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Abstract

We analyse the optimal paths of abatement and carbon prices under a variety of
economic, temperature and damage risks. Carbon prices grow in line with economic
growth, but with convex damages and temperature-dependent risks of climatic tip-
ping points grow more quickly and with gradual resolution of uncertainty grow more
slowly. With temperature-dependent economic damage tipping points carbon prices
are higher, but when the tipping point occurs, the price jumps downward. With
a temperature cap the efficient carbon price rises at the risk-adjusted interest rate.
Allowing for damages as well as a cap leads to a higher carbon price which grows
more slowly. But as temperature and cumulative emissions approach their caps, the
carbon price is ramped up ever more. Policy makers should expect a rising path of
carbon prices.
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1 Introduction

Rising temperatures and the ensuing threat to our planet and the economy constitute
the biggest market failure we know (Stern et al., 2006). One way to correct this market
failure is to price carbon uniformly throughout the global economy at a price equal
to the social cost of carbon (SCC) which is the expected present discounted value of
all future damages resulting from emitting one ton of carbon today. In this sense, the
carbon price or SCC is an asset price just like a share or house price. Another way is
to ensure that any production inefficiencies in the production of renewable energies
are properly internalized. Production of renewable energies is subject to Swanson’s
law with any doubling of installed solar panels or windmills leading a reduction of 20
or 40 percent in the unit costs of a panel or windmill. The mechanism underlying
Swanson’s law is technical progress through learning by doing. This naturally leads to
the policy recommendation that renewable energies should receive a subsidy equal to
the social benefit of learning or SBL which is the expected present discounted value of
all future renewable cost reductions resulting from using one unit of renawable energy
today.

Our aim is threefold. First, to analyse the initial level of an optimal carbon price
internalizing that externality. Second, to investigate what the entire time path of
carbon prices should look like and how various shocks to the economy, damages and
temperature, preference structures and parameter choices influence the shape of that
time path and its initial starting point. The time path of (expected) carbon prices
arguably matters as much as the initial carbon price since much of the adjustment
and mitigation efforts will have to take place through new investments and these
depend on the trade-off between current costs and future prices.Third, to gain insight
into the level and time path of the optimal subsidy for renewable energy and how this
interacts with the optimal carbon price.

Pricing carbon reduces demand for carbon-intensive goods, encourages green in-
novation, carbon capture and sequestration, and locks up fossil fuel in the crust of
the earth. This Pigouvian solution charges emissions at a price that implements the
optimal policy and in this way internalizes the global warming externality (Pigou,
1920). This price can be implemented as a carbon tax with the revenue rebated in
lump-sum manner to the private sector or one could adopt a Coasian approach where
property rights to emit or the right to a clean planet are allocated (Coase, 1960),
with subsequent trade allowed. There is a burgeoning literature on how high that tax
should be today, but some argue that future prices should decline from high initial
levels (e.g. Daniel, Litterman, and Wagner (2019)) while most others argue for the
exact opposite. Our contribution is to shed light on these differences and offer better
understanding of the determinants of the shape of the entire time path of optimal
carbon prices.

The learning-by-doing externality should thus be dealt with using a separate in-
strument: early and direct subsidies of green energy. Given that most integrated
assessment models of climate and the economy used for optimal policy analysis are
based on the model of Nordhaus (2017) and are concerned with the optimal propor-
tion of energy that is carbon-free, they cannot distinguish between a carbon price
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and a renewable energy subsidy. This is why the learning-by-doing subsidy and the
carbon price are often lumped together with carbon prices as in Daniel et al. (2019)),
which then leads to an unwarranted early spike in carbon prices. This may discourage
investment in clean technology by raising input costs while not raising future prices
commensurately and should thus not be taken literally. We argue that appropriately
targeting the second externality by a separate renewable energy subsidy separate from
the carbon price unambiguously results in a rising expected time path for the latter.

