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Abstract

People�s animal spirits are a signi�cant driver behind the �uctuations of the
U.S. business cycle. This insight is demonstrated within an estimated arti�cial
economy with �nancial market frictions. Animal spirits shocks account for
around 40 percent of output �uctuations over the period from 1955 to 2014.
Financial friction and technology shocks are considerably less important with
best point estimates for both near 20 percent. We also �nd that the Great
Recession, for the most part, was caused by adverse shocks to expectations.
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1 Introduction

What are the shocks that cause macroeconomies to experience recurrent sequences
of booms and slumps? The current paper attends to this question by presenting evi-
dence on the sources of business cycles for the post-Korean War American economy.
The results back the view that people�s psychological motivations, a.k.a. animal
spirits, provoke a signi�cant portion of the �uctuations in aggregate real economic
activity, causing around forty percent of U.S. output volatility. This insight is demon-
strated within an arti�cial economy with �nancial market frictions. Likewise, our
exercise suggests that it was chie�y adverse shocks to expectations that led to the
Great Recession.
Models with credit market frictions have become popular since the Great Reces-

sion and this interest re�ects the notion that disruptions to �nancial markets were the
key factors behind this contraction. Building on earlier work, such as Kiyotaki and
Moore (1997) as well as Bernanke et al. (1999), this research has shown how �nancial
market frictions can amplify shocks to macroeconomic fundamentals by transform-
ing small economic disturbances into large business cycles.1 Del Negro et al. (2015)
as well as Christiano et al. (2015), for example, extend New Keynesian models by
�nancial market frictions to explain some key aspects of the recession.
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Figure 1: U.S. GDP and credit spread (on right-hand scale) at business cycle frequencies.
Shaded areas indicated NBER recessions.

We depart from the aforementioned works twofold. First, the parametric space
of the model includes multiple equilibria such that self-ful�lling nonfundamental sto-
chastic shocks to beliefs can act as impulses of endogenous cycles. Second, unlike
most existing work on such indeterminacy, the analysis concentrates on estimating
the model and focuses on the empirical implications of the multiplicity by explicitly
analyzing the business cycle variance contribution of animal spirits or belief shocks.
The undertaking is implemented by building on a variant of Benhabib and Wang

1See also Nolan and Thoenissen (2009).
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(2013).2 Indeterminacy in this model is linked to the empirically observed coun-
tercyclical movement of �nancial market tightness. Figure 1 plots the pattern of
�nancial market health and aggregate economic activity. Financial health is instru-
mented by the Baa Corporate Bond Spread which is displayed on an inverted scale
and opposite the �uctuations of per capita GDP. The shaded areas in the �gure cor-
respond to NBER recessions. They highlight that �nancial conditions are not only
countercyclical but also deteriorate markedly during most slumps.
In the arti�cial economy, the interaction of a time varying collateral constraint

and a countercyclical markup spawns equilibrium indeterminacy, a condition that
allows aggregate �uctuations to be caused by extrinsic changes to people�s expecta-
tions. Moreover, in addition to such animal spirits shocks, the economy is bu¤eted by
a parade of fundamental shocks. The model is estimated by full information Bayesian
methods using quarterly U.S. data covering the period from 1955:I to 2014:IV. This
approach follows various key contributions by Otrok (2001), Justiniano et al. (2011)
as well as Schmitt-Grohé and Uribe (2012), who all, however, only explore the role
of fundamental shocks as the engines of business cycles. The Bayesian estimation
chooses disturbances so that the probability of empirical series (i.e. the observables)
is maximized and the key result that ensues from this exercise is that animal spirits
are important drivers of the repeated �uctuations of the U.S. macroeconomy. Speci�-
cally, by computing forecast error variance decompositions, we �nd that animal spirits
account for about forty percent of U.S. output variations and for about two thirds of
the �uctuations in investment. Disturbances that originate in the �nancial sector ex-
plain less than ten percent of output �uctuations. Moreover, historical decomposition
of output growth shows that belief shocks have decidedly (although not exclusively)
contributed to the sharp contraction in economic activity of the Great Recession that
began at the end of 2007.
Previous work on (real) multiple equilibria economies has overwhelmingly re-

mained in the theoretical realm and estimation exercises have been rare. Farmer
and Guo (1995) is an early attempt to estimate a sunspot model using classical si-
multaneous equations methods. Pintus et al. (2016) and Pavlov and Weder (2017)
perform full-information Bayesian estimations as in the present paper. While Pintus
et al. build a model with �nancial market frictions, they do not establish a signi�cant
role for animal spirits. Financial markets are not featured in Pavlov and Weder and
their study purposely excludes the Great Recession.

2 The Model

The arti�cial economy is a discrete-time adaptation of Benhabib andWang (2013).
The model features credit frictions in the form of endogenous borrowing constraints

2Azariadis et al. (2016), Liu and Wang (2014) and Harrison and Weder (2013) are other examples
that combine multiple equilibria and �nancial frictions.
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in a model of monopolistic competition in which, as usual, perfectly competitive �rms
produce �nal output by combining a continuum of di¤erentiated intermediate inputs.
Intermediate goods producing �rms are collateral-constrained in how much they can
borrow to �nance their working capital needs. We modify the original model by
incorporating a set of fundamental shocks which are frequently considered as key
drivers of business cycles. The model�s discussion will be relatively brief and it will
concentrate on the alterations from the original setup.

2.1 Technology

A unit mass of monopolistic competitive �rms has access to a constant returns
technology that transforms capital services �t(i) and labor hours Nt(i) into interme-
diate, di¤erentiated outputs Yt(i)

Yt(i) = �t(i)
�(XtNt(i))

1�� 0 < � < 1:

Exogenous labor-augmenting technological progress Xt a¤ects all �rms equally. Its
growth rate �xt � Xt=Xt�1 evolves as a �rst-order autoregressive process

ln�xt = (1� �x) ln�
x + �x ln�

x
t�1 + "x;t 0 < �x < 1

with "x;t v N(0; �2x) and ln�
x is average growth rate. The �rms rent factor services

from the households at perfectly competitive prices Wt and rt. Final output Yt is a
constant elasticity of substitution aggregator of a basket of intermediate inputs

Yt =

�Z 1

0

Yt(i)
��1
� di

� �
��1

� > 1:

Here � denotes the elasticity of substitution between varieties. The monopolistic
competitive �rms generate pro�ts by charging a mark-up over marginal costs. They
must borrow for working capital needs. Imperfect enforcement requires a process to
constrain borrowing by the value of the collateral. Speci�cally, �rm i�s total amount
of debt is an intraperiod loan Bt(i)

Bt(i) =WtNt(i) + rt�t(i)

and it is constrained by the value of the collateral, which is the output being produced,
i.e.

