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1. Introduction

“Theories ultimately rise and fall on their ability to organize and interpret facts.”

(Cochrane, 2011, p.566)

In the aftermath of the financial crisis, New Keynesian (NK) theory has fallen on hard

times. Once being a pillar of macroeconomics, in particular monetary economics, it has

been criticized on both the theoretical and the empirical ends. Consider the simplest

three-equation NK model with rational expectations and active monetary policy, and the

cut in interest rates from 5.25% in 2007 to 0.25% by the end of 2008 (cf. Figure 1). When

interpreting this cut as an exogenous but transitory monetary policy shock, the NK model

predicts a counterfactual rise of inflation to more than 4 percent. Others would argue that

the fall in interest rates is a response to some other shock, usually to the natural rate.

However, the subsequent episode of an apparently binding zero-lower bound (ZLB), which

is referred to as the zero-interest-rate policy (ZIRP) period, even intensified the criticism.

If the economy entered a liquidity-trap scenario, the NK model would predict a deep

recession with deflation (cf. Werning, 2012; Cochrane, 2017b). But nothing happened. If

anything, core inflation (excluding food and energy) declined moderately to values around

1 percent in 2010. So what happened? Is the Taylor principle applicable in a world where

interest rates stopped moving more than one-for-one with inflation? Cochrane (2017a)

shows that alternative doctrines, including old-Keynesian models and the monetarist view,

fail in explaining the ZIRP period, when the Fed drastically decreased interest rates and

embarked on immense (unconventional) open market operations.

So the open question is on the ability of the NK model to organize our thoughts and

interpret the recent facts. Can we reconcile the dynamics of key macroeconomic variables

and the term structure of interest rates with the model predictions? Del Negro, Giannoni,

and Schorfheide (2015) challenge the criticism by showing that a medium-sized NK model

of Smets and Wouters (2007), based on Christiano, Eichenbaum, and Evans (2005), with

time-varying inflation target and financial frictions is able to predict a sharp decline in

output without forecasting a large drop in inflation. Based on this finding, do we have to

abandon the three-equation NK model? Central to this question is the ability to replicate

the yield curve, which from the expectation hypothesis relates to the market perceptions

about future interest rates. In this paper, we allow for both temporary and permanent

shocks to the interest rate and inflation. Based on this tweak, we show that the simple

NK model can be used to interpret the data. We also shed light on potential sources.

Our contribution is to show that the ability to explain the facts crucially depends on

the way we interpret and solve the model. We take a fresh look at the standard NK model

under active monetary policy and show that it supports both a negative and a positive

response of inflation to a ‘monetary policy shock’, once the definition includes temporary

and/or permanent components. We show how the yield curve helps to identify permanent
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shocks to interest rates and inflation. The variability at the long-end of the yield curve

can be triggered by changes in uncertainty, concrete policy action and/or by changing

expectations (e.g., reflecting changes in the conduct of monetary policy). This strategy

accounts for the enlarged set of policy instruments of the monetary authority. Based on

the identified shocks to inflation and the natural rate, we show that the simple NK model

is able to replicate the key macroeconomic variables and the term structure of interest

rates. In particular, shocks to monetary policy and the natural rate may result into a

ZIRP period, and by the same arguments, inflation may rebound while nominal interest

rates being kept near-zero values. A nonlinear (and global) solution, which accounts for

potentially strong nonlinearities capturing non-normal times, can be useful to generate

immobile interest rates near-zero and stable quiet inflation with a single shock.

The quest on the ability of the simple NK model to explain the recent episodes has

a deeper motivation. We investigate whether financial frictions are required to reconcile

the recent facts with the theory. Although formulating and solving medium-scale NK

models is important (cf. Christiano, Motto, and Rostagno, 2014; Del Negro, Giannoni,

and Schorfheide, 2015), there is need for a parsimonious specification to provide a simple

device to develop intuition, conceptualize, and facilitate the way we think about problems

in economics. This paper merely shows that temporary and permanent shocks in the

interest rate (and inflation) enable the simple NK model to replicate the data. We also

provide an analytical investigation of the effects of uncertainty in the nonlinear NK model

and show how it affects the natural rate. Our results confirm that uncertainty shocks

are isomorphic to discount factor shocks (Barsky, Justiniano, and Melosi, 2014), so they

provide an attractive structural interpretation of the permanent shocks.

Our arguments are motivated by the strong empirical evidence of shifting end-points

in the yield curve, which may just reflect the private sector’s perception of the inflation

target rate (cf. Kozicki and Tinsley, 2001; Gürkaynak, Sack, and Swanson, 2005).1 There

is also empirical evidence in the macroeconomic literature on time-varying inflation target

rates (cf. Ireland, 2007; Fève, Matheron, and Sahuc, 2010). Empirical results for the US

and Japan is also confirmative of the counteracting effects resulting from transitory and

permanent shocks to the interest rate (cf. Uribe, 2017).

In contrast to the ZLB literature, we focus on equilibria with active monetary policy, in

which the enlarged set of policy instruments includes long-end target rates (the liquidity

trap scenario is studied in Werning, 2012; Wieland, 2015; Cochrane, 2017b). This paper

fills the gap in the literature by providing an investigation of the simple NK model in

times when the traditional arguments seem to fail. This is highly relevant since the mode

of criticism relates to the case that the ZIRP period reflected a binding constraint. The

1Linking the policy target rates to the long-end of the yield curve is not new and received increasing
attention (see Gürkaynak and Wright, 2012, and the references therein). Time-variation in the inflation
target is needed to capture the evolution of inflation expectations (cf. Del Negro and Eusepi, 2011).
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bottom line is that changes in longer rates (possibly through unconventional policies) help

to explain the recent episodes within the simple NK framework, while nonlinearities play

an important role to generate the ZIRP period as a policy choice.

The rest of the paper is organized as follows. First, in Section 2 we present the simple

NK model and explore the ability to explain the recent facts. In Section 3 we present the

full nonlinear analysis by introducing shocks, and show how near-zero interest rates can be

reconciled within the framework and may result as a policy choice. Section 4 concludes.

Further results and illustrations are available in an accompanying web appendix.

2. Simplified Framework

In this section we present the continuous-time specification of the standard NK model.

This simple framework is used to answer our questions regarding the ability of the model

to explain the facts. In the next section we show how the equilibrium dynamics follow from

the standard micro-founded rational-expectation solution and shed light on the effects of

uncertainty, and potential sources of permanent shocks to interest rates and inflation.

The simplest version of the NK model reads:

dxt = (it − rt − πt)dt (1)

dπt = (ρ(πt − π∗
t )− κxt)dt (2)

We denote xt as the output gap (percentage deviations), it is the nominal interest rate, rt is

the natural rate, which coincides with the rate of time preference ρ, once transitory shocks

have abated, r∗t = ρ, and πt is inflation, where κ controls the degree of price stickiness with

κ → ∞ as the frictionless (flexible price) limit. This system summarizes the linearized

equilibrium dynamics around zero-inflation target π∗
t = 0 (or full indexation). Note that

the appearance of the inflation target π∗
t in (2) ensures that the long-run equilibrium

coincides with the nonlinear solution (cf. Section A.1).

The equation (1) follows directly from the consumption Euler equation representing

the optimal investment/saving (IS) decision, often referred to as the IS curve, whereas (2)

is the NK forward-looking Phillips curve. Solving forward it expresses inflation in terms

of future output gaps,

πt − π∗
t = κ

∫ ∞

t

e−ρ(v−t)xv dv.

Hence, the current rate of inflation and expected rate of inflation are the same variable in

continuous time. In this model it is useful to think of the path of expected future inflation

and other variables (e.g., marginal cost) determining events at time t.

We close the model by specifying a rule which determines the (equilibrium) interest

rates. In this perfect-foresight model both inflation dynamics and the output gap are fully
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determined by the Taylor rule. In what follows we analyze two alternative setups, which

we refer to as the traditional feedback model:

it = φ(πt − π∗
t ) + i∗t , φ > 0, (3a)

and the partial adjustment model (similar to Sims, 2004; Cochrane, 2017b):

dit = θ(φ(πt − π∗
t )− (it − i∗t ))dt, θ > 0, (3b)

which reflects both a response to inflation and a desire to smooth interest rates. The rules

(3a) and (3b) show the attitude of the monetary authority towards either the long-run

nominal interest rate or the target rate of inflation (one target is isomorphic to the other).

In this paper, we consider the inflation target as a policy parameter, but abstract from

specifying a specific process. We interpret unexpected changes in target rates as to capture

changes in the conduct of monetary policy. Empirically, variations in the long rates are

crucial for understanding the dynamics of yields (cf. Bauer and Rudebusch, 2017). One

potential interpretation of those changes is that economic agents infer target rates from

observed interest rate and inflation dynamics: A large interest rate cut may also trigger

a decrease in the long-run interest rate (or inflation) target.

The rule (3b) specifies an explicit time lag between the inflation rate πt and the policy

rate it. The delay will be small if the parameter θ is large:

it − i∗t = φθ

∫ t

−∞

e−θ(t−k)(πk − π∗
t ) dk,

which makes it a state variable, given by past inflation rates. While the rule (3a) may seem

simpler, it has some undesirable properties in continuous time. Among others, the clear

distinction between inflation (expected future inflation) that the interest rate controls and

inflation to which the Fed responds vanishes in continuous time.

Before we can meaningfully study shocks to the interest rate it is important to answer

the question about local determinacy and thus the possibility of sunspot equilibria. We

define an active monetary policy if φ > 1 and refer to monetary policy as passive if φ < 1.

In what follows we focus on an active monetary policy ensures the existence of a unique

locally bounded solution (cf. Appendix A.1.1 and the web appendix).2

We extend the three-equation NK model by allowing for temporary and permanent

shocks to the natural rate (and inflation). Both, the inflation target π∗
t and the long-run

(Wicksellian) natural rate r∗t , are considered as exogenous parametric values. Below we

offer some economic interpretations which may reflect such exogenous shocks.

2Note that the indeterminacy regions typically depend on the modelling frequency (Hintermaier, 2005).
Hence, the findings for the discrete-time model with a presumed timing convention cannot simply be
translated to different decision horizons, in particular to the continuous-time limit.
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2.1. Which policy instruments?

The recent episodes shed light on the set of central bank instruments. They demonstrated

that the nominal interest rate, once considered as the most important (conventional)

instrument, cannot be used as a sufficient description of monetary policy. A large body of

literature and anecdotal evidence show that unconventional policies, in particular forward

guidance and quantitative easing (QE), are important monetary policy instruments too.

Unless one adds financial frictions (e.g., Gertler and Karadi, 2011), or assumes imperfect

substitutability between different maturities (cf. Chen, Cúrdia, and Ferrero, 2012), the

NK model predicts that arbitrary QE operations are irrelevant. This is important because

inflation seems to be unaffected by the large-scale asset purchase (LSAP) programmes.

Hence, QE as such is not considered a separate policy instrument.3 In contrast, forward

guidance, which also includes the communication of the inflation target, has strong effects

in the standard NK model (Del Negro, Giannoni, and Patterson, 2015; Campbell, Fisher,

Justiniano, and Melosi, 2016). While the traditional instrument targets the short-term

interest rate, the unconventional policy measures are commonly targeting interest rates

at higher maturities (or the longer-end of the yield curve).

Beside changing the short-term interest rate, the monetary authority may focus on

other longer maturities.4 Such policies would need to control the long-ends of either the

nominal and/or the real yield curve. As the inflation target is under the discretion of the

monetary authority, there might be changes in its perception by economic agents due to

communication or other measures. So we may consider the inflation target π∗
t as a policy

instrument.5 In our analysis, a ‘target shock’ simply reflects (unexpected) changes to π∗
t ,

which is interpreted to representing a different ‘regime’, and thus may induce transitional

dynamics. A second source of variability are shocks to the natural rate r∗t . Below we offer

some structural interpretation of such shocks beyond the central banks control.

There is also an important difference with respect to forward guidance for the two

Taylor rules specified in (3a) and (3b). Pure ‘communication’ about future policy induces

a reaction of the interest rate in the feedback model due to the effect on inflation, while

in the partial adjustment model interest rates are immobile on impact (pre-determined),

e.g., with respect to changes in long-run targets. So an immediate challenge for empirical

research is to identify permanent shocks, and also to which extent an observed monetary

policy shocks contain information about (perceived) changes in long-run targets.

3As a caveat, LSAPs could affect term premia, a channel which is absent in the simple NK model and
will be discussed later. Moreover, the LSAPs could also affect agents expectations of the future course of
monetary policy (cf. Wright, 2012), which may be captured by ‘shocks’ to the long-run target rates.

4Swanson and Williams (2014) find that interest rates with a year or more to maturity were surprisingly
unconstrained and responsive to news throughout 2008 to 2010.

5Note that the simplifying assumption of constant target rates will not be relevant for our arguments.
Alternative approaches such as the regime-switching framework (see Sims and Zha, 2006), or time-varying
inflation targets (e.g., Ireland, 2007) would be more realistic, at the cost of more technical details.
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2.2. Do higher interest rates raise or lower inflation?

Following the discussion on the policy instruments we now address the question of whether

higher interest rates raise or lower inflation. In fact, the NK model for φ > 1 makes sharp

predictions regarding the systematic link between interest rates and inflation, but at the

same time can explain both the short-run negative response and the long-run positive

Fisher effect. As shown below, the minimal set of ingredients, in a forward-looking general

equilibrium framework with active monetary policy, φ > 1, to produce a negative short-run

impact of interest rates on inflation is the partial adjustment model.

