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Abstract

Recent empirical evidence suggests that product creation is pro-
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scope adjustments in a general equilibrium economy with oligopolistic
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timated indeterminate model generates arti�cial business cycles that
closely resemble empirically observed �uctuations.

Keywords: Multi-product �rms, product scope, business cycles, inde-
terminacy, sunspot equilibria, markups.

JEL Classi�cation: E32.

�We would like to thank Alexandre Dmitriev, Begoña Domínguez, Ben Heijdra, Bruce
Preston, Jayanta Sarkar, Jake Wong, and the seminar participants at the Australian
National University, Monash University, the Southern Workshop in Macroeconomics, the
University of Tasmania and the University of Queensland for very helpful comments and
discussions.

yCorresponding author. School of Economics and Finance, Queensland Univer-
sity of Technology, GPO Box 2434, Brisbane QLD 4001, Australia. E-mail address:
oscar.pavlov@qut.edu.au. Ph:+61 7 3138 2740. Fax:+61 7 3138 1500.

zSchool of Economics, The University of Adelaide, Adelaide SA 5005, Australia. E-mail
address: mark.weder@adelaide.edu.au.

1



1 Introduction

This paper develops a model of the business cycle in which product creation
and �rms dynamics generate soi-disant sunspot equilibria which ultimately
drive movements in real output. Speci�cally, it builds on recent empirical
work that suggests that a large portion of �rms are multi-product producers.
Bernard, Redding and Schott (2010), for example, report that close to half
of US manufacturing �rms produce in multiple 5-digit SIC industries. The
importance of this �nding becomes apparent once noticing that these �rms
account for about 90 percent of total sales. Broda and Weinstein (2010)
arrive at similar conclusions. In particular, they document that over 90
percent of product creation and destruction occurs within �rms (i.e. as
�rms adjust their product scopes). This alludes that the contribution to
aggregate output from product scope variations is at least as important as
that from net business formation.

The current paper picks up on these observations by laying out an arti-
�cial economy that generates procyclical product creation within �rms, net
business formation and countercyclical markups, while also giving rise to
endogenous business cycles. Speci�cally, we investigate the role of product
scope adjustments and entry and exit in a general equilibrium economy with
oligopolistic intermediate goods �rms. Endogenous net product creation (in
particular via changes in �rms�product scopes) creates sunspot equilibria at
very realistic situations. To demonstrate this, we estimate the indeterminate
model and show that both belief (sunspot) and fundamental shocks generate
arti�cial business cycles that resemble empirically observed �uctuations.

Our arti�cial economy borrows from Feenstra and Ma (2009) and Minniti
and Turino (2013) who introduce multi-product �rms into a general equilib-
rium model with imperfect competition and endogenous entry and exit of
�rms. They consider a saddle path stable model, and as such, only study
fundamental shocks. In contrast, the current paper looks at indeterminate
equilibria where belief shocks can drive the business cycle. Moreover, we
separate the elasticity of substitution parameters from the variety e¤ects
(aka taste for variety, increasing returns to specialization) in the production
of �nal goods, which makes the theoretical mechanisms in our paper far
more transparent.

Indeterminacy arises because net business formation and product scope
adjustments act as labor demand shifters in the presence of product variety
e¤ects. These e¤ects represent the idea that a larger number of di¤erentiated
products leads to e¢ ciency gains and thus net product creation gives rise
to an endogenous e¢ ciency wedge. Furthermore, the oligopolistic market
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structure leads to countercyclical markups that act as an additional shifter
of production possibilities. Intuitively, if people feel optimistic about the
future path of income, the wealth e¤ect causes the labor supply curve to
shift in. Consumption thus rises and, for a given wage, so would leisure as it
is also a normal good. Yet, net product creation via the entry of new �rms
and within-�rm product scope adjustments, as well as falling markups, lead
to an outward shift of the labor demand curve. If product variety e¤ects
and the elasticities of net product entry and markups are su¢ ciently large,
then employment and output also rise, thus allowing the initial expectation
to become self-ful�lling.1

Other closely related work includes Jaimovich (2007) who shows that
procyclical net business formation can lead to indeterminacy via the gener-
ation of countercyclical markups. Pavlov and Weder (2012) investigate the
role of variety e¤ects in generating sunspot equilibria. Both of these papers
feature mono-product �rms and hence do not consider intra-�rm product
scope adjustments, which (according to the empirical evidence mentioned
previously) contributes more to aggregate output than entry and exit. Fur-
thermore, while most of the indeterminacy literature simulates calibrated
models by sunspot shocks only, we use Bayesian methods to estimate the
indeterminate model with fundamental disturbances to preferences and tech-
nology.

