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Abstract

The paper studies what parameter variations does to the decision rules of a DSGE
model and to structural inference. We provide diagnostics to detect parameter varia-
tions and to ascertain whether variations are exogenous or endogenous. Identi�cation
and estimation distortions when a constant parameter model is incorrectly assumed
are examined; likelihood-based and VAR-based estimates of the structural dynamics
when the DGP features neglected parameter variations are compared. The features
of time variations in the �nancial frictions of a Gertler and Karadi (2010) model are
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1 Introduction
In macroeconomics, it is standard to study models that are structural in the
sense of Hurwicz (1962); that is, model where the parameters characterizing
the preference and the constraints of the agents and the technologies to produce
goods and services are invariant to changes in the parameters describing the
policy actions by the government. Such a requirement is fundamental to distinguish
structural models from reduced form ones, and it is of fundamental importance
to conduct correctly designed policy counterfactuals in dynamic stochastic general
equilibrium (DSGE) models.
Recent work by Dueker et al. (2007), Fernandez Villaverde and Rubio Ramirez

(2007), Canova (2009), Rios Rull and Santaeularia Llopis (2010), Liu et al. (2011),
Galvao, et al. (2014), Vavra (2014), Seoane (2014), Meier and Sprengler (forthcom-
ing) among others, has convincingly indicated that the parameters of DSGE
are not time invariant, and in many cases, smoothly evolve over time. The
evidence these papers provide agrees with Stock and Watson�(1996) conclusion
that reduced economic relationships show small but persistent time variations.
The presence of time variations in DSGE parameters can not be taken as

direct evidence that these models are not structural. For example, Cogley and
Yagihashi (2010), and Chang et al. (2013) have shown that parameter variations
may result from the misspeci�cation of a model with time invariant structure.
On the other hand, parameter variations may be needed in certain small
open economy models to insure the existence of a stationary equilibrium, see e.g.
Schmitt Grohe and Uribe (2003).
The approach the DSGE literature has taken to model parameter variations

follows the VAR literature, pioneered by Cogley and Sargent (2005) and Primiceri
(2005), and makes parameters exogenously drifting over time as independent
random walks, see e.g. Fernandez and Rubio (2007). Many economic questions,
however, hint at the possibility that parameter variations may instead be
endogenous. For example, is it reasonable to assume that the Federal Reserve reacts
in the same way to in�ation in an expansion or in a contraction? Davig and Leeper
(2006) analyze a situation where the policy rule could be state dependent and
describe how such a rule may impact on the dynamics induced by di¤erent
structural shocks. Does the propagation of shocks depend on the state of private and
government debt? Are the multipliers of �scal expansions driven by the amount
of inequality present in the economy, see e.g. Brinca et al. (2014)? Are household
as risk averse when they are wealthy as when they are poor or as impatient in
their consumption needs when the capital stock is high or low? Questions of this
type are potentially numerous and the answer is crucial for policymakers�decisions.
Clearly, counterfactual analyses and optimal monetary policy conclusions derived
assuming time invariant parameters or an inappropriate forms of time variations
may be incorrect; comparisons of the welfare costs of business cycles are likely to
be biased; growth prescriptions may be invalid; and standard impulse responses,
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historical and variance decompositions tools may provide a distorted picture of the
dynamics of an economy in real time.
This paper has a number of goals. First, we want to characterize the decision

rules of a DSGE when parameter variations are exogenous or endogenous, and in
the latter case, when agents internalize or not the e¤ects that their optimal
decisions may have on parameter variations. By characterizing their structure
and their di¤erences, we hope to shed light on the consequences that alternative
modelling assumptions may have for our understanding of how the economy
works. Second, we wish to measure how distorted are standard statistics when a
researcher erroneously assumes a time invariant structure but the data generating
process (DGP) features time varying parameters and provide diagnostics to detect
the misspeci�cation driven by parameter variations. Third, we are interested in
studying the consequences of using time invariant models when the parameters are
time varying in terms of identi�cation, estimation, inference, and policy analyses.
Finally, we want to compare likelihood-based and SVAR-based estimates of the
dynamic responses to structural shocks when time variations in the parameters
are neglected. In particular, in the same vein as Canova and Paustian (2011),
we wish to ask whether in the presence of misspeci�cation driven by parameter
variations, approaches that take a less structural approach are as good as likelihood
based methods in describing the dynamics induced by structural shocks.
The existing literature is generally silent on the issues of interest in this paper.

Seoane (2014) is the closest, in the sense that parameter variations are used to
gauge potential model misspeci�cations. Kulish and Pagan (2014) characterize the
decision rules of a DSGE model when structural breaks which are partly
predictable. Magnusson and Mavroedis (2014) and Huang (2014) examine how time
variations in the certain parameters may a¤ect the identi�cation of other
structural parameters, the asymptotic theory of maximum likelihood estimators,
and standard break tests. Andreasen (2012) studies how time variations in the
variance of the exogenous shocks a¤ect risk premia in models approximated to
the second and third order and Fernandez et al. (2013) investigate to what extent
variations in shock volatility matter for real variables. Ireland (2007) assumes that
trend in�ation in a standard New Keynesian model is driven by structural shocks
and estimates the model by likelihood techniques, while Ascari and Sbordone
(2014) highlight that trend in�ation may be a function of monetary policy
decisions.
The next section characterizes the decision rules in a general DSGE setup where

both exogenous and endogenous parameter variations are possible. We consider time
variations in the parameters regulating preferences, technologies, and constraints
and disregard variations in the auxiliary parameters regulating the persistence
and the volatility of structural shocks and of the parameters. We consider both
�rst order approximations and higher order solutions. We present a simple RBC
example to illustrate our results and to provide some intuition for our modelling
choices of time variations.
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We show that if parameter variations are purely exogenous, the contemporaneous
impact and the dynamics induced by structural shocks are the same as in a model
with no parameter variations. Thus, if one considers a time invariant version of the
model and correctly identi�es the structural disturbances, she would make no mistakes
in characterizing the dynamics in response to these shocks. Clearly, variance decom-
positions exercises will be distorted, since some sources of variations (the disturbances
to the parameters) will be omitted.
On the other hand, if parameter variations are endogenous, the instantaneous im-

pact and the dynamics in responses to structural shocks may be di¤erent from the
one of a constant coe¢ cient model. The extent of the di¤erences in the two speci-
�cations depends on two matrices. We show situations when these matrices are zero
(making the dynamics of time varying and time invariant models identical) and
situations when they are not. We show that the conclusions obtained when the
model solution is approximated with a �rst order expansion around the steady state
carry over when a second order expansion is constructed.
Section 3 provides diagnostics to detect the misspeci�cation induced by employing

a time invariant model when the data has been generated by a time varying
coe¢ cient model. We present statistics constructed using the optimality wedges of
Chari et al. (2007) and the forecast errors and apply them to the RBC example
previously considered. We also describe a marginal likelihood diagnostics which
can help us to recognize whether the time variations detected with these statistics
are of exogenous or endogenous nature.
Section 4 deals with parameter identi�cation. We are interested in examining

whether ignoring time variations in the parameters may have important repercussions
for the way time invariant parameters can be identi�ed from the likelihood of
the model. Since the likelihood is constructed using the forecast errors of
the model, which are generally misspeci�ed when a time invariant model is used,
one expects the shape of the likelihood function to be altered in a somewhat
unpredictable way. Once again, in the context of the RBC example, we show
that the likelihood function can be strongly altered when a time invariant model
is considered, but its curvature does not acquire pathological characteristics when
time variations in the parameters are neglected. Overall, our conclusions broadly
agree with Huang (2014) in the sense that weakly identi�ed parameters do not
become better identi�ed when time variations are present.
Section 5 considers the structural estimation of a model with time invariant

parameter when the data is generated by models with time varying coe¢ cients.
The forecast errors used to construct the likelihood generally di¤er from the structural
shocks because the dynamics assumed by the constant coe¢ cient model are
incorrect and because shocks misaggregation is present. Thus, one should expect
important di¤erence between the parameters of the DGP and the estimated ones.
Indeed, we show that distortions in parameter estimates are present, are more likely to
be signi�cant when parameter variations are exogenous, and are generally produced
because the parameters regulating the income and substitution e¤ects are poorly
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estimated. As a consequence, estimated impulse responses di¤er from the true
ones in terms of impact magnitude, shape and persistence, and the contribution
of structural shocks to the variability of the endogenous variables is generally
biased, with technology shocks absorbing to a large extent the contribution of
missing shocks.
Section 6 studies whether less structural time invariant VAR methods can help

to recover the dynamics induced by structural shocks when time varying parameters
are present. We endow the researcher with the population autoregressive matrices of
the time invariant and of the time varying model and we ask whether it is possible
to �invert�the information present in VAR errors using model based restrictions.
When the model displays parameters with exogenous variations, SVAR methods
are right on target, since VAR shocks contain the relevant information about
the structural shocks. The picture still very good when there are endogenous time
variation: most of the qualitative features (impact e¤ect, shape and persistence)
of the structural dynamics are well captured by the SVAR methods. The good
performance of SVAR methods is due to two features of the DGP: the fact that
the dynamics in response to shocks are not very di¤erent when the model has �xed
or time varying parameters; and the fact that shocks to the parameters, which are
disregarded when a constant coe¢ cient model is used, have low persistence.
Section 7 estimates a version of the Gertler and Karadi (2010) model of unconven-

tional monetary policy, applies the diagnostics we propose to detect time variations
in the parameters and estimates a version of the baseline model where the parameter
controlling the extent of moral hazard is allowed to vary over time. We show that
there is evidence that a �xed coe¢ cient model is misspeci�ed, that making parameter
variations endogenous is preferable, and that the conclusions regarding the dynamic
e¤ect capital quality shock are altered. Section 8 concludes.