For the partial adjustment model, the inflation rate is a negative function of the

interest rate (cf. Figure D.5).6 The figure plots inflation for different interest rates, which

shows the short-run negative relationship. The intuition is that the interest rate depends

positively on the level of inflation, but negatively on its time derivative,

it = φ(πt − π∗
t ) + i∗t − θ−1 dit/ dt, θ > 0. (4)

For a given value dit/ dt 6= 0, the larger the central bank’s desire to smooth interest rates

over time (the lower θ), the larger the second effect: Suppose that after a contractionary

monetary policy shock it > i∗t , so the (after-shock) time-derivative of the interest rate is

negative dit/ dt < 0, which reflects the slope of the impulse response function. Higher

interest rates are related to lower inflation rates, because the inflation rate is determined

by both the (long-run) Fisher relation and the mean reversion back to the target level.

In our solution, inflation falls by 0.5 percentage points on impact for an 1 percentage

point increase in interest rates. To summarize, the short-run response of inflation rates on

impact is negative, while the positive relationship (higher inflation targets imply higher

interest rates) is still given by the long-run Fisher relation i∗t = ρ + π∗
t . Higher interest

rates unambiguously imply higher yields to maturity of long-term bonds.

So what happens if central banks raise interest rates? If the increase is considered by

agents not only as temporary, but after all reflects a permanent change in the target rate,

inflation stability in the Fisher equation will result in higher long-run inflation. But can

higher permanent interest rates reduce inflation in the short run? Indeed this is possible if

the ‘target shock’ is accompanied by concrete policy action, i.e., a raise in the short-term

interest rate.7 In the partial adjustment model, this induces the traditional negative effect

on inflation, which may even dominate the long-run Fisher effect temporarily. However,

inflation cannot temporarily decrease in the simple feedback model. Unless we consider a

persistent shock to the feedback rule any deviation from the equilibrium instantaneously

6In the simplified framework, we solve a standard boundary-value problem (perfect-foresight solution)
and plot the initial values for different starting values (cf. Section 3 for a detailed description).

7Another possibility is to add long-term debt and use the fiscal theory (FTPL) to pin down inflation
(following McCallum, 2001; Del Negro and Sims, 2015). Cochrane (2017a) shows that the FTPL produces
a temporary reduction in the inflation due to the decline in the nominal market value of the debt.
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jumps back. Any temporary shock would evaporate, and the interest rate accommodates

its equilibrium level (infinitely fast). Only for the case where θ <∞, a temporary change

induces some persistence and thus own equilibrium dynamics.

Let us consider a concrete example. Suppose that variables in the simple NK model

are at steady state and the long-run interest rate i∗t (or the inflation target π∗
t ) is lower by

50 basis points (bp), and also the short-term interest rate it is decreased by 250 bp. The

concrete policy action is 250 bp (observed), but only a fraction 1/5 of the interest rate

cut is permanent (discretionary) leaving the remainder 4/5 being only temporary and not

reflecting changes in policy targets. In the long run we expect lower inflation due to the

Fisher relation i∗t = ρ + π∗
t , but temporarily the traditional negative trade-off dominates

the Fisher effect (cf. Figure D.17). Our simulation exercise shows that on impact the

inflation rate increases to 2.5% and then both inflation and interest rates accommodate

their new equilibrium levels after about 10 quarters. This perspective on ‘monetary policy

shocks’ consisting of temporary and permanent shocks offers an alternative explanation

for the so-called ‘prize puzzle’ (going back to Sims, 1992; Eichenbaum, 1992).8 So at the

risk of oversimplifying: Higher short-term interest rates (Fed Funds) decrease inflation,

whereas higher long-run interest rates (inflation target) increase inflation.

2.3. Term structure of interest rates

A large body of empirical research shows that in particular unconventional monetary policy

is targeting interest rates at the long-end of the yield curve, and is trying to influence

market expectations about the future macro aggregates including inflation, interest rates

and output gaps. Financial data can shed light on expectations, which is highly relevant

when the standard instrument of monetary policy is not available.

Let us consider a nominal (zero-coupon) bond with unity payoff at maturity N :

P
(N)
t = Et

(

e−ρNλt+N/λte
−

∫ t+N
t

πsds
)

, (5)

where λt is the marginal value of wealth, or the present value shadow price, consistent with

equilibrium dynamics of macro aggregates.9 The equilibrium bond price can be obtained

from the fundamental pricing equation for the price P
(N)
t :

Et

(

( dP
(N)
t )/P

(N)
t

)

−
(

1/P
(N)
t (∂P

(N)
t /∂N) + it

)

dt = 0. (6)

Observe that in equilibrium, the bond price P
(N)
t is a function of the state variables, so

8Similarly, a cost-channel in addition to the demand channel is likely to generate a positive response on
impact, but has little empirical support (see Castelnuovo, 2012, and the references therein). Castelnuovo
and Surico (2010) show that accounting for expected inflation may also explain the ‘puzzle’.

9In this simplified framework, we abstract from a term premium to focus on the expectation channel
of the NK model. Below we discuss the term premium and the full model with shocks (cf. Section 3).

7



in the partial adjustment model P
(N)
t = P (N)(it), and after some algebra we obtain the

partial differential equation (henceforth PDE approach) for the bond:

θ(φ(πt − π∗
t )− (it − i∗t ))(∂P

(N)
t /∂it)− (∂P

(N)
t /∂N) − itP

(N)
t = 0. (7)

The solution to the pricing equation implies the complete term structure of interest rate

for any given interest rate and maturity (we study the term premium in Section 3):

y
(N)
t ≡ y(N)(it) = − logP (N)(it)/N. (8)

The traditional expectation approach is to simulate the bond price (5) for a given interest

rate and obtain the N -period ahead distribution in order to approximate the first moment

(cf. Cochrane, 2005). While the approach is easy to implement, approximating moments

for more state variables and longer maturities becomes computationally infeasible.

There are efficient algorithms to numerically solve the fundamental pricing equation

(7). Our strategy is to use collocation, so we approximate the function P
(N)
t ≈ Φ(N, it)v,

in which v is an n-vector of coefficients and Φ denotes the known n× n basis matrix, and

can compute the unknown coefficients from a linear interpolation equation:

θ(φ(πt − π∗
t )− (it − i∗t ))Φ

′
2(N, it)v − Φ′

1(N, it)v = itΦ(N, it)v,

or

(θ(φ(πt − π∗
t )− (it − i∗t ))Φ

′
2 − Φ′

1 − itΦ) v = 0n,

where n = n1 · n2 with the boundary condition Φ(0, it)v = 1n. So we concatenate the two

matrices and solve the linear equation for the unknown coefficients:

[

Φ′
1 − θ(φ(πt − π∗

t )− (it − i∗t ))Φ
′
2 + itΦ, Φ(0, At)

]

v =

[

0n

1n

]

.

For the feedback model, with no relevant state variables, we obtain the trivial solution that

without shocks, the yield curve is flat, it ≡ i∗t = ρ + π∗
t . The analytical solution of the

feedback model, however, is useful for studying the long-end of both the nominal and real

yield curves in the partial adjustment model and thus for interpreting the data:

lim
N→∞

y
(N)
t = i∗t = ρ+ π∗

t , lim
N→∞

r
(N)
t = i∗t − π∗

t = ρ ≡ r∗t ,

which show the expectation component of the long-end yields. The inflation target does

not affect the long-run risk-free rate, but the nominal rate, i∗t = ρ + π∗
t . For comparison

with the data we consistently define the model-implied 10-years to maturity yields of
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(nominal and inflation-protected) zero-coupon bonds y
(10)
t and r

(10)
t , respectively. Figure

D.5 shows the model-implied 10-years to maturity yield of a zero-coupon bond y
(10)
t =

y(10)(it) and the 10-years to maturity inflation-protected yield r
(10)
t = r(10)(it).

2.4. Can we explain the recent episodes?

In this section, we study the ability of the simple NK model to explain the recent episodes

during the new century, including the financial crisis episodes. This sheds light on some

anecdotal evidence, which suggests that the traditional arguments are flawed.

Our data is from the Federal Reserve Bank of St. Louis Economic Dataset (FRED),

i.e., the US Effective Federal Funds Rate (Fed Funds), the 10-Year Treasury Constant

Maturity Rate (10Y Govt), the Consumer Price Index (Core CPI), seasonally adjusted,

the 10-Year Treasury Inflation Protected Securities Rate (10Y TIPS), and the Output

gap (HP Filter) from 1990 through 2017. In particular, we focus on four episodes brought

forward by prominent economists, and discussed in the literature.

First, to the unaided eye, the data suggests a reversal of the interest rates-inflation

tradeoff in the period 2001-2007, supporting the alternative hypothesis that inflation and

interest rates are positively related. If anything, inflation decreased in response to the

interest rate cuts. Second, in the subsequent period from 2007 the Fed Funds rate has

remained near-zero until Dec 2015, to which we refer to as the zero-interest-rate policy

(ZIRP) period, but inflation kept stable and quiet (cf. Cochrane, 2017a). Third, despite

interest rates near-zero through 2015, inflation rebounded already in 2011, with about the

same pattern as before. While the short rate seems immobile over the recent episode, the

long-end of the yield curve has considerable variation and declines over time. From the

expectation hypothesis, we may also read this as changes of market perceptions about

future interest rates and/or monetary policy. Fourth, there is anecdotal evidence of term

structure anomalies between 2004 and 2005: The Fed Funds rate increased by 150 bp, but

the 10Y Govt decreased by about 70 bp (cf. Backus and Wright, 2007). So can we explain

the recent episodes and term structure anomalies within the NK model?

Our approach is to study whether the NK model (with traditional parameterization)

is able to explain the recent dynamics of macroeconomic aggregates and whether they

are consistent with the term structure (expectations of future interest rates). This simple

accounting exercise sheds light on the size of shocks, conditional on the fixed parameters.

We allow for temporary autoregressive shocks dt (preference shocks):

ddt = −ρd(dt − 1)dt, (9)

such that rt = r∗t + ρd(dt − 1) defines the ‘natural rate’ of interest (e.g., Werning, 2012).

Formally, given a set of (nonlinear) functions and observable variables, our goal is to find a

vector dt that makes the difference between model-implied values and observable variables
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zero. Our numerical routine attempts to solve the system of equations by minimizing the

sum of squares of the function components. If the equations can be solved (the residuals

are negligible), we say that the NK model is able to explain the data.

More precisely, given the dynamics in (9), the model implies inflation πt = π(it, dt),

output gap xt = x(it, dt), together with the 10-year yields to maturity of nominal bonds,

y
(10)
t = y(10)(it, dt) and inflation-protected bonds r

(10)
t = r(10)(it, dt), as functions of the

interest rate and the preference shock. So we can identify the shocks dt (or natural rate

rt), given the set of observed data and parameterization.10 For example, the observed

data may include both the interest rate iobst and inflation πobs
t = π(iobst , dt), where the

observation frequency is set by the availability of macroeconomic data, either monthly or

quarterly, depending of whether the output gap xobst = x(iobst , dt) is added.
11

First, we identify the shocks dt required to replicate the interest rate (Fed Funds),

the inflation rate (Core CPI), and the output gap (Output gap) for the fixed parameters

ρ = 0.03, κ = 0.8842, φ = 4, θ = 0.5, πss = 0.02, and ρd = 0.4214. This particular set of

parameters is within plausible estimates discussed in the literature. In any case, only one

admissible set from the parameters space is needed, which is able to replicate the data.

If this set was empty, any estimation strategy would be doomed. Most importantly, this

parameterization implies values r∗t = 0.03 and π∗
t = 0.02. Based on the identified natural

rate rt (see Figure 2), we find that the model is able to explain (at least) interest rate

and inflation dynamics, but dramatically fails to generate sufficient variability in 10-year

treasury rates (see Figures 3 and 4). Hence, the expectations are not consistent with the

data and/or variations in term premia (which is studied in Section 3) are relevant.12

Suppose that in addition to temporary shocks we allow for permanent shocks to the

interest rate and inflation (by allowing time-variability in r∗t and π∗
t ) in order to account

for the variability of the long-end of the nominal and the real yield curve. So we compute

the model-implied inflation rate πt = π(it, dt; ρ, πss), output gap xt = x(it, dt; ρ, πss),

together with the 10-year yields to maturity of nominal bonds, y
(10)
t = y(10)(it, dt; ρ, πss)

and inflation-protected bonds r
(10)
t = r(10)(it, dt; ρ, πss), as functions of the interest rate,

the preference shock, the long-run (Wicksellian) natural rate and the inflation target. We

identify the natural rate rt, together with the shocks for r∗t and π
∗
t to replicate the observed

data by also including 10-Year Treasury rates (10Y Govt and 10Y TIPS). Based on the

identified shocks rt, π
∗
t and r∗t (see Figure 5), we find that the model is able to replicate

interest rate, inflation dynamics, the slope of the yield curves, even when including output

in the set of observable variables (see Figures 6 and 7). Note that the first identification

10Our identification differs from the schemes used in the literature (cf. Ramey, 2016; Uribe, 2017).
11See Kamber, Morley, and Wong (2018) for the various ways to extract the series from observed output

data. For our illustrations, we use the HP filtered data (see Figure D.1).
12Christiano, Motto, and Rostagno (2014) include the slope of the term structure of interest rates (i.e.,

the difference of the long-term bond and the federal funds rate), by including an exogenous measurement
error shock on the long-term bonds, which they interpret as a term premium shock.
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of rt without permanent shocks (for π∗
t = 0.02 an r∗t = 0.03) is an restricted version of the

approach followed here. From the identified series of shocks, the permanent shocks to the

interest rate seem more important than the permanent shocks to the inflation.