In climate economics the Pigouvian price is referred to as the social cost of carbon
or SCC. Imposing the Pigouvian tax as the private price of carbon actually leads
to decentralized implementation of the optimal policy. But the SCC is in fact a
more general concept than a Pigouvian tax as it can be evaluated along other paths
than the optimal path. For example, the SCC evaluated along a business-as-usual
path where global warming externalities are not internalized by private actors in the
economy will be higher than along the optimal path if damages are convex enough
(Olijslagers, 2021a).

Policy makers must evaluate the SCC under huge uncertainties regarding the
wealth of future generations and future global warming damages resulting from emis-
sions today. This involves difficult trade-offs between consumption today and the
risks of damages from global warming to consumption and the risks of shocks to
temperature in the near and distant future. For that reason we focus extensively
on the nature of the stochastic processes driving these uncertainties, on whether we
know their distribution or not and on the interaction with the preference structures
determining society’s current attitude with respect to future uncertainty.

Our benchmark is the case where damages to aggregate production are linear in
temperature. Given that recent insights in atmospheric science suggest that tem-
perature is approximately linear in cumulative emissions (Allen et al., 2009; Dietz &
Venmans, 2019; Matthews, Gillett, Stott, & Zickfeld, 2009; van der Ploeg, 2018), the
function relating the percentage loss in aggregate production to cumulative emissions
is then also approximately linear in cumulative emissions.1 Since damages are pro-
portional to aggregate production, we can show that for this benchmark the optimal
carbon price grows at the same rate of growth as the economy. We then consider
step by step four generalizations of our benchmark and show how they impact the
qualitative pattern of the time path of optimal carbon prices.

First, we show that if damages are a convex function of temperature as has been
argued by Weitzman (2012) and Dietz and Stern (2015), the optimal carbon price
will start at a higher level than in the benchmark case and will also grow faster than
the economy.

Second, we confirm an earlier result by Daniel et al. (2019) that if there is gradual
resolution of uncertainty in the damage ratio, there is a component of the optimal

1This is related to Golosov, Hassler, Krusell, and Tsyvinski (2014), who take a different perspec-
tive but also end up with a linear relation between damages and the concentration of atmospheric
carbon. Their damage function is a convex function of temperature and their temperature rela-
tionship is a concave function of the stock of atmospheric carbon. They then notice that their
exponential damage function is roughly linear in the stock of atmospheric carbon.
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carbon price which falls over time.2 But we show that when there is sufficient growth
of the economy, this component is outweighed by the growing component of the
carbon price resulting from growing damages. The key insight is thus that gradual
resolution of uncertainty slows down the rate of growth of the optimal carbon price
but under plausible assumptions does not reverse it. Gerlagh and Liski (2018) also
find that learning and resolution of uncertainty slows the rise in the optimal carbon
price.3

Third, we show that climatic and economic tipping points whose arrival rates in-
crease in temperature boost the carbon price. Once a climate tipping point occurs, it
will suddenly increase the sensitivity of temperature to cumulative emissions which in
turn should prompt policy makers to boost carbon prices and abatement significantly
right now. Immediately after the tip has occurred, climate policy is ramped up result-
ing in an instantaneous further upward jump in the carbon price and abatement. An
economic tipping point that becomes more likely with global warming and abruptly
leads to a percentage destruction of production also leads to a higher path of carbon
prices and abatement ex ante. But immediately after the tip the optimal level of the
carbon price and abatement jump down. Different types of tipping points thus have
radically different implications. However immediately after such a downward jump,
optimal carbon prices will start rising again.

Fourth, although economists usually take a conventional welfare-maximizing ap-
proach, the International Governmental Panel on Climate Change (IPCC) and most
countries have adopted the more pragmatic approach of agreeing that policy makers
aim to stay below a temperature ceiling. They will do their utmost best to keep
global mean temperature well below 2 degrees Celsius and aim for 1.5 degrees Cel-
sius. A temperature cap which bites implies that the optimal carbon price should
grow at a rate equal to the risk-adjusted interest rate (cf. Gollier (2020)).4 Once
allowance is made for the risk premium, this Hotelling path for the carbon price is
typically faster than the rate of growth of the economy (even when the safe return
is below the economic growth rate). Hence, the initial carbon price and abatement
will be lower upfront but higher in the future. We find that taking into account risk
and uncertainty, climate policy is stepped up hugely as temperature gets closer to its
cap. The reason is that policy makers must prevent temperature overshooting the
cap. If policy makers adopt a tighter cap, they need to boost the carbon price and
abatement. We also show that if policy makers take account of a temperature cap