The rest of this paper proceeds as follows. Section 2 lays out the model.
Section 3 analyzes the local dynamics. Variable capital utilization is in-
troduced in Section 4. The indeterminate model is estimated in Section 5.
Section 6 concludes.

2 Model

The economy consists of intermediate good �rms who are large relative to
the size of the market and are able to choose how many products to produce.
These goods are di¤erentiated and hence bring about market power for these
�rms. The commodities are bought by competitive �rms that weld them
together into the �nal good that can be consumed or, by adding to the
capital stock, invested.

1For this to occur, the reduced form aggregate labor demand curve (i.e. the wage-hours
locus) must be upwardly sloping and steeper than the agents�labor supply curve.
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2.1 Final goods

Final output, Yt, is produced under perfect competition using the range
of intermediate inputs supplied by Mt multi-product �rms indexed i �each
supplying Nt(i) varieties of goods. Accordingly, the �nal good is constructed
via two nested CES aggregators. The �rst encompasses the varieties from
an individual �rm i that, when put together, compose

Yt(i) = Nt(i)
1+�

 
1

Nt(i)

Z Nt(i)

0
yt(i; j)


�1

 dj

! 


�1

� > 0; 
 > 1:

(1)
Here yt(i; j) is the amount of the unique intermediate good j produced by
�rm i. Parameters � and 
 stand for the intra-�rm variety e¤ect and the
elasticity of substitution between goods, respectively. The �rm-composite
goods are then welded together to yield the �nal output

Yt =M1+!
t

�
1

Mt

Z Mt

0
Yt(i)

��1
� di

� �
��1

! � 0; � > 1: (2)

The parameter ! is the inter-�rm variety e¤ect and � is elasticity of sub-
stitution between the �rms�composite goods. Variety e¤ects are separated
from the elasticity of substitution as there is no a priori reason for such
a strong link between them.2 Moreover, the separation allows to clearly
distinguish the variety e¤ect and its impacts from that of imperfect compe-
tition. As we will see later, the intra-�rm variety e¤ect is crucial for �rms
to produce more than a single product. Lastly, Feenstra and Ma (2009)
develop a related framework in which they assume � = 
. However, Broda
and Weinstein�s (2010) work suggest that these parameters are not equal,
accordingly we will calibrate the model following their �ndings.

The pro�t maximization problem yields

yt(i; j) =

�
Pt(i)

Pt

��� �pt(i; j)
Pt(i)

��

M
!(��1)�1
t Nt(i)

�(
�1)�1Yt (3)

where

Pt(i) = Nt(i)
1


�1��
 Z Nt(i)

0
pt(i; j)

1�
dj

! 1
1�


(4)

is the price index for �rm i�s goods and the aggregate price index satis�es

Pt =M
1

��1�!
t

�Z Mt

0
Pt(i)

1��di

� 1
1��

: (5)

2Benassy (1996).
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In words, the demand for each variety depends negatively on its price, pos-
itively on the aggregate price index Pt, and positively (negatively) on the
�rm price index Pt(i) if 
 > � (
 < �).

2.2 Intermediate good �rms

The problem of the intermediate good �rm is solved in the �rst stage, by
�rms choosing their optimal product scopes. In the second stage, they set
their pricing rules by acting as Bertrand competitors in the product market.3

Each period, the entry and exit of �rms is determined by a zero pro�t
condition.

Intermediate goods are produced using capital, kt(i; j); and labor, ht(i; j),
supplied on perfectly competitive factor markets. The production technol-
ogy is Cobb-Douglas and involves two �xed costs. The variety-level �xed
cost, �; applies once a variety is added to the production line. It restricts the
amount of varieties a �rm will produce and at the same time implies that it
is only pro�table to produce multiple products if the intra-�rm variety e¤ect
is operating. The �rm-level �xed cost, �f , provides economies of scope. It
determines the number of active �rms. Hence,Z Nt(i)

0
yt(i; j)dj =

Z Nt(i)

0

�
kt(i; j)

�ht(i; j)
1�� � �

�
dj � �f : (6)

Each �rm sets prices to maximizes pro�ts

�t(i) =

Z Nt(i)

0
pt(i; j)yt(i; j)� wtht(i; j)� rtkt(i; j)dj (7)

where wt and rt are the labor and capital rental rates. Following Yang
and Heijdra (1993), intermediate good �rms are large enough to take the
aggregate price index into consideration when making their pricing decision.
Appendix A.2 shows that �rm i charges the same price, pt(i), for all of its
varieties. Then, the optimal markup, �t(i) = pt(i)=mct becomes

�t(i) =
�[1� �t(i)]

�[1� �t(i)]� 1

where mct is the marginal cost of producing an additional variety, and �t(i)
is �rm i�s market share:

�t(i) �
Pt(i)Yt(i)

PtYt
=

Nt(i)
��(1��)pt(i)1��RMt

0 Nt(i)��(1��)pt(i)1��di
:

3This is a subgame perfect Nash equilibrium concept.
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This share increases in Nt(i): Without the intra-�rm variety e¤ect, � , the
market share would not depend on the product scope and pro�ts would be
decreasing in Nt(i) because of the variety-level �xed cost �.