In an alternative specification we allow for variations in r∗t only for robustness of our

results, keeping the inflation target constant (π∗
t = 0.02). So we identify the natural rate

rt, together with the shocks for r∗t to replicate the observed data, by including the nominal

10-Year Treasury rates (10Y Govt). Still, the simple NK model is able to replicate interest

rates, inflation dynamics, and both long-end yields, even though the inflation-protected

10-Year Treasury rates (10Y TIPS) are not used for identification (cf. Figure D.3). For

most of observations output dynamics can be replicated (cf. Figure D.4). The bottom line

is that both temporary and permanent shocks are required (also sufficient) for the ability

of the simple NK model with φ > 1 to explain the facts.

Let us now turn to the most prominent features of the data. We may use the NK model

to interpret the episodes: (i) with an apparent sign reversal (2001-2007), (ii) including a

zero-interest-rate policy (2007-2015), (iii) with an inflation rebound and near-zero interest

rates (2011), and (iv) including an apparent term structure anomaly (2004-2005).

2.4.1. Sign reversal

While the academic discourse about the effects of the nominal interest rate on the inflation

rate has some tradition in macroeconomics, motivated by the ‘price puzzle’, it received

public attention in 2008, when the interest rates in the US (followed by the ECB in 2014)

hit essentially zero. Consider the period 2001-2007, right before the financial crisis.

In Jan 2001 the Fed Funds rate was at 6 percent (5.98%), the 10Y Govt at 5 percent

(5.16%). In Sep 2007 the Fed Funds rate was slightly below 5 percent (4.94%), the 10Y

Govt at 4.5 percent (4.52%). In the meantime, the Fed Funds rate has been sharply

decreased and raised to and from 1 percent. Over the same period, the Core CPI inflation

followed a similar ∨ pattern and decreased slightly from 2.5 percent (2.57%) to values

around 2 percent (2.10%). When the Fed Funds rate dipped at 1 percent (0.98%) in Dec

2003, inflation also had its lowest value of 1 percentage point (1.09%) with 10Y Govt at

4 percent (4.27%). Can we reconcile this pattern with the NK model?

If we interpreted the ∨ pattern as two consecutive temporary monetary policy shocks,

the NK model predicts that inflation should have followed a counterfactual ∧ pattern. A

transitory (negative) monetary policy shock of 500 bp would imply inflation to increase by

about 250 bp in 2003.13 This summarizes the puzzling ‘sign reversal’ and strikingly fails

to explain the decline in long yields. However, the same transitory shock together with a

(negative) permanent shock of 150 bp would account for the observed pattern for inflation

and would predict a decline in yields to longer maturities. Similarly, a (positive) temporary

13For details and transitional dynamics, we refer to the figures in the accompanying web appendix.
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monetary policy shock of 400 bp together with restoring the announced inflation target

rate in 2007 has the opposite effect and may have generated the observed ∨ pattern of

Fed Funds, 10Y yields and Core CPI inflation in the period.

Using the identified shocks suggests a different story. Suppose in Jan 2001 the target

rate shock was slightly below 3 percent (2.83%), and the natural rate at 2.5 percent

(2.55%). Until Dec 2003 the natural rate dropped by about 4.5 percent (−3.16%), mainly

driven by a large temporary preference shock (−15.33%). In Sep 2007, the preference

shock disappeared and the target rate shock was at 2 percent (2.24%), and the natural

rate back at 2.5 percent (2.37%). This exactly replicates the observed ∨ pattern of the

Fed Funds, the 10Y Govt, and the Core CPI inflation (and Output gap).

To summarize, the observed pattern indeed can be reconciled with the simple NK

model, when allowing for a ∨ pattern to either the inflation target or the natural rate.

From the identified shocks, the latter explanation seems more plausible.

2.4.2. ZIRP period

We next consider the zero-interest-rate policy (ZIRP) period 2007-2015, right after the

start of the financial crisis in Sep 2007 until the ‘liftoff’ in Dec 2015, with the end-point

marking the start of the Fed’s ‘normalization’ of monetary policy (Williamson, 2016).

In Sep 2007, the Fed Funds rate was at 5 percent (4.94%), the 10Y Govt at 4.5 percent

(4.52%), while in Jan 2009 the Fed Funds rate was at 0.25 percent (0.15%), the long rate

10Y at 2.5 percent (2.52%) and stayed there. Over the same period, the Core CPI inflation

decreased from 2 percent (2.10%) to values way below the announced target rate around

0.5 percent (0.60%) in Oct 2010, and then bounced back in Aug 2011 to values around

the announced target of 2 percent (1.97%). At a first glance, things look pretty much

like the sharp decrease during the 2001-2003 period. This time, however, the (short-run)

nominal interest rate was quite close to the ZLB and did not return to higher values for

a while. Can we generate a ZIRP period within the NK model?

An interest rate cut by about 475 bp, for an inflation target of 2 percent, we should have

expected inflation rates of more than 4 percent. If anything, Core CPI inflation declined

from slightly above 2 percent to values around 0.5 percent in 2010, and then rebounded to

2 percent 2011. If we borrow the inflation target rate shock explanation, the sharp decrease

may reflect a change in the target rate by 200 bp (10Y Govt declined by about 200 bp).

Inflation would jump by 0.5% and then after about 2.5 years decline to zero. This sounds

reasonable. But it does not explain the near-zero values of the interest rate. One subtle

issue is that such a hypothetical series of shocks seems inconsistent with the underlying

process (9) to generate the identified shocks. Although we can replicate the observed

variables on impact (including the nominal yield curve), and inflation rates eventually

approaching zero, the simple NK model predicts a counterfactual strong tendency of the
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interest rate to revert back to its steady-state value.

To explain the ZIRP episode with a single shock we would need to modify the shock

dynamics. Our simulation results confirm this conjecture: Adding a negative preference

shock of roughly 10 percent to both monetary policy shocks helps to fix the yield curve

and inflation, but does not generate a ZIRP period. Even with higher persistence the

assumed shock process (9) would not imply that interest rates do remain close to zero.

From the identified shocks, indeed the inflation target rate dropped from about 2.5

percent by 150 bp to 0.5 percent (0.75%) in Jan 2009, and the natural rate slightly dropped

to 1.5 percent (1.53%). Then, the inflation target increased back to values about 2 percent

in Oct 2010, accompanied by a large negative preference shock (−14.09%) which dragged

the natural rate by about 580 bp to values around −4.5 percent and stayed negative until

the liftoff in Dec 2015. In fact, this exactly replicates the observed dynamics of the Fed

Funds, the 10Y Govt, and the Core CPI inflation (and Output gap).

2.4.3. Inflation rebound (near-zero interest rates)

Elaborating on the previous results, it gets even more challenging to reconcile the facts

with the simple NK model, when we consider that after the long decline since 2007, the

start of the ZIRP period, inflation suddenly rebounds to levels around 2 percent in 2011,

while interest rates remain immobile and near-zero at least throughout 2015.

Let us turn to the facts. In Oct 2010, the Fed Funds rate was at 0.25 percent (0.19%),

the 10Y Govt at 2.5 percent (2.54%), and Core CPI inflation dipped at 0.5 percent (0.60%),

while in Jun 2011 the Fed Funds rate was close to zero (0.09%), whereas the 10Y Govt

was at 3 percent (3.00%) and Core CPI inflation increased to 1.5 percent (1.58%), with

tendency to revert back to values about the ‘official’ inflation target at 2 percent.

If we considered a target shock of 200 bp, so we re-established the announced target

rate around 2011, while interest rates at near-zero values, the NK model could explain the

inflation rebound without any effects on nominal interest rates on impact with the partial

adjustment model only (the feedback model cannot generate this for φ > 1). If anything,

the Fed Funds rate in fact was lowered by 10 bp, which seems too small to account for

the rebound of inflation rates. Consider now a simultaneous negative preference shock of

about 15 percent. Without this shock to the natural rate, inflation would jump to values

around 4.5 percent for the presumed inflation target shock. A similar (counterfactual)

picture arose at the longer-end of the yield curve, if we would try to match the inflation

figures with a shock to the natural rate only. So we conclude that the simple NK model

fails to replicate the observed pattern in the data with a single shock. One plausible

scenario is that the economy experiences a series of negative shocks to the natural rate,

which keeps inflation at reasonable levels after the inflation target shock.

From the identified shocks, in Aug 2011 the inflation target shock was indeed back to
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2 percent (2.15%), but accompanied by a large negative permanent shock to the natural

rate by 80 bp to values 1 percent (0.85%), which let inflation approach values around the

target rate, though nominal interest rate remain immobile and near-zero values. Again,

this exactly replicates the key macroeconomic aggregates and the yield curves.

2.4.4. Term structure anomalies

The discussion on preference shocks vs. target shocks has shown that it is important to

consider both, the short and the longer-end of the yield curve in order to interpret the data

through theoretical arguments. We now present some anecdotal evidence that shocks may

indeed arise simultaneously. If a monetary policy shock is accompanied by a preference

shock, some of the ‘anomalies’ observed in the data arise in the standard NK model.

Let us consider the period between 2004 and 2005, when a rotation in the yield curves

gave rise to what Alan Greenspan’s called a ‘conundrum’ (cf. Backus and Wright, 2007).

In Jun 2004, the Fed Funds rate was at 1 percent (1.03%), the 10Y Govt at 4.5 percent

(4.73%), while in Feb 2005, the Fed Funds rate was at 2.5 percent (2.50%), the 10Y Govt

at 4 percent (4.17%). Over the same period, Core CPI inflation increased from slightly

below its announced target rate of 2 percent (1.87%) to about 2.5 percent (2.31%).

The ‘conundrum’ is that the federal funds rate increased by 150 bp, but the ten-year

yield decreased by about 50 bp. Can we reconcile the rotation of the yields, to which

we refer as term structure ‘anomalies’, with the standard NK model? Given the previous

discussion, we may conjecture that a positive monetary policy shock was accompanied by

a negative shock to the natural rate, keeping the inflation target about the same level, such

that the standard negative relationship between interest rates and inflation is as expected

(with a tendency to revert back to the target rate). We simulate a positive monetary

policy shock of 150 bp which is accompanied by a negative preference shock of about 10

percent. Both shocks generate the rotation in the yields as observed in the data. While a

rotation in the nominal yield curve could also be obtained by a contemporaneous negative

target shock, two reasons speak against this hypothesis for the period 2004-2005: First, if

anything, we would expect that a rise in nominal interest rates may trigger a rise in the

target rate. Second, the predicted real yield curve would not show a rotation as observed

in the data. Hence, a rotation in both yield curves suggests that the monetary policy

shock was accompanied by a shock to the natural rate.

From the identified shocks, the positive monetary policy shock was accompanied in

fact by an increase of the natural rate by about 250 bp, which mainly is attributed to

a reversion of the temporary component from values around −15 percent (−14.36%) to

values around −5 percent (−5.51%). This replicates the observed rotation in the yields.
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2.5. Discussion and open questions

So the bottom line is a partial remedy of the NK model to interpret the data. We show

how target shocks (loosely interpreted as unconventional policy), and shocks to the natural

rate in addition to the traditional policy instrument improves the ability of the model to

explain the facts. Hence, the simple NK model helps us to organize our thoughts, so

abandon the model might be too shortsighted: Allowing the shocks to have transitory

and permanent components, we may explain the ∨ pattern of the Fed Funds rate and

Core CPI inflation (and the Output gap) in the data. These predictions are also in line

with the predictions for the yield curve. It also helps to explain the ZIRP period and the

inflation rebound in 2011, while interest rates being immobile and near-zero.

One open question remains because the NK model fails to replicate the ZIRP period

with a single shock, it seems that the shock dynamics are not consistent with the under-

lying shock process. According to the identified shocks we would need a large shock to

the natural rate and that this shock keeps the natural rate negative for a while, before

eventually reverting back to its steady state. The simple NK model (with φ > 1) is unable

to account for potential nonlinearities, so the paper does not stop here.

Perhaps we need to distinguish between normal times and non-normal times, where

the dynamics are different from those at the intended equilibrium point? This is what we

learn from Brunnermeier and Sannikov (2014): In normal times, the equilibrium system is

near the steady state, where the system is resilient to most shocks near the steady state.

Unusually large shocks, however, may induce completely different dynamics of macro

aggregates. Once in a crisis state (non-normal times), also smaller shocks are subject

to amplification. A nonlinear framework may be an alternative interpretation in which

a single preference shock accounts for the ZIRP period. In what follows, we set up a

parsimonious model, where the dynamics of large negative shocks are different from those

around the steady state, at which the model is observational equivalent to (9).

In what follows we formulate and solve the nonlinear version of the NK model. We

show that an alternative shock process, which is observational equivalent in normal times

(with small shocks), has quiet different dynamics in non-normal times (large shocks). We

also allow for stochastic shocks and show how uncertainty shocks will affect the natural

rate and the long-end of the yield curve even if the inflation target rate is constant.