2 The setup
The equilibrium conditions of a dynamic stochastic general equilibrium (DSGE) model
can be represented as:

Et [f(Xt+1; Xt; Xt�1; Zt+1; Zt;�1t+1;�1t)] = 0 (1)

where Xt is an nx � 1 vector of endogenous variables, Zt is an nz � 1 vector of strictly
exogenous variables, �1t is an n�1 � 1 vector of possibly time varying structural para-
meters and f is a continuous function, di¤erentiable up to order q, mapping onto a
Rnx space.
The law of motion of the strictly exogenous processes Zt+1 is given by

Zt+1 = 	(Zt; ����
z
t+1) (2)

where 	 is a continuous function, di¤erentiable up to order q, mapping onto a Rnz
space; �zt+1 is a ne � 1 vector of i.i.d. structural disturbances with mean zero and



2 THE SETUP 6

identity covariance matrix; nz � ne; � � 0 is an auxiliary scalar, �� is a known nz�ne
matrix.
Let�t = [�1t;�2t]; where�2t is a n�1nx1�1 vector of parameters, nx � nx1;appearing

in the case agents internalize the e¤ects that their decisions have on the parameters.
The law of motion of the structural parameters �t is given by

�t+1 = �(�; Xt; Ut+1) (3)

where � is a continuous function, di¤erentiable up to order q, mapping onto the Rn�
space; Ut is a nu � 1 vector of exogenous disturbances, n� = n�1(1 + nx1) � nu; � is a
vector of constants:We assume that the law of motion of Ut+1 is given by

Ut+1 = 
(Ut; ��u�
u
t+1) (4)

where 
 is continuous and di¤erentiable up to order q,mapping onto the Rnu space;
�ut is a nu � 1 vector of i.i.d. disturbances with mean zero and identity covariance
matrix, uncorrelated with the �zt+1;and �u is a known nu � nu matrix.
Three features of the setup need some discussion. First, the vector of

structural disturbances �zt+1 may be smaller than the vector of exogenous variables
Zt+1, in which case there are common sources of variations in the exogenous
variables Similarly, the dimension of �ut+1 may be smaller than the dimension of
the structural parameters. Second, we allow for time variations in the parameters
regulating preferences, technologies and constraint but we not consider variations
in the auxiliary parameters regulating the law of motion of the Zt and the Ut as
we are not interested in stochastic volatility, GARCH or rare events phenomena
(as in e.g. Andreasan, 2012), nor in time variations driven by evolving persistence
of the exogenous processes. Third, (1) makes no distinction between states and
controls. Thus, the solution we derive has to be thought of as �nal form
(endogenous variables as a function of the exogenous variables and the parameters)
rather than a state space form (control variables as a function of the states and of
the parameters).

2.1 The �rst order approximate decision rules
We start by studying the implications of structural parameters variation for agents�
decision rules when a �rst order approximate solution is considered. Taking a linear
expansion of (1) around the steady states leads to

0 = Et [Fxt+1 +Gxt +Hxt�1 + Lzt+1 +Mzt +N�t+1 +O�t] (5)

where F = @f=@Xt+1, G = @f=@Xt, H = @f=@Xt�1, L = @f=@Zt+1 , M = @f=@Zt,
N = @f=@�t+1 O = @f=@�t all evaluated at the steady states values of (Xt; Zt;�t)
and lower case letters indicate deviations from the steady states. Let �u =
@�=@Ut+1, �x = @�=@Xt,  z = @	=@Zt; !u = @
=@Ut and assume that all the
eigenvalues of  z and of !u are strictly less than one in absolute value.
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Proposition 2.1. Assume that equations (2)-(4) hold and that there exists a recursive
equilibrium law of motion solving (5). Then, the unique recursive law of motion is

xt = Pxt�1 +Qzt +Rut (6)

where

� P solves FP 2 + (G+N�x)P + (H +O�x) = 0.

� Given P , Q solves V Q = �vec(L z+M) and V =  0z
F+Inz
(FP+G+N�x)
where vec denotes the columnwise vectorization.

� Given P , R solves WR = �vec(N�u!u+O�u) where W = !0u
F +In� 
 (FP +
G+N�x)

Proof. The proof is straightforward. Substituting (6) into (5), we obtain

0 =[FP 2 + (G+N�x)P + (H +O�x)]xt�1 + [(FP +G+N�x)Q+ FQ z + L z +M ]zt

+ [(FP +G+N�x)R+ FR!u +N�u!u +O�u]ut

Since the solution must hold for every realization of xt�1, zt, ut, we need to equate
their coe¢ cient to zero and the result obtains.

Corollary 2.2. Assume that the condition stated in Proposition 2.1 hold and �x = 0.
Then, variations in the j-th structural parameter, �j, have no impact on the dynamics
induced by structural shocks. Their instantaneous e¤ect on the endogenous variables
will be non-zero if and only if the jth column of N�u!u +O�u is non zero.

Corollary 2.3. Assume that the conditions stated in Proposition 2.1 hold and �u = 0.
If the matrices N�x and O�x are zero, variations in the j-th structural parameter �

j

have no impact on the endogenous variables xt.

Proposition 2.1 indicates that the format of the �rst order approximate solution
will have, as in a constant coe¢ cient setup, a VARMA structure. Disturbances to
the parameters play the same role as additional structural shocks, making a
model with m structural shocks and a model with m1 structural shocks and m2
disturbances to the parameters, m= m1 +m2; potentially indistinguishable.
Corollaries 2.2 and 2.3 constitute the main results of this section and give conditions

under which parameter variations have an impact on the dynamics induced by
structural disturbances. If parameter variations are purely exogenous, �x = 0, and
the P and Q matrices will be the same as those of a constant coe¢ cient model.
The intuition for this result is simple: as long as the shocks to Zt and �t
are uncorrelated, parameter variations add variations in the endogenous variables
dynamics without altering the dynamics produced by existing disturbances. In
other words, suppose an economy is perturbed by a technology shocks. Then, the
dynamics induced by these shocks do not depend on whether the discount factor
is constant or time varying, provided that its innovations exogenous and unrelated
to the innovations in the technological process.



2 THE SETUP 8

One implication of this results is that if one considers a time invariant version
of the model and correctly identi�es the structural disturbances �zt , she would make
no mistakes in characterizing the dynamics in response to structural shocks. Clearly,
variance of historical decompositions exercises will be distorted, since certain sources
of variations (the �ut disturbances) are omitted from the model. One interesting
question is whether standard procedures allow a researcher employing a time invariant
setup to recover the correct �zt from the data when the DGP is a model with time
varying structural parameters. If this is not the case, one would like to know which
structural disturbance will absorbs the e¤ect of missing shocks.
On the other hand, if parameter variations are purely endogenous, �u = 0, the

dynamics in response to structural shocks may be altered. To know if distortions
are present one needs to check whether the matrices N�x and O�xare identically
equal to zero or not. If they are not, a researcher employing a time invariant version
of the model is likely to incorrectly characterize both the dynamics in response to
structural shocks and the relative importance of di¤erent sources of disturbances for
the variability of the endogenous variables.
Exogenous variations in the structural parameters typically have an instantaneous

e¤ect on the endogenous variables of the model, i.e. R6= 0; but purely endogenous
parameter variations have zero instantaneous e¤ect on xt. Thus, to avoid identi�-
cation problems in the latter case, it is preferable to have the relationship between
parameters and the endogenous variables disturbed by shocks.

2.2 The second order approximate decision rules
One may be curious as to whether the conclusions we have reached are a¤ected when
higher order approximations are considered: We know from Schmitt-Grohe and Uribe
(2004) that the �rst order terms in �rst and higher order approximations will be the
same. To examine whether quadratic terms will be a¤ected by the presence of time
variations we need to simplify the notation. Let Wt = [Z 0t; U

0
t ]
0, Yt+1 = [X 0

t+1; X
0
t]
0,

�t+1 = [�
z0
t+1; �

u0
t+1]

0;� = diag[�z;�u] so that (1) is

0 = Et[F (Yt;Wt; ���t+1;�)] (7)

once the solution Yt+1 = h(Yt;Wt; ���t+1) is taken into account. The second order
approximation of (7) is

Et[(F yyt + Fwwt + F ��) + 0:5(F yy(yt 
 yt) + Fww(wt 
 wt) + F ���2) +

F yw(yt 
 wt) + F y�yt� + Fw�wt�] = 0 (8)

Note that F ��; F y�yt�; Fw�wt� are all zero, see Schmitt Grohe and Uribe (2004).
The second order expansion of the decision rule is

yt+1 = gyyt + gwwt+1 + 0:5(gyy(yt 
 yt) + gww(wt+1 
 wt+1) + g���2)
+ gyw(yt 
 wt+1) + gy�yt� + gw�wt+1� (9)
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Proposition 2.4. Consider the second order approximation of the optimality condition
(8). Time variations in the structural parameters a¤ect gyy and gyw the if only if they
a¤ect gy and gw.

Proof. The proof is strightforward. Matching coe¢ cient and requiring, for example,
Fyy = 0 implies that gyy = �(Fy0)�1J1 where

J1 = 0:5Fy0y0(gy 
 gy) + Fy0ygy + Fy0w0gyhy + 0:5Fyy + Fyw0hy + 0:5Fw0w0hyhy 0 (10)

where primes indicate future values. Thus gyy depends only on the �rst order term
gy, the matrix of derivatives of the optimality conditions with respect to the argument
evaluated at the steady state (Fy0y0 ; Fw0w0 , etc.) and hy. Similarly Fww = 0 implies
that gww = �(Fy0)�1J2 where

J2 = 0:5Fy0y0(gw
gw)+Fy0w0hwgw+Fywgw+0:5Fw0w0hwhw 0+Fw0whw+0:5Fww (11)

which also depends on �rst order terms (gw),the matrix of derivatives of the optimality
conditions with respects to the argument evaluated at the steady state (Fy0y0 ; Fw0w0 ,
etc.) and hw.The proof for the other terms of the expression is analogous.

The intuition for proposition 2.4 is simple: since second order terms are
function of �rst order terms, of the parameters of the law of motion of the Wt, and
of the gradient and the Hessian of the optimality conditions evaluated at the
steady states, they do not feature independent variations. Thus, the second order
dynamics will be distorted by time variations only when the �rst order dynamics
are a¤ected.