WtNt(i) + rt�t(i) � �t�tPt(i)Yt(i):

Under this credit constraint, if there is a default event, the lender has the right to re-
cover a fraction of less than one of the �rm�s end-of-period value of output Pt(i)Yt(i).3

3Unlike the original model, our setup does not include �xed liquidation costs. Indeterminacy
still holds. When we compare the two models using Bayesian estimation method, we �nd that the
model without �xed costs is favored by the data.
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The model features two �nancial frictions and their product �t�t represents the ar-
ti�cial economy�s �nancial tightness. Concretely, �t refers to an endogenous credit
constraint: the borrowing constrictions vary with the aggregate state of economic
activity which re�ects creditors� ability to pay back loans. In particular, �t is an
increasing function of the deviation of actual from balanced growth output

�t = �

�
Yt

Y t

�

with the parameter restrictions 0 < � < 1 and 
 > 0. The parsimonious formulation
of �t entails many micro-founded makeups without the need to con�ne itself to a
particular one. For example, it can stand in for Benhabib and Wang�s (2013) original
setup with �xed liquidation costs. In addition to the endogenous component, exoge-
nous disturbances �t a¤ect �nancial health. These shocks originate in the �nancial
sector as in Jermann and Quadrini (2012) and Liu et al. (2013). The collateral or
�nancial shock �t evolves as

ln �t = (1� ��) ln � + �� ln �t�1 + "�;t 0 < �� < 1

with "�;t v N(0; �2�) and steady state value � = 1. The corresponding �rst-order
conditions for the pro�t maximization problem involve

rt�t(i) = ��tYt(i)

WtNt(i) = (1� �)�tYt(i)

and
�� 1
�

Pt(i)� �t + �t(i)

�
�t�t

�� 1
�

Pt(i)� �t

�
= 0 (1)

where �t stands for monopolistic �rms�marginal costs and �t(i) denotes the multiplier
associated with the borrowing constraint.

2.2 Preferences

Households are represented by an agent with the lifetime utility

E0

1X
t=0

�t
�
ln(Ct ��t)� '

N1+�
t

1 + �

�
0 < � < 1; � � 0 and ' > 0

where � is the discount factor, Ct stands for consumption, and Nt for total hours
worked. The functional form of the period utility ensures that the economy is consis-
tent with balanced growth. The parameter ' denotes the disutility of working. The
term �t represents shocks to the agent�s utility of consumption that generate urges
to consume, as in Baxter and King (1991) and Weder (2006). The preference shock
follows the autoregressive process

ln�t = �� ln�t�1 + "�;t 0 < �� < 1
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with "�;t v N(0; �2�). This shock is also a driver of the economy�s labor wedge, i.e. the
gap between the marginal rate of consumption-leisure substitution and the marginal
product of labor. Hence, our estimation will allow a much wider interpretation than
mere shocks to preferences �a more agnostic reading includes, for example, changes
to monetary policy, taxes, or labor market frictions. Households own the physical
capital stock Kt and decide on its utilization rate, ut, thus �t = utKt. The agent
faces the period budget constraint

Ct + AtIt + Tt = WtNt + rtutKt +�t

and the law of motion for capital is

Kt+1 = (1� �t)Kt + It:

The term It is investment spending and At represents a non-stationary investment-
speci�c technology shock which a¤ects the transformation of consumption goods into
investment goods. In the model, the concept corresponds to the relative price of new
investment goods in terms of consumption goods. The shock�s growth rate �at evolves
as

ln�at = (1� �a) ln�
a + �a ln�

a
t�1 + "a;t 0 < �a < 1

with "a;t v N(0; �2a), and ln�
a is the average growth rate. Lump-sum taxes are

denoted by Tt. The rate of physical capital depreciation

�t = �0
u1+�t

1 + �
0 < �0 < 1 and � > 0

is an increasing function in the utilization and � > 0 measures the elasticity of
the depreciation rate with respect to capacity used. The �rst-order conditions are
standard and delegated to the Appendix.

2.3 Government

The government purchases Gt units of the �nal output. Gt is neither productive
nor does it provide any utility. The spending is �nanced by the lump-sum taxes. We
model government�s spending with a stochastic trend

XG
t = (X

G
t�1)

 yg(XY
t�1)

1� yg 0 <  yg < 1

where  yg governs the smoothness of the government spending trend relative to the
trend in output. Then, detrended government spending is gt � Gt=X

G
t and this

follows the process

ln gt = (1� �g) ln g + �g ln gt�1 + "g;t 0 � �g < 1

with the shock�s variance �2g.
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2.4 Equilibrium

In symmetric equilibrium, �t(i) = utKt, Nt(i) = Nt, Pt(i) = Pt = 1, Yt(i) = Yt
and �t(i) = �t = Yt �WtNt � rtutKt, hold and (1) becomes

�� 1
�

� �t + �t

�
�t�t

�� 1
�

� �t

�
= 0: (2)

From (2), and if �t�t
��1
�
< �t <

��1
�
, the �nancial constraint binds, thus,

�t = �t�t = ��t

�
Yt
�Yt

�

:

In the steady state, � equals marginal costs thus it is not a free parameter.

2.5 Self-ful�lling dynamics

The detrended and linearized economy is solved numerically (using standard para-
meters as listed in Table 1). We assume that the credit constraint is always binding.
Figure 2 maps the local dynamics�zones in the 
 � ��1�space. If market power is
small, i.e. the inverse of the marginal cost ��1 is close to one and the credit limit is
constant, i.e. the curvature parameter 
 is small, the economy�s dynamics are unique.
However, combinations of market power and a procyclical credit limit delivers indeter-
minacy. The indeterminacy mechanism operates via an upwardly sloping wage-hours
locus similar to many animal spirits models.4 Then, how can pessimistic expecta-
tions about the future create problems? If people believe that the future is worse,
they will attempt to work more hours. In terms of the labor market equilibrium,
this change in expectations will shift the labor supply curve out. But the pessimistic
expectations will lead households to decrease the lending to �rms. This contraction
of credit will tighten the �rms�borrowing constraints; costs and markups will rise
and the individual labor demand schedules move leftwards. As a consequence, the
economy�s wage-hours-locus is upwardly sloping. In equilibrium, the outward shift of
labor supply will result in lower employment and in a drop in aggregate production,
in sum, the low animal spirits will be self-ful�lling.
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4See for example, Farmer and Guo (1994) or Wen (1998).
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Figure 2: Parameter space for dynamics.

3 Estimation

The arti�cial economy�s local dynamics can become indeterminate. Our next step
is to discuss how animal spirits are introduced into the model, to present the data
that is employed in the analysis, as well as to outline the full information Bayesian
estimation of the arti�cial economy. Finally, we compare the estimated shocks to
corresponding empirical measures.
If there are many rational expectations equilibria in the model economy, this

continuum is a device to introduce animal spirits. To do this, we break down the
forecast error of output

�yt � ŷt � Et�1ŷt

into fundamental and non-fundamental components, as suggested by Lubik and Schorf-
heide (2003):

�yt = 
x"
x
t + 
a"

a
t + 
�"

�
t + 
g"

g
t + 
�"

�
t + "bt :