Firms determine their optimal number of products by maximizing pro�ts
with respect to Nt(i) by taking into account the e¤ect on its own and other
�rms�pricing decisions (see Appendix A.3). The �rst-order condition is

�PtYt

�
pt(i)�mct

pt(i)

�2 @�t(i)
@Nt(i)

+ Yt�t(i)

�
pt(i)�mct

pt(i)

�
@Pt
@Nt(i)

= mct�: (8)

With the presence of the intra-�rm variety e¤ect, introducing a new product
increases the �rm�s market share and pro�ts (the �rst term on the left-hand
side). There is an additional impact of the product scope on the aggregate
price index. Speci�cally, a higher product scope reduces the aggregate price
index, @Pt=@Nt(i) < 0, which from (3) leads to a lower demand for �rm i�s
products. The right-hand side represents the cost of producing one more
variety.

2.3 Symmetric equilibrium

In the symmetric equilibrium, each �rm produces the same number of va-
rieties, Nt(i) = Nt; charges the same price, pt(i) = pt; and has the same
market share �t(i) = 1=Mt. Let us designate the �nal good as the nu-
meraire, Pt = 1; and therefore from (4) and (5), the price of a variety is
determined by the variety e¤ects

pt = N �
t M

!
t :

Using the above, (1) and (2), output per variety is

yt =
Yt

ptNtMt
: (9)

The markup simpli�es to

�t =
�(Mt � 1)

�(Mt � 1)�Mt
: (10)

Note that �rm entry decreases the markup. It is this mechanism that renders
the markup countercyclical. An increase in the �rm�s product scope raises
the �rm�s own price and reduces the prices of other �rms. To reduce price
competition, �rms under-expand their product scopes in comparison to the
case of monopolistic competition where such strategic linkages are absent.
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The extent of this under-expansion can be seen by substituting @�t(i)=@Nt(i)
and @Pt=@Nt(i) into (8) and rearranging:

yt(�t � 1)�(� � 1)
�
(Mt � 1)(� + (1� �)Mt)

�(Mt � 1) +M2
t (1� �)

� 1

Mt(� � 1)

�
= �

The term in the square brackets is less than one and is increasing in Mt:
the strategic e¤ect of the product scope decision becomes less important
as the number of �rms increases and this gives an incentive to introduce
new varieties. When Mt becomes very large this term approaches unity, as
would be the case under monopolistic competition. Likewise, the markup
converges to it�s monopolistic competition level of �=(�� 1):4 Intuitively, as
the number of �rms grows, the impact on the market share of adding an
additional variety becomes smaller, which has then a smaller impact on the
price of the variety. Further rearrangement yields the product scope

Nt =
�Yt
�pt

�
(� � 1)(Mt � 1)

�(1�Mt) +M2
t (� � 1)

+
1

Mt[Mt(1� �) + �]

�
:

Using (6), (9) and the zero pro�t condition determines Mt as

Mt =
(�t � 1)K�

t H
1��
t

�t(Nt�+ �f )
(11)

where Kt =MtNtkt and Ht =MtNtkt: To obtain aggregate output, substi-
tute (6) in (9), then use (11) to simplify:

Yt =
pt
�t
K�
t H

1��
t

where pt=�t is the endogenous e¢ ciency wedge. Finally, the equilibrium real
wage and rental rate are given by

wt = (1� �)
Yt
Ht

and rt = �
Yt
Kt
:

2.4 People

There is a nonatomic measure-one space of agents each characterized by
lifetime utility

U =

Z 1

0
e��tu(Ct;Ht)dt � > 0:

4These results imply that the oligopolistic competition setup is identical to monopolistic
competition in the limit where Mt approaches in�nity.

7



� denotes the subjective discount rate and period utility, u(:; :), is separable
in consumption, Ct, and hours worked, Ht. It takes on the functional form

u(Ct;Ht) = lnCt � �
H1+�
t

1 + �
� > 0; � � 0

where � is the inverse of the Frisch labor supply elasticity. Logarithmic
utility is the only additive-separable form consistent with balanced growth.
The agents own the capital stock and sell labor as well as capital services.
Any generated pro�ts, �t, �ow back to them. Let Xt denote investment,
then the budget is constrained by

wtHt + rtKt +�t � Xt + Ct

where investment is added to the capital stock such that:

_Kt = Xt � �Kt 0 < � < 1:

Time derivatives are denoted by dots and � stands for the constant rate of
physical depreciation of the capital stock. Optimality implies

�H�
t =

wt
Ct

(12)

�
Ct
Ct
= rt � � � � (13)

Equation (12) describes the agents�leisure-consumption trade-o¤, while (13)
is the intertemporal Euler equation. In addition a transversality condition
holds.