2.3 Discussion
The results derived in this section requires time variations to be continuous. This is in
line with the evidence produced by Stock and Watson (1996) and with the standard
practice employed in SVAR. Note that our framework is �exible and can accommodate
once-and-for-all breaks (at a known date) as long as transition between the two states is
smooth. For example, a smooth threshold switching speci�cation such as �t+1 = (1�
�)�+��t+exp(t�T0)=(1+exp(t�T0)), t = 1; : : : ; T0�1; T0; T0+1; : : : T is an acceptable
form of exogenous time variations. Similarly, endogenous forms of time variations of
the type �t+1 = (1��)�+��t+a exp(�(Kt�K+U�;t+1))=(b+exp(�(Kt�K+U�;t+1))
where a and b are vectors of parameters can also be used. What the framework
does not allow is for Markov switching variations in the parameters which occur at
unknown dates or for abrupt changes, such as those considered in Davig and Leeper
(2006), since the smoothness conditions on the f function may not hold.
Kulish and Pagan (2014) have developed solution and estimation procedures

for models with abrupt breaks and learning between the states. Their solution
for the pre and post break period is a constant coe¢ cient VAR, while for the
learning period is a time varying coe¢ cient VAR. Since (6) is a constant coe¢ cient
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VAR with an extended set of shocks, a few words of comparison are needed. First,
they are interested in characterizing the solution during the learning period, when
the structure is unchanged but expectations move, while we are interested in the
solution when parameters are continuously varying. Second, their modelling of time
variations is abrupt and the solution is designed to deal with that situation, while
in our case variations are continuous. Third, in our setup expectations are varying
with the variations of the structure, while Kulish and Pagan have expectations
varying only in anticipation of a (foreseeable) break.
While we are able to establish what parameter variations do to the decision rules

in the �rst and second order approximate solutions, the conclusions for higher order
approximations will generally depend on the details of the model speci�cation. One
should expected third and higher order dynamics to di¤er in time varying coe¢ cient
and time invariant models, regardless of whether time variations are exogenous
or endogenous, because third order terms depend on the variance of the shocks to the
parameters and thus they will be di¤erent from those in constant coe¢ cient models
which do not feature these additional shocks. For the parameterization employed
in the example of the next subsection, the dynamics in exogenously varying and
�xed coe¢ cient model di¤er only in the �fth digit, but in general one can conceive
examples where second and third order approximations will not be the same.
One way of thinking about the di¤erences between exogenous and endogenous pa-

rameter variations is that in the former each parameter evolves independently and
covariations can be modelled by selecting the matrix �u to be of reduced rank. With
endogenous variations, there is an observable factor (the X�s) which drives the common
parameter variations. Thus, �u will be diagonal and will feature reduced rank if for
some parameter variations are purely endogenous.

2.4 An example
To convey some intuition into the mechanics of corollaries 2.2-2.3, we use a simple,
closed economy, RBC model. The representative agent maximizes the discounted
stream of future utilities given by

maxE0

1X
t=1

�t(
C1��t

1� � �A
N1+

t

1 + 

) (12)

subject to the sequence of constraints

Yt(1� gt) = Ct +Kt � (1� �t)Kt�1

Yt = �tK
�
t�1N

1��
t

where Yt is output, Ct consumption, Kt the stock of capital and Nt is hours worked and
gt =

Gt
Y t
is the share of government expenditure in output. The system is perturbed

by two exogenous structural disturbances: one to the technology Zt and one to the
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government spending share, gt, assumed to follow time invariant AR(1) processes

ln �t = (1� ��) ln � + �� ln �t�1 + e
�
t

ln gt = (1� �g) ln g + �g ln gt�1 + e
g
t (13)

where variables without time subscript denote steady state quantities. There are 12
parameters in the model: 6 structural ones (� is the capital share, � the risk aversion
coe¢ cient, 
 the inverse of the Frisch elasticity of labor supply, A the constant in front
of labor in utility, �t the time discount factor and �t the depreciation rate), and 6
auxiliary ones (the steady state values of the government expenditure share and of
TFP, (�; g); their autoregressive parameters, (�� ; �g); and their standard deviations
(�� ; �g)). We assume that all parameters but �t and �t are time invariant. Dueker et
al. (2007), Liu et al (2011) and Meier and Sprenger (forthcoming) provide evidence
that these two parameters are indeed varying. Since Canova and Sala have shown
that in this model they are only weakly identi�ed, we can use the model to verify
some of the claims of Magnusson and Mavroedis (2014) in a Likelihood context.
The �rst order approximation to their law of motion is described below.
The optimality conditions of the problem are:

AC�t N


t = (1� �)(1� gt)Yt=Nt (14)

�tC
��
t = Et

@�t+1
@Kt

u(Ct+1; Nt+1) + Et

�
�t+1C

��
t+1(

�(1� gt+1)Yt+1
Kt+1

+ (1� �t+1)�
@�t+1
@Kt

Kt)

�
(15)

(1� gt)Yt = Ct +Kt � (1� �t)Kt�1 (16)

Yt = �tK
�
t�1N

1��
t (17)

Time variations in �t and �t a¤ect optimal choices in two ways. First, there is a
direct e¤ect in the Euler equation and in the resource constraint when �t and �t are
time varying. Second, if agents take into account the fact that their decisions may
a¤ect parameter variations, there will be a second (endogenous) e¤ect coming from
variations in the derivatives of �t+1 and �t+1 with respect to the endogenous states -
see the Euler equation (15).
We specialize this setup to consider various possibilities.

2.4.1 Model A: Constant coe¢ cients.

As a benchmark, we let �t = �t and �t = �. The optimality conditions are

AC�t N

+1
t = (1� �)(1� gt)Yt
C��t = Et�C

��
t+1 (�(1� gt+1)Yt+1=Kt + 1� �)

(1� gt)Yt = Ct +Kt � (1� �)Kt�1

Yt = �tK
�
t�1N

1��
t
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In the steady state, it must be the case that:

K

Y
=

�(1� g)
� � 1 + 1=� ;

C

Y
= 1��K

Y
� g

Y
;
N

Y
= �

1
1��

�
K

Y

� �
��1

; Y =

"
A

(1� �)(1� g)

�
C

Y

�� �N
Y

�1+
#� 1
�+


:

(18)

2.4.2 Model B: Exogenous parameter variations

Here we set dt = �t+1=�t and let �t+1�� � (dt+1(1� ��)�; �t+1� (1� ��)�)0 = Ut+1.
We postulate

ud;t+1 = �dud;t + ed;t+1 (19)

u�;t+1 = ��u�;t + e�;t+1 (20)

Since �t+1 is independent of the capital stock, @�t+1=@Kt = @�t+1=@Kt = 0 and
the f function becomes

Et [f(Xt+1; Xt; Xt�1; Zt+1; Zt;�t+1;�t)] =

Et

0BB@
AC�t N


+1
t � (1� �)(1� gt)Yt

1� dtC��t+1=C
��
t (�(1� gt+1)Yt+1=Kt + 1� �t+1)

(1� gt)Yt � Ct �Kt + (1� �t)Kt�1
Yt � �tK�

t�1N
1��
t

1CCA = 0 (21)

where Xt = (Kt; Yt; Ct; Nt)
0, Zt = (�t; gt)

0 and �t = �1t:
It is easy to verify that in the steady state (KY ;

C
Y ;

N
Y ; Y ) will coincide with those of

the constant coe¢ cient model. In addition, since �x = 0, time variations in (dt+1; �t+1)
leave the decision rule matrices P and Q as in model A. Thus, as far as impulse responses
to structural shocks are concerned, models A and B are observationally equivalent.
To examine whether variations in �t have an instantaneous impact on the endoge-

nous variables, we need to check whether the columns of N�u!u+O�u are zero. The
relevant matrices of partial derivative evaluated at the steady state are

N =
@f

@�t+1
=

0BB@
0 0
0 1=�
0 0
0 0

1CCA ; O =
@f

@�t
=

0BB@
0 0

�1=� 0
0 �K
0 0

1CCA ; !u =

�
�d 0
0 ��

�
�u =

@�

@Ut+1
=

�
1 0
0 1

�
:

(22)
Thus:

N�u�u +O�u =

0BB@
0 0

�1=� ���=�
0 �K
0 0

1CCA (23)

Hence, time variations in (dt+1; �t+1) have an impact e¤ect on Xt - at least the entry
of N�u!u +O�u is non zero. Note that if dt is a fast moving variable, the impact
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e¤ect on Xt depends on the persistence of shocks to the growth rate of the discount
factor. For example, if �d = 0, shocks to the growth rate of the time discount factor
have no e¤ects on Xt. In this case if only the discount factor is time varying and
variations in its growth rate are i.i.d., the decision rules of the models A and B will be
identical.

2.4.3 Model C: State dependent parameter variations without inter-
nalization

Assume that the time variations in the growth rate of the discount factor and in the
depreciation rate are driven by the aggregate capital stock. We specify

�t+1 = [�u � (�u ��l)e��a(Kt�K+U�;t+1)] + [�u � (�u ��l)e�b(Kt�K+U�;t+1)] (24)

where �a; �b;�u;�l are vectors of parameters and lu�;t+1 be a zero mean, i.i.d. vector
of shocks. To insure that model C has the same steady state as model A, we let
�l = (�=2, �=2), so that�
dt+1
�t+1

�
= �(�;Kt; Ut+1) =

�
2du � (du � �=2)[e��1(Kt�K+U�;t+1) + e�2(Kt�K+U�;t+1)]
2�u � (�u � �=2)[e��3(Kt�K+U�;t+1) + e�4(Kt�K+U�;t+1)]

�
(25)

This speci�cation is quite �exible: depending on the choice of �0s;we can accom-
modate linear or quadratic relationships, which are symmetric or asymmetric. We
assume that agents treat the capital stock appearing in (25) as an aggregate variable.
This assumption is similar to the �small k -big k� situation encountered in standard
rational expectations models or to the distinction between internal and external habit
formation. Thus, agents��rst order conditions do not take into account the fact that
their optimal capital choice of Kt changes dt and �t and @�t+1=@Kt = @�t+1=@Kt = 0.
Hence, the equilibrium conditions are then as in (21) Since the f function is the same
as in model B, the matrices N and O are unchanged.
We examine �rst whether parameter variations a¤ect the matrices P and Q regu-

lating the dynamics induced by the structural shocks. We have,

N�x =

0BB@
0 0
0 1=�
0 0
0 0

1CCA� (du � �=2)(�1 � �2) 0 0 0
(�u � �=2)(�3 � �4) 0 0 0

�
(26)

O�x =

0BB@
0 0

�1=� 0
0 �K
0 0

1CCA� (du � �=2)(�1 � �2) 0 0 0
(�u � �=2)(�3 � �4) 0 0 0

�
(27)

Thus, unless �1 6= �2 and/or �3 6= �4, endogenous variations in dt; �t leave P and
Q una¤ected, i.e. symmetries in the law of motion for time variations in dt; �t are
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needed to produce structural dynamics which are di¤erent from those of a constant
coe¢ cient model.
To verify whether parameter variations have an impact e¤ect on Xt, note that

!u = 02�2, �d = �� = 0 and that

�u =
@�

@Ut+1

�
(�u � �=2)(�1 � �2) 0

0 (�u � �=2)(�3 � �4)

�
; (28)

�x =
@�

@Xt

�
(�u � �=2)(�1 � �2) 0 0 0
(�u � �=2)(�3 � �4) 0 0 0

�
: (29)

Thus,

N�u!u +O�u =

0BB@
0 0

1=�(du � �=2)(��1 + �2) 0
0 K(�u � �=2)(��3 + �4)
0 0

1CCA (30)

As long as �1 6= �2or �3 6= �4; endogenous parameter variations have an instantaneous
impact on Xt. Note that this is true regardless of whether shocks to the parameters
are i.i.d. or persistent.