The parameters 
x, 
a, 
�, 
g and 
� determine the e¤ect of technological progress,
investment-speci�c technology, preferences, government spending and collateral shocks
on the expectations error. This break-down leaves the belief shock "bt as a residual.
The last equation promulgates a strict de�nition of animal spirits: they are orthogonal
to the other disturbances, thus independent of economic fundamentals.
We now estimate the model, allowing all six shocks to matter. The approach

attributes the contribution of each shock to aggregate �uctuations. The estimation
uses quarterly U.S. data running from 1955:I to 2014:IV and includes seven observable
time series: (i) the log di¤erence of real per capita GDP, (ii) real per capita consump-
tion, (iii) real per capita investment, (iv) real per capita government spending, (v)
the relative price of investment, (vi) the log di¤erence of per capita hours worked
from its sample mean, as well as (vii) the credit spread from its sample mean. We
instrument �nancial market conditions by a credit spread similar to Christiano et al.
(2014). In particular, Christiano et al. make use of the di¤erence between the interest
rate on Baa corporate bonds and the ten-year US government bond rate. The Appen-
dix provides a full description of the data and its construction. The corresponding
measurement equation is2666666664

lnYt � lnYt�1
lnCt � lnCt�1

lnAtIt � lnAt�1It�1
lnGt � lnGt�1
lnAt � lnAt�1
lnNt � ln �N
credit spread

3777777775
=

2666666664

ŷt � ŷt�1 + �̂yt
ĉt � ĉt�1 + �̂yt
{̂t � {̂t�1 + �̂yt

ĝt � ĝt�1 + âgt � âgt�1 + �̂yt
�̂at
N̂t

�x � � � �̂t

3777777775
+

2666666664

ln�y

ln�y

ln�y

ln�y

ln�a

0
0

3777777775
+

2666666664

"mey;t
0
0
0
0
0
"mes;t

3777777775
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where agt � XG
t =X

Y
t = (a

g
t�1)

 yg(�yt )
�1. In the last measurement equation, x is the

scale parameter only appearing in the measurement equation to adjust the di¤erence
of the volatilities (that is, units) between the model frictions and the observable
variable. Both output growth and credit spread are measured with errors "mey;t and
"mes;t which are i.i.d. innovations with mean zero and standard deviation �

me
y and �mes ,

respectively. Allowing for a measurement error to output is a way to circumvent
stochastic singularity (e.g. Schmitt-Grohé and Uribe, 2012). A measurement error
to the spread can account for any mis-measurement in the data, especially when
only a proxy is observed (e.g. Justiniano et al., 2011). Both measurement errors are
restricted to absorb not more than ten percent of the variance of the corresponding
observables.
Prior to the estimation, we �x a number of parameters. This set of parameters is

calibrated following the literature and is based on national accounts data averages.
We only address some of these calibrations (all are listed in completion in Table
1). The elasticity of substitution parameter � is set at ten, as in Dotsey and King
(2005) and Cogley and Sbordone (2008). The average government spending share
in GDP, G=Y , is calibrated at 21 percent, a number which we take from national
accounts. The quarterly growth rates of per capita output �y and the relative price
of investment �a are set equal to their sample averages of 1.0041 and 0.9949. Finally,
the household�s �rst-order conditions determine the elasticity of the depreciation rate
from � = (�k=� � 1)=�.
The other model parameters are estimated. Our prior assumptions are summa-

rized in Table 2. The parameters estimated here include the steady state marginal
cost � (or equivalently the inverse of the mark-up), the elasticity of collateral 
,
the scale parameter x, the parameters that describe the stochastic processes and the
standard deviation of the measurement error. A beta distribution is adopted for the
steady-state marginal cost � and its value falls between 0.83 and 0.9, so that the
steady-state markup varies from around 11 to 20 percent. The range of marginal
costs is chosen for two reasons. First, the empirically estimated markup falls in this
range (see for example Cogley and Sbordone, 2008). Second, the upper value of �
is further restricted by the inequality constraints � ��1

�
< � < ��1

�
for the �nancial

constraint to bind.5 We set the prior mean for x to match the standard deviation of
the smoothed endogenous �nancial frictions in the model without any �nancial infor-
mation (data and shock) and the standard deviation of the demeaned spread data.
We adopt an inverse gamma distribution for the prior. For the persistence parameters
we use a beta distribution and the standard deviations of the shocks follow an inverse
gamma distribution. The prior distributions for the expectational parameters 
x, 
a,

5To land in the prior region of 
, we calculate the required region of 
 to generate indeterminacy
given each value of �, as shown in Figure 1. We choose the minimum value 0.16 as the lower bound
of the prior region, while 0.607 is the upper limit. This range will guarantee that we can cover the
complete indeterminacy region. Since our model is indeterminate, during the MCMC, all proposed
draws from the determinacy and source regions were discarded.
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�, 
g and 
� are uniform, thus agnostic about their values. Endogenous priors
prevent overpredicting the model variances (as in Christiano et al., 2011). We use
the Metropolis-Hastings algorithm to obtain one million draws from the posterior for
each of the two chains, discard half of the draws, and adjust the scale in the jumping
distribution to achieve a 25-30 percent acceptance rate for each chain.
The last two columns of Table 2 present the posterior means of the estimated

parameters, along with their 90 percent posterior probability intervals. The parame-
ters are precisely estimated as is evidenced by the percentiles. The estimated steady
state of marginal cost implies a steady state markup of twenty percent. Preference,
government spending and collateral shocks exhibit a high degree of persistence. The
autocorrelation of the non-stationary technology shock is low, but it is not inconsis-
tent with the moderate values commonly found in the literature.
Table 3 reports second moments of the main macroeconomic variables calculated

using U.S. data and compares these moments to those obtained from model simula-
tions at the posterior mean. The model underpredicts the volatility, but it matches
fairly well the relative standard deviations, autocorrelations and the variables�cross-
correlations with output. Table 4 displays the contribution of each structural shock,
which we list in the �rst row, to the variances of key macroeconomic variables. The
decomposition suggests that animal spirits shocks "bt are the most important source
of U.S. aggregate �uctuations. These shocks account for over forty percent of output
growth. The Appendix presents a more detailed analysis of the beliefs driven cycle in
the spirit of Burns and Mitchell (1946). The other aggregate demand shocks play a
lesser role and the contribution of the two technology shocks is small at no more than
twenty percent. For investment, the vast majority of its variations comes from animal
spirits suggesting that much of the spending is driven by entrepreneurial sentiments.
The credit spread (i.e. the �nancial frictions) is mainly driven by stochastic �nancial
factors �by about forty percent.6
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Figure 3: Fernald�s vs Model�s total factor productivity

6We also estimate the model using loan data and animal spirits remain important.

10



We identify the shocks by estimating in a system and it is thus fair to ask if the
shocks are meaningfully labelled. More concretely, do the shocks share resemblance
with empirical series that are computed with orthogonal information sets? To begin
with, the estimated model�s total factor productivity series is compared with Fer-
nald�s (2014) total factor productivity series for the United States.7 Fernald�s series
are widely considered as the gold standard for this variable for which he adjusts for
variations in factor utilization (labor e¤ort and the workweek of capital) as well as
labor skills. The results are reassuring as shown in Figure 3. Both productivity series
not only have similar amplitudes, but their contemporaneous correlation comes in at
0:65. Next, Figure 4 compares the index of estimated con�dence and the U.S. Busi-
ness Con�dence index (band-pass �ltered to concentrate on the relevant frequencies).
Clearly, the empirical con�dence index is in�uenced by a raft of fundamentals and
non-fundamentals, thus, it is not exactly clear how the empirical data would map our
theoretical notion of animal spirits. Yet, the two con�dence series are strongly corre-
lated with coe¢ cient 0:64 and we interpret the relationship in Figure 4 as endorsing
our estimation and as supporting the case that estimated shocks re�ect variations in
people�s expectations about the future path of the economy.8 Furthermore, our esti-
mated disturbances share similarity to Angeletos et al.�s (2016, Figure 8) con�dence
shocks. While Angeletos et al. argue in a unique-equilibrium model, we interpret the
resemblance as complementary stories of the business cycle.
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Confidence index Belief shocks

Figure 4: Business con�dence index vs animal sprits shocks (normalized data).