3. Nonlinear New Keynesian Model with Shocks

We describe now the environment for our investigation. It is the continuous-time version

of the standard NK model (cf. Woodford, 2003). We summarize the equilibrium dynamics,

show how to compute impulse responses, compute the effects of uncertainty, and how to

solve the model in the policy function space. Throughout the paper, we keep the nonlinear
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structure of the model, which turns out to be quite relevant for non-normal times when

considering large shocks and/or large deviations from the point of approximation.

3.1. The model

The basic structure of the model is as follows. A representative household consumes, saves,

and supplies labor. The final output is assembled by a final good producer, who uses as

inputs a continuum of intermediate goods manufactured by monopolistic competitors. The

intermediate good producers rent labor to manufacture their good, and face the constraint

that they can only adjust the price following Calvo’s pricing rule (Calvo, 1983). Finally,

there is a monetary authority that fixes the short-term nominal interest rate through open

market operations with public debt, and a fiscal authority that taxes and consumes. We

introduce four stochastic shocks, one to preferences (which can be loosely interpreted as a

shock to aggregate demand, temporarily affecting the real interest rate), one to technology

(interpreted as a shock to aggregate supply), one to monetary policy, and one to fiscal

policy. For simplicity, we do not explicitly model a shock to the inflation target, which is

considered a policy instrument under the discretion of the central bank.

3.1.1. Households

There is a representative household in the economy that maximizes the following lifetime

utility function, which is separable in consumption, ct and hours worked, lt:

E0

∫ ∞

0

e−ρtdt

{

log ct − ψ
l1+ϑ
t

1 + ϑ

}

dt, ψ > 0, (10)

where ρ is the subjective rate of time preference, ϑ is the inverse of Frisch labor supply

elasticity, and dt is a preference shock, with log dt following an Ornstein-Uhlenbeck (OU)

process (the continuous-time analog of a first-order autoregression):

d log dt = −ρd log dtdt+ σddBd,t. (11)

The process Bd,t is a standard Brownian motion, such that by Itô’s lemma:

ddt = −
(

ρd log dt −
1
2
σ2
d

)

dtdt+ σddtdBd,t.

Below, for this shock and the other exogenous stochastic processes, we will use both the

formulation in level and in logs depending on the context and ease of notation.

Let at denote real financial wealth, the household’s real wealth evolves according to:

dat = ((it − πt)at − ct + wtlt + Tt +̥t) dt, (12)
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in which it is the nominal interest rate on government bonds, πt the rate of inflation of

the price level pt (or price of the consumption good), wt is the real wage, Tt is a lump-sum

transfer, and ̥t are the profits of the firms in the economy.

3.1.2. The final good producer

There is one final good produced using intermediate goods with the following production

function:

yt =

(
∫ 1

0

y
ε−1

ε

it di

)

ε
ε−1

, (13)

where ε is the elasticity of substitution.

Final good producers are perfectly competitive and maximize profits subject to the

production function (13), taking as given all intermediate goods prices pit and the final

good price pt. Hence, the input demand functions associated with this problem are:

yit =

(

pit
pt

)−ε

yt ∀i,

and

pt =

(
∫ 1

0

p1−ε
it di

)

1

1−ε

(14)

is the (aggregate) price level.

3.1.3. Intermediate good producers

Each intermediate firm produces differentiated goods out of labor using:

yit = Atlit,

where lit is the amount of the labor input rented by the firm and where At follows:

d logAt = −ρA logAtdt+ σAdBA,t. (15)

Therefore, the marginal cost of the intermediate good producer is the same across firms:

mct = wt/At. (16)

The monopolistic firms engage in infrequent price setting à la Calvo. We assume that

intermediate good producers reoptimize their prices pit only when a price-change signal

is received. The probability (density) of receiving such a signal h periods from today is

assumed to be independent of the last time the firm got the signal, and to be given by:

δe−δh, δ > 0.
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Thus e−δ(τ−t) denotes the probability of not having received a signal during τ − t,

1−

∫ τ

t

δe−δ(h−t) dh = 1−
(

−e−δ(τ−t) + 1
)

= e−δ(τ−t). (17)

A fraction of firms will receive the price-change signal per unit of time. All other firms

cannot reoptimize their price, but (partially) index their price to π∗
t :

dp̃it = χπ∗
t p̃it dt

Indexation is controlled by the parameter χ ∈ [0, 1]. This implies that if a firm cannot

change its price at t for a period length of τ − t, its price at τ is piτ = pite
∫ τ
t
χπ∗

s ds. Note

that the higher the parameter δ, the lower price rigidities, in the frictionless case δ → ∞.

Hence, for δ <∞ prices are set to maximize the expected discounted profits:

max
pit

Et

∫ ∞

t

λτ
λt
e−(ρ+δ)(τ−t)

(

piτ
pτ
yiτ −mcτyiτ

)

dτ s.t. yiτ =

(

piτ
pτ

)−ε

yτ ,

or

max
pit

Et

∫ ∞

t

λτ
λt
e−(ρ+δ)(τ−t)

(

(

pit
pτ

)1−ε

e
∫ τ
t
(1−ε)χπ∗

s dsyτ −mcτ

(

pit
pτ

)−ε

e−
∫ τ
t
εχπ∗

s dsyτ

)

dτ

After dropping constants, we may write the first-order condition as:

Et

∫ ∞

t

λτe
−(ρ+δ)(τ−t)(1− ε)

(

pt
pτ

)1−ε

pite
∫ τ

t
(1−ε)χπ∗

s dsyτdτ

+Et

∫ ∞

t

λτe
−(ρ+δ)(τ−t)mcτε

(

pt
pτ

)−ε

e−
∫ τ

t
εχπ∗

s dsptyτdτ = 0

We may write the first-order condition as:

pitx1,t =
ε

ε− 1
ptx2,t ⇒ Π∗

t =
ε

ε− 1

x2,t
x1,t

in which Π∗
t ≡ pit/pt is the ratio between the optimal new price (common across all firms

that can reset their prices) and the price of the final good and where we define the auxiliary

variables (interpreted as expected discounted marginal revenue and marginal costs):

x1,t ≡ Et

∫ ∞

t

λτe
−(ρ+δ)(τ−t)

(

pt
pτ

)1−ε

e
∫ τ

t
(1−ε)χπ∗

s dsyτdτ , (18)

x2,t ≡ Et

∫ ∞

t

λτe
−(ρ+δ)(τ−t)mcτ

(

pt
pτ

)−ε

e−
∫ τ
t
εχπ∗

s dsyτdτ . (19)

Both variables are forward looking (or jump variables) and determined in equilibrium.
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Differentiating x1,t with respect to time gives:

dx1,t = ((ρ+ δ + (1− ε)(πt − χπ∗
t ))x1,t − λtyt) dt (20)

in which the rate of inflation πt = dpt/pt. Accordingly:

dx2,t = ((ρ+ δ − ε(πt − χπ∗
t ))x2,t − λtmctyt) dt (21)

Note that we assume that the dynamics of the inflation index does not contribute to the

dynamics of the auxiliary variables (taken as parametric to the firm).

Assuming that the price-change is stochastically independent across firms gives:

p1−ε
t =

∫ t

−∞

δe−δ(t−τ )
(

piτe
∫ t

τ
χπ∗

s ds
)1−ε

dτ ,

making the price level pt a predetermined variable at time t, its level being given by past

price quotations (Calvo’s insight). Differentiating with respect to time gives:

dp1−ε
t =

(

δp1−ε
it − (δ − (1− ε)χπ∗

t )p
1−ε
t

)

dt

and
1

dt
dp1−ε

t = (1− ε) p−ε
t

dpt
dt
.

Then

(1− ε) dpt =
(

δp1−ε
it pε−1

t − (δ − (1− ε)χπ∗
t )
)

pt

which implies

πt − χπ∗
t =

δ

1− ε

(

(Π∗
t )

1−ε − 1
)

(22)

Differentiating (22) with respect to time, we obtain the inflation dynamics as:

d(πt − χπ∗
t ) = −(δ + (1− ε)(πt − χπ∗

t )) (πt − χπ∗
t + (mct/x2,t − 1/x1,t)λtyt) dt, (23)

which is interpreted as the NK Phillips-curve.

3.1.4. The government problem

We assume that the government sets the nominal interest rate it through open market

operations according to two alternative setups, i.e., the feedback model:

it − i∗t = φπ(πt − π∗
t ) + φy(yt/yss − 1), φπ > 0, φy ≥ 0, (24a)
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or the partial adjustment model:

dit = θ(φπ(πt − π∗
t ) + φy(yt/yss − 1)− (it − i∗t ))dt+ σidBi,t, θ > 0, (24b)

which includes a response to inflation and output, and a desire to smooth interest rates.

Similar to equation (3b), the rule in (24b) specifies a time lag between the inflation rate

and the interest rate, and allows for an output response and monetary policy shocks.14

The coupon payments of the government treasury bills T b
t = −itat are financed through

lump-sum taxes. Suppose transfers finance a given stream of government consumption

expressed in terms of its constant share of output, sgsg,t, with a mean sg and a stochastic

component sg,t that follows another Ornstein-Uhlenbeck process15:

d log sg,t = −ρg log sg,tdt+ σgdBg,t, (25)

such that

gt − T b
t = sgsg,tyt − T b

t ≡ −Tt.

3.1.5. Aggregation

First, we derive an expression for aggregate demand:

yt = ct + gt. (26)

In other words, there is no possibility to transfer the output good intertemporally. With

this value, the demand for each intermediate good producer is

yit = (ct + gt)

(

pit
pt

)−ε

∀i. (27)

Using the production function we may write:

Atlit = (ct + gt)

(

pit
pt

)−ε

.

We integrate both sides:

At

∫ 1

0

litdi = (ct + gt)

∫ 1

0

(

pit
pt

)−ε

di

14Given our previous discussion, we will mainly focus on the partial adjustment model. Nevertheless,
for the ease of comparison with the literature, we highlight some of the results for the feedback model.

15While we could have sgsg,t > 1, our calibration of sg and σg is such that this event will happen with
a negligibly small probability. Alternatively we could specify a stochastic process with support (0,1).
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to get an expression:

ct + gt = yt =
At

vt
lt,

in which we define:

vt =

∫ 1

0

(

pit
pt

)−ε

di

as the aggregate loss of efficiency induced by price dispersion of the intermediate goods.

Similar to the price level, vt is a predetermined variable (Calvo’s insight):

vt =

∫ t

−∞

δe−δ(t−τ )

(

piτ
pt

)−ε

e−ε
∫ t
τ
χπ∗

s dsdτ . (28)

Differentiating this expression with respect to time gives:

dvt =
(

δ (Π∗
t )

−ε + (ε(πt − χπ∗
t )− δ) vt

)

dt. (29)

Finally, as shown in the appendix, in equilibrium aggregate profits can be written as

a function of other variates:

̥t = (1−mctvt)yt. (30)

3.2. The flexible-price case

An important benchmark solution to the NK model is the case where prices become more

flexible. In the frictionless limit, δ → ∞, the firms set prices to maximize profits:

max
pit

(

pit
pt
yit −mctyit

)

s.t. yit =

(

pit
pt

)−ε

yt,

After dropping constants, we may write the first-order condition as:

pit
pt

=
ε

ε− 1
mct

Hence, in the flexible-price case, all firms set prices pit = pt. Given the analytical value of

marginal costs, we compute optimal consumption and hours from (37):

ct = (1− sgsg,t)
ϑ

1+ϑAt((ε− 1)/(εψ))
1

1+ϑ (31)

such that lt = ((ε− 1)/((1− sgsg,t)εψ))
1

1+ϑ .

3.3. Equilibria with price stickiness

For the case of δ < ∞, we obtain the first-order conditions by defining the state space

Uz ⊆ Rn and the control region Ux ⊆ Rm, the reward function f : Uz × Ux → R, the

drift function g : Uz × Ux → Rn, and the diffusion function σ : Uz → Rn×n. Given our
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description of the problem, we define the household’s value function:

V (Z0;Y0) ≡ max
{Xt}∞t=0

E0

∫ ∞

0

e−ρtf(Zt,Xt) dt,

in which Zt ∈ Uz denotes the n-vector of states, Xt ∈ Ux denotes the m-vector of controls,

and Yt = Y(Zt) is a vector of variates to be determined in equilibrium as a function of

the state variables, but taken as parametric by the representative household,

s.t. dZt = g(Zt,Xt;Yt) dt + σ(Zt) dBt,

where Bt is a given vector of independent standard Brownian motions. The instantaneous

covariance matrix of Zt is σ(Zt)σ(Zt)
⊤, which may be less than full rank n.

In particular, the vector of state variables is Zt = (at, it, vt, dt, At, sg,t)
⊤ and equilibrium

variables Yt = (yt, mct, wt, πt, x1,t, x2,t,Π
∗
t , λt, Tt,̥t)

⊤ to be determined endogenously, and

Xt = (ct, lt)
⊤ is the vector of controls. In our case, the reward function reads:

f(Zt,Xt) = dt log ct − dtψ
l1+ϑ
t

1 + ϑ
.