2.4.4 Model D: State dependent parameter variations with inter-
nalization.

We still assume that time variations in the discount factor and in the depreciation rate
are driven by the aggregate capital stock and by an exogenous shock, as in equation
(24). Contrary to case C, we assume that agent internalize the e¤ects that their capital
decisions have on parameter variations. The relevant derivatives are

d0t+1 � @dt+1=@Kt = �(�u � �=2)[��1e��1(Kt�K+u�;t+1) + �2e
�2(Kt�K+u�;t+1)](31)

�0t+1 � @�t+1=@Kt = �(�u � �=2)[��1e��1(Kt�K+u�;t+1) + �2e
�2(Kt�K+u�;t+1)](32)

and the Euler equation becomes

C��t = Etd
0
t u(Ct+1; Nt+1) + Et

�
dt C

��
t+1(�Yt+1=Kt+1 + 1� �t+1 � �0t+1Kt)

�
(33)

In order for the steady states of model D to equal to those of model A, we restrict
�1 = �2 = �1, �3 = �4 = �3. Note that in model D, the f(:) function di¤ers from the
one obtained in model C. In particular, we have

0 = Et [f(Xt+1; Xt; Xt�1; Zt+1; Zt;�t+1;�t)] =

Et

0BB@
AC�t N


+1
t � (1� �)(1� gt)Yt

1� d0t u(Ct+1; Nt+1)=C
��
t � dt C��t+1=C

��
t (�(1� gt+1)Yt+1=Kt+1 + 1� �t+1 + �0t+1Kt)

(1� gt)Yt � Ct �Kt + (1� �t)Kt�1
Yt � �tK�

t�1N
1��
t

1CCA (34)
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where as before Xt = (Kt; Yt; Ct; Nt)
0, Zt = (�t; gt)

0 but now �t = (dt; �t; d
0
t; �

0
t)
0 and

its law of motion is0BB@
dt+1
�t+1
d0t+1
�0t+1

1CCA = �(�; kt; ut+1) =

0BB@
2du � (du � �=2)[e��1(Kt�K+u�;t+1) + e�1(Kt�K+u�;t+1)]
2�u � (�u � �=2)[e��3(Kt�K+u�;t+1) + e�3(Kt�K+u�;t+1)]
�(du � �=2)�[�e��1(Kt�K+u�;t+1) + e�1(Kt�K+u�;t+1)]
�(�u � �=2)�[�e��3(Kt�K+u�;t+1) + e�3(Kt�K+u�;t+1)]

1CCA
(35)

The relevant matrices of derivatives evaluated at the steady states are !u = 02�2

N =
@f

@�t+1
=

0BB@
0 0 0 0
0 1=� �u(C;N)=C�� ��K
0 0 0 0
0 0 0 0

1CCA ; O =
@f

@�t
=

0BB@
0 0 0 0

�1=� 0 0 0
0 �K 0 0
0 0 0 0

1CCA

�x =

0BB@
0 0 0 0
0 0 0 0

�2(�u � �=2)�21 0 0 0
�2(�u � �=2)�23 0 0 0

1CCA ; �u =

0BB@
0 0
0 0

�2(�u � �=2)�21 0
0 �2(�u � �=2)�23

1CCA
Clearly, N�x 6= 0, O�x = 0 and N�u!u + O�u = 0. Thus, a shock to the law of
motion of the parameters alters the dynamics produced by structural shocks but has
no instantaneous e¤ect on the xt, i.e. R = 0.
In sum, to have time variations mattering for the dynamics to structural shocks

we need endogenous parameter variations and either that the relationship between
parameters variations and the states is asymmetric; or that agents internalize the
consequences their decisions have on the law of motion of the parameters or both.

2.4.5 Impulse responses

Why are the decision rule matrices P and Q di¤erent in models C and D?
We explore the shape of impulse responses to try to understand the economic
di¤erences present in the two setups. To compute impulse responses we need to
select values for the parameters. For those common to all models we choose
� = 0:30, � = 0:99, � = 0:025, 
 = 2, � = 2, A = 4:50, �=1;�� = 0:90, �� = 0:00712,
g = 0:18; �g = 0:50 and �g = 0:01. For the parameter speci�c to the time varying
parameters models we choose:

� Model B: �� = 0:985; �� = 0:95 and �� = 0:002 �� = 0:07.
� Model C : �1� = 0:01; �2� = 0:03; �1� = 0:2; �2� = 0:1, �d = �� = 0:5, �u =
0:999; �u = 0:025.

� Model D : �1� = 0:0001; �2� = 0:016; �1� = 0:2; �2� = 0:1, �d = 0.0001;�� = 0:1,
�u = 0:999; �u = 0:025.

Figures 1 and 2 reports the responses to the two structural shocks for each of the
four model: the �rst column has the responses to technology shocks;
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Figure 1: Impulse responses, �rst order approximation
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Figure 2: Impulse responses, second order approximation
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the second the responses to government expenditure shocks. Figure 1 reports responses
using a �rst order approximation and Figure 2 responses obtained with a second
order approximation 1.
As expected, models A and B have identical �rst order dynamics dynamics. Thus,

if technology and government expenditure shocks could correctly be identi�ed, one
would be able recover the true dynamics to structural disturbances using a constant
coe¢ cient model even when the DGP displays exogenous parameter variations. The
responses of models C and D di¤er from those of a constant coe¢ cient model. With
both shocks, it is primarily the shape and the persistence of consumption and capital
responses which is altered primarily because income and substitution e¤ects are di¤er-
ent from those in model A. For instance, in responses to technology shocks, agents
work less, save less and consume more in models C and D than in the constant coef-
�cients model, while in response to government expenditure shocks consumption fall
more and capital fall less relative to the constant coe¢ cients case. Finally con�rming
proposition 2.4, second order approximation deliver responses that di¤er across models
only if they di¤erent in a �rst order approximation. The magnitude of the responses
and the direction of the di¤erences in the two systems is similar, indicating that the
magnitude of second order terms is small - nonlinearities in RBC models are known to
become important only for extreme values of certain parameters - see e.g. Fernandez
Villaverde and Rubio Ramirez (2004).

3 Characterizing misspeci�cation due to time
variations
One way to characterize the misspeci�cation produced by a constant coe¢ cient model
when the true DGP has time varying coe¢ cients is to use �wedges� (see Chari et
al., 2008). In our case, wedges are calculated using the optimality conditions of
the model with constant coe¢ cients and the available data for Xt. Thus, while
Ef(Xt+1; Xt; Xt�1; Zt+1; Zt;�t+1;�t) = 0 when (Zt; Xt) are generated by f; it will
have expected value di¤erent from zero for any f� 6= f . Since f(Xt+1; Xt; Xt�1; Zt+1; Zt;�t+1;�t)
has a di¤erent format depending on the time varying speci�cation one considers,
wedges will be non-zero in general. In the RBC example previously considered,
the components of f corresponding to the Euler equation and the resource constraint
di¤er in models with �xed and time varying coe¢ cients. Furthermore, additional terms
appear in the Euler equation when agents internalize the e¤ects their capital decisions

1Since the responses of hours and output to government expenditure shocks are somewhat di¤erent from
what the conventional wisdom indicates, a few words of explanations are needed. In a standard RBC in
response to government expenditure shocks hours and output typically increase because of the wealth
e¤ect that the shocks generates. However, the shock here a¤ects the share of government expenditure
in GDP. Thus, the positive wealth e¤ect on labor supply is absent because government expenditure will
increase exactly in the same proportion as output thus disincentivating agents to try to increase private
output.
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have on the parameters.
Because of the relevance of the Euler equation in determining income and substi-

tution e¤ects and the dynamics in response to structural shocks, we focus attention
on the Euler wedge. Clearly, any component of the optimality conditions can used
for diagnostic purpose. The expression for the Euler wedge is

Etw
j
t+1 = Et[�(

cjt+1

cjt
)��rjt+1] (36)

where rjt+1 = (
�yjt+1

kjt+1
+1��), and the superscript refers to data generated by model j.

Let PKi
t+1 = �(

cit+1
cit
)�� and rit+1 = (

�yit+1
kit+1

+1� �) be the pricing kernel and the real

rate obtained with the constant coe¢ cients DGP. Equation (36) can be rewritten as

Etw
j
t+1 = Et[PK

i
t+1r

i
t+1][(

cjt+1

cjt
)(

cit
cit+1

)]��[
rjt+1
rit+1

] (37)

The �rst term in (37) has expected value of 1; the other two terms are the wedges
produced because consumption growth and the real rate may di¤er from those of the
constant coe¢ cient model. Because of these wedges, Etw

j
t+1 6= 1, unless i=j.

In the RBC economy and using a long realization (T=1000) of (Zt;�t); we
�nd that Etw

j
t+1 is equal to 1.012 (DGP model B), to 1.008 (DGP model C) and to

1.011 (DGP model D). The time path of the Euler wedges and of their components
are plotted in �gure 3.
The means of the consumption growth wedge are 1.0015, 1.0021 and 1.0013. Since

the volatilities are substantial the consumption growth pro�le generated by the
constant coe¢ cients and the time varying coe¢ cients models are di¤erent. The
means of the real rate wedge are 0.9995, 0.9998, 1.0001, respectively and the volatilities
are small. Furthermore, a scatterplot of wjt+1 against the consumption growth and the
real rate wedges suggests that there is a tight positive relationship between wjt+1 and the

consumption growth wedge [(
cjt+1

cjt
)(

cAt
cAt+1

)]�� and a more blurred negative relationship

between wjt+1 and the real rate wedge [
rjt+1
rAt+1

]. Hence, neglecting covariance terms (which

are small in this case), deviations of Etw
j
t+1 from unity are mainly due to the fact

that the consumption growth series produced by a constant coe¢ cient model and
by time varying coe¢ cient models are di¤erent.
These arguments suggest a simple way to assess the misspeci�cation due to time

variations. If the DGP is a model with constant coe¢ cients, Etw
j
t+1 � 1 should be a

martingale di¤erence and thus unpredictable given the information available at time
t. However, if the data has been generated by a model with time varying coe¢ cients
and a researcher employs a constant coe¢ cient model in the analysis, Etw

j
t+1 � 1

will not be a martingale di¤erence and variables contained in the information set
may help to predict it. Thus, a regression of wjt+1 on a constant and on the lags of
the observable variables should have non-zero and signi�cant coe¢ cients.
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Figure 3: Simulated wedges