4 Checks of robustness

In this section, we consider several robustness checks: (i) Lubik and Schorfheide�s
(2003) representation of a belief shock is compared to Farmer et al.�s (2015) formula-
tion, (ii) we go through alternative observables to measure �nancial markets�health,

7Growth of total factor productivity in our model is given by (1� �)(�̂xt + ln�x):
8The correlation of the estimated sunspot shocks and Fernald�s TFP series is �0:17.
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(iii) Fernald�s (2014) TFP data is added to the observables, and (iv) permanent
technology shocks are replaced by transitory shocks.
To demonstrate the robustness of the above insights, we follow the approach of

Farmer et al. (2015) in which the animals spirits shock is simply the forecast error,
i.e. �Yt = "st ; with variance �

2
�: Intuitively, since output is forward looking, this

expectation error should be correlated with fundamental shocks. Yet, it is also a
sunspot shock, as it can cause movements in economic activity without any shifts to
fundamentals. Assuming a uniform distribution, we thus estimate the correlations
between �Yt and the fundamental shocks. The priors for the other parameters are
kept the same as in the baseline model. As can be seen from Tables 2 and 5, our
estimation results are robust to the formation of the expectation error. The posterior
distributions are almost identical and the closeness of the log-data densities con�rms
that the goodness of �t between the models is equivalent.9

The next robustness check concerns the choice of the observed spread when in-
strumenting �nancial markets�conditions. We thus consider the sensitivity to using
various alternative spreads. In particular, we sequentially explore if (i) the Baa-Aaa
spread, (ii) the Baa-Federal funds rate spread or (iii) the Gilchrist and Zakraj�ek�s
(2012) spread yield signi�cantly di¤erent results in the estimation. We report the
variance decompositions only. The results for the Baa-Aaa and Baa-Federal funds
rate spreads are reported in Tables 6 and 7. Animal spirits continue to stand out as
the main driver of the business cycle. The tables suggest that they account for about
40 percent of the U.S. output �uctuations. Only when using Gilchrist and Zakraj�ek�s
(2012) spread do �nancial shocks�contributions climb to slightly over ten percent.10

Next, we add total factor productivity to the catalog of observables. Fernald�s
(2014) continuously updated data is the natural series to choose from. Fernald adjusts
for variations in factor utilization (labor and capital) and includes adjustment for
quality or composition. Most of these in�uences are not part of the arti�cial economy
and we thus add one more measurement error on total factor productivity (at not more
than ten percent). Table 9 shows that the previous results remain robust. Animal
spirits continue to cause the bulk of U.S. output �uctuations. The technology shocks�
contributions are lower, with a best point estimate near 10 percent.
Finally, we replace permanent technology shocks by transitory shocks. Then, the

production technology is given by

Yt = ZtK
�
t (�

tNt)
1��

and the growth rate of labor augmenting technological progress is deterministic at
the constant rate �, as in King et al. (1988). We permit temporary changes in total

9Second moments and variance decompositions are virtually identical and are not presented to
conserve space.
10However, this change appears to be mainly the outcome of a shorter sample given the spread�s

availability. To con�rm this, we re-estimated the model using the other spreads, but only covering
the 1973 to 2014 period. As expected, the results then came out very similar to Table 8�s
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factor productivity through Zt, which follows a �rst-order autoregressive process

lnZt = (1� �z) lnZ + �z lnZt�1 + "z;t 0 < �z < 1:

The model estimation delivers similar posterior means of the parameters as the base-
line estimation and they are thus not reported here (see Appendix). Noteworthy is,
however, the estimate for �z at 0:997. While high, this number is consistent with
Ireland (2001), for example. The variance decompositions of the stationary technol-
ogy shocks model are reported in Table 10. Technology shocks account for about 17
percent of GDP volatility. However, animal spirits remain the most critical driver of
aggregate �uctuations and they continue to explain roughly forty percent of output
growth variations. Now, which speci�cation of technology is favored by data? This
question is answered in Table 11 which compares the model �ts of the two alterna-
tively speci�ed models. Data strongly prefers a version of the model in which total
factor productivity has a stochastic trend. We have conducted further robustness
checks that are, however, delegated to the Appendix to conserve space.

5 A closer look at the Great Recession

From 2007 to 2009, the U.S. economy was in the turmoil of a severe recession.
The Great Recession was the single-worst economic contraction since the 1930s, with
economic activity diving after various �nancial institutions collapsed. One of the
aims of the recent �nancial friction models is to identify the sources of the crisis. We
follow this line and look more closely into the years 2007 to 2009.
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Figure 5: Historical decomposition of output growth

To begin with, we plot in Figure 5 the historical decomposition of the structural
shocks to output growth over the 2007:I to 2009:IV period. The �gure suggests that
it was foremost pessimistic expectations that contracted the economy from the end
of 2007 onwards. Thus, the data favors the interpretation that the Great Recession
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was closely associated with self-ful�lling beliefs. Our interpretation of events goes like
this: when the run-up of real estate prices came to an end, when banks curbed lending
and tightened credit, when investors stopped borrowing, then this occurred because
people were expecting worsening business conditions and higher defaults. In other
words, people became pessimistic and, as a consequence of the e¤ect on �nancial
markets, this pessimism became self-ful�lling. Thus, our results do not necessarily
contradict Christiano et al.�s (2015) account of the Great Recession. Their study �nds
that the steep decline of aggregate economic activity was overwhelmingly caused by
(exogenous) �nancial frictions. What our analysis suggests is, however, that a sudden
drop in people�s animal spirits found its catalyst in �nancial markets. In this reading
of events, the �nancial sector propagated gloomy animal spirits into a full-blown
�nancial crisis and disastrous macroeconomic collapse ensued.
Moreover, Brinca et al. assert that

�[...] considering the period from 2008 until the end of 2011, [our]
results imply that the Great Recession in the United States should be
thought of as primarily a labor wedge recession.� [Brinca et al., 2017,
1042]

What does the labor wedge look like in the arti�cial economy�s benchmark ver-
sion? The model�s labor wedge is driven by �uctuations of both the markup as well
as stochastic preferences. It is plotted along with the data equivalent in Figure 6.
Clearly, the two series show high conformity. The arti�cial wedge explains 75 percent
of the data wedge�s plunge during 2008 and 2009 and it charts a tepid recovery over
the 2010 to 2014 period. Thus, to an extent, our model is not inconsistent with
Brinca et al.�s (2017) interpretation of the Great Recession.
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Figure 6: The arti�cial labor wedge during the Great Recession.
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6 Does data prefer indeterminacy?