From the discussion above, we define the drift function (with partial adjustment):

g(Zt,Xt;Yt) =























(it − πt)at − ct + wtlt + Tt +̥t

θφπ(πt − π∗
t ) + θφy(yt/yss − 1)− θ(it − i∗t )

δ (Π∗
t )

−ε + (ε(πt − χπ∗
t )− δ) vt

−(ρd log dt −
1
2
σ2
d)dt

−(ρA logAt −
1
2
σ2
A)At

−(ρg log sg,t −
1
2
σ2
g)sg,t























(12)

(24b)

(29)

(11)

(15)

(25)

,

and the diffusion function of the state transition equations:

σ(Zt) =























0 0 0 0 0 0

0 σi 0 0 0 0

0 0 0 0 0 0

0 0 0 σddt 0 0

0 0 0 0 σAAt 0

0 0 0 0 0 σgsg,t























(12)

(24b)

(29)

(11)

(15)

(25)

.

By choosing the control Xt ∈ R2
+ at time t, the HJB equation reads:

ρV (Zt;Yt) = max
{Xt}∞t=0

{

f(Zt,Xt) + g(Zt,Xt;Yt)
⊤VZ +

1
2
tr
(

σ(Zt)σ(Zt)
⊤VZZ

)}

, (32)
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where VZ is an n-vector, VZZ is a n × n matrix, and tr(·) denotes the trace of a matrix.

A neat result about the formulation of our problem in continuous time is that the HJB

equation (32) is, in effect, a deterministic functional equation. In the discrete-time version,

we need to numerically approximate expectations (or the n-dimensional integral).

The first-order conditions with respect to ct and lt for any interior solution are:

dt
ct

= Va, (33)

dtψl
ϑ
t = Vawt, (34)

or, eliminating the costate variable (for ψ 6= 0):

ψlϑt ct = wt,

which is the standard static optimality condition between labor and consumption.

Most notably, the first-order conditions (33) and (34) yield optimal controls :

Xt = X(Zt, VZ(Zt;Yt);Yt) ≡

[

c(Zt, VZ(Zt;Yt);Yt)

l(Zt, VZ(Zt;Yt);Yt)

]

=

[

(Va(Zt;Yt))
−1dt

(Va(Zt;Yt)wt/(dtψ))
1/ϑ

]

.

Thus, the first-order conditions (33) and (34) make the optimal controls functions of the

states, ct = c(Zt;Yt), lt = l(Zt;Yt). Hence, the concentrated HJB equation reads:

ρV (Zt;Yt) = f(Zt,X(Zt, VZ(Zt;Yt)) + g(Zt,X(Zt, VZ(Zt;Yt));Y)
⊤VZ

+1
2
tr
(

σ(Zt)σ(Zt)
⊤VZZ

)

. (35)

Note that Va(Zt;Yt) = λt in (33) and (34) is readily interpreted as the marginal value

of wealth or the current value of a unit of consumption in period t, and thus determines

the asset pricing kernel in this economy. In what follows, we provide the asset pricing

kernel or the stochastic discount factor (SDF) consistent with equilibrium dynamics of

macro aggregates, which can be used to price any asset in the economy.

Defining the recursive-competitive equilibrium (see Appendix C.3), it is instructive to

revisit the pure mechanics of the NK model. We start from market clearing:

ct = yt − gt = (1− sgsg,t)yt = (1− sgsg,t)Atlt/vt, (36)

such that the combined first-order condition reads:

wt = ψlϑt ct ⇔ vtwt = ψl1+ϑ
t (1− sgsg,t)At ⇔ l1+ϑ

t =
vtwt

(1− sgsg,t)Atψ
,
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and from (34):

ct = ((1− sgsg,t)/vt)
ϑ

1+ϑAt(mct/ψ)
1

1+ϑ , (37)

or

mct = ψl1+ϑ
t (1− sgsg,t)/vt.

For a given level of marginal cost (or wages), the solution is known analytically. In contrast

to the flexible-price benchmark, the firms now take into account current marginal cost

and expected future marginal cost. Hence, the equilibrium value for marginal costs in the

sticky-price solution is an unknown function of all states, mct = mc(Zt).

As we show in the appendix, the marginal value of wealth evolves according to:

dλt = (ρ− it + πt)λtdt

+σddtλddBd,t + σAAtλAdBA,t + σgsg,tλgdBg,t + σiλidBi,t, (38)

which determines the equilibrium SDF (see Hansen and Scheinkman, 2009):

ms/mt = e−ρ(s−t)Va(Zs;Ys)

Va(Zt;Yt)
, and mt ≡ e−ρtλt, (39)

or, equivalently, the present value shadow price. Under the risk-neutral measure Q we

may increase the drift of each price process by its covariance with the discount factor, and

write a risk-neutral discount factor (see Cochrane, 2005, p.52):

dλQt = (ρ− it + πt)λ
Q
t dt. (40)

After some algebra (see Appendix C.2), we arrive at the Euler equation, which shows the

equilibrium dynamics of consumption:

dct = −(ρ− it + πt − σ2
Ac̃

2
A − σ2

g c̃
2
g − σ2

i c̃
2
i + ρd log dt + (c̃d(1− c̃d)−

1
2
)σ2

d)ctdt

+σdc̃dctdBd,t + σAc̃ActdBA,t + σg c̃gctdBg,t + σic̃ictdBi,t, (41)

where c̃i ≡ ci/ct, c̃d ≡ cddt/ct, c̃g ≡ cgsg,t/ct, and c̃A ≡ cAAt/ct, reflecting the slope of the

consumption function with respect to the state variables that are driven by shocks.

3.3.1. Equilibrium dynamics

So we arrive at a system of 5 endogenous processes, i.e., for the auxiliary variables x1,t,

x2,t, price dispersion vt, the Taylor rule it, and the consumption Euler equation ct, and 3
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exogenous shock processes for sg,t, dt, At, which summarize equilibrium dynamics:

dct = −(ρ− it + πt − σ2
Ac̃

2
A − σ2

g c̃
2
g − σ2

i c̃
2
i + ρd log dt + (c̃d(1− c̃d)−

1
2
)σ2

d)ctdt

+σdc̃dctdBd,t + σAc̃ActdBA,t + σg c̃gctdBg,t + σic̃ictdBi,t

dx1,t = ((ρ+ δ + (1− ε)(πt − χπ∗
t ))x1,t − dt/(1− sgsg,t)) dt

dx2,t = ((ρ+ δ − ε(πt − χπ∗
t ))x2,t −mctdt/(1− sgsg,t)) dt

dit = θ(φπ(πt − π∗
t ) + φy(yt/yss − 1)− (it − i∗t ))dt+ σidBi,t

dvt = (δ(1 + (1− ε)(πt − χπ∗
t )/δ)

− ε
1−ε + (ε(πt − χπ∗

t )− δ) vt) dt

in which (1 + (1− ε)(πt − χπ∗
t )/δ)

1

1−ε = ε/(ε− 1)(x2,t/x1,t) determines inflation and

dt/ct = ((1− sgsg,t)/vt)
− ϑ

1+ϑ (mct/ψ)
− 1

1+ϑdt/At (42)

⇔ mct = ψ((dt/ct)(At/dt))
−(1+ϑ)(vt/(1− sgsg,t))

ϑ,

pins down marginal costs. Given a solution to the system of dynamic equations augmented

by the stochastic processes (11), (15), and (25), the general equilibrium policy functions

(as a function of relevant state variables) can be computed.

3.3.2. Numerical solution of the (conditional) deterministic system

In what follows we solve the NK model using the (conditional) deterministic system,

which demands that we need to account appropriately for risk. This is obtained if the

(nonlinear) solution to the HJB equation implies the same policy function of the boundary

value problem. The solution of the deterministic model is contained as a special case.

We start from the HJB equation (35) or the detailed version (C.9) (cf. Appendix C.1),

and find that for Vaa(Zt;Yt) 6= 0

c(Zt;Yt) = (it − πt)at + wtl(Zt;Yt) + Tt +̥t − (ρ− (it − πt))
Va(Zt;Yt)

Vaa(Zt;Yt)

+(θφπ(πt − π∗
t ) + θφy(yt/yss − 1)− θ(it − i∗t ))

Via(Zt;Yt)

Vaa(Zt;Yt)
+ 1

2
σ2
i

Viia(Zt;Yt)

Vaa(Zt;Yt)

+
(

δ(1 + (1− ε)(πt − χπ∗
t )/δ)

− ε
1−ε + (ε(πt − χπ∗

t )− δ)vt

) Vva(Zt;Yt)

Vaa(Zt;Yt)

−(ρd log dt −
1
2
σ2
d)dt

Vda(Zt;Yt)

Vaa(Zt;Yt)
+ 1

2
σ2
dd

2
t

Vdda(Zt;Yt)

Vaa(Zt;Yt)

−(ρA logAt −
1
2
σ2
A)At

VAa(Zt;Yt)

Vaa(Zt;Yt)
+ 1

2
σ2
AA

2
t

VAAa(Zt;Yt)

Vaa(Zt;Yt)

−(ρg log sg,t −
1
2
σ2
g)sg,t

Vga(Zt;Yt)

Vaa(Zt;Yt)
+ 1

2
σ2
gs

2
g,t

Vgga(Zt;Yt)

Vaa(Zt;Yt)
, (43)

which we will use to define the Euler equation errors below.

In what follows, we compute the solution to the HJB equation from a deterministic
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system of differential equations (a boundary value problem), which works in continuous

time since the HJB equation itself becomes a deterministic equation (cf. Chang, 2004).16

Nevertheless, we have to account appropriately for risk. So the idea is to transform the

system of SDEs into a system of PDEs, which also solves the HJB equation. Assume the

existence of a consumption function ct = c(Zt), and use Itô’s formula to arrive at:

dct = ca dat + ci dit +
1
2
ciiσ

2
i dt+ cv dvt

+cd ddt +
1
2
cdd(σddt)

2dt+ cA dAt +
1
2
cAA(σAAt)

2dt + cg dsg,t +
1
2
cgg(σgsg,t)

2dt.

This leads us to the following proposition.

Proposition 1. By subtracting the Itô second-order terms from the Euler equation (41),

dct −
1
2
ciiσ

2
i dt−

1
2
cdd(σddt)

2dt− 1
2
cAA(σAAt)

2dt− 1
2
cgg(σgsg,t)

2dt =

ca dat + ci dit + cv dvt + cA dAt + cd ddt + cg dsg,t,

and inserting dct from (41) we may eliminate time (and stochastic shocks) and together

with ct = dtV
−1
a yields (43) from the HJB equation.

Proof. Appendix C.4

A system of PDEs which implies the same policy function is constructed using (41)

and Proposition 1 by subtracting Itô terms from the Euler equation (accounting for risk)

and setting dBd,t = dBA,t = dBg,t = dBi,t = 0 (in the absence of shocks),

dct = −(ρ− (it − πt))ctdt+ c̃2dσ
2
dctdt+ c̃2Aσ

2
Actdt+ c̃2gσ

2
gctdt + c̃2iσ

2
i ctdt

−1
2
c̃ddσ

2
dctdt−

1
2
c̃AAσ

2
Actdt−

1
2
c̃ggσ

2
gctdt−

1
2
c̃iiσ

2
i ct dt

−ctρd log dtdt+
1
2
σ2
dctdt− c̃dσ

2
dctdt

where we define c̃ii ≡ cii/ct, c̃dd ≡ cddd
2
t/ct, c̃gg ≡ cggs

2
g,t/ct, and c̃AA ≡ cAAA

2
t/ct reflecting

curvature of the consumption function with respect to the state variables that are driven

by shocks, such that dct = ca dat + ci dit + cv dvt + cA dAt + cd ddt + cg dsg,t solves (43).

16In contrast, the discrete-time HJB equation requires the analyst needs to evaluate the state space not
only at the current information set, but also at future expected values, so the continuous-time approach
does not require to numerically compute expectations (a burdensome step in discrete-time models).
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So we refer to the following system of PDEs as the conditional deterministic system:

dct = −(ρ− (it − πt))ctdt+ c̃2dσ
2
dctdt+ c̃2Aσ

2
Actdt+ c̃2gσ

2
gctdt + c̃2iσ

2
i ctdt

−1
2
c̃ddσ

2
dctdt−

1
2
c̃AAσ

2
Actdt−

1
2
c̃ggσ

2
gctdt−

1
2
c̃iiσ

2
i ct dt

−(ρd log dt −
1
2
σ2
d)ctdt− c̃dσ

2
dctdt (44)

dit = θ(φπ(πt − π∗
t ) + φy(yt/yss − 1)− (it − i∗t )) dt

dvt = (δ (1 + (1− ε)(πt − χπ∗
t )/δ)

− ε
1−ε + (ε(πt − χπ∗

t )− δ)vt) dt

ddt = −
(

ρd log dt −
1
2
σ2
d

)

dtdt

dAt = −
(

ρA logAt −
1
2
σ2
A

)

Atdt

dsg,t = −
(

ρg log sg,t −
1
2
σ2
g

)

sg,tdt

dx1,t = ((ρ+ δ − (ε− 1)(πt − χπ∗
t ))x1,t − dt/(1− sgsg,t)) dt

dx2,t = ((ρ+ δ − ε(πt − χπ∗
t ))x2,t −mctdt/(1− sgsg,t)) dt

So the Euler equation (44) of the conditional deterministic system is used to obtain the

conditional deterministic (or stochastic) steady state.17 Recall that the inflation rate πt is

endogenously determined from (22), and the jump variables x1,t and x2,t. We restrict our

attention to the solution which leads the economy towards the (stochastic) steady state,

in which πt → π∗
t . By solving for the time paths, the solution satisfies both the initial

and the transversality condition (TVC) and characterizes the stable manifold. We iterate

computing controls and updating the derivatives until convergence (cf. Table 1).18

Intuitively, the conditional deterministic system summarizes the dynamics under the

presence of uncertainty, that agents internalize into their consumption-saving decision,

conditional on no further shocks (conditional on the current information set). So agents

would not change their (optimal) decision as long as they remain on the stable manifold

summarized by the dynamic system, which is idle at the (stochastic) steady state value.