Applying this reasoning to the data generated by the RBC model, we �nd that the
coe¢ cients on the �rst lag of the real rate are 1.06 (DGP model B) 1.81 (DGP
model C) and -0.59 (DGP model D) all signi�cant di¤erent from zero, while the
coe¢ cients on the �rst lag of consumption growth are -0.0008 (DGP model B),
0.06 (DGP model C) and -0.05 (DGP model D) and the second is signi�cantly
di¤erent from zero.
Note that here we are jointly examining the hypothesis that the model is correctly

speci�ed under the null and that the coe¢ cients are constant. To check what would
happen to our diagnostic when the model is incorrectly speci�ed but coe¢ cients are
constants, we simulate data from an RBC model with constant coe¢ cients and one
period time to build and consider our baseline model with no time to build and constant
coe¢ cients. We �nd that the coe¢ cients on the �rst lag of the real rate and of
consumption growth are -0.03 and 0.06, both insigni�cantly di¤erent from zero.
An alternative way to characterize the misspeci�cation generated by a constant

coe¢ cients speci�cation when the DGP has time varying coe¢ cients is via forecast
errors. The linearized decision rule in a constant coe¢ cients model is xit = P ixit�1+

Qizt, and in a time varying coe¢ cients model is x
j
t = P jxjt�1+Q

jzt+R
jut. Let v

j
t be

the forecast error in predicting xjt using the decision rules of the constant coe¢ cient
model and the data from model j: The forecast error can be decomposed into

vjt = xjt � P ix
j
t�1 = Qjzt +R

jut + (P
j � P i)xjt�1 (38)

Thus, the forecast errors are functions of the lags of the observables xjt�1. This is
obvious when P j is di¤erent from P i: However, even if P j = P i, the forecast error
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could be function of the lags of the observables as long as ut is serially correlated.
Thus, a simple diagnostic for model misspeci�cation involves regressing the forecast
errors vjt on lagged values of the observables and checking the signi�cance of the
regression coe¢ cients.
For the RBC model, and focusing for illustration on the forecast error produced in

the hour equation, we �nd that lagged values of the endogenous variables are signi�cant
regardless of the process generating time variations (see table 1 ) and that an F-test
strongly rejects the null hypothesis that all the coe¢ cient are jointly zero.

DGP nt�1 kt�1 yt�1 ct�1 Ftest, P-value
B 0.08 -0.40 0.05 0.51 0.00

(0.004) (0.006) (0.007) (0.002)
C 0.08 -0.28 -0.15 0.43 0.00

(0.002) (0.007) (0.003) (0.29)
D 0.27 0.09 0.33 -1.93 0.00

(0.06) (0.01) (0.02) (0.21)

Table 1: Regression coe¢ cients, hours equation; the dependent variable is the forecast error
obtained using the decisions rules of model A and data from the model in the �rst column;
the indipendent variables are in the �rst row. In parenthesis standard errors.

3.1 Exogenous vs. endogenous parameter variations
If the wedge and the forecast error diagnostics indicate the presence of parameter
variations, one may interested in knowing whether they are of exogenous or of
endogenous type. One way to distinguish what type of time variations is present
is to use the DGSE-VAR methodology of Del Negro and Schorfheide (2004). In a
DSGE-VARs one uses the DSGE model as a prior for the VAR of the observable
data and employs the marginal likelihood to measure the value of the additional
information the DSGE provides. Intuitively, a DSGE prior can be thought as a
set additional observations added to the VAR model. If the additional observations
come from the DGP, the quality of the estimates will be improved (standard
errors will be reduced), and the marginal likelihood, which measures the �t of the
speci�cation, increased. On the other hand, if the additional observations come
from a DGP di¤erent from the one generating the data, noise will be added, and
the precision of the estimates and the �t of the model reduced. Thus, for a given
data set, a researcher comparing the marginal likelihood produced by adding data
from the exogenous and the endogenous speci�cations, should be able to detect
whether the observable sample is more likely to be generated by one of the two
models.
Let L(�jy) be the likelihood of the VAR model for data y and let gj(�j
j ;Mj) be

the prior induced by the DSGE model Mj using parameters 
j on the VAR parame-
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ters � :The marginal likelihood is hj(yj
j ;Mj) =
R
L(�jy)gj(�j
j ;Mj)d� which, for

given y;is a function of Mj . Since L(�jy) is �xed, hj(yj
j ;Mj) re�ects the plausibil-
ity of gj(�j
j ;Mj) in the data. Thus, if g1 and g2 are two DSGE-based priors and
h1(yj
1;M1) > h2(yj
2;M2), there is better support for in the data for g1.
Applying this technology to the RBC example, for a sample size of T = 150, we

report in table 2 the log marginal likelihood when T1 = 150; 750 simulated data from
the DSGE listed in the �rst row are added to the actual data. Both when T1 is large
relative to T , and when it is of the same magnitude, the marginal likelihood is able
to pick the correct DGP in all experiments. The di¤erences within columns are quite
large, even when T1 = T , indicating that the diagnostic is quite informative.

T1=150 T1=750
DGP Model BModel CModel DModel BModel CModel D

Simulated from B 1586 -6709 -5108 9714 -3478 -12597
Simulated from C 1421 2005 -855 7480 4828 -409
Simulated from D 697 -2649 1864 6083 622 11397

Table 2: Log marginal likelihood obtained using T data points produced by the models listed
in the �rst row and T1 simulated data from the model listed in the �rst column.

4 Parameter identi�cation
Since forecast errors are typically used to construct the likelihood function via the
Kalman �lter, one should expect the misspeci�cation present in the forecast errors
to spread to the likelihood function, making parameter estimate problematic. In
this section we examine whether the time invariant parameters of a model can be
identi�ed from a potentially misspeci�ed likelihood function. Canova and Sala (2009)
have shown that standard DSGE models feature several population identi�cation
problems, intrinsic to the models and to the solution method employed. These
problems typically show up because several structural parameters turn out to be
weakly or partially identi�ed and others close to be underidenti�ed. The issue we
are concerned with here is whether parameters which could be identi�ed if the
likelihood function would be correctly speci�ed became weakly or underidenti�ed
because the likelihood function is constructed using the wrong forecast errors.
In other words, we ask whether weak or underidenti�cation of time invariant
parameters may emerge as a by-product of the assuming that the model is
structural when it is not. Magnusson and Mavroedis (2014) have shown that when
GMM is used, time variations in certain parameters help rather than hurt in the
identi�cation of time invariant parameters. Huang (2014) quali�es the result by
showing that time variations in weakly identi�ed parameters have no e¤ect on the
asymptotic distribution of strongly identi�ed parameters.
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Figures 4 and 5 plot the likelihood function of the RBC model in the risk
aversion coe¢ cient 
 and the share parameter �; and in the labor share � and
the autoregressive parameter of the technology �� when the forecast errors of the
correct model (top row) and of the constant coe¢ cient model (bottom row) are used
to construct the likelihood function. The �rst column considers data generated
by the model B, the second data generated by model C and the third data
generated by model D.
While the curvature of the likelihood constructed using the correct model in not

large, it is easy to verify that the maximum occurs at 
 = 2; � = 2; � = 0:30; �� = 0:9
for all three speci�cations displaying time varying discount factor and time varying
depreciation rate. When the decision rules of the constant coe¢ cients model are
used to construct the likelihood function and the true DGP is model B, distortions
are present and the risk aversion coe¢ cient 
 become very weakly identi�ed. Thus
at least in the (
; �) dimensions the curvature of the likelihood is altered and
estimation of 
 becomes di¢ cult.
When the true model features endogenous time variations, distortions are larger

- likelihood function become convex in �� , 
 and � become very weakly identi�ed
- and the maximum in the �� is shifted away from the true value.
Hence, at least in the example we consider, weak identi�cation problems

could be the result of neglected time variations in certain parameters. Nevertheless,
one should note that the likelihood has generally more curvature when parameter
variations are neglected, even though the increased curvature comes at the cost of
incorrectly centering the likelihood, making it locally convex, and introducing
ridges that may complicate inference about the parameters.
These observations are con�rmed when one uses the Koop et al. (2013) statistic,

which we report in table 4. Koop et al. show that asymptotically the precision matrix
of the estimates grows at the rate T for identi�ed parameters and at rate less than
T for underidenti�ed parameters. Thus, the precision of the estimates scaled by the
sample size should converge to a constant for identi�ed parameters and to zero for
underidenti�ed parameters. Furthermore, the magnitude of the constant can be used
to assess identi�cation strength: a large value indicates a strongly identi�ed parameter;
a small value a weakly identi�ed one.
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Figure 4: Likelihood surfaces
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Figure 5: Likelihood surfaces
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When the DGP is model B and a �xed coe¢ cients model is estimated, all parameters
are identi�ed, even though some weak identi�cation issues for A and � exist. When
the DGP are models C and D, all parameters but �g seem identi�able even for a small
sample size. The curvature of the likelihood in the �g dimension is small but the
maximum can be found without numerical di¢ culties.
It is interesting to note, that when the DGP are models B and C, �g is weakly iden-

ti�ed, even when the correct likelihood is used. Thus, the presence of time variations
in �t and �t does not help in the identi�cation of �g, a result which is in line with the
conclusions of Huang (2014), since both � and � are weakly identi�ed in the constant
coe¢ cient version of the model, see Canova and Sala, (2009).