2Daniel et al. (2019) employ the workhorse recursive dynamic asset pricing model consisting
of a discrete-time decision tree with a finite horizon extended to allow for Epstein-Zin preferences
and generate optimal carbon dioxide price paths based on probabilistic assumptions about climate
damages. They argue that it is optimal to have a high price today that is expected to decline over
time as the ‘insurance’ value of mitigation declines and technological change makes emission cuts
cheaper.

3For learning and optimal climate policy, see also Kelly and Kolstad (1999), Kelly and Tan (2015)
and van Wijnbergen and Willems (2015).

4Gollier (2020) shows in his analysis of the optimal carbon price needed to ensure that a temper-
ature cap is not violated that this rate equals the safe rate plus the beta (the regression coefficient if
rate of change in marginal abatement costs is regressed on rate of growth in aggregate consumption)
times the aggregate risk premium.
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and internalize damages from global warming to aggregate production, the optimal
carbon price will grow faster than if only damages are internalized but slower than if
only a temperature cap is imposed.

Overall, our results suggest that in face of a wide range of risks and uncertainties
and under a wide range of assumptions about society’s preferences with respect to
various aspects of uncertainty, and in particular whether we know their distribution
or not, policy makers should aim for gradually rising carbon prices.

Our framework of analysis is a simple endowment economy where the endowment
is subject to normal economic shocks (modelled by a geometric Brownian motion) and
by rare macroeconomic disasters as in Barro (2006, 2009) and Barro and Jin (2011).
Temperature is driven by cumulative emissions, and the fraction of damages lost
due to global warming is a power function of temperature and is subject to stochastic
shocks with a distribution that is skewed and has mean reversion as in van den Bremer
and van der Ploeg (2021). Our short-cut approach to modelling gradual resolution
of damage uncertainty is slow release of information. We distinguish aversion to risk
from aversion to intertemporal fluctuations, so we use recursive preferences (Duffie
& Epstein, 1992; Epstein & Zin, 1989, 1991). This allows for a preference for early
resolution of uncertainty when the coefficient of relative risk aversion exceeds the
inverse of the elasticity of intertemporal substitution, as empirical evidence strongly
suggests Epstein and Zin (1991).

Our paper is closely related to recent contributions by Lemoine (2021) and van den
Bremer and van der Ploeg (2021) who also study the effect of damage ratio uncertainty
and uncertainty about the economic growth rate in an endowment economy and offer
analytical insights into the deterministic, precautionary, damage scaling and growth
insurance determinants of the optimal SCC. Our paper differs in that we distinguish
relative risk aversion from the inverse of the elasticity of intertemporal substitution
and thereby allow for preferences for early resolution of uncertainty. Also we have
more general forms of uncertainty and allow for skewness and declining volatility of the
shocks to the damage ratio (cf. Daniel et al. (2019)), the risk of rare macroeconomic
disasters, and both economic and climatic tipping risk whose frequency increases with
temperature. We also allow for learning-by-doing effects in mitigation and thus for the
consequent need for renewable energy subsidies. Furthermore, another contribution
of our study is that we analyse the effects of temperature caps under uncertainty
(both with and without damages to the economy) on the time path of the optimal
carbon price under uncertainty. Temperature caps are also analysed in Gollier (2020)
but his two period framework precludes the analysis of intertemporal changes in the
risk premium which we show to be of importance.

