b)

2 + 2Vi,a
jakb

βa
b

]
+ λ (nb − 2)

[
Vi,a

jb jb

(
βb

b

)2
+ 2Vi,a

jbkb
βb

b

]

We can use these 11 envelope conditions to solve linearly for
{

Vi,a
i , Vi,a

ja , Vi,a
jb

, Vi,a
ii , . . .

}
,

and then inject the solution into the first-order conditions

Vi,a
i = 0

Vi,a
ii βa

a + Vi,a
ija = 0

Vi,a
ii βa

b + Vi,a
ijb

= 0

The same steps for firms of type b give us 3 more equations.
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H Oligopolistic Phillips Curve

Consider the general non-stationary versions of the Bellman equation (2) and the first-
order condition (3):

(it + nλ)Vi (p, t) = Vi
t (p, t) + Πi (p, MCt, Zt) + λ ∑

j
Vi
(

gj (p−j, t
)

, p−j, t
)

(40)

Vi
i

(
gi (p−i, t) , p−i, t

)
= 0 (41)

Nominal profits are given by

Πi (p, MC, Z) = ZDi (p) [pi −MC]

where Z is an aggregate demand shifter that can depend arbitrarily on Ct and Pt.15

Define α (t) as

gi (α (t) , α (t) , . . . , α (t) , t) = α (t)

This is the price that each firm would set if all the firms were resetting at the same time.
α is the counterpart of the reset price in the standard New Keynesian model.

To obtain the dynamics of α from (40), we start by deriving time-varying envelope
conditions evaluated at the symmetric price p1 = p2 = · · · = pn = α (t). After applying
symmetry and using Proposition 6 to make the strategies approximately linear in the
neighborhood of the steady state, the non-linear first-order and second-order envelope
conditions of the non-stationary game imply the following partial differential equations
(PDEs)

0 = Vi
it + Πi

i + λ (n− 1)Vi
j β (42a)

(it + λ)Vi
j = Vi

jt + Πi
j + λ (n− 2)Vi

j β (42b)

(it + λ)Vi
ii = Vi

iit + Πi
ii + λ (n− 1)

(
Vi

jjβ
2 + 2Vi

ijβ
)

(42c)

(it + 2λ)Vi
ij = Vi

ijt + Πi
ij + λ (n− 2)

(
Vi

jjβ
2 + Vi

jkβ + βVi
ij

)
(42d)

(it + λ)Vi
jj = Vi

jjt + Πi
jj + λ (n− 2)

(
Vi

jjβ
2 + 2βVi

jk

)
+ λ

(
Vi

iiβ
2 + 2βVi

ij

)
(42e)

(it + 2λ)Vi
jk = Vi

jkt + Πi
jk + λ (n− 3)

(
Vi

jjβ
2 + 2βVi

jk

)
+ λ

(
Vi

iiβ
2 + 2βVi

ij

)
(42f)

15In section 4, conditions (7) ensured a constant Zt.
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Denote the functions

W i
i (t) = Vi

i (α (t) , . . . , α (t) , t) , W i
ii (t) = Vi

ii (α (t) , . . . , α (t) , t)

and so on for all derivatives of the value function Vi. We can transform the system (42)
into a system of ordinary differential equations in the functions W i

i (t) , W i
j (t), and so on.

The partial derivatives with respect to time such as

Vi
it =

∂Vi
i

∂t
(α (t) , . . . , α (t) , t)

in equations (42) can be mapped to corresponding total derivatives of W functions Ẇ i
it =