Koop, Pesaran, Smith diagnostic
Parameter T=150 T=300 T=500 T=750 T=1000 T=1500 T=2500

DGP Model B, Estimated model A
� 15.9 17.8 17.2 18.8 18.4 19.3 17.9

 28.5 45.7 108.4 81.4 93.6 104.2 90.17
�z 1.8e+4 2.6e+4 4.2e+4 4.2e+4 4.5e+4 4.9e+4 4.37e+4
�g 209.2 655.5 2741 2190 2860 3417 2802
� 927.3 973.8 1.7e+4 1.7e+4 2.4e+4 2.3e+4 2.5e+4
� 140.2 156.2 264.2 215.5 239.1 252.1 229.3
A 28.42 30.67 7.99 10.99 9.15 7.83 9.83

DGP Model C, Estimated model A
� 822 1033 743 785 759 746 752

 2261 3147 2682 2809 2720 2579 2566
�z 3073 2673 2952 2909 2799 2806 2877
�g 1.74 2.23 2.44 2.96 3.17 2.82 2.90
� 4.6e+5 4.4e+5 4.3e+5 4.0e+5 3.8e+5 4.4e+5 4.3e+5
� 1.8e+4 1.1e+4 1.4e+4 1.2e+4 1.1e+4 1.6e+4 1.5e+4
A 351 493 441 505 500 449 444

DGP Model D, Estimated model A
� 550 575 592 610 545 542 494

 3577 2442 2660 2870 2564 2711 2430
�z 1613 1243 1120 1162 1068 1189 1074
�g 1.22 1.28 1.44 1.53 1.60 1.62 1.67
� 5.2e+5 6.7e+5 6.5e+5 6.0e+5 5.7e+5 5.8e+5 5.7e+5
� 1.1e+4 2.5e+4 2.4e+4 1.9e+4 2.1e+4 2.0e+4 2.1e+4
A 488 276 340 382 349 395 334

Table 3: Koop et al diagnostic. Di¤erent sample sizes
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5 Likelihood estimation with a misspeci�ed model
To study the properties of likelihood based estimates of a misspeci�ed �xed co-
e¢ cients model, we conduct a Monte Carlo exercise. We generate either 150 or
1000 data points from versions B, C, D of the RBC model previously considered,
estimate the structural parameters using the likelihood function constructed with
the decision rules of the time invariant model A, and repeat the exercise 150 times
using di¤erent realizations of the shocks. We also estimate the structural parame-
ters using the likelihood constructed using the decision rules of the correct model
(i.e. model B rules if the data has been generated by model B, and so on), to
account for numerical di¢ culties one may encounter in estimating the model.
We consider two setups, one where time variations in the parameters are small (2-5

percent of the variance of output is explained by shocks to the parameters, henceforth
DGP1) and one where time variations in the parameters are substantial (around 20
percent of the variance of output is explained by shocks to the parameters, henceforth
DGP2). Table 4 has the results for DGP1: it reports the �xed parameters used
to generate the data (column 1), the mean posterior estimate (across replications)
obtained when the likelihood is constructed using the correct decision rules
(column 2), and the mean posterior estimate, the 5th and the 95 percentile of the
distribution of estimates obtained when the likelihood function is constructed with
the decision rules of the time invariant model when T=150 (columns 3-5) and when
T=1000 (columns 6-8). Table A1 in the appendix has the results for DGP2. Figure
6 presents the distributions of estimates for DGP1: the vertical line represents the
true parameter value; in solid black lines we have distributions obtained with the
correct model; in solid blue lines (solid red lines) the distributions obtained with
the incorrect constant coe¢ cient model when T=150 (T=1000). Figure A1 in the
appendix has the same information for DGP2. When the model is correctly
speci�ed, the distribution of estimates should collapse around the true value. Thus,
if the mean is away from the true parameter value and/or the spread of
the distribution is large, one can conclude that likelihood based methods have
di¢ culties in recovering the constant parameters of the data generating process.
Figure 7 presents the impulse responses for DGP1: in the �rst three columns are
the responses to technology shocks and in the last three the responses to government
spending shocks. In each box we report the impulse response obtained using mean
value of the distribution of estimates produced with the correct model, and the
16th and 84th percentiles of the distribution of impulse responses obtained using
the estimated distribution of parameters produced by the time invariant model.
Figure A2 in the appendix has the same information for DGP2. Finally, table 6
presents the long run variance decomposition for DGP1 (�rst four columns) and DGP2
(last four columns) when T=150 and the mean posterior estimate is used in the
computations In each block, the �rst two columns have the variance decomposition to
technology and government spending shocks in the correct model; the last two columns
have the variance decomposition to technology and government spending shocks when
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the incorrect time invariant model is used.
For the two time varying parameters, we set dt = �t+1=�t; and assume that

in model B, �t+1 � � � (dt+1(1 � ��)�; �t+1 � (1 � ��)�)
0 = Ut+1, where � =

0:99;the two components of Ut+1 = (ud;t+1; u�;t+1)0 are independent AR(1) process
with persistence �d = 0:9; �� = 0:8; and standard deviations �d = 0:002; �� = 0:07:
For models C and D, the law of motion of the time varying parameters
is �t+1 = [�u � (�u � �l)e��a(Kt�K)] + [�u � (�u � �l)e�b(Kt�K)] + Ut+1; where
�0u = (0:9999; 0:03); �0a = (0:03; 0:2); �0b = (0:031; 0:1); Ut+1 is iid with �u diagonal
and �d = 0:03; �� = 0:008:

True Correct Time invariant Time invariant
Parameter Mean Mean 5th percentile 95th percentileMean 5th percentile 95th percentile

T=150 T=150 T=1000
DGP Model B

� = 2:0 2.00 2.03 1.47 2.88 2.32 1.55 3.37

 = 2:0 2.02 1.23 -0.14 2.07 0.96 -0.38 2.04
�z = 0:98 0.97 0.99 0.97 1.00 0.99 0.96 1.00
�g = 0:5 0.47 0.74 0.60 0.96 0.87 0.77 0.98
� = 0:025 0.03 0.01 0.01 0.02 0.01 0.01 0.05
� = 0:3 0.30 0.19 0.11 0.28 0.23 0.15 0.40
A = 4:5 4.55 2.79 1.33 4.12 2.68 1.23 4.06

DGP Model C
� = 2:0 2.00 2.42 1.63 3.85 2.85 1.73 6.14

 = 2:0 2.00 0.64 -0.26 1.77 0.60 -0.50 1.79
�z = 0:98 0.98 0.99 0.97 1.00 0.97 0.85 1.00
�g = 0:5 0.48 0.43 -0.10 0.96 0.65 0.27 0.98
� = 0:025 0.03 0.01 0.01 0.02 0.02 0.01 0.09
� = 0:3 0.30 0.22 0.13 0.34 0.29 0.18 0.47
A = 4:5 4.49 2.14 1.18 3.47 2.37 1.18 3.66

DGP Model D
� = 2:0 2.00 2.58 1.69 3.34 2.40 1.74 3.26

 = 2:0 2.01 0.29 -0.28 1.54 1.09 -0.30 1.99
�z = 0:97 0.96 0.99 0.94 1.00 0.96 0.91 1.00
�g = 0:5 0.48 0.51 -0.26 0.96 0.66 0.39 0.98
� = 0:025 0.02 0.01 0.01 0.03 0.01 0.01 0.02
� = 0:3 0.30 0.22 0.14 0.35 0.22 0.15 0.30
A = 4:5 4.52 2.32 1.42 3.68 3.45 1.37 4.51

Table 4: Distributions of posterior estimates whe parameter variations explain a small
amount of output variance.

A few features of the results are worth discussing. First, notice that when the
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correct model is employed, estimation is very successful even when T=150, regardless
of the DGP employed and of whether time variations are exogenous or endogenous.
Thus, there seems to be no numerical distortions one should worry about. Second,
with the �rst DGP, a number of distortions occur when a time invariant model is used
in estimation. For example, when exogenous variations are present, the persistence of
government spending shock is poorly estimated (mean persistence is about 50 percent
larger than the true one), while estimates of �; � and A are severely biased downward.
The distortions are smaller when the time variations are endogenous (models C and
D): nevertheless signi�cant downward bias exists for the inverse of the Frish elasticity

, for � and �. Notice that the performance of the time invariant model is similar if we
have externalized or internalized endogenous time variations. Third, the performance
of the time invariant model does not improve, and if anything worsens, when T=1000
for all three speci�cations. Thus, as sample size increases, failure to converge to the
true DGP becomes even more obvious.
When the model features time variations which explain a signi�cant portion of the

variability of output, the above features become more striking. For example, when pa-
rameter variations are exogenous, estimating a time invariant model leads to an overes-
timation of the persistence of the structural shocks. Thus, the only way a time invariant
model can accommodate the additional serial dynamics and variability present in the
endogenous variables is by increasing the persistence of both technology and govern-
ment spending shocks. In models C and D the distortions become considerably larger
and for example, the mean posterior estimate of inverse of the Frish elasticity is now
negative. Furthermore, the distribution of estimates are typically skewed and multi-
modal. Thus, neglecting parameter variations is more detrimental when the variations
account for a signi�cant portion of the variability of the endogenous variables.
The impulse responses we obtain present con�rm these conclusions. When parame-

ter variations explain a small fraction of the variability of output, we �nd that responses
to technology shocks are o¤ in terms of impact magnitude, in particular for output, the
response produced with the parameters estimates obtained with the true model tend
to be on the upper limit of the estimated 68 percent band, even though their shape is
consistent with the shape of the bands produced with the time invariant model. In-
terestingly, output responses are those which more poorly characterized with the time
invariant model and, consistent with previous �ndings, the misspeci�cation obtained
when the true model features exogenous time variations is larger. On the contrary,
the responses to government expenditure shocks obtained with a time invariant model
are di¤erent from those obtained estimating the correct model in terms of magnitude,
shape and persistence. Since the signal that government expenditure produces in the
model is weak, it is not surprising that it is obscured by the presence of time variations.
The distortions obtained when parameter variations are important for the variance

of output are generally larger, but the pattern of results is similar. To be noticed is the
fact that, the persistence of the responses to technology shocks is poorly estimated:
while responses obtained estimating the true model tend to zero after 10 years, the
bands obtained estimating a time invariant model do not include zero after 10 years.
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Figure 6:Density of estimates; DGP1 (time variations explain little of output
variance).
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Figure 7:Impulse responses, DGP1
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Variance decomposition
DGP: Small time variations DGP: Large time variations

Variable TechnologyGovernment TechnologyGoverment TechnologyGovernment TechnologyGoverment
Model B Time invariant Model B Time invariant

Y 94.1 0.3 99.7 0.4 81.3 0.1 99.8 0.6
C 89.5 0.2 99.9 0.1 55.3 0.1 99.8 0.2
N 60.2 0.5 98.6 1.4 15.6 0.4 97.8 2.3
K 70.2 0.4 99.5 0.6 40.6 0.1 99.4 0.8

Model C Time invariant Model C Time invariant
Y 97.2 0.3 98.8 1.6 81.9 0.1 92.7 8.2
C 88.1 0.3 99.9 0.1 26.5 0.1 99.9 0.1
N 44.6 0.6 99.0 1.2 5.4 0.4 96.6 3.9
K 84.4 0.2 99.0 1.4 37.4 0.1 97.4 3.0

Model C Time invariant Model C Time invariant
Y 98.0 0.1 99.3 1.5 82.2 0.1 93.6 7.2
C 92.2 0.2 99.8 0.3 32.8 0.1 99.6 0.8
N 35.9 0.5 97.3 3.4 10.2 0.5 92.8 7.9
K 96.6 0.3 99.2 1.2 60.0 0.4 97.9 2.8