Our paper is also related to an extensive literature on optimal discounting under
uncertainty (Gollier, 2002a, 2002b, 2008, 2011, 2012; Olijslagers & van Wijnbergen,
2019; Weitzman, 1998, 2007, 2009, 2011) and optimal climate policy under uncertainty
(Crost & Traeger, 2013, 2014; Jensen & Traeger, 2014; Traeger, 2021; van den Bremer
& van der Ploeg, 2021). It also relates to a growing literature on optimal climate policy
in the presence of climatic and economic tipping points (Cai, Lenton, & Lontzek,
2016; Cai & Lontzek, 2019; Lemoine & Traeger, 2014, 2016; van der Ploeg & de
Zeeuw, 2018).
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Like much of this literature, we present a simple general equilibrium asset pricing
model to answer many of the questions regarding uncertainty and tipping points in
this literature. Our focus is different however, in that we explicitly aim to understand
the qualitative nature of the time path of the path of optimal carbon prices and
abatement. We also study temperature caps with time-varying risk premia in a
continuous-time, infinite-horizon integrated assessment model of the economy and the
climate. In the absence of damages from global warming to the economy, we show
that the expected growth in the marginal abatement cost and the price of carbon
equals the risk-free rate plus an insurance premium. Compared to Gollier (2020),
we additionally consider the implementation of a temperature cap while at the same
time internalizing the damages to aggregate production caused by climate change.
This gives an expected growth of the carbon price that is in between the growth rate
of the economy and the risk-adjusted interest rate.

2 Integrated assessment model for optimal climate

policy evaluation under risk

To make the trade-off between sacrifices in current consumption against less consump-
tion due to global warming in the future, we use preferences which recursively defines
a value function giving the expected welfare from time t onwards, i.e. Vt (Duffie &
Epstein, 1992; Epstein & Zin, 1989, 1991). This formulation distinguishes the coef-
ficient of relative risk aversion γ, from the inverse of the elasticity of intertemporal
substitution (we denote the latter by ε). Policy makers prefer early (late) resolu-
tion of uncertainty if γ exceeds (is less than) 1/ε. Econometric evidence on financial
markets strongly suggests this separation and that the coefficient of relative risk aver-
sion γ exceeds 1/ε by a substantial margin (van Binsbergen, Fernández-Villaverde,
Koijen, & Rubio-Ramı́rez, 2012; Vissing-Jørgensen & Attanasio, 2003). Hence, the
risk-adjusted interest rate incorporates a so-called ‘timing premium’ (Epstein, Farhi,
& Strzalecki, 2014). If γ = 1/ε as is the case with the power utility function, policy
makers are indifferent about the timing of the resolution of uncertainty and there is no
timing premium in interest rates. Mathematically, this is represented as follows. All
agents have identical preferences and endowments, so all the agents can be replaced
by one representative agent. If the coefficient of relative risk aversion equals γ and
the elasticity of intertemporal substitution equals ε, preferences of this agent follow
recursively from:

Vt = max
ut

Et

[ ∫ ∞
t

f(Cs, Vs)ds
]

with

f(C, V ) =
β

1− 1/ε

C1−1/ε −
(

(1− γ)V
)1/ζ

(
(1− γ)V

)1/ζ−1 ,

(2.1)

where ζ = (1−γ)/(1−1/ε) and β > 0 denotes the utility discount rate or rate of time
impatience. If γ = 1/ε, equation (2.1) boils down to the expected utility approach
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with no preference for early (or late) resolution of uncertainty.
The endowment of the economy Yt follows a geometric Brownian motion with

drift µ and volatility σY and includes additional terms to allow for disaster shocks
with constant mean arrival rate λ1. The size of the shocks is a random variable with
time-invariant distribution. The endowment thus follows the stochastic process:

dYt = µYtdt+ σY YtdW
Y
t − J1YtdN1,t, (2.2)

where W Y
t is a standard Brownian motion, N1,t is a Poisson process with arrival rate

λ1, and J1 is a random variable and corresponds to the share of endowment destroyed
if a disaster hits the economy. We assume that x = 1−J1 follows a power distribution
with density f(x) = α1x

α1−1, so E[xn] = α1/(α1 +n) and 0 ≤ E[J1] = 1/(α1 +1) ≤ 1.
For all moments to exist, we assume that γ < α1. This process for the