Hence, the impulse response functions based on the conditional deterministic system sum-

marize the paths of the stable manifold as implied by the HJB equation.

It is important to note that as long as ‖(σd, σA, σg, σi)‖ 6= 0, the term dct of the

conditional deterministic system (44) does not coincide with the term dct of the Euler

equation (41), which is an abuse of notation only needed for the numerical solution. Once

we derived the policy functions, the original Euler equation is used to simulate the model

and/or to make statistical inference, by allowing for the arrival of stochastic shocks.

We solve the system of PDEs by the Waveform Relaxation algorithm. In this way, we

can separate the solution in the time dimension from the solution in the policy space, which

17Though there will be a steady-state distribution, we follow the convention in the literature and define
the fix point of this system as the ‘stochastic steady state’, and thus use both terms interchangeably.

18It is important to note that a recursion as set out in Table 1 is only required if we are interested in
the solution of the stochastic model where ‖(σd, σA, σg, σi)‖ 6= 0.
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turns out to be computationally more robust and less expensive.19 Following the idea in

Posch and Trimborn (2013) we obtain the unknown derivatives starting from the solution

of the deterministic system, then iteratively define c̃i(Zt;Yt) ≡ ci/ct, c̃ii(Zt;Yt) ≡ cii/ct,

c̃d(Zt;Yt) ≡ cddt/ct, c̃dd(Zt;Yt) ≡ cddd
2
t/ct, c̃g(Zt;Yt) ≡ cgsg,t/ct, c̃gg(Zt;Yt) ≡ cggs

2
g,t/ct,

c̃A(Zt;Yt) ≡ cAAt/ct, and c̃AA(Zt;Yt) ≡ cAAA
2
t/ct, and solve the system of ODEs. The

initial value for the control and/or jump variables is used to approximate the solution in

the policy function space (using tensor products of univariate grids as initial values), then

update the solution, and iterate until convergence.

In the boundary value problem (BVP) we seek a function x : [0, T ] 7→ Rk that satisfies

the (conditional) deterministic system consisting of the Euler equation (44) determining

ct, and the law of motion for x1,t, x2,t, it, vt, dt, At, and sg,t (which gives k = 8), together

with the given initial conditions for the states (i0, v0, d0, A0, sg,0) and the TVC assuming

that variables approach their (stochastic) steady state values. One complication is that

the time horizon is infinite, so we use the following transformation of time:

t =
τ

ν(1− τ )
for τ ∈ [0, 1),

where ν is a positive (nuisance) parameter, such that for t → ∞ we have that τ → 1.

Alternatively, we may set T sufficiently large but finite number.20

3.3.3. Numerical solution in the policy function space

In what follows, we show how we may alternatively solve the HJB equation (35) directly

by collocation based on the Matlab CompEcon toolbox (Miranda and Fackler 2002).

Since the functional form of the solution is unknown, an alternative strategy for solving

the HJB equation is to approximate V (Zt;Yt) ≈ φ(Zt;Yt)v, in which v is an n-vector of

coefficients and φ is the n × n basis matrix. The computational burden can be reduced

when replacing the tensor product by sparse grids (Winschel and Krätzig, 2010). Starting

from the HJB equation (35), we may approximation of the value function and/or control

variables for given set of collocation nodes and basis functions φ(Zt;Yt):

ρφ(Zt;Yt)v = f(Zt,Xt) + g(Zt,Xt)
⊤φZ(Zt;Yt)v +

1
2
tr
(

σ(Zt)σ(Zt)
⊤φZZ(Zt;Yt)v

)

,

or

v =
(

ρφ(Zt;Yt)− g(Zt,Xt)
⊤φZ −

1
2
tr
(

σ(Zt)σ(Zt)
⊤φZZ

))−1
f(Zt,Xt),

which yields the coefficients based on a Newton method. This approach, however, requires

19It is possible to parallelize the computation by allocating the grid of state variables to workers.
20Trimborn, Koch, and Steger (2008) introduced the relaxation algorithm to applications in economics.

In contrast to their approach, we use projection methods to solve the boundary value problem, which
turns out to be relatively efficient and (even for a few approximation points) highly accurate.
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a good initial guess, but is extremely useful to verify whether the implied solution obtained

from the conditional deterministic system indeed solves the HJB equation.

3.3.4. Impulse responses

To compute the impulse response functions (IRFs), we initialize the state variables, given

the solution V (Zt;Y(Zt)) ≈ φ(Zt;Y(Zt)v, or the consumption function (43), and solve the

resulting system of ODEs following Posch and Trimborn (2013). Because we use a global

(and nonlinear) solution technique, in principle, we may initialize the system at any state

vector. Hence, we do not need to restrict our analysis to situations, where the economy

is assumed to be in the close neighborhood of the steady state (or normal times). This

is particularly important since we want to study the equilibrium dynamics in a situation

where the nominal interest rate is close to zero and/or the economy is hit by large shocks

(non-normal times). In fact, the computed IRF is the equilibrium time path of economic

variables, which reflect a single transitional path to the (stochastic) steady state.

3.4. Effects of uncertainty and the natural rate of interest

Our results confirm that the effects of uncertainty in the standard NK model are small,

and primarily a level shift (cf. Appendix D.2, Figures D.8 to D.12). Both fixed points of

deterministic steady state and stochastic steady state are very close.

After having obtained the consumption function (either of the two approaches above)

and its derivatives in the nonlinear model, we can proceed with Itô’s formula and obtain

the Euler equation as:

dct = θ(φπ(πt − π∗
t ) + φy(yt/yss − 1)− (it − i∗t ))c̃ictdt+ σic̃ictdBi,t

+(δ(1 + (1− ε)(πt − χπ∗
t )/δ)

− ε
1−ε + (ε(πt − χπ∗

t )− δ) vt)cv dt

−
(

ρd log dt −
1
2
σ2
d

)

c̃dctdt+ σdc̃dctdBd,t

−
(

ρA logAt −
1
2
σ2
A

)

c̃Actdt+ σAc̃ActdBA,t

−
(

ρg log sg,t −
1
2
σ2
g

)

c̃gctdt + σg c̃gctdBg,t

+1
2
c̃iiσ

2
i ct dt+

1
2
c̃ddσ

2
dctdt +

1
2
c̃AAσ

2
Actdt+

1
2
c̃ggσ

2
gctdt (45)

where we used that in general equilibrium dat = 0. Using equation (45) together with
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the Euler equation (41), we are ready to pin down the equilibrium inflation rate as:

πt = it − ρ+ σ2
Ac̃

2
A + σ2

g c̃
2
g + σ2

i c̃
2
i + c̃2dσ

2
d − c̃dσ

2
d − (ρd log dt −

1
2
σ2
d)

−θ(φπ(πt − π∗
t ) + φy(yt/yss − 1)− (it − i∗t ))c̃i

−(δ(1 + (1− ε)(πt − χπ∗
t )/δ)

− ε
1−ε + (ε(πt − χπ∗

t )− δ) vt)cv/ct

+
(

ρd log dt −
1
2
σ2
d

)

c̃d +
(

ρA logAt −
1
2
σ2
A

)

c̃A +
(

ρg log sg,t −
1
2
σ2
g

)

c̃g

−1
2
c̃iiσ

2
i −

1
2
c̃ddσ

2
d −

1
2
c̃AAσ

2
A − 1

2
c̃ggσ

2
g, (46)

to study the effects of uncertainty on the consumption-saving decision and interest rates,

compute impulse response functions, and the implied term structure of interest rates.

In general equilibrium, the risk-free rate is defined as (cf. Posch, 2011):

ρ−
1

dt
E

[

du′(ct)

u′(ct)

]

= it − πt ≡ rft .

Observe that the implicit risk premium in the economy is zero, the (instantaneous) return

to the government bond is riskless. Even though the zero-coupon bond is default-free, in

the general case it is still risky in the sense that its price can covary with the households

marginal utility of consumption (cf. Rudebusch and Swanson, 2008, p.115).

In the short-run, only the nominal interest rate is under the control of the monetary

authority. Our numerical results show how the equilibrium real interest rate rft is affected

by the different state variables (cf. Appendix D.2), which together with (46) reads:

rft = ρ−
(

σ2
Ac̃

2
A + σ2

g c̃
2
g + σ2

i c̃
2
i + c̃2dσ

2
d − c̃dσ

2
d − (ρd log dt −

1
2
σ2
d)
)

+θ(φπ(πt − π∗
t ) + φy(yt/yss − 1)− (it − i∗t ))c̃i

+(δ(1 + (1− ε)(πt − χπ∗
t )/δ)

− ε
1−ε + (ε(πt − χπ∗

t )− δ) vt)cv/ct

−
(

ρd log dt −
1
2
σ2
d

)

c̃d −
(

ρA logAt −
1
2
σ2
A

)

c̃A −
(

ρg log sg,t −
1
2
σ2
g

)

c̃g

+1
2
c̃iiσ

2
i +

1
2
c̃ddσ

2
d +

1
2
c̃AAσ

2
A + 1

2
c̃ggσ

2
g. (47)

Following Barsky, Justiniano, and Melosi (2014), we define the natural rate as the real

interest rate prevailing in an economy with flexible prices, or the second-best equilibrium

(cf. Blanchard and Gaĺı, 2007), which is:

rt = ρ− (σ2
A + c̃2gσ

2
g) +

1
2
c̃ggσ

2
g

+ρd log dt −
1
2
σ2
d −

(

ρA logAt −
1
2
σ2
A

)

−
(

ρg log sg,t −
1
2
σ2
g

)

c̃g (48)

where from (31) we obtain c̃g = − ϑ
1+ϑ

sg
1−sgsg,t

sg,t, and c̃gg = − ϑ
(1+ϑ)2

s2g
(1−sgsg,t)2

s2g,t.Defining

the (Wicksellian) natural rate as the (stochastic) steady-state interest rate once transitory

shocks have abated, r∗t = ρ − (σ2
A + c̃2gσ

2
g) +

1
2
c̃ggσ

2
g, we shed light on potential sources
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of shocks to the natural rate (temporary or permanent). An increase in uncertainty of

either technology or fiscal policy shocks depresses the natural rate. These results are in

accordance and complementary to Barsky, Justiniano, and Melosi (2014), who find that

increases in patience, i.e., declines in ρ (often referred to as discount factor shocks), lower

the natural rate r∗t and are isomorphic to higher uncertainty about future productivity.

Indeed, the uncertainty shocks provide an attractive structural interpretation.

Our analysis clearly shows that the spread between the equilibrium risk-free rate and

the interest rate under certainty are affected by staggered price setting. For example,

while c̃A = 1 and c̃AA = 0 in the frictionless limit, the staggered price equilibrium has

c̃A ≈ 0.57 and c̃AA = 0.28 (at stochastic steady-state). So while uncertainty about future

technology depresses the natural rate relative to the interest rate under certainty by about

4 bp, uncertainty does increase the (long-run) real interest rate in the NK model by about

3 bp (for the parameterization see Table 2). Here, the negative effect on the equilibrium

risk-free rate in the flexible-price scenario compares to the effects on r in the endowment

economy (cf. Posch, 2011, Corollary 2.1).

The definition of the natural rate is consistent with the economy operating at its

full potential (natural output), i.e., the level of output that would have prevailed in an

economy without price rigidities:

ynt = (1− sgsg,t)
− 1

1+ϑAt((ε− 1)/(εψ))
1

1+ϑ . (49)

Based on the definition, the output gap is readily available from xt ≡ yt/y
n
t − 1.

3.5. Term structure of interest rates

Following Rudebusch and Swanson (2012), the term premium on long-term nominal bonds

compensates investors for inflation and consumption risk over the lifetime of the bond.

The term premium can be defined by comparing the equilibrium price under the physical

and the risk-neutral probability measure. Consider a (zero-coupon) bond with unity payoff

at maturity N . Using the expectation approach, the equilibrium price reads:

P
(N)
t = Et

(

mt+N/mte
−

∫ t+N
t

πsds
)

, (50)

which from (38) and (39) can be solved, by simulating for a given maturity N :

P
(N)
t = Et

(

e−
∫ t+N
t (rfs+πs+

1

2
σ2
d
(1−c̃d)

2+ 1

2
σ2
Ac̃2A+ 1

2
σ2
g c̃

2
g+

1

2
c̃2i σ

2
i )ds

× e
∫ t+N

t
σd(1−c̃d)dBd,s−σAc̃AdBA,s−σg c̃g/λsdBg,s−c̃iσidBi,s

)

forward a few thousand times, and take the average. Similarly, we obtain the hypothetical

bond price under the risk-neutral probability measure , i.e., using a risk-neutral discount
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factor (or equivalently the risk-free rate) rather than the household’s SDF:

P̃
(N)
t = E

Q
t

(

mt+N/mte
−

∫ t+N
t

πsds
)

(51)

= E
Q
t

(

e−
∫ t+N

t
is ds
)

= E
Q
t

(

e−
∫ t+N

t
(rfs+πs) ds

)

,

where EQ
t denotes the expectation under the risk-neutral probability measure and thus the

risk-neutral evaluation of the bond price (Rudebusch and Swanson, 2008, 2012). Then,

the yield is the (fictional) interest rate that justifies the quoted price, such that the log

price p
(N)
t ≡ logP

(N)
t satisfies y

(N)
t = −(1/N)p

(N)
t , and the yield curve is a plot of the

yields as a function of their maturity. Hence, the expectation approach is easily adapted

for the perfect-foresight solution (the term premium would be zero). The term premium

measures the ‘riskiness’ of long-term bonds, and reflects the compensation that investors

require for bearing the risk that rft does not evolve as expected.