3 Dynamics

This section analyzes the local dynamical properties of the arti�cial econ-
omy. We log-linearize the equilibrium conditions and arrange the dynamical
system to �

_Kt=Kt
_Ct=Ct

�
= J

�
K̂t

Ĉt

�
:

Hatted variables denote percent deviations from their steady-state values
and J is the 2 � 2 Jacobian matrix of partial derivatives. Note that Ct is
a non-predetermined variable and that Kt is predetermined. Hence, in-
determinacy requires that the two roots of J to be negative, or simply
DetJ > 0 >TrJ. We calibrate standard parameters as � = 0:3; � = 0:01;
� = 0:025 and � = 0:
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3.1 Mono-product model

To better illustrate the contribution of the product scope decision on inde-
terminacy, we �rst consider the case of mono-product �rms where such a
decision is absent. Figure 1 presents the stability zones, assuming that the
variety e¤ect depends on the elasticity of substitution between intermedi-
ate goods: ! = 1=(� � 1): As can be seen, the minimum markup allowing
for indeterminacy is � = 1=(1 � �) = 1:429, where the variety e¤ect is
1=(�� 1) = 0:429: This exactly corresponds to the result reported in Pavlov
and Weder (2012) for a mono-product model with monopolistic competition.
Why is this the case? Note that from (10), the steady state number of �rms
is

M = 1 +
�

�(� � 1)� � :

As � approaches �=(� � 1); the number of �rms approaches in�nity: the
steady state markup and local dynamics converge to the case of monopolistic
competition. This implies that the steady state markup must be higher
under oligopolistic competition for indeterminacy. On the other hand, the
required variety e¤ect drops considerably with higher values of �. We do not
consider situations where � < �=(�� 1) because this implies that M < 0:

A higher steady state markup and greater substitutability between dif-
ferentiated goods (and hence a lower variety e¤ect) imply a lower number of
�rms and a more elastic markup over the business cycle. Note that a lower
variety e¤ect makes indeterminacy more di¢ cult to obtain, while a more
elastic markup leads to the opposite outcome. Therefore, the dashed stabil-
ity line in the �gure is upwardly sloping because the lower variety e¤ect (via
higher �) needs to be o¤set by a higher markup elasticity (via higher �):
Yet, the line eventually becomes downwardly sloping because the gain from
the higher markup elasticity starts to dominate the in�uence of the lower
variety e¤ect on the endogenous e¢ ciency wedge as goods become closer
substitutes.

3.2 Multi-product model

Figure 2 presents the numerical indeterminacy region for the multi-product
model with ! = � = 1=(��1) = 1=(
�1): Once again, the model converges
to the one with monopolistic competition along the � = �=(��1) line. This
is because both markups and product scopes are constant over the busi-
ness cycle (see Appendix A.4). Recall that under oligopolistic competition,
the entry of new competitors reduces existing �rms�market shares and en-
courages them to expand their product scopes. This additional channel of
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product creation reduces the minimum steady state markup, for example,
at � = 
 = 14, a markup of � = 1:3 is enough for indeterminacy.5 At this
point, the variety e¤ect is only ! = � = 0:077 (compared to the required
0:429 under monopolistic competition).

We now consider the case where � 6= 
: Figure 3 plots the numerical
indeterminacy region with an intermediate steady state markup of � = 1:3.
Indeterminacy is easier to obtain when � > 
, which is the case where each
�rm produces less closely related products. If instead 
 > � (as suggested
by Broda and Weinstein, 2010) then a �rm produces goods that are close
substitutes to each other.

4 Capital utilization

While we have shown that the possibility of sunspot equilibria increases
when �rms are able to choose their product scopes, the inter �rm elasticity of
substitution, �; needs to be su¢ ciently high for indeterminacy to be possible
under realistic levels of market power. This section addresses this issue by
augmenting the multi-product model by endogenous capital utilization.

Each intermediate good �rm i now operates the production technologyZ Nt(i)

0
yt(i; j)dj =

Z Nt(i)

0

�
U�t kt(i; j)

�ht(i; j)
1�� � �

�
dj � �f

where Ut stands for the utilization rate of capital set by its owners. The
aggregate production function in the symmetric equilibrium is thus

Yt =
pt
�t
(UtKt)

�H1��
t :

Capital accumulation follows

_Kt = Xt � �tKt = Xt �
1

%
U%t Kt % > 1

and the optimal rate of capital utilization is

rt = U%�1t :

The calibration remains as in the previous section and % = 1:4:6 Indetermi-
nacy becomes more likely due to agents increasing the intensity of capital

5 It can be shown that for very high values of �; the markup required for indeterminacy
is as low as 1:05; albeit in only a small region.