So far we have restricted the analysis to the parameter space with multiple equilib-
ria, yet a natural question arises: does data in fact favor a model with indeterminacy?
To answer this question, we now estimate the economy across the complete area of
the parameter space as in Bianchi and Nicolò (2017)11. Their procedure can be im-
plemented without knowing the boundaries between the four dynamic regions (see
Figure 2). During the mode-�nding process, the estimation can get stuck in a region
without crossing the boundaries, even though, in theory, the Metropolis-Hastings
algorithm can explore the entire parameter space. Therefore, our implemented esti-
mation strategy was to set di¤erent initial values (in all regions) while leaving the
priors the same. Once a region-speci�c (i.e. local) mode was found, the Markov chain
Monte Carlo procedure was run at each mode. The priors are such that indeterminacy
has the least prior probability so to err on the right side. To do this, we adjust the
prior of the elasticity of collateral 
, which is now gamma-distributed centered at 0.5
with standard deviation 0.8. The prior for the parameter '� is uniformly distributed
within [0,2]. In line with Bianchi and Nicolò (2017), we follow the approach pro-
posed in Farmer et al. (2015) and construe the forecast error of output �yt as a belief
shock with variance �2� and allow the expectation errors to be correlated with the
fundamental shocks (Table 5 reports the equivalence of this setup to our benchmark
model). The log data densities in Table 12 suggest that U.S. data strongly favours
the indeterminacy model over versions of the economy in which animal spirits do not
play a role.

7 Concluding remarks

This paper has presented evidence on the sources of U.S. aggregate �uctuations
over the period 1955 to 2014. We perform a Bayesian estimation of a �nancial ac-
celerator model which features an indeterminacy of rational expectations equilib-
ria. Indeterminacy in the model is linked to the empirically observed countercyclical
movement of �nancial market tightness. The interaction of time-varying collateral
constraints and a countercyclical markup brings about an upwardly sloping wage-
hours-locus and aggregate �uctuations can be driven by changes to people�s animal
spirits. The arti�cial economy is driven both by fundamental shocks as well as by
animal spirits and its estimation supports the view that people�s animal spirits play a
signi�cant role for the U.S. business cycle. Moreover, data favours the indeterminacy
model over versions of the economy in which sunspots do not play a role. Variance
decompositions suggest that animal spirits are behind around forty percent of output
growth variations and they explain an even larger portion of �uctuations in invest-

11The Appendix explains their methodology in more detail.
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ment spending. Technology shocks and �nancial frictions shocks are signi�cantly less
important and they explain no more than twenty percent of the oscillations in ag-
gregate real economic activity. The 2007-2009 recession appears to have been chie�y
caused by adverse con�dence shocks.
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8 Appendix

The (not-to-be-published) Appendix sets out the complete model, a discussion of
the typical animal spirits cycle, conducts more robustness checks, and it lists the data
sources and de�nitions. We begin with collecting the model�s equations.

8.1 Model equations and equilibrium dynamics

The �rst-order conditions for the household�s optimization problems are

'N�
t =

1

Ct ��t

Wt

rt = At�0u
�
t

and
At

Ct ��t

= �Et

�
1

Ct+1 ��t+1

(rt+1ut+1 + At+1(1� �t+1))

�
:

In the model, output, consumption, and real wage �uctuate around the same sto-
chastic growth trend XY

t = XtA
�=(��1)
t , the growth rate of which is �yt � XY

t =X
Y
t�1 =

�xt (�
a
t )

�
��1 . The trend in capital stock, which is also the trend in investment equals

XK
t = XY

t =At, the growth rate of which is �
k
t � XK

t =X
K
t�1 = �xt (�

a
t )

1
��1 . Besides,

the government expenditure �uctuates around its own trend XG
t . There is no growth

trend in hours, utilization and marginal cost. We �rst derive the detrended dy-
namic equilibrium equations and then log-linearly approximate them around the de-
terministic steady state. Let yt = Yt=X

Y
t , ct = Ct=X

Y
t , wt = Wt=X

Y
t , it = It=X

K
t ,

kt = Kt=X
K
t�1, gt = Gt=X

G
t , and yt=�y approximately equal to Yt= �Yt, where �y repre-

sents the steady state of detrended output. The log-linearized system is summarized
by

ŷt = �k̂t + �ût � ��̂kt + (1� �)N̂t

ŷt = [1�
��(�k � 1 + �)

�(1 + �)
� G

Y
]ĉt +

��(�k � 1 + �)
�(1 + �)

{̂t +
G

Y
(âgt + ĝt)

ŷt = (1 + �)N̂t + ĉt � �̂t � �̂t

ŷt = (1 + �)ût + k̂t � �̂t � �̂kt

k̂t+1 =
(1� �)

�k
(k̂t � �̂kt ) +

(�k � 1 + �)
�k

{̂t �
�(1 + �)

�k
ût

ĉt+1 = ĉt � �̂t � [1�
��(1 + �)

�k
]�̂kt+1 + �̂t+1 +

��(1 + �)

�k
(ŷt+1 � k̂t+1 + �̂t+1 � ût+1)

and
�̂t = 
ŷt + �̂t:

In these equations, variables without time subscripts refer to steady state values while
the hatted variables denote percent deviations from their corresponding steady-state,
e.g., ŷt � log(yt=�y).
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8.2 A Burns-Mitchell analysis of animal spirits

We employ a classical method of business cycle analysis developed by Burns and
Mitchell (1946) and Adelman and Adelman (1959) to evaluate the belief shock driven
model in terms of whether it mimics the cyclical behavior of post war U.S. data.12 A
brief description of the idea follows. The business cycle series consist of a sequence
of reference cycles, measured trough-to-trough by convention. We use NBER dates
to determine the peak of the reference cycle for both U.S. and arti�cially generated
data. Our sample series includes eight complete trough-peak-trough cycles beginning
in 1958:II and ending with the lower turning point in 2009:II. No prior �ltering or
detrending of the data has been undertaken that is we do not detrend the model
output to allow for the presence of long-run technological progress and bring it in
line with empirical data. Each complete reference cycle is divided into nine stages
(I to IX). Stage I is the initial trough; stage V is the reference peak, and stage IX
is the terminal trough. The expansion phase (stages I to V) is divided into three
substages (II, III, and IV) of equal length (excluding time contained in stages I and
V). The contraction phase (stages V to IX) is measured in an analogous fashion.
Next, each observation in the cycle is expressed as a percentage of the cycle mean
called cycle relatives. Mean cycle relatives per stage are averaged across all reference
cycles to yield a graphical summary of an average business cycle in the nine-point-plot
of Figure 10. The plot provides a visual impression of both the simulated data and
the U.S. data.
Concretely, Figure 7 displays the average behavior, in cycle relatives, over the nine

stages of the business cycle for per capita real GDP and the arti�cial equivalent when
the model is counterfactually driven by belief shocks only. Stage I coincides with
the initial trough, stage V with the peak, and stage IX corresponds to the terminal
trough. The similar general shape of the two series demonstrates that arti�cial series
matches well postwar U.S. cycles. The per capita real GDP exhibits a distinct pro-
cyclical pattern, rising during expansions and falling during contractions. Both series
peak in the same stage.

12King and Plosser (1994) for a concise summary of the Burns-Mitchell procedure as well as its
implementation in a general equilibrium context.
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Figure 7: Nine-point graph for U.S. GDP and counterfactually belief driven output

8.3 More robustness checks

Justiniano, Primiceri and Tambalotti (2011) push for shocks that a¤ect the pro-
duction of installed capital from investment goods or the transformation of savings
into the future capital input. This is an alternative way of how to model exogenous
�nancial frictions. The idea of shocks to the marginal e¢ ciency to investment (MEI)
goes back to Greenwood, Hercowitz and Hu¤man (1988) who formulate the ideas as

Kt+1 = (1� �t)Kt + �tIt

where we abstract from adjustment costs to not mess with the indeterminacy prop-
erties of the arti�cial economy. The shock �t a¤ects the marginal e¢ ciency of capital
and it follows the process

ln �t = �v ln �t�1 + "�t :

The shock are likely a �proxy for more fundamental disturbances to the functioning
of the �nancial sector.� (Justiniano, Primiceri and Tambalotti, 2011). Again, we add
a measurement error to the spread equation (to impose discipline on the inference of
the MEI shock). Table 13 shows, in line with our previous �ndings, that the animal
spirits shocks remain the most prominent drivers of the U.S. business cycle.
Table 14 shows the posterior means of the parameters in the model with transi-

tory technology productivity. The estimated parameters are similar with that of the
baseline estimation.