The expectation approach is quite common in macroeconomic models of the term

structure (Gürkaynak, Sack, and Swanson, 2005; Rudebusch and Swanson, 2008, 2012;

Andreasen, Fernández-Villaverde, and Rubio-Ramı́rez, 2018). One drawback is that the

computation of the whole term structure is quite challenging. It requires the simulation

in the time dimension to study the resulting N -periods ahead distribution of P
(N)
t , for a

given particular state. Naturally, it puts a limit to study the long-end of the yield curve,

which therefore cannot easily be explored.

An alternative offers the PDE approach (Cochrane, 2005, chap. 19.4), in which the

basic pricing equation for the price P
(N)
t reads:

Et

(

( dP
(N)
t )/P

(N)
t

)

−
(

1/P
(N)
t (∂P

(N)
t /∂N) + it

)

dt = −Et

(

( dP
(N)
t /P

(N)
t ) ( dλt/λt)

)

,

or for the price under the risk-neutral probability measure Q

E
Q
t

(

( dP̃
(N)
t )/P̃

(N)
t

)

−
(

1/P̃
(N)
t (∂P̃

(N)
t /∂N) + it

)

dt = 0.

Observe that in equilibrium, the prices P
(N)
t and P̃

(N)
t are functions of the state variables,
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so we may write P
(N)
t = P (N)(Zt), and obtain the PDE:

θ(φπ(πt − π∗
t ) + φy(yt/yss − 1)− (it − i∗t ))(∂P
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t /∂dt)

+σ2
i c̃i(∂P
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t /∂it) + σ2

AAtc̃A(∂P
(N)
t /∂At) + σ2

gsg,tc̃g(∂P
(N)
t /∂sg,t). (52)

For the hypothetical price P̃
(N)
t , the covariance terms on the RHS are zero.

The solution to the pricing equation implies the complete term structure of interest

rate for any given state vector and maturity,

y
(N)
t ≡ y(N)(Zt) = − logP (N)(Zt)/N (53)

and the term premium is

TP
(N)
t ≡ y(N)(Zt)− ỹ(N)(Zt) (54)

Our basic strategy for solving the PDE to approximate the function P
(N)
t ≈ Φ(N,Zt)v

in which v is the vector of coefficients and Φ denotes the basis matrix can be easily

extended for the stochastic model, approximating the price function (alternatively we

may use finite differences as in Achdou, Han, Lasry, Lions, and Moll, 2017).

For illustration, Figure 10 the term structure of interest rates for the nominal bond and

the inflation-protected bond following a negative preference shock of about 10 percent.

The difference between the physical and the risk-neutral probability measure defines the

term premium, which is about 6 basis points (10 basis points with feedback rule).

3.6. ZIRP period revisited

Let us now consider the monetary policy shocks together with a preference shock. The

new insights we get are really due to the nonlinearities. We simulate the monetary policy

shock of 475 bp (and target shock of 200 bp) together with a ‘preference shock’ of about

10 percent, which is assumed to follow the logistic process (cf. Appendix A.2):

ddt = ρd(dt − d̄) (1− dt) /(1− d̄) dt, dt > d̄, (55)
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with d̄ = 0.9130 and ρd = 0.975. It implies that the initial value d0 = 0.9220 is 1 percent

above the lower bound.21 In other words, this shock is ‘large’ it will have completely

different dynamics than small shocks. This particular parameterization has been chosen

to show that the implied interest rate process (of the full nonlinear approach) now is

a prolonged period of an apparently binding ZLB (cf. Figures 8 and 9). Our thought

experiment implies a ZIRP period of 5 quarters, but is consistent with φ > 1.

Note that the linearized model around non-zero inflation targets shows quite similar

dynamics as the simple NK model, but strikingly fails to capture the nonlinear effects of

the logistic process. This result is quite intuitive because the dynamics of the linear model

(9) are the same as (55) only for small shocks.

Why researches did not go beyond the OU process (9) so far? A potential explanation is

that in ‘normal times’ with smaller shocks, the local dynamics of the linear approximation

could have been quite successful. In normal times, when the lower bound was out of reach,

the (unobserved) shocks might have been well described by the simple OU process. In fact,

the local dynamics of the logistic process are observationally equivalent to the dynamics of

the OU process (cf. Appendix A.2). But the implications for the model dynamics can be

different in non-normal times. Moreover, we show that such shocks must be large in order

to drag the interest rate close to (potentially below) zero values. The traditional local

approximation schemes would be inappropriate for large shocks. We confirm Brunnermeier

and Sannikov (2014) that nonlinearities can be important in times of crises.

So distinguishing between normal and non-normal times, in which the dynamics are

different from those at the steady state, is one alternative interpretation in which a single

shock to the natural rate generates the observed pattern in the interest rates. We conclude

that (55) is a parsimonious specification where the dynamics of large negative shocks (non-

normal times) are different from the dynamics of a small shock (normal times).

3.7. Discussion of the new insights

The full (nonlinear) approach and the local dynamics around positive trend inflation give

rise to at least three insights. First, uncertainty about shocks has an effect on the natural

rate and is one potential structural explanation for permanent shocks. The effects of risk

are negligible in the standard NK model (cf. Parra-Alvarez, Polattimur, and Posch, 2018).

Second, the PDE approach is a promising alternative to compute the term structure of

interest rates consistent with equilibrium dynamics of macro aggregates. We find that the

nominal and real yield curves provide useful information about future expectations and for

the identification of shocks, but term premia are also negligible.22 Third, apart from the

21Note that with the assumed logistic process for the preference shock the Euler equation (41) changes
for the nonlinear model (cf. Section C.2).

22Introducing recursive preferences produces a large and variable term premium without compromising
the model’s ability to fit key macroeconomic variables (cf. Rudebusch and Swanson, 2012).
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alternative specification for the preference shock dynamics, the parsimonious NK model

specification does not inherit important nonlinearities (compare Figures D.5 and D.6).

Although a preference shock of the same order of magnitude as during the ZIRP period is

assumed before, as long as the initial value is sufficiently above its ‘natural’ lower bound

d̄ = 0, the nonlinear dynamics would be irrelevant. Nevertheless, a nonlinear approach

consistently may generate a ZIRP period with a single shock as a policy choice.

4. Conclusion

In this paper we show the ability of the NKmodel to explain the recent episodes, restricting

ourselves to the regions of (local) determinacy. We find that temporary and permanent

shocks to the interest rate (and inflation) are required to replicate the dynamics of key

macroeconomic aggregates consistently with the term structure of interest rates. We

show that the NK model with active monetary policy supports both views, either higher

interest rates result into higher long-run inflation (neo-Fisherian view), or higher interest

can temporarily reduce inflation (traditional view). One potential interpretation of the

nature of shocks is that monetary policy actions (changes in short-term rates) may trigger

variations in long-term target rates, a view that is motivated by empirical data. Allowing

for temporary (and permanent) shocks to the natural rate allows us to understand several

puzzles in the literature, including apparent term structure anomalies. We also show that

in a nonlinear approach a single shock can generate a ZIRP period with stable and quiet

inflation, fully consistent with the model predictions. This paper is the first to provide a

full analytical investigation of the effects of uncertainty and sheds light on how it affects

the natural rate. Hence, our results confirm that uncertainty shocks are isomorphic to

discount factor shocks (Barsky, Justiniano, and Melosi, 2014), so they provide an attractive

structural interpretation of permanent shocks to the natural rate.

We believe that this paper is a starting point for several lines of research. First, our

benchmark specification is useful for the comparison with a medium-scale model, allowing

for other nominal and/or real frictions, habit formation, variable capacity utilization and

adjustment cost as in models used by central banks for policy analysis, and/or by including

a financial sector (e.g., Brunnermeier and Sannikov, 2014). Second, we should estimate

the structural parameters using empirical data. Though we think that our identification

scheme of shocks provides a good benchmark, eventually the data should also be used to

pin down the structural parameters. One key advantage of the continuous-time approach

is that the model solution is consistent with different frequencies of macro and financial

data (cf. Christensen, Posch, and van der Wel, 2016). Here, two promising alternatives are

either to apply the continuous-time econometric toolbox from the financial literature to

our macroeconomic (or macro-finance) models, or to combine the discrete-time estimation

approaches with an Euler discretization scheme of the equilibrium dynamics. Third, we
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may study the monetary policy transmission in a heterogeneous-agent economy, e.g., with

idiosyncratic income shocks (cf. Kaplan, Moll, and Violante, 2018).
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“The Pruned State-Space System for Non-Linear DSGE Models: Theory and Empirical

Applications,” Rev. Econ. Stud., 85(1), 1–49.

Backus, D. K., and J. H. Wright (2007): “Cracking the Conundrum,” Brookings

Papers on Economic Activity, 1, 293–329.

Barsky, R., A. Justiniano, and L. Melosi (2014): “The Natural Rate of Interest

and Its Usefulness for Monetary Policy,” Amer. Econ. Rev., 104(5), 37–43.

Bauer, M. D., and G. D. Rudebusch (2017): “Interest Rates Under Falling Stars,”

Working Paper 2017-12, Federal Reserve Bank of San Francisco.

Blanchard, O., and J. Gaĺı (2007): “Real Wage Rigidities and the New Keynesian

Model,” J. Money, Credit, Banking, 39(1), 35–65.

Brunnermeier, M. K., and Y. Sannikov (2014): “A Macroeconomic Model with a

Financial Sector,” Amer. Econ. Rev., 104(2), 379–421.

Calvo, G. A. (1983): “Staggered prices in a utility-maximizing framework,” J. Monet.

Econ., 12, 383–398.

Campbell, J. R., J. D. M. Fisher, A. Justiniano, and L. Melosi (2016): For-

ward Guidance and Macroeconomic Outcomes Since the Financial Crisis. University of

Chicago Press, NBER Macroeconomics Annual 2016, 31, 283-357.

Castelnuovo, E. (2012): “Testing the Structural Interpretation of the Price Puzzle

with a Cost-Channel Model,” Oxford Bull. Econ. Statist., 74(3), 425–452.

Castelnuovo, E., and P. Surico (2010): “Monetary Policy, Inflation Expectations

and the Price Puzzle,” Econ. Journal, 120(549), 1262–1283.

Chang, F.-R. (2004): Stochastic optimization in continuous time. Cambridge Univ.

Press.

36
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A. Appendix

A.1. New Keynesian analysis

This section sheds some light on the implications of the NK model for both the IS-curve

and the NK Phillips-curve. For illustration, we abstract from the effects of uncertainty

by setting variance terms to zero to compare the solution of the nonlinear model with the

solution of the linear approximation used in the literature (cf. Figures D.5 and D.6).

We start with the NK forward-looking Phillips-curve, which from (23), the first-order

condition λt = dt/ct, and the market-clearing condition ct = (1− sgsg,t)yt reads:

d(πt − χπ∗
t ) = −(δ − (ε− 1)(πt − χπ∗

t )) (πt − χπ∗
t + (mct/x2,t − 1/x1,t) dt/(1− sgsg,t)) dt,

which together with mct = ψl1+ϑ
t (1 − sgsg,t)/vt and lt = ytvt/At, among other variables,

shows the response of inflation to the output gap.23 Hence, the linearized Phillips-curve

around deterministic steady-state values reads (see Section C.5 for definitions)

d(πt − χπ∗
t ) = −a2(πt − χπ∗

t − (1− χ)πss)dt

−a2 (ρ+ δ − ε(1− χ)πss) (mct/mcss − 1)dt

−a2 (ρ+ δ + (1− ε)(1− χ)πss) (x1,t/x1,ss − 1)dt

+a2 (ρ+ δ − ε(1− χ)πss) (x2,t/x2,ss − 1)dt

+a2(1− χ)πss(dt/dss − 1)dt

+a2(1− χ)πss (sgsg,ss/(1− sgsg,ss)) (sg,t/sg,ss − 1)dt

in which a2 ≡ δ + (1− ε)(1− χ)πss and

πt − χπ∗
t − (1− χ)πss = a2(x2,t/x2,ss − x1,t/x1,ss)

It shows in the NK Phillips-curve how the change in inflation depends on marginal costs.