Table 5: Long run variance decomposition

What is the contribution of structural shocks to the variability of the endogenous
variables when the forecast errors of the time invariant model are used to construct
the likelihood function? In general, one should expect the structural shocks of the
time invariant model to be a contaminated version of the structural shocks of the
time varying DGP for two reasons. First, the wrong P matrix is used to compute
forecast errors. As we have previously seen this creates a correlation between the
forecast errors and the lags of the endogenous variables and thus changes the timing
of the innovations. Second, we are aggregating m (structural and parameter) shocks
into n < m (structural) shocks. This aggregation is known to generate complicated
VARMA structures where the n structural shocks are functions of the leads and lags
of the original disturbances (see e.g. Canova and Paustian, 2011). Thus, even if the
P matrix were correctly speci�ed, one should expect distortions to occur, unless the
omitted shocks (those to the parameters) are unimportant and feature low persistence.
When parameter variations do not explain a large portion of the variance of output,

technology shocks absorb the variability that is missing in the time invariant model.
This is true regardless of whether time variations are exogenous or endogenous and
the e¤ect seems particularly strong for hours worked. When parameter variations
explain a larger portion of the variance of output, technology shock still absorb a large
amount of the missing variability. However, in some cases, the missing variability is
also captured by government spending shocks. For example, while government spending
shocks explain only 0.1 percent of the variability of output in the long run in the true
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model when parameter variations are endogenous, they explain 7-8 percent when a
time invariant model is used.
In sum, for the DGP we consider and the parameterization employed, we �nd

that estimating a constant parameter model when the DGP features time varying
parameters leads to parameter distortions, regardless of the sample size, of whether
variations are exogenous or endogenous, and of whether parameter variations matter for
output variability or not. The parameters that are mostly distorted are those regulating
the estimated persistence of the exogenous shocks and those controlling income and
substitution e¤ects. Since the Euler equation and the resource constraints are
the optimality conditions which are di¤erent in the constant and time varying
coe¢ cient models, it is clear where these distortions come from 2

6 Recovering structural dynamics with SVAR
methods
Our results so far suggest that if the DGP features parameter variations, the
decision rules derived with a time invariant model are distorted, and that these
distortions lead to an incorrectly speci�ed likelihood function, to biased structural
parameter estimates, and to impulse responses that fail to capture the dynamics
induced by structural shocks. Because of these problems, one may wonder
whether less structural and computationally less demanding methods are competitive
with likelihood based methods if structural dynamics is all that matters to the
investigator. Canova and Paustian (2011) have shown that when the model is
misspeci�ed VAR methods which employ robust sign restrictions can be e¤ective in
capturing the dynamics induces by the structural disturbances. The misspeci�cation
they consider however is di¤erent - the models they employ omit certain features of
the DGP; misspeci�cation here comes from the presence of parameter variations.
The exercise we conduct in this section is as follows. Using the illustrative

RBC model, we simulate data from the decision rules of models B, C, and D
when parameters variations generate small output volatility (DGP1 in the previous
section). We then compute VAR residuals using the population P matrix of the
correct model and of the constant coe¢ cient model, rotate the resulting residuals
using an orthonormal matrix, and keep the responses if technology shocks generate
a positive response of hours, capital, output and consumption on impact and
if government expenditure shocks generate a negative response of hours, output,

2We have also performed a Monte Carlo exercise where the labor share is also time varying. Variations in
the labor share have been documented in the literature (see e.g. Rios Rull and Santaeularia Llopis, 2010)
and there is evidence that variations in this parameter are strongly countercyclical. This is relevant for
our exercise because, in this case, all four optimatility conditions are a¤ected by time variations. Thus,
the strength of the income and substitution e¤ect distortions are likely to be larger. Indeed, we do �nd
that distortions in this case become quite large and it many cases it becomes di¢ cult to estimate the time
invariant model regardless of the DGP (results for this setup are available on request).
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consumption and capital - these signs are those present in �gure 1 and hold for
variations of the (constant) structural parameters within a reasonable range. We
repeat the exercise 150 times and collect the distribution of impulse responses
to technology and government expenditure shocks for the correct and the time
invariant speci�cation and plot in �gures 8-10 the median responses obtained with
the correct model (red line in each box) and the 16 and 84 percentile of the
distribution of responses obtained with the incorrect model. Figure 8 has the
responses when the DGP is model B, �gure 9 when the DGP is model C and
�gure 10 when the DGP is model D.
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Figure 8: Impulse responses, exogenously varying and constant coe¢ cient RBC
models

Overall, SVAR methods seem to be competitive with likelihood methods when
parameter variations are neglected. When the DGP is model B, the sign and
the shape of the responses is correctly captured. Note that the although the
responses to technology shocks obtained with the true model tend to be on the
upper bound of the band obtained with the incorrect model and the responses to
government spending shocks obtained with the true model tend to be on the
lower bound of the bands obtained with the incorrect model, the performance
of SVARs is as least as good as the one likelihood methods.
The performance with the other two DGPs is similar even though the details

are slightly di¤erent. With model C it is the magnitude of the dynamic response
of consumption which is misrepresented for both shocks, while with model D
it is primarily the true persistence of certain responses to the two shocks that is
somewhat underestimated.
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Figure 9: Impulse responses, endogenously varying (no internalization) and
constant coe¢ cients RBC models
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Figure 10: Impulse responses, endogenously varying (with internalization) and
constant coe¢ cients RBC models
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Recall that here, two sources of misspeci�cation are present: the P matrix
is incorrect; aggregation problems are present. What our analysis indicates is that
with the DGP we use i) the distortion in the P matrix are small; ii) the Q
matrix is not very strongly a¤ected by the misspeci�cation; iii) shock misaggregation
is minor. Because shocks to the parameters are i.i.d., timing distortions in the VAR
innovations are also likely to be small.
In sum, when the parameters of the model, SVAR analyses with a time invariant

model will be as or more successful than likelihood based inference in particular
when examining the dynamics of government spending shocks. But to reach this
conclusions, robust identi�cation methods need to be used.

7 Time varying �nancial frictions?
We apply the technology developed in the paper to the unconventional monetary policy
model of Gertler and Karadi (GK) (2010). Our contribution is three fold. First,
we provide likelihood based estimates of the parameters speci�c to the model (the
fraction of capital that can be diverted by banks �, the proportional transfer to entering
bankers !, and the survival probability of bankers �), that the authors have informally
calibrated to match a steady state spread, a steady state leverage and a notional length
of bank activity. Second, we use the diagnostic developed in the paper to gauge the
extent of time variations in the parameters of model. Third, we provide estimates of
the time variations present in t� and compare responses to capital quality shocks in
the �xed coe¢ cient and the time varying coe¢ cient models.
The equations of the GK model are summarized in the appendix B. We use US data

from 1985Q2 to 2014Q3 on the growth rate of output, growth rate of consumption,
growth rate of leverage, and growth intermediary demand for assets (credit) and the
spread. The spread is measured by the di¤erence between BAA 10 years corporate
bond yields and a 10 year treasury constant maturity and it is from the FRED as are
real personal consumption expenditures and GDP data. Leverage is from Haver and
measures Tier 1 (core) capital as a percent of average total assets. Credit is measured
as total loans (from Haver), scaled by size of US population.
Using Bayesian methods with a uniform prior, the estimates we obtain are � =

0:245, � = 0:464, ! = 0:012. The standard error are very tight in all cases (0.0182,
0.0008, 0.0098) making the estimates highly signi�cant. For comparison, GK calibrated
these three parameters to � = 0:318, � = 0:972, ! = 0:002. In the GK model �
regulates private leverage: our estimate implies a higher steady state leverage than
the one implied by the authors (our estimate is 3.32, their is 1.38) and closer to
the leverage found in the US in corporate and non-corporate business sectors over the
sample. Our estimates also suggest that the survival probability of bankers is much
lower than the one assumed by GK ( about 10 years).
With these parameter estimates, we �rst perform forecast error mispeci�cation

diagnostics. Table 6 indicates that the forecast errors of all equations but consumption
are highly predictable and typically lagged consumption and lagged spread are the
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variables which are most signi�cant.

Equation T-stat F-stat
Yt�1 Ct�1 Creditt�1 Leveraget�1 Spreadt�1

Y 0.84 2.61 0.24 0.52 10.00 4.39
C -0.85 1.11 0.85 -0.65 0.33 1.26
Credit 1.06 2.61 1.65 -0.58 8.49 7.11
Leverage -1.11 -2.50 -1.63 0.63 -8.25 7.04
Spread -1.26 -3.06 -1.10 0.81 -8.46 8.16

Table 6: Regression diganostic for time variation. The left hand side of the regression is the
forecast in the equation listed in the �rst column; the right hand side the variables listed in
the second to the �fth column. Sample size T=116. Critical level of the F-stat(5,112)=2.56.

We have also computed the Euler wedge and checked whether lagged values of
consumption and the investment to output ratio explain its dynamics. The mean value
of the wedge is 0.02 with a standard error of 0.03; but both lag consumption and
lag investment to output ratios signi�cantly explain its movements (coe¢ cients are
respectively -0.10 and 0.72, with standard errors of 0.01 and 0.13). Thus, there seem
to be evidence of misspeci�cation and parameter variation could be the reason for it.
Armed with this preliminary evidence we estimate models where wee allow � to be

time varying.
Time variations are speci�ed as

�t = (1� ��)�+ ���t�1 + et;� Exogenous variations (39)

�t = (2 � �u � (�u �
�

2
) � (exp(��1 � (Xt�1 �Xs)) + exp(�2 � (Xt�1 �Xs))) + et;�

Endogenous variations (40)

where X net bank wealth N . Table 7 reports estimates of selected parameters
Note that, in the model with exogenously varying parameters, there are very per-

sistent variations in �t. Furthermore, the estimates of �; !; � are now larger making
steady state leverage drop to about 2.9 and the lifetime of bankers to increase. When
the endogenous speci�cation is used, estimates of � and ! further increase making
steady state leverage fall to 1.9, but bankers survival probability is roughly unchanged.
The data seem to require a very strong asymmetric speci�cation (�1 < �2) implying a
very strong negative relationship between the fraction of funds that bankers will steal
and their net worth. Finally, note that the endogenous speci�cation is highly preferable
in marginal likelihood sense to the speci�cation with exogenous time variations and to
the �xed ceo¢ cient speci�cation.
To investigate how inference would di¤er in the three estimated model we plot in

�gure xx the responses of output, in�ation, investment, net worth, leverage and the
spread to a one percent capital quality shock. The constant coe¢ cient speci�cation
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Parameter Time Invariant Exogenous TVC Endogenous TVC
Function of net worth

h 0.43 (0.006) 0.19 (0.03) 0.09 (0.02)
� 0.24 (0.01) 0.37 (0.03) 0.55 (0.03)
! 0.01 (0.008) 0.02 (0.002) 0.11 (0.008)
� 0.46 (0.009) 0.54 (0.01) 0.52 (0.02)
�� 0.99 (0.004)
�� 0.02 (0.002) 0.03 (0.003)
�u 0.98 (0.008)
�1 0.02 (0.007)
�2 0.15 (0.009)
Log ML -167.97 1546.18 1628.69

Table 7: Parameter estimates.

closely replicate the dynamics presented by GK in their �gure 3. There is a persis-
tent decline in output a temporary and strong decline in in�ation. Investment falls
temporarily but it then increase because capital is below its steady state. Bankers net
worth falls and there is a sharp increase in the spread between the expected return to
capital and the riskless rate.
When we allow � to be exogenously varying the qualitative features of the responses

are very similar. Quantitatively, output falls more on impact but less in the short run,
net worth falls less and the spread increases less in the short run. Thus, making
� exogenosuly time varying, reduces the ability of the model to capture the impact
magnitude of the recession.
When variations are instead endogenous, the model possesses an additional mech-

anism of propagation of shocks since lower net worth implies higher share of funds
diverted by banks and generally stronger accelerator dynamics. Since the dynamic
responses of net worth are highly persistent, the spread persistently increases making
investment increase less relative to the previous two cases and output to fall more
and more presistently after a capital quality shock. Thus, neglecting that � could be
endogenously varying impair our ability to assess the consequences of shocks in the
model.
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8 Conclusions
This paper has a number of goals. It is interrested in i) characterizing the decision
rules of a DSGE when parameter variations are exogenous or endogenous, and in the
latter case, when agents internalize or not the e¤ects that their optimal decisions
may have on parameter variations; ii) measuring how distorted are standard
statistics when a researcher erroneously assumes a time invariant structure but the
data generating process (DGP) features time varying parameters; iii) providing
diagnostics to detect the misspeci�cation driven by parameter variations; iv)
studying the consequences of using time invariant models when the parameters
are time varying in terms of identi�cation, estimation, inference, and policy
analyses; v) comparing likelihood-based and SVAR-based estimates of the dynamic
responses to structural shocks when time variations in the parameters are neglected.
In term of decision rules, we show that if parameter variations are purely exogenous,

the contemporaneous impact and the dynamics induced by structural shocks are the
same as in a model with no parameter variations. However, if parameter variations
are endogenous, the instantaneous impact and the dynamics in responses to structural
shocks may be di¤erent from the one of a constant coe¢ cient model and the extent
of the di¤erences in the two speci�cations depends on the detail of the model.
We provide simple and powerful diagnostics to detect the misspeci�cation induced

by employing a time invariant model when the data has been generated by a
time varying coe¢ cient model using the optimality wedges of Chari et al. (2007)
and the forecast errors of the model. We also describe a marginal likelihood
diagnostics which can help us to recognize whether the time variations detected
with these statistics are of exogenous or endogenous nature.
We show certain parameter identi�cation problem noted in the literature may be

the results of misspeci�cation due to neglected time variations, even though the likeli-
hood distortions that neglected time variations produce are probably more important.
Our Monte Carlo study con�rms that parameter and impulse response distortions may
be large even for modest time variations in the parameters and that they tend to be
stronger when variations are truely endogenous.It also demonstrates that, when para-
meter variations are neglected, SVAR methods are competitive with more structural
likelihood based methods as far are characterizing the responses to structural distur-
bances. Thus, the hedge that likehood based methods have when the model is correctly
speci�ed vanishes when the model is an incorrect description of the data generating
process.
In the context of the Gertler and Karadi (2010) model, we show that there is

evidence that the parameter regulating the amount of moral hazard present in the
model is indeed time varying taht that time variations are possibly linked to the amount
of net worth bankers have. When we allow for this link, the �t of the model to
the data dramatically improves, primarily because the model acquires an additional
propagation channel which makes spread and thus output responses stronger and much
more persistent.
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Our analysis provides researcher with a new set of tools that can help them to
respecify assess the quality of their models and respecify certain problematic features.
There are a few interesting questions we do not address in this paper. How do we
distinguish a model with time varying parameters from a model measurement errors
are present? Is a model with m structrual shocks observationally equivalent to a model
with m1 structrual shocks and m2 time varying parameters where m1 + m2 = m?
To what extent parameter variations capture variations in the variances (or in higher
moments) of the structrual shocks? We leave the answer to these questions for future
research.
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Appendix A: Additional Monte Carlo �gures and tables

True Correct Time invariant Time invariant
Parameter Mean Mean 5th percentile 95th percentileMean 5th percentile 95th percentile

T=150 T=150 T=1000
DGP Model B

� = 2:0 2.00 2.29 1.53 3.87 2.45 1.61 3.09

 = 2:0 2.01 1.11 -0.33 2.06 0.25 -0.27 1.95
�z = 0:9 0.94 0.99 0.96 1.00 0.99 0.97 1.00
�g = 0:5 0.47 0.76 0.62 0.96 0.91 0.79 0.98
� = 0:025 0.03 0.01 0.01 0.03 0.01 0.01 0.01
� = 0:3 0.30 0.19 0.11 0.41 0.21 0.10 0.34
A = 4:5 4.53 2.73 1.33 4.14 1.80 1.14 4.16

DGP Model C
� = 2:0 2.00 3.40 1.56 7.51 5.19 1.77 22.90

 = 2:0 2.00 -0.08 -0.32 0.73 -0.19 -0.35 0.35
�z = 0:9 0.88 0.99 0.93 1.00 0.99 0.90 1.00
�g = 0:5 0.48 0.56 0.08 0.97 0.91 0.59 0.98
� = 0:025 0.02 0.02 0.01 0.07 0.02 0.01 0.07
� = 0:3 0.30 0.26 0.15 0.34 0.26 0.19 0.35
A = 4:5 4.50 1.71 1.25 2.77 2.27 1.24 8.17

DGP Model D
� = 2:0 2.00 3.05 1.68 4.59 2.40 1.98 4.81

 = 2:0 2.00 -0.06 -0.28 0.54 1.63 -0.27 1.98
�z = 0:9 0.88 0.98 0.90 1.00 0.92 0.91 1.00
�g = 0:5 0.47 0.42 -0.46 0.96 0.50 0.32 0.97
� = 0:025 0.02 0.01 0.01 0.03 0.01 0.01 0.01
� = 0:3 0.30 0.23 0.15 0.32 0.21 0.13 0.27
A = 4:5 4.49 1.91 1.45 3.57 4.10 1.65 4.51

Table 8: Distributions of estimates, Parameter variations explain 20 percent of output vari-
ance.
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Figure A2:Impulse responses; parameter variations explain 20 percent of output
variance
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Appendix B : The equations of Gertler and Karadi model

exp(%t) = (exp(Ct)� h exp(Ct�1))�� � �h(exp(Ct+1)� h exp(Ct))�� (41)

1 = � exp(Rt) exp(�t+1) (42)

exp(�t) =
exp(%t)

exp(%t�1)
(43)

� � exp(Lt)' = exp(%t) exp(Pm;t)(1� �)
exp(Yt)

exp(Lt)
(44)

exp(�t) = (1� �)� exp(�t+1)(exp(Rk;t+1)� exp(Rt)) + � exp(�t+1)� exp(xt+1) exp(�t+1)(45)

exp(�t) = (1� �) + � exp(�t+1)� exp(zt+1) exp(�t+1) (46)

exp(�t) =
1

(1�  t)
exp(�t)

�� exp(�t)
(47)

exp(zt) = (exp(Rk;t)� exp(Rt�1))(1�  t�1) exp(�t�1) + exp(Rt�1) (48)

exp(xt) =
exp(�t)(1�  t)

(exp(�t�1)(1�  t�1))
exp(zt) (49)

exp(Kt) =
exp(�t) exp(Nt)

exp(Qt)
(50)

exp(Nt) = exp(Net) + exp(Nnt) (51)

exp(Net) = � exp(zt) exp(Nt�1) exp(�eNe;t) (52)

exp(Nnt) = !(1�  t�1) exp(Qt) exp(�t) exp(Kt�1) (53)

exp(Rk;t) = (exp(Pm;t)�
exp(Ym;t)

exp(Kt�1)
+ exp(�t) � (exp(Qt)�

exp(�))

exp(Qt�1)
(54)

exp(Ym;t) = exp(at) � (exp(�t) � exp(Ut) � exp(Kt�1))
� � exp(Lt)1�� (55)

exp(Qt) = 1 + 0:5�i(
(Int + I

s)

(Int�1 + Is
� 1)2 + �i(

(Int + I
s)

(Int�1 + Is
� 1) (Int + I

s)

(Int�1 + Iss)

� � exp(�t+1)�i(
(Int+1 + I

s)

(Int + Is
� 1)((Int+1 + I

s)

(Int + Is)
)2 (56)

exp(�) = �c + b=(1 + �) � exp(Ut)1+� (57)

�
exp(Ym)

exp(Ut)
=

b exp(Ut)
� exp(�t) � exp(Kt�1)

exp(Pm;t)
(58)

Int = exp(It)� exp(�) � exp(�t) � exp(Kt�1) (59)

exp(Kt) = exp(�t) � exp(Kt�1) + Int (60)

exp(Gt) = Gs � exp(gt) (61)

exp(Yt) = exp(Ct) + exp(Gt) + exp(It) + 0:5�i(
(Int + I

s)

(Int�1 + Is
� 1)2(Int + Is) + � exp(Kt)(62)

exp(Ym;t) = exp(Yt) � exp(Dt) (63)
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exp(Dt) = 
 � exp(Dt�1) � exp(inflt�1)�
P �� exp(inflt)�

+ (1� 
)((1� 
 exp(inflt�1)
P (1�
) exp(inflt)
�1)=(1� 
))��=(1�
) (64)

exp(Xt) = 1= exp(Pm;t) (65)

exp(Ft) = exp(Yt) � exp(Pm;t) + �
 exp(�t+1) exp(inflt+1)�(exp(inflt))��
P exp(Ft+1)(66)

exp(Zt) = exp(Yt) + �
 exp(�t+1) exp(inflt+1)
��1 exp(inflt)


P �(1��) exp(Zt+1) (67)

exp(infl�t ) =
�

�� 1
exp(Ft)

exp(Zt)
exp(inflt) (68)

(exp(inflt))
1�� = 
 exp(inflt�1)


P (1��) + (1� 
)(exp(infl�t ))1�� (69)

exp(it) = exp(Rt) � exp(inflt+1) (70)

exp(it) = exp(it�1)
�i(��1 exp(inflt)

�� � (exp(Xt)=(�=(�� 1)))�y)1��i exp(ei;t) (71)

 t = � � (Rk;t+1 �Rt �Rsk +Rs) + e ;t (72)

at = �a � at�1 � �a � ea;t (73)

�t = �� � �t�1 � �� � e�;t (74)

gt = �g � gt�1 � eg;t (75)

e ;t = � � e ;t�1 + e ;t; (76)