8.4 Bianchi and Nicolò (2017)

We brie�y set out the methodology that we apply. It closely follows Bianchi
and Nicolò (2017) and it does not require to know the (analytical solution) of the
boundaries of the determinacy region. The parameters of the loglinearized benchmark
model are contained in the vector

� = [�; �; �y; �a; �k; �; �; �; �; 
;G=Y; �x; �a; ��; �g; ��; �x; �a; ��; �g; ��]:
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The linear rational expectations (LRE) model can be rewritten in the canonical form

�0(�)st = �1(�)st�1 +	(�)"t +�(�)�t; (3)

where

st = [ŷt; ĉt; {̂t; N̂t; k̂t; ût; �̂t; Et[ŷt+1]; Et[ĉt+1]; Et[�̂t+1]; Et[ût+1]; �̂
y
t ; �̂

a
t ; �̂

k
t ; ĝt; â

g
t ; �̂t; �̂t]

0

is a vector of endogenous variables, "t = ["xt ; "
a
t ; "

�
t ; "

g
t ; "

�
t ]
0
is a vector of exogenous

shocks, and �t = [�yt ; �
c
t ; �

�
t ; �

u
t ]
0
collects the one-step ahead forecast errors for the

expectational variables of the system. Since our model can generate at most one
degree of indeterminacy, Bianchi and Nicolò suggest to append the original linear
rational expectations model (3) with the autoregressive process

!t = '�!t�1 + �t � �f;t (4)

where �t is the sunspot shock and �f;t can be any element of the forecast errors
vector �t. We choose �f;t = �yt . The variable '

� belongs to the interval (-1,1) when
the model is determinate or it is outside the unit circle under indeterminacy. Under
determinacy the Blanchard-Kahn condition is satis�ed and the absolute value of '�

is inside the unit circle since the number of explosive roots of the original LRE
model in (3) already equals the number of expectational variables in the model.
Then the autoregressive process !t does not a¤ect the solution for the endogenous
variables st. On the other hand, under indeterminacy the Blanchard-Kahn condition
is not satis�ed. The system is characterized by one degree of indeterminacy and it is
necessary to introduce another explosive root to ful�ll the Blanchard-Kahn condition
�the absolute value of '� falls outside the unit circle. Denoting the newly-de�ned
vector of endogenous variables ŝt � (st; !t)

0
and the vector of exogenous shocks

"̂t � ("t; �t)
0
, then the system (3) and (4) can be condensed into

�̂0ŝt = �̂1ŝt�1 + 	̂"̂t + �̂�t;

where

�̂0 �
�
�0(�) 0
0 1

�
; �̂1 �

�
�1(�) 0
0 '�

�
and

	̂ �
�
	(�) 0
0 1

�
; �̂ �

�
�n(�) �f (�)
0 �1

�
:

The matrix �(�) in (3) is partitioned as �(�) = [�n(�) �f (�)] without loss of
generality. Figure 2 shows that our model has two determinacy regions and one
indeterminacy region. During the mode-�nding process, or MCMC, we encountered
situations in which the estimation got stuck in one of these regions without crossing
the boundaries, even though, in theory, the Metropolis-Hastings algorithm can explore
the entire parameter space. Therefore, our estimation strategy sets di¤erent initial
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values (for each of the regions) while leaving the priors the same. Once we �nd for
each region a (local) mode, we start running the MCMC at each mode. Finally, we
compare the three log data densities generated for each region. To start with, the
prior probability of determinacy or indeterminacy is set. The priors are such that
indeterminacy has the least prior probability so to err on the right side. All priors
are as before but the prior for the elasticity of collateral 
 is gamma-distributed with
mean 0.5 and standard deviation 0.8 and the prior for the parameter '� follows a
uniform distribution within [0,2]. Then, the prior probability for indeterminacy is 20
percent (a remaining prior probability falls to the source region, however, any draws
from this regime are discarded). Following Bianchi and Nicolò (2017) the forecast
error of output �yt is the belief shock with variance �

2
�, that is, the expectation error

is correlated with the fundamental shocks and these correlations are estimated as in
Farmer, Kharamov and Nicolò (2015).

8.5 Data description

This appendix is to describe the details of the source and construction of the data
used in estimation. The sample period covers the �rst quarter of 1955 through the
fourth quarter of 2014:
1. Real Gross Domestic Product. Billions of Chained 2009 Dollars, Seasonally

Adjusted Annual Rate. Source: Bureau of Economic Analysis, NIPA Table 1.1.6.
2. Gross Domestic Product. Billions of Dollars, Seasonally Adjusted Annual Rate.

Source: Bureau of Economic Analysis, NIPA Table 1.1.5.
3. Personal Consumption Expenditures, Nondurable Goods. Billions of Dollars,

Seasonally Adjusted Annual Rate. Source: Bureau of Economic Analysis, NIPA
Table 1.1.5.
4. Personal Consumption Expenditures, Services. Billions of Dollars, Seasonally

Adjusted Annual Rate. Source: Bureau of Economic Analysis, NIPA Table 1.1.5.
5. Gross Private Domestic Investment, Fixed Investment, Residential. Billions of

Dollars, Seasonally Adjusted Annual Rate. Source: Bureau of Economic Analysis,
NIPA Table 1.1.5.
6. Gross Private Domestic Investment, Fixed Investment, Nonresidential. Billions

of Dollars, Seasonally Adjusted Annual Rate. Source: Bureau of Economic Analysis,
NIPA Table 1.1.5.
7. Government Consumption Expenditure. Billions of Dollars, Seasonally Ad-

justed Annual Rate. Source: Bureau of Economic Analysis, NIPA Table 3.9.5.
8. Government Gross Investment. Billions of Dollars, Seasonally Adjusted Annual

Rate. Source: Bureau of Economic Analysis, NIPA Table 3.9.5.
9. Nonfarm Business Hours. Index 2009=100, Seasonally Adjusted. Source:

Bureau of Labor Statistics, Series Id: PRS85006033.
10. Relative Price of Investment Goods. Index 2009=1, Seasonally Adjusted.
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Source: Federal Reserve Economic Data, Series Id: PIRIC.
11. Civilian Noninstitutional Population. 16 years and over, thousands. Source:

Bureau of Labor Statistics, Series Id: LNU00000000Q.
12. Con�dence: Business Tendency Survey for Manufacturing, Composite Indi-

cators, OECD Indicator for the United States, Series Id: BSCICP03USM665S.
13. Total Factor Productivity. �A Quarterly, Utilization-Adjusted Series on Total

Factor Productivity�, retrieved from
http://www.frbsf.org/economicresearch/economists/john-fernald/.
14. Moody�s Seasoned Baa Corporate Bond Yield, Not Seasonally Adjusted,