dWi
it

dt using

Vi
it = Ẇ i

i −
[

Vi
ii + ∑

j 6=i
Vi

ij

]
α̇

Vi
jt = Ẇ i

j −
[

Vi
ij + Vi

jj + ∑
k 6=i,j

Vi
jk

]
α̇

Vi
iit = Ẇ i

ii −
[

Vi
iii + ∑

j 6=i
Vi

iij

]
α̇

Vi
ijt = Ẇ i

ij −
[

Vi
iij + Vi

ijj + ∑
k 6=i,j

Vi
ijk

]
α̇

Vi
jjt = Ẇ i

jj −
[

Vi
ijj + Vi

jjj + ∑
k 6=i,j

Vi
jjk

]
α̇

Vi
jkt = Ẇ i

jk −
[

Vi
ijk + Vi

jjk + Vi
jkk + ∑

l 6=i,j,k
Vi

jkl

]
α̇

where the third derivatives of V at the steady state come from the third-order envelope
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conditions of the stationary game, solving the linear system:

(ρ + λ)Vi
iii = Πi

iii + λ (n− 1)
{

Vi
jjjβ

3 + 3Vi
ijjβ

2 + 3Vi
iijβ
}

(ρ + 2λ)Vi
iij = Πi

iij + λ (n− 2)
{

Vi
jjjβ

3 + 2Vi
ijjβ

2 + Vi
jjkβ2 + 2Vi

ijkβ + Vi
iijβ
}

(ρ + 2λ)Vi
ijj = Πi

ijj + λ (n− 2)
{

Vi
jjjβ

3 + 2β2Vi
jjk + β2Vi

ijj + 2βVi
ijk + βVi

jjk

}
(ρ + 3λ)Vi

ijk = Πi
ijk + λ (n− 3)

{
Vi

jjjβ
3 + 2β2Vi

jjk + β2Vi
ijj + 2βVi

ijk + βVi
jkl

}
(ρ + λ)Vi

jjj = Πi
jjj + λ (n− 2)

{
β3Vi

jjj + 3β2Vi
jjk + 3βVi

jjk

}
+ λ

{
β3Vi

iii + 3β2Vi
iij + 3βVi

ijj

}
(ρ + 2λ)Vi

jjk = Πi
jjk + λ (n− 3)

{
β3Vi

jjj + 3β2Vi
jjk + βVi

jjk + 2βVi
jkl

}
+ λ

{
β3Vi

iii + 3β2Vi
iij + βVi

ijj + 2βVi
ijk

}
(ρ + 3λ)Vi

jkl = Πi
jkl + λ (n− 4)

{
β3Vi

jjj + 3β2Vi
jjk + 3βVi

jkl

}
+ λ

{
β3Vi

iii + 3β2Vi
iij + 3βVi

ijk

}
Importantly, to approximate the second derivatives of Vi, we need to solve for the third
derivatives of Vi around the steady state by applying the envelope theorem one more
time.

Imposing symmetry again, the following non-linear system of ODEs in the 8 functions(
α, β, W i

j , W i
j , W i

ii, W i
ij, W i

jj, W i
jk

)
holds exactly (omitting the time argument):

0 = −
[
W i

ii + (n− 1)W i
ij

]
α̇ + Πi

i + λ (n− 1)W i
j β (44a)

(it + λ)Wi
j = Ẇ i

j −
[
W i

ij + W i
jj + (n− 2)W i

jk

]
α̇ + Πi

j + λ (n− 2)Wi
j β (44b)

0 = Wi
ii β + W i

ij (44c)

(it + λ)W i
ii = Ẇi

ii −
[
Vi

iii + (n− 1)Vi
iij

]
α̇ + Πi

ii + λ (n− 1)
(

W i
jj β

2 + 2W i
ij β
)

(44d)

(it + 2λ)W i
ij = Ẇi

ij −
[
Vi

iij + Vi
ijj + (n− 2)Vi

ijk

]
α̇ + Πi

ij + λ (n− 2)
(

W i
jj β

2 + W i
jk β + W i

ijβ
)

(44e)

(it + λ)W i
jj = Ẇi

jj −
[
Vi

ijj + Vi
jjj + (n− 2)Vi

jjk

]
α̇ + Πi

jj + λ (n− 2)
(

W i
jjβ

2 + 2βWi
jk

)
+ λ

(
W i

ii β
2 + 2βWi

ij

)
(44f)

(it + 2λ)W i
jk = Ẇi

jk −
[
Vi

ijk + Vi
jjk + Vi

jkk + (n− 3)Vi
jkl

]
α̇ + Πi

jk + λ (n− 3)
(

W i
jjβ

2 + 2βW i
jk

)
+ λ

(
W i

ii β
2 + 2βWi

ij

)
(44g)

Next, we linearize system (44) around a symmetric steady state ᾱ = α (∞) with zero
inflation (and steady state values of aggregate variables C̄, P̄). Let lower case variables
denote log-deviations, e.g., a (t) = log α (t)− log ᾱ, and write marginal cost as

mc (t) = p (t) + k (t)

where k (t) is the log-deviation of the real marginal cost. Profit derivatives such as Πi
i (t)
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in (44) are evaluated at the moving price α (t), hence become once linearized16

πi
i (t) = ᾱ

[
Πi

ii + (n− 1)Πi
ij

]
a (t) + M̄CΠi

i,MC (p (t) + k (t)) + Πi
i
(
zcc (t) + zp p (t)

)
πi

j (t) = ᾱ
[
Πi

ij + Πi
jj + (n− 2)Πi

jk

]
a (t) + M̄CΠi

j,MC (p (t) + k (t)) + Πi
j
(
zcc (t) + zp p (t)

)
πi

ii (t) = ᾱ
[
Πi

iii + (n− 1)Πi
iij

]
a (t) + M̄CΠi

ii,MC (p (t) + k (t)) + Πi
ii
(
zcc (t) + zp p (t)

)
πi

ij (t) = ᾱ
[
Πi

iij + Πi
ijj + (n− 2)Πi

ijk

]
a (t) + M̄CΠi

ij,MC (p (t) + k (t)) + Πi
ij
(
zcc (t) + zp p (t)

)
πi

jj (t) = ᾱ
[
Πi

ijj + Πi
jjj + (n− 2)Πi

jjk

]
a (t) + M̄CΠi

jj,MC (p (t) + k (t)) + Πi
jj
(
zcc (t) + zp p (t)

)
πi

jk (t) = ᾱ
[
Πi

ijk + 2Πi
jjk + (n− 3)Πi

jkl

]
a (t) + M̄CΠi

jk,MC (p (t) + k (t)) + Πi
jk
(
zcc (t) + zp p (t)

)
where Π̄i

i, Π̄i
ii etc. denote steady state values.

16It is more convenient to linearize and not log-linearize profit derivatives, but we use the notation
πi

i (t) = Πi
i (t)− Π̄i

i.
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This yields the system of 6 linear ODEs in
(

a (t) , wi
j (t) , wi

ii (t) , wi
ij (t) , wi

jj (t) , wi
jk (t)

)
[
Vi

ii + (n− 1)Vi
ij

]
ȧ (t) =

1
ᾱ

πi
i (t) + λ (n− 1)

Vi
j β

ᾱ

[
wi

j (t) + b (t)
]

(ρ + λ)wi
j (t) + it − ρ = ẇi

j (t)− ᾱ

[
Vi

ij + Vi
jj + (n− 2)Vi

jk

Vi
j

]
ȧ (t) +

1
Vi

j
πi

j (t) + λ (n− 2) β
[
wi

j (t) + b (t)
]

(ρ + λ)wi
ii (t) + it − ρ = ẇi

ii (t)−
ᾱ

Vi
ii

[
Vi

iii + (n− 1)Vi
iij

]
ȧ (t) +

1
Vi

ii
πi

ii (t)

+ λ (n− 1)

{
Vi

jjβ
2

Vi
ii

[
wi

jj (t) + 2b (t)
]
+

2Vi
ijβ

Vi
ii

[
wi

ij (t) + b (t)
]}

(ρ + 2λ)wi
ij (t) + it − ρ = ẇi

ij (t)−
ᾱ

Vi
ij

[
Vi

iij + Vi
ijj + (n− 2)Vi

ijk

]
ȧ (t) +

1
Vi

ij
πi

ij (t)

+ λ (n− 2)

{
Vi

jjβ
2

Vi
ij

[
wi

jj (t) + 2b (t)
]
+

Vi
jkβ

Vi
ij

[
wi

jk (t) + b (t)
]
+ β

[
wi

ij (t) + b (t)
]}

(ρ + λ)wi
jj (t) + it − ρ = ẇi

jj −
ᾱ

Vi
jj

[
Vi

ijj + Vi
jjj + (n− 2)Vi

jjk

]
ȧ (t) +

1
Vi

jj
πi

jj (t)

+ λ (n− 2)

{
Vi

jjβ
2

Vi
jj

[
wi

jj (t) + 2b (t)
]
+

2Vi
jkβ

Vi
jj

[
wi

jk (t) + b (t)
]}

+ λ

{
Vi

iiβ
2

Vi
jj

[
wi

ii (t) + 2b (t)
]
+

2Vi
ijβ

Vi
jj

[
wi

ij (t) + b (t)
]}

(ρ + 2λ)wi
jk (t) + it − ρ = ẇi

jk −
ᾱ

Vi
jk

[
Vi

ijk + Vi
jjk + Vi

jkk + (n− 3)Vi
jkl

]
ȧ (t) +

1
Vi

jk
πi

jk (t)

+ λ (n− 3)

{
Vi

jjβ
2

Vi
jk

[
wi

jj (t) + 2b (t)
]
+

2Vi
jkβ

Vi
jk

[
wi

jk (t) + b (t)
]}

+ λ

{
Vi

iiβ
2

Vi
jk

[
wi

ii (t) + 2b (t)
]
+

2Vi
ijβ

Vi
jk

[
wi

ij (t) + b (t)
]}

In general there are thus 6 ODEs because β may be time-dependent hence b (t) 6= 0. But
note that if b (t) = 0 then the system becomes block-recursive and we can solve separately
the first two equations in a and wi

j. From the optimality conditions we have

β̇ = −α̇
[
W i

iij [1− (n− 1) β] + (n− 1)W i
ijj − βWiii

]
Using our perturbation argument we can show that there exists a third-order cross-elasticity
εi

iij such that at the steady state

Vi
iij [1− (n− 1) β] + (n− 1)Vi

ijj − βViii = 0 (45)

where Viij, Vijj, Viii are solutions to the system (43). Thus in what follows we consider β

as constant for the first-order dynamics to simplify expressions, although we could solve
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the larger system without this assumption.
The last step is to replace the single “reset price” variable a (t) with two variables, the

aggregate price level p (t) and inflation π (t) = ṗ (t) using our aggregation result that
inflation follows

π (t) = λ [1− (n− 1) β (t)] [log α (t)− log P (t)] .

After log-linearization we have

a (t) =
π (t)

λ [1− (n− 1) β]
+ p (t) .

Therefore, we obtain in matrix form that the vector

Y (t) =
(

π (t) , p (t) , wi
j (t)

)′
solves the linear differential equation

Ẏ (t) = AY (t) + Zkk (t) + Zcc (t) + Zi [i (t)− ρ]

where A ∈ R3×3, Zk, Zc, Zi ∈ R3 collect the terms above (evaluated at the steady state),
with boundary conditions limt→∞ Y (t) = 0. The solution is given by

Y (t) = −
∫ ∞

0
esA {Zkk (t + s) + Zcc (t + s) + Zi [i (t + s)− ρ]} ds

where esA = ∑∞
k=0

skAk

k! denotes the matrix exponential of sA. Proposition 8 then follows
by taking the first component of Y.

Proof of Corollary 2. Let [M]i and [M]xy denote the ith line and the (x, y) element of
a generic matrix M respectively. Let B (t) = Zkk (t) + Zcc (t) + Zr [r (t)− ρ]. Iterating
Ẏ (t) = AY (t) + B (t), we have for all k ≥ 1

Y(k) (t) = AkY (t) +
k−1

∑
j=0

AjB(k−1−j) (t) .

Taking the first line for each k = 1, . . . , n = 3, we have n equations

dkπ (t)
dtk −

[
k−1

∑
j=0

AjB(k−1−j) (t)

]
1

=
[
Ak
]

1
Y (t)

77



which we can each rewrite as

dkπ (t)
dtk −

[
k−1

∑
j=0

AjB(k−1−j) (t)

]
1

−
[
Ak
]

11
π (t) =

n

∑
i=2

[
Ak
]

1i
yi (t)

Let

M =


A12 . . . A1n[
A2]

12

[
A2]

1n
...

...
[An]12 . . . [An]1n

 ∈ Rn×(n−1)

Take any vector γπ =
(

γπ
j

)n

j=1
in ker M′ (whose dimension is at least 1), i.e., such that

M′γπ = 0 ∈ Rn−1. Then

n

∑
k=1

γπ
k

dkπ (t)
dtk −

[
k−1

∑
j=0

AjB(k−1−j) (t)

]
1

−
[
Ak
]

11
π (t)

 = 0.

and we can define γπ
0 = −∑n

k=1 γπ
k
[
Ak]

11. This simplifies to

...
π = (Aππ + Aww) π̈ (46)

+
(
Aπp + AπwAwπ −AππAww

)
π̇

+
(
AπwAwp −AπpAww

)
π

+ AπwḂw + B̈π −AwwḂπ

H.1 One-time shocks

Given (17) we can guess and verify that x = ψxe−ξt for all variables x ∈ {π, k, c, r− ρ, i− ρ}
and solve for the coefficients ψx using the system

ψπ

(
γπ

0 − γπ
1 ξ + γπ

2 ξ2 − γπ
3 ξ3
)
= ψk

(
γk

0 − γk
1ξ + γk

2ξ2
)

+ ψc

(
γc

0 − γc
1ξ + γc

2ξ2
)

+ (ψi − ψπ)
(

γr
0 − γr

1ξ + γr
2ξ2
)

−ξψc = σ−1 (ψi − ψπ − εr
0)

ψi = φπψπ + εm
0 + (1− κ) εr

0
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Thus

ψc =
1

σξ
(ψπ (1− φπ) + κεr

0 − εm
0 )

ψk = ψc (χ + σ)

and

ψπ

(
γπ

0 − γπ
1 ξ + γπ

2 ξ2 − γπ
3 ξ3
)
=

1
σξ

(κεr
0 − εm

0 − ψπ (φπ − 1))
[
(χ + σ)

(
γk

0 − γk
1ξ + γk

2ξ2
)
+
(

γc
0 − γc

1ξ + γc
2ξ2
)]

+ (εm
0 + (1− κ) εr

0 + ψπ (φπ − 1))
(

γr
0 − γr

1ξ + γr
2ξ2
)

which yields

ψπ =

κεr
0−εm

0
σξ

[
(χ + σ)

(
γk

0 − γk
1ξ + γk

2ξ2
)
+
(
γc

0 − γc
1ξ + γc

2ξ2)]+ (εm
0 + (1− κ) εr

0
) (

γr
0 − γr

1ξ + γr
2ξ2)

γπ
0 − γπ

1 ξ + γπ
2 ξ2 − γπ

3 ξ3 + (φπ − 1)
[
(χ+σ)(γk

0−γk
1ξ+γk

2ξ2)+(γc
0−γc

1ξ+γc
2ξ2)

σξ −
(
γr

0 − γr
1ξ + γr

2ξ2
)]

I Non-linear Duopoly

Figure 19: In white: convergence of value function iteration algorithm towards a mono-
tone MPE in (λ, ε) space.
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