We may insert the linearized equation for marginal cost,

mct/mcss − 1 = (1 + ϑ)(yt/yss − 1)− (1 + ϑ)(At/Ass − 1)

+ϑ(vt/vss − 1)− sgsg,ss/(1− sgsg,ss)(sg,t/sg,ss − 1)

= (1 + ϑ)(ct/css − 1)− (1 + ϑ)(At/Ass − 1)

+ϑ(vt/vss − 1) + ϑ(sgsg,ss/(1− sgsg,ss))(sg,t/sg,ss − 1)

where

yt/yss = ct/css + (sgsg,ss/(1− sgsg,ss))(sg,t/sg,ss − 1)

23In order to analyze local dynamics, the traditional approach is to (log-)linearize the variables. We
define x̂t ≡ (xt−xss)/xss, where xss is the steady-state value for the variable xt, such that xt = (1+x̂t)xss
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to obtain the NK Phillips-curve with respect to output and/or consumption. Moreover,

d(vt/vss − 1) =
ε(1− χ)πss

δ + (1− ε)(1− χ)πss
(πt − χπ∗

t − (1− χ)πss)dt

+(ε(1− χ)πss − δ)(vt/vss − 1)dt

From (41), the linearized Euler equation reads:

d(ct/css − 1) = (it − i∗t − (πt − π∗
t )− ρd(dt/dss − 1))dt

= (it − ρ− πt − ρd(dt/dss − 1))dt

which is readily interpreted as the (micro-founded) NK IS-curve. For comparison with

the literature, in the case without technology and government expenditure shocks, this is

Werning’s (2012) continuous-time specification:

d(ct/css − 1) = (it − rt − πt)dt

and the natural rate reads rt ≡ ρ+ ρd(dt/dss − 1)).

To summarize, the equilibrium dynamics of the linearized system can be simplified in

the version with full price indexation (χ = 1) to:

d(ct/css − 1) = (it − ρ− πt − ρd(dt/dss − 1))dt

dπt = (ρ(πt − π∗
t )− δ (ρ+ δ) (mct/mcss − 1) + δ(dt/dss − 1))dt

dit = (θφπ(πt − π∗
t ) + θφy(yt/yss − 1)− θ(it − i∗t ))dt

d(vt/vss − 1) = −δ(vt/vss − 1)dt

After transitional dynamics and by assuming sg = 0, this system coincides with the

model in Werning (2012) and Cochrane (2017b) :

dxt = (it − rt − πt)dt

dπt = (ρ(πt − π∗
t )− δ (ρ+ δ) (1 + ϑ)xt) dt

dit = (θφπ(πt − π∗
t ) + θφyxt − θ(it − i∗t ))dt

where xt ≡ ct/css − 1 defines the output gap. Solving forward finally yields:

πt − π∗
t =

∫ ∞

t

e−ρ(s−t)δ(ρ+ δ)(1 + ϑ)xsds (A.1)
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A.1.1. Determinacy

While the simple NK model with a feedback rule introduces the interest rate as a control

variable, the partial adjustment model makes the interest rate a state variable, which is

given by past inflation. For the ease of presentation, we set rt = r∗t = ρ in this section.

This simple NK model with a feedback rule has no relevant state variables. The system

can be analyzed in terms of two equations (1) and (2) using (3a). A unique locally bounded

solution requires two positive eigenvalues of the Jacobian matrix:24

A1 =

[

0 φ− 1

−κ ρ

]

.

Hence, a necessary (and sufficient) condition for local determinacy is φ > 1. So the unique

locally bounded solution is xt = 0 and πt = π∗
t such that it = ρ + π∗

t . In other words, a

negative (short-run) response of inflation to raising interest rates is not possible as long

as the monetary authority implements the Taylor principle. Any monetary policy shock,

which affects the policy targets, would be permanent and operates instantaneously. The

response of inflation is unambiguously positive. In this perfect-foresight model, interest

rates can be expressed in terms of future output gaps. We would also need to include a

serially correlated shock in order to generate transitional dynamics in the model.

In the simple NK model with partial adjustment, the only relevant state variable is

the interest rate (historically given inflation rates). We thus obtain the equilibrium values

for the output gap and the inflation rate as policy functions xt = x(it) and πt = π(it).

The system can be analyzed in terms of three equations (1), (2) and (3b), where a unique

locally bounded solution requires two positive eigenvalues of the Jacobian matrix25

A2 =







0 −1 1

−κ ρ 0

0 φθ −θ






.

Again, a necessary (and sufficient) condition for local determinacy is φ > 1. One caveat

is that the model is linearized around zero inflation targets (or full indexation). It can be

shown that the condition φ > 1 remains necessary (for details see web appendix).

24The Jacobian matrix has tr(A1) = λ1+λ2 = ρ > 0 and det(A1) = (φ− 1)κ is positive for φ > 1, thus
both eigenvalues have positive real parts, λ1λ2 = det(A1), such that λ1,2 = 1

2
(ρ±

√

ρ2 − 4((φ− 1)κ)).
25Note that det(A2) = −κθ(φ− 1) which is negative for φ > 1. Further, we know that λ1 + λ2 + λ3 =

tr(A2) = ρ− θ and λ1λ2λ3 = det(A2) = −κθ(φ− 1). Because a unique locally bounded solution requires
two positive eigenvalues, φ > 1 is necessary (and sufficient) to obtain determinacy in this model.
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A.2. Alternative shock dynamics

Consider an alternative specification of a logistic growth process:

ddt = ρddt (1− dt) dt (A.2)

which is the logistic growth model with carrying capacity 1. The natural (lower) bound is

zero and the turning point is 0.5. If the variable is near its carrying capacity, the dynamics

are just like those of the process in (11), whereas if the variable is near its lower bound,

the dynamics are similar to exponential growth. An extended version, such that it fits our

needs to have a prolonged period of persistence of a shock at the beginning and later to

revert back to the steady state level geometrically at rate ρd such that the higher ρd the

lower persistence, the smaller ρd the more pronounced shocks are smeared out in time.

Now consider

ddt = ρd(dt − d̄) (1− dt) /(1− d̄) dt (A.3)

of which the solution is

dt =
dss − d̄

1 + Ce−ρdt
+ d̄

The (unique) steady state value is the solution of

0 = ρd
(

dt − d̄
) (

1−
(

dt − d̄
)

/(dss − d̄)
)

dt

where we require that dt > d̄ for all time. Linearizing about dss yields

ddt/dss = −ρd(dt/dss − 1) dt

or

dd̂t = −ρdd̂t dt

It reflects that the logistic growth model for dt − d̄ such that dt approaches dss. The

variable dt − d̄ is defined on 0 and ∞ with carrying capacity dss − d̄ and turning point at

(dss−d̄)/2, such that the original variable dt is defined between d̄ and∞ with turning point

at 1−(dss−d̄)/2. For d̄ = 0 we assume logistic growth for dt, whereas d̄ → dss squeezes the

admissible region lower than the steady state level towards zero, such that d̄ denotes the

lower bound for dt. Any (negative) shock larger than 1 − (dss − d̄)/2 induces completely

different dynamics, staying there for some time before returning to the steady state level

(cf. Figure D.42). This effect only shows up in the nonlinear version of the model. While

the logistic model looks very much like an exponential model in the beginning, around the

steady state value, the linearized dynamics are the same as for the Ornstein-Uhlenbeck

process. Hence, the linear model (9) would not capture those dynamics.
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B. Tables and Figures

B.1. Tables

Table 1: Summary of the solution algorithm

Step 1 (Initialization) Provide an initial guess for the unknown derivatives for a
given set of collocation nodes and basis functions.

Step 2 (Solution) Compute the optimal value of the controls for the set of nodal
values for the state variables.

Step 3 (Update) Update the consumption function derivatives.
Step 4 (Iteration) Repeat Steps 2 and 3 until convergence.

Table 2: Parameterization

ϑ 1 Frisch labor supply elasticity
ρ 0.03 subjective rate of time preference, ρ = −4 log 0.9925
ψ 1 preference for leisure
δ 0.65 Calvo parameter for probability of firms receiving signal, δ = −4 log 0.85
ε 25 elasticity of substitution intermediate goods
sg 0 share of government consumption
ρd 0.4214 autoregressive component preference shock, ρd = −4 log 0.9
ρA 0.4214 autoregressive component technology shock, ρA = −4 log 0.9
ρg 0.4214 autoregressive component government shock, ρg = −4 log 0.9

σd 0.02 variance preference shock
σA 0.02 variance technology shock
σg 0 variance government shock
σi 0.02 variance monetary policy shock
φπ 4 inflation response Taylor rule
φy 0 output response Taylor rule

θ 0.5 interest rate response Taylor rule
πss 0.02 inflation target rate
χ 1 indexation at steady-state inflation rate, χ = 1 is full indexation
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B.2. Figures

Figure 1: US federal funds rate, 10-year treasury rate and inflation rate
In this figure we show time series plots of the US Effective Federal Funds Rate (Fed Funds), the 10-Year
Treasury Constant Maturity Rate (10Y Govt), the Consumer Price Index (Core CPI), seasonally adjusted,
the 10-Year Treasury Inflation Protected Securities Rate (10Y TIPS), at the monthly frequency, and the
Output gap (HP Filter) at the quarterly frequency. All series are obtained from the Federal Reserve Bank
of St. Louis Economic Dataset (FRED). The sample runs from January, 1990, through June, 2017.
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Figure 2: Implied natural rate
In this figure we show time series plots of the model-implied ‘natural rate’ using the simple NK model,
allowing for temporary shocks to the natural rate, when matching the observed US Effective Federal
Funds Rate (Fed Funds) and the Consumer Price Index (Core CPI), seasonally adjusted, at the monthly
frequency, and both series together with the Output gap (HP Filter) at the quarterly frequency. The
sample runs from January, 1990, through June, 2017.

Jan 1990 Jan 1995 Jan 2000 Jan 2005 Jan 2010 Jan 2015
−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

 

 

Implied Natural Rate r (Core CPI)

Implied Natural Rate r (Core CPI, Output)

Inflation Target Shock π*

Permanent Natural Rate Shock r*

47



Figure 3: Implied inflation rates and 10-year treasury rates
In this figure we show time series plots of the model-implied inflation and the 10-year treasury rates using
the simple NK model, allowing for temporary shocks to the natural rate, when matching the observed US
Effective Federal Funds Rate (Fed Funds) and the Consumer Price Index (Core CPI), seasonally adjusted,
at the monthly frequency. The sample runs from January, 1990, through June, 2017.
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Figure 4: Implied inflation rates, 10-year treasury rates and output gap
In this figure we show time series plots of the model-implied inflation, 10-year treasury rates, and the
output gap using the simple NK model, allowing for temporary shocks to the natural rate, when matching
the observed US Effective Federal Funds Rate (Fed Funds) and the Consumer Price Index (Core CPI),
seasonally adjusted, and the Output gap (HP Filter) at the quarterly frequency (1990Q1-2017Q2).
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Figure 5: Implied natural rate
In this figure we show time series plots of the model-implied ‘natural rate’ using the simple NK model,
allowing for temporary and permanent shocks to the natural rate and the inflation target, when matching
the observed US Effective Federal Funds Rate (Fed Funds), the 10-Year Treasury Constant Maturity Rate
(10Y Govt), the 10-Year Treasury Inflation Protected Securities Rate (10Y TIPS), and the Consumer
Price Index (Core CPI), seasonally adjusted, at the monthly frequency, and together with the Output gap
(HP Filter) at the quarterly frequency. The sample runs from January, 1990, through June, 2017.
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Figure 6: Implied inflation rates and 10-year treasury rates
In this figure we show time series plots of the model-implied inflation and the 10-year treasury rates
using the simple NK model, allowing for temporary and permanent shocks to the natural rate and the
inflation target, when matching the observed US Effective Federal Funds Rate (Fed Funds), the 10-Year
Treasury Constant Maturity Rate (10Y Govt), the 10-Year Treasury Inflation Protected Securities Rate
(10Y TIPS), and the Consumer Price Index (Core CPI), seasonally adjusted, at the monthly frequency.
The sample runs from January, 1990, through June, 2017.

Jan 1990 Jan 1995 Jan 2000 Jan 2005 Jan 2010 Jan 2015
−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

 

 

Fed Funds

Core CPI

Implied Core CPI

10Y Govt

Implied 10Y

10Y TIPS

Implied 10Y TIPS

Figure 7: Implied inflation rates, 10-year treasury rates and output gap
In this figure we show time series plots of the model-implied inflation, 10-year treasury rates, and the
output gap using the simple NK model, allowing for temporary and permanent shocks to the natural
rate and the inflation target, when matching the observed US Effective Federal Funds Rate (Fed Funds),
the 10-Year Treasury Constant Maturity Rate (10Y Govt), the 10-Year Treasury Inflation Protected
Securities Rate (10Y TIPS), and the Consumer Price Index (Core CPI), seasonally adjusted, and the
Output gap (HP Filter) at the quarterly frequency (1990Q1-2017Q2).
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Figure 8: Simulated shock to interest rate and target rate (2007-2011)
In this figure we show (from left to right, top to bottom) the simulated responses for unexpected shocks
to the (initial) interest rate (−0.0475), the inflation target rate (−0.02), and preferences (−0.1), with
effects for the output gap, the inflation rate, and the level and the slope of the interest rate (blue solid),
the no-target rate shock scenario (black dashed, πss = 0.02, χ = 0), and the pre-shock scenario (dotted).
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Figure 9: Simulated shock to interest rate and target rate (2007-2011), yields
In this figure we show (from left to right) the yield curve response to unexpected shocks to the (initial)
interest rate (−0.0475), the inflation target rate (−0.02), and preferences (−0.1), with effects for the
nominal and real yields (blue solid), the no-target rate shock scenario (black dashed, πss = 0.02, χ = 0),
and the pre-shock scenario (dotted).
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Figure 10: Term structure of interest rates in the stochastic NK model
In this figure we show (from left to right, top to bottom) the nominal and the real term structure of interest
rates in the partial adjustment model (blue), and with a feedback rule value (red) after an unexpected
shock to preferences (−0.1). The dashed lines show the risk-neutral term structure.
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