Average of Daily Data, Percent. Source: Board of Governors of the Federal Reserve
System.
15. Moody�s Seasoned Aaa Corporate Bond Yield, Not Seasonally Adjusted,

Average of Daily Data, Percent. Source: Board of Governors of the Federal Reserve
System.
16. 10 Year Treasury Constant Maturity Rate, Not Seasonally Adjusted, Average

of Daily Data, Percent. Source: Board of Governors of the Federal Reserve System.
17. E¤ective Federal Funds Rate, Not Seasonally Adjusted, Average of Daily

Data, Percent. Source: Board of Governors of the Federal Reserve System.
18. GDP de�ator= (2)=(1).
19. Real Per Capita Output, Yt = (1)=(11).
20. Real Per Capita Consumption, Ct = [(3) + (4)]=(19)=(11).
21. Real Per Capita Investment, It = [(5) + (6)]=(19)=(11).
22. Real Per Capita Government Expenditure, Gt = [(7) + (8)]=(19)=(11).
23. Per Capita Hours Worked, Nt = (9)=(11).
24. Credit spread = (14)� (16).
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Table 1: Calibration

Parameter Values Description
� 0.99 Subjective discount factor
� 1/3 Capital share
� 0 Labor supply elasticity parameter
� 10 Elasticity of substitution between goods
� 0.0333 Steady-state depreciation rate
u 1 Steady-state capacity utilization rate
G=Y 0.21 Steady-state government expenditure share of GDP
�y 1.0041 Steady-state gross per capita GDP growth rate
�a 0.9949 Steady-state gross growth rate of price of investment

Table 2: Estimation
Prior distribution Posterior distribution

Estimated parameters Range Density [mean,std] Mean 90% Interval
Steady-state marginal cost, � [0.83,0.90] Beta [0.88,0.01] 0.833 [0.831,0.834]
Elasticity of collateral, 
 [0.160,0.607] Uniform 0.322 [0.315,0.329]
Gov. trend smoothness,  yg [0,1) Beta [0.5,0.2] 0.965 [0.953,0.977]
Scale parameter, x R+ IGam [44,Inf] 47.33 [44.28,50.46]
AR technology shock, �x [0,1) Beta [0.5,0.2] 0.025 [0.008,0.041]
AR investment shock, �a [0,1) Beta [0.5,0.2] 0.029 [0.013,0.045]
AR preference shock, �� [0,1) Beta [0.5,0.2] 0.984 [0.981,0.988]
AR government shock, �g [0,1) Beta [0.5,0.2] 0.986 [0.982,0.989]
AR collateral shock, �� [0,1) Beta [0.5,0.2] 0.992 [0.990,0.994]
Belief shock volatility, �b R+ IGam [0.1,Inf] 0.640 [0.610,0.660]
SE technology shock, �x R+ IGam [0.1,Inf] 0.690 [0.650,0.730]
SE investment shock, �a R+ IGam [0.1,Inf] 0.560 [0.530,0.600]
SE preference shock, �� R+ IGam [0.1,Inf] 0.390 [0.360,0.410]
SE government shock, �g R+ IGam [0.1,Inf] 0.940 [0.900,0.990]
SE collateral shocks, �� R+ IGam [0.1,Inf] 0.130 [0.120,0.140]
SE measurement error, �mey [0,0.29] Uniform 0.290 [0.290,0.290]
SE measurement error, �mes [0,27.42] Uniform 27.28 [27.11,27.42]
Technology shock e¤ect, 
x [-3,3] Uniform -0.514 [-0.590,-0.438]
Investment shock e¤ect, 
a [-3,3] Uniform 0.271 [0.176,0.367]
Preference shock e¤ect, 
� [-3,3] Uniform 0.872 [0.756,0.994]
Government shock e¤ect, 
g [-3,3] Uniform 0.256 [0.205,0.305]
Collateral shock e¤ect, 
� [-3,3] Uniform 0.999 [0.610,1.393]
Log data density 4064:98

Table 3: Business cycle dynamics (band-pass �ltered)

USA Model
x �x �(x; Y ) ACF �x �(x; Y ) ACF
Yt 1.45 1 0.93 1.17 1 0.91
Ct 0.84 0.85 0.92 0.73 0.75 0.90
It 4.71 0.89 0.94 3.61 0.88 0.92
Gt 1.44 0.01 0.94 1.12 0.21 0.90
Nt 1.80 0.87 0.94 1.18 0.98 0.92
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Table 4: Unconditional variance decomposition
Series/shocks "bt "xt "at "�t "gt "�t "mey;t "mes;t
ln (Y t=Y t�1) 43.43 11.17 5.72 15.70 9.93 6.71 7.33 0.00
ln (Ct=Ct�1) 6.18 40.42 2.76 39.84 1.96 8.82 0.00 0.00
ln (It=It�1) 66.53 2.41 7.06 9.34 7.09 7.57 0.00 0.00
ln (N t=

�N) 21.24 2.54 9.37 26.50 22.06 18.30 0.00 0.00
ln (Gt=Gt�1) 0.00 0.98 0.16 0.00 98.85 0.00 0.00 0.00
ln (At=At�1) 0.00 0.00 100 0.00 0.00 0.00 0.00 0.00
Credit spread 12.26 2.06 4.85 17.99 15.06 43.49 0.00 4.29

Table 5: Posterior distribution comparison
Model with �yt = "bt

Parameter Mean 90% Interval
� 0.833 [0.831,0.834]

 0.322 [0.315,0.329]
 yg 0.965 [0.954,0.977]
x 47.30 [44.18,50.35]
�x 0.025 [0.008,0.042]
�a 0.029 [0.014,0.045]
�� 0.984 [0.981,0.988]
�g 0.986 [0.982,0.989]
�� 0.992 [0.990,0.994]
�� 0.860 [0.820,0.900]
�x 0.690 [0.650,0.730]
�a 0.560 [0.520,0.600]
�� 0.390 [0.360,0.410]
�g 0.940 [0.900,0.990]
�� 0.130 [0.120,0.140]
�mey 0.290 [0.290,0.290]
�mes 27.28 [27.11,27.42]

�(x; �y) -0.406 [-0.465,-0.349]
�(a; �y) 0.172 [0.110,0.233]
�(�; �y) 0.388 [0.338,0.438]
�(g; �y) 0.275 [0.226,0.327]
�(�; �y) 0.151 [0.091,0.213]

Log data density 4066.02

Table 6: Unconditional variance decomposition (Baa-Aaa spread)
Series/shocks "bt "xt "at "�t "gt "�t "mey;t "mes;t
ln (Y t=Y t�1) 45.46 11.34 5.34 15.63 9.12 6.31 6.80 0.00
ln (Ct=Ct�1) 6.67 41.08 2.65 38.98 1.84 8.78 0.00 0.00
ln (It=It�1) 68.22 2.32 6.45 9.04 6.24 7.73 0.00 0.00
ln (N t=