6See Wen (1998).
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utilization as the marginal product of capital increases from higher employ-
ment, which increases the demand for labor. As Figures 4 and 5 demon-
strate, the introduction of variable capital utilization signi�cantly reduces
the level of market power and the inter �rm elasticity of substitution required
for indeterminacy.

5 Simulations

We have shown that intra-�rm product creation can generate indetermi-
nacy under more plausible situations. Although this can be considered as
progress, it would be rendered void if the model is unable to replicate the
basic business cycle facts. This is done next by using U.S. quarterly data to
estimate the indeterminate model (see Appendix A.5 for the data sources).

The model employed here is a discrete time economy with capital uti-
lization and labor augmenting technological progress, �t; which grows at the
constant rate 1 + g = 1:004566: There are two fundamental shocks. First,
aggregate total factor productivity, zt; a¤ects all �rms equally and follows
the process

log zt =  z log zt�1 + "
z
t ; 0 �  z < 1

where "zt is an i.i.d. disturbance with variance �
2
z: This implies that aggre-

gate output is given by

Yt =
ztpt
�t
(UtKt)

�(�tHt)
1��:

Second, preference shocks take the form

u(Ct;Ht) = ln(Ct ��t)� �
H1+�
t

1 + �

where a positive shock to �t increases the marginal utility of consumption
and leads to an urge to consume. It follows a similar process with a per-
sistence parameter  � and an i.i.d. disturbance "

�
t with variance �

2
�: The

model is then detrended and log-linearized around the steady state.
It is now well known that under indeterminacy, the economy�s response to

shocks is not uniquely determined and that sunspots propagate fundamental
disturbances (see Lubik and Schorfheide, 2003 and 2004). We follow Farmer,
Khramov, and Nicolò (2014) in dealing with such loose expectation errors.
Speci�cally, we reclassify the expectation error to output, �Yt ; as a new
exogenous shock:

Ŷt = Et�1Ŷt + �
Y
t :
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Understanding that fundamental shocks have an e¤ect on output on impact,
we go a step further by breaking down the expectation error into fundamen-
tal and non-fundamental components

�Yt = 
z"
z
t +
�"

�
t + "

s
t

where parameters 
z and 
� determine the e¤ect of technology and prefer-
ences shocks on output and "st is an i.i.d. sunspot shock that is independent
of fundamentals with variance �2s:

The model is then estimated via Bayesian methods using the real per
capita growth rates of output, consumption, investment and hours worked
as observables. The measurement equation is thus2664

lnYt � lnYt�1
lnCt � lnCt�1
lnXt � lnXt�1
lnHt � lnHt�1

3775 =
26664

Ŷt � Ŷt�1
Ĉt � Ĉt�1
X̂t � X̂t�1
Ĥt � Ĥt�1

37775+
2664
g
g
g
0

3775+
2664
"m:e:t

0
0
0

3775
where "m:e:t is the measurement error on output growth. The standard para-
meters remain as in the previous sections: � = 0:3; � = 0:025; � = 0 and the
discount factor is � = (1+ �)�1 = 0:99. Following the estimates reported in
Broda and Weinstein (2010), we set � = 7:5 and 
 = 11:5. Table 1 presents
the prior and posterior distributions for the estimated model parameters.
We assume a gamma distribution for the steady state markup, �; with a
lower limit of 1.154 to keep the steady state number of �rms, M; above
unity. The mean is centered around the middle of value-added markup esti-
mates for the U.S. (see Jaimovich, 2007). Although it is likely that output
responds positively to technology and preference shocks, we assume a wide
uniform distribution for parameters 
z and 
�: The measurement error is
restricted to account for not more than ten percent of output growth. We
use the Metropolis-Hastings algorithm to obtain 100,000 draws from the
posterior mean and adjust the scale in the jumping distribution to achieve
a 30 percent acceptance rate. The estimated markup, although higher than
the prior mean, is still well inside the empirically plausible range. Expecta-
tion error parameters 
z and 
� imply that output responds positively to
both technology and preference shocks.
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Table 1
Prior distribution for model parameters Posterior distribution

Name Range Density Mean Std. Dev. Mean 90% Interval
� [1.154,+1] Gamma 1.3 0.05 1.3749 [1.3532,1.3977]
 z [0,1) Beta 0.9 0.05 0.9956 [0.9929,0.9985]
 � [0,1) Beta 0.9 0.05 0.9923 [0.9867,0.9980]
�s R+ Inverse Gamma 0.001 Inf 0.0070 [0.0064,0.0075]
�z R+ Inverse Gamma 0.001 Inf 0.0047 [0.0044,0.0050]
�� R+ Inverse Gamma 0.001 Inf 0.0072 [0.0066,0.0076]
�m:e: [0; 0:005] Uniform 0.003 0.0014 0.0050 [0.0050,0.0050]

z [-3,3] Uniform 0 1.7321 1.6472 [1.3828,1.9163]

� [-3,3] Uniform 0 1.7321 1.3680 [1.1937,1.5428]

Table 2 presents the second moments of the U.S. data and of the esti-
mated arti�cial economy. The model overpredicts output and consumption
volatility as well as their correlation, yet, it does a far better job in matching
the moments of hours worked and investment.

Table 2
Business Cycle Dynamics

Data Model
x �x �(x; ln(Yt=Yt�1)) �x �(x; ln(Yt=Yt�1))

ln(Yt=Yt�1) 0.98 1 1.63 1
ln(Ct=Ct�1) 0.57 0.52 1.28 0.85
ln(Xt=Xt�1) 2.43 0.67 3.57 0.79
ln(Ht=Ht�1) 0.93 0.74 1.04 0.79

�(x; Y ) �(x; Y )

Yt 1.69 1 1.93 1
Ct 0.89 0.78 1.61 0.89
Xt 4.99 0.79 4.45 0.82
Ht 1.98 0.88 1.32 0.83

�Y denotes the standard deviation of output and �(x; Y ) is the correlation of variable

x and output. The last four variables have been HP �ltered.

The impulse response functions based on the mean parameter estimates
can be seen in Figures 6, 7 and 8. Both net product creation and net
business formation positively comove with output, with the former being
more volatile than the latter.

6 Conclusion

Previous studies have shown that procyclical product creation via entry and
exit of mono-product �rms can be an important source of sunspot equilib-
ria. Yet, recent empirical evidence suggests that product creation occurs
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largely within existing �rms. Motivated by these �ndings, the current paper
investigates the role of intra-�rm product scope adjustments in a general
equilibrium economy with oligopolistic producers. It shows that the multi-
product nature of �rms makes the economy signi�cantly more susceptible
to sunspot equilibria. The estimated indeterminate model driven by both
belief and fundamental disturbances generates arti�cial business cycles that
closely resemble empirically observed �uctuations.
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A Appendix

A.1 Price elasticity of demand

This Appendix derives the demand elasticities of an intermediate good with
respect to changes in its own price and the price of other goods produced
by the same �rm. Taking logs of (3) we obtain

ln yt(i; j) = �
 ln pt(i; j)� (� � 
) lnPt(i) + � lnPt + lnYt
+[�(
 � 1)� 1] lnNt(i) + [!(� � 1)� 1] lnMt:

From (4)
@ lnPt(i)

@ ln pt(i; j)
=

�
pt(i; j)

Pt(i)

�1�

Nt(i)

�(
�1)�1:

Then from (5)

@ lnPt
@ ln pt(i; j)

=

�
pt(i; j)

Pt(i)

�1�

Nt(i)

�(
�1)�1
�
Pt(i)

Pt

�1��
Mt

!(��1)�1:

Then the price elasticity of demand is

@ ln yt(i; k)

@ ln pt(i; j)
= �
|{z}

absent for k 6=j

� (� � 
)
�
pt(i; j)

Pt(i)

�1�

Nt(i)

�(
�1)�1 (A.1)

+�

�
pt(i; j)

Pt(i)

�1�

Nt(i)

�(
�1)�1
�
Pt(i)

Pt

�1��
M
!(��1)�1
t

Note that under monopolistic competition, �rms are too small to in�uence
the aggregate price index, Pt; and hence the last term in (A.1) would be
absent.

A.2 Markups

This Appendix derives the optimal markups of intermediate good �rms.
Firm i maximizes pro�t (7) subject to the constraint (6):

L =

Z Nt(i)

0
pt(i; j)yt(i; j)� wtht(i; j)� rtkt(i; j)dj

+�t

 Z Nt(i)

0

�
ztkt(i; j)

�ht(i; j)
1�� � �

�
dj � �f �

Z Nt(i)

0
yt(i; j)dj

!
:
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Optimality gives

@L
@pt(i; j)

= yt(i; j) +

Z Nt(i)

0
[pt(i; j)� �t]

@yt(i; j)

@pt(i; j)
dj = 0 (A.2)

@L
@ht(i; j)

= �wt + �t(1� �)ztkt(i; j)�ht(i; j)�� = 0 (A.3)

@L
@kt(i; j)

= �rt + �t�ztkt(i; j)��1ht(i; j)1�� = 0: (A.4)

The Lagrange multiplier, �t; is obtained by combining (A.3) and (A.4) and
amounts to the marginal cost, mct, of producing one more variety:

mct � �t =
w1��t r�t

zt(1� �)1����
:

Hence, the costs of production areZ Nt(i)

0
wtht(i; j) + rtkt(i; j)dj = mct

 Z Nt(i)

0
[yt(i; j) + �]dj + �f

!

and pro�ts are

�t(i) =

Z Nt(i)

0
yt(i; j)[pt(i; j)�mct]dj �mct

�
Nt(i)�+ �f

�
: (A.5)

Substituting (A.1) into (A.2) and some algebra yields

yt(i; j)� 

yt(i; j)

pt(i; j)
[pt(i; j)�mct] =

Z Nt(i)

0

yt(i; k)

pt(i; j)
[pt(i; k)�mct] dk

�
�
pt(i; j)

Pt(i)

�1�

Nt(i)

�(
�1)�1

"
� � 
 + �

�
Pt(i)

Pt

�1��
M
!(��1)�1
t

#
:

Substituting (3) for yt(i; j), the above equation simpli�es to

PtYt

�
Pt(i)

Pt

�1��
M
!(��1)�1
t

�
1� 
 pt(i; j)�mct

pt(i; j)

�
=Z Nt(i)

0
yt(i; k) [pt(i; k)�mct] dk

"
� � 
 � �

�
Pt(i)

Pt

�1��
M
!(��1)�1
t

#
:
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As the second part of this equation is the same for all j 2 [0; Nt(i)]; this
implies that �rm i will charge the same price for all of its varieties. Hence,
pt(i; j) = pt(i; k) = pt(i) and the equation simpli�es to

1� 
 pt(i)�mct
pt(i)

= (A.6)

Nt(i)
�(
�1)

�
pt(i)

Pt(i)

�1�
 pt(i)�mct
pt(i)

"
� � 
 � �

�
Pt(i)

Pt

�1��
M
!(��1)�1
t

#
:

To solve for �rm i�s markup, �rst note from (4) that Pt(i) = Nt(i)
��pt(i):

Then using this together with (1), (3) and (5), we can express �rm i�s market
share, �t(i) � Pt(i)Yt(i)=(PtYt); as

�t(i) =

�
Pt(i)

Pt

�1��
M
!(��1)�1
t =

Nt(i)
��(1��)pt(i)1��RMt

0 Nt(i)��(1��)pt(i)1��di
: (A.7)

As long as � > 0; the price index Pt(i) is decreasing in Nt(i); and so in-
creasing the product scope increases the �rm�s market share. Finally, the
markup, �t(i) � pt(i)=mct, can be found by rearranging (A.6):

�t(i) =
�[1� �t(i)]

�[1� �t(i)]� 1
(A.8)

A.3 Product scope

This Appendix derives the �rms�optimal product scope. Substituting (3)
into (A.5), then using (4) and (A.7), we rewrite pro�ts as

�t(i) =

�
pt(i)�mct

pt(i)

�
PtYt�t(i)�mct[Nt(i)�+ �f ]:

Firm i takes the number of �rms and their product scopes as given and
maximizes its pro�ts with respect to Nt(i) by taking account the e¤ect of its
product scope decision on its own and all other producers�pricing decisions.
The �rst-order condition is

@�t(i)

@Nt(i)
= �PtYt

�
pt(i)�mct

pt(i)

�2 @�t(i)
@Nt(i)

+Yt�t(i)

�
pt(i)�mct

pt(i)

�
@Pt
@Nt(i)

�mct� = 0:

(A.9)
We now calculate @�t(i)=@Nt(i) and @Pt=@Nt(i) and then substitute in (A.9)
to obtain �rm i�s product scope. Di¤erentiating (A.7) with respect to Nt(i)
yields

@�t(i)

@Nt(i)
= �(� � 1) �t(i)

Nt(i)
� (� � 1)�t(i)

�
1

pt(i)

@pt(i)

@Nt(i)
� 1

Pt

@Pt
@Nt(i)

�
: (A.10)
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Note that the second term on the right hand side of (A.10) would not be
present in the case of monopolistic competition. As we will see, @pt(i)=@Nt(i)
and @Pt=@Nt(i) are positive and negative, respectively; implying that �rms
contract their product scopes compared to the case of monopolistic compe-
tition. We rewrite the aggregate price index (5) as

Pt =M
1

��1�!
t

�Z Mt

0
Nt(k)

��(1��)pt(k)
1��dk

� 1
1��

:

Then, after some algebra @Pt=@Nt(i) can be expressed as

@Pt
@Nt(i)

= P �tM
!(��1)�1
t

�Z Mt

0
Nt(k)

��(1��)pt(k)
�� @pt(k)

@Nt(i)
dk � �Nt(i)��(1��)�1pt(i)1��

�
:

(A.11)
We now show that the �rst term in the square brackets is equal to zero.
From (A.8)

pt(k)

pt(k)�mct
= � � ��t(k):

Then Z Mt

0

pt(k)

pt(k)�mct
dk = �Mt � �:

Di¤erentiating with respect to Nt(i) givesZ Mt

0
� mct
[pt(k)�mct]2

@pt(k)

@Nt(i)
dk = 0

which under symmetry collapses to

(Mt � 1)
@pt(k)

@Nt(i)
+
@pt(i)

@Nt(i)
= 0:

Replacing @pt(k)=@Nt(i) in (A.11) with �[@pt(i)=@Nt(i)]=(Mt � 1) and as-
suming symmetry, the �rst term in the square brackets drops out and some
rearrangement yields

@Pt
@Nt(i)

= ��Pt
�t(i)

Nt(i)
:

An increase in the product scope therefore reduces the aggregate price index.
Inserting this result in (A.10) gives

@�t(i)

@Nt(i)
= �(� � 1) �t(i)

Nt(i)
[1� �t(i)]� (� � 1)

�t(i)

pt(i)

@pt(i)

@Nt(i)
: (A.12)
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The next step is to compute @pt(i)=@Nt(i): From (A.8) we obtain

@pt(i)

@Nt(i)
=

�mct
[1� � + ��t(i)]2

@�t(i)

@Nt(i)
:

Then using this in (A.12) and some simpli�cation yields

@�t(i)

@Nt(i)
= �(� � 1) �t(i)

Nt(i)

[1� �t(i)]2(�[1� �t(i)]� 1)
�(1� �t(i)[1� �t(i)])� 1

:

Here, @�t(i)=@Nt(i) > 0 and hence @pt(i)=@Nt(i) > 0: Inserting @�t(i)=@Nt(i)
and @Pt=@Nt(i) into (A.9), assuming symmetry where �t(i) = �t = 1=Mt;
and some rearrangement gives

Nt =
�PtYt
pt�

�
(� � 1)(Mt � 1)

�(1�Mt) +M2
t (� � 1)

+
1

Mt[Mt(1� �) + �]

�
:

A.4 Monopolistic competition

In this Appendix we show that under monopolistic competition, the product
scope and output per variety are constant over the business cycle. Moreover,
this implies that the local dynamics and conditions for indeterminacy are
identical to the mono-product model described in Pavlov and Weder (2012).

[To be completed]

A.5 Data Sources

This Appendix details the source and construction of the U.S. data used in
Section 5. All data is quarterly and for the period 1948:I-2012:IV.

1. Gross Domestic Product. Seasonally adjusted at annual rates, billions
of chained (2009) dollars. Source: Bureau of Economic Analysis, NIPA Table
1.1.6.

2. Gross Domestic Product. Seasonally adjusted at annual rates, billions
of dollars. Source: Bureau of Economic Analysis, NIPA Table 1.1.5.

3. Personal Consumption Expenditures, Nondurable Goods. Seasonally
adjusted at annual rates, billions of dollars. Source: Bureau of Economic
Analysis, NIPA Table 1.1.5.

4. Personal Consumption Expenditures, Services. Seasonally adjusted
at annual rates, billions of dollars. Source: Bureau of Economic Analysis,
NIPA Table 1.1.5.

5. Gross Private Domestic Investment, Fixed Investment, Residential.
Seasonally adjusted at annual rates, billions of dollars. Source: Bureau of
Economic Analysis, NIPA Table 1.1.5.
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6. Gross Private Domestic Investment, Fixed Investment, Nonresiden-
tial. Seasonally adjusted at annual rates, billions of dollars. Source: Bureau
of Economic Analysis, NIPA Table 1.1.5.

7. Nonfarm Business Hours. Index 2009=100, seasonally adjusted.
Source: Bureau of Labor Statistics, Series Id: PRS85006033.

8. Civilian Noninstitutional Population. 16 years and over, thousands.
Source: Bureau of Labor Statistics, Series Id: LNU00000000Q.

9. GDP De�ator = (2)=(1):
10. Real Per Capita Consumption, Ct = [(3) + (4)]=(9)=(8):
11. Real Per Capita Investment, Xt = [(5) + (6)]=(9)=(8):
12. Real Per Capita Output, Yt = (1)=(8):
13. Per Capita Hours Worked, Ht = (7)=(8):
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Figure 1: Mono-product model.
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Figure 2: Multi-product model, � = 
:
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Figure 3: Multi-product model, � = 1:3:
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Figure 4: Multi-product model with endogenous capital utilization, � = 
:
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Figure 5: Multi-product model with endogenous capital utilization, � = 1:3:
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Figure 6: Impulse responses to a sunspot shock, "st :
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Figure 7: Impulse responses to a technology shock, "zt :
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Figure 8: Impulse responses to a preference shock, "�t :
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