�N) 23.25 2.31 9.08 25.25 20.31 19.79 0.00 0.00
ln (Gt=Gt�1) 0.00 1.07 0.17 0.00 98.76 0.00 0.00 0.00
ln (At=At�1) 0.00 0.00 100 0.00 0.00 0.00 0.00 0.00
Credit spread 13.12 1.87 4.59 16.51 13.48 47.13 0.00 3.30
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Table 7: Unconditional variance decomposition (Baa-FF spread)
Series/shocks "bt "xt "at "�t "gt "�t "mey;t "mes;t
ln (Y t=Y t�1) 42.35 12.38 6.10 17.45 9.40 4.97 7.34 0.00
ln (Ct=Ct�1) 5.93 43.61 3.01 39.50 1.86 6.09 0.00 0.00
ln (It=It�1) 65.43 2.62 7.51 10.04 7.00 7.40 0.00 0.00
ln (N t=

�N) 22.11 2.33 10.53 26.72 22.55 15.76 0.00 0.00
ln (Gt=Gt�1) 0.00 1.02 0.17 0.00 98.81 0.00 0.00 0.00
ln (At=At�1) 0.00 0.00 100 0.00 0.00 0.00 0.00 0.00
Credit spread 14.32 2.19 6.08 20.38 17.16 34.61 0.00 5.26

Table 8: Unconditional variance decomposition (Gilchrist and Zakraj�ek�spread)
Series/shocks "bt "xt "at "�t "gt "�t "mey;t "mes;t
ln (Y t=Y t�1) 27.74 12.14 8.14 21.96 10.42 13.44 6.16 0.00
ln (Ct=Ct�1) 2.57 34.53 3.13 45.18 1.25 13.34 0.00 0.00
ln (It=It�1) 45.59 2.75 10.57 13.46 6.76 20.87 0.00 0.00
ln (N t=

�N) 11.05 1.13 10.02 30.71 14.06 33.02 0.00 0.00
ln (Gt=Gt�1) 0.00 0.77 0.16 0.00 99.07 0.00 0.00 0.00
ln (At=At�1) 0.00 0.00 100 0.00 0.00 0.00 0.00 0.00
Credit spread 5.24 0.77 4.17 17.59 7.72 61.05 0.00 3.46

Table 9: Unconditional variance decomposition (Fernald TFP)
Series/shocks "bt "xt "at "�t "gt "�t "mey;t "mes;t "metfp;t
ln (Y t=Y t�1) 39.02 10.35 5.10 12.63 9.13 17.01 6.77 0.00 0.00
ln (Ct=Ct�1) 4.63 38.01 2.18 34.21 1.49 19.48 0.00 0.00 0.00
ln (It=It�1) 59.56 2.09 6.31 8.56 6.12 17.36 0.00 0.00 0.00
ln (N t=

�N) 16.00 2.35 7.14 21.74 16.70 36.07 0.00 0.00 0.00
ln (Gt=Gt�1) 0.00 1.08 0.15 0.00 98.76 0.00 0.00 0.00 0.00
ln (At=At�1) 0.00 0.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00
Credit spread 6.54 1.34 2.61 10.38 8.13 67.28 0.00 3.71 0.00
ln (TFP t=TFP t�1) 0.00 92.29 0.00 0.00 0.00 0.00 0.00 0.00 7.71

Table 10: Unconditional variance decomposition (transitory TFP)
Series/shocks "bt "zt "at "�t "gt "�t "mey;t "mes;t
ln (Y t=Y t�1) 39.18 16.79 5.28 15.64 8.21 8.69 6.22 0.00
ln (Ct=Ct�1) 3.78 43.19 2.19 40.98 1.13 8.73 0.00 0.00
ln (It=It�1) 57.92 11.81 6.28 10.25 5.64 8.10 0.00 0.00
ln (N t=

�N) 16.08 17.47 8.35 26.25 15.10 16.75 0.00 0.00
ln (Gt=Gt�1) 0.00 0.00 0.22 0.00 99.78 0.00 0.00 0.00
ln (At=At�1) 0.00 0.00 100 0.00 0.00 0.00 0.00 0.00
Credit spread 5.63 41.34 2.59 10.61 6.17 30.37 0.00 3.30

Table 11: Model comparison

Baseline: permanent TFP Alternative: transitory TFP
Log data density 4064.98 3811.89
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Table 12: Model comparison

Determinacy 1 Determinacy 2 Indeterminacy
Model prior probability (in percent) 23 48 20
Log data density 3842.48 3474.90 4064.07
Model posterior probability 0 0 1

Table 13: Unconditional variance decomposition
Series/shocks "bt "xt "at "�t "gt "MEI

t "mey;t "mes;t
ln(Yt=Yt�1) 46.82 10.15 5.51 15.76 11.18 2.08 8.49 0.00
ln(Ct=Ct�1) 8.77 40.93 2.92 43.77 2.96 0.66 0.00 0.00
ln(It=It�1) 69.61 2.35 6.77 9.82 8.68 2.77 0.00 0.00
ln(Nt= �N) 25.57 3.62 10.02 31.30 27.17 2.31 0.00 0.00
ln(Gt=Gt�1) 0.00 0.75 0.13 0.00 99.12 0.00 0.00 0.00
ln(At=At�1) 0.00 0.00 100 0.00 0.00 0.00 0.00 0.00
Credit spread 0.00 0.00 0.00 0.00 0.00 99.95 0.00 0.05

Table 14: Estimation (transitory TFP)
Prior distribution Posterior distribution

Estimated parameters Range Density [mean,std] Mean 90% Interval
Steady-state marginal cost, � [0.83,0.90] Beta [0.88,0.01] 0.832 [0.831,0.833]
Elasticity of collateral, 
 [0.160,0.607] Uniform 0.296 [0.291,0.301]
Gov. trend smoothness,  yg [0,1) Beta [0.5,0.2] 0.953 [0.932,0.975]
Scale parameter, x R+ IGam [44,Inf] 44.38 [42.62,46.24]
AR technology shock, �z [0,1) Beta [0.5,0.2] 0.997 [0.996,0.998]
AR investment shock, �a [0,1) Beta [0.5,0.2] 0.020 [0.008,0.032]
AR preference shock, �� [0,1) Beta [0.5,0.2] 0.979 [0.974,0.983]
AR government shock, �g [0,1) Beta [0.5,0.2] 0.981 [0.976,0.987]
AR collateral shock, �� [0,1) Beta [0.5,0.2] 0.992 [0.991,0.994]
Belief shock volatility, �b R+ IGam [0.1,Inf] 0.660 [0.640,0.690]
SE technology shock, �z R+ IGam [0.1,Inf] 0.320 [0.310,0.330]
SE investment shock, �a R+ IGam [0.1,Inf] 0.560 [0.530,0.600]
SE preference shock, �� R+ IGam [0.1,Inf] 0.470 [0.440,0.490]
SE government shock, �g R+ IGam [0.1,Inf] 0.940 [0.890,0.990]
SE collateral shocks, �� R+ IGam [0.1,Inf] 0.140 [0.130,0.160]
SE measurement error, �mey [0,0.29] Uniform 0.290 [0.290,0.290]
SE measurement error, �mes [0,27.42] Uniform 27.29 [27.12,27.42]
Technology shock e¤ect, 
z [-3,3] Uniform 1.054 [0.924,1.187]
Investment shock e¤ect, 
a [-3,3] Uniform 0.277 [0.188,0.371]
Preference shock e¤ect, 
� [-3,3] Uniform 0.729 [0.644,0.818]
Government shock e¤ect, 
g [-3,3] Uniform 0.255 [0.203,0.305]
Collateral shock e¤ect, 
� [-3,3] Uniform 1.546 [1.186,1.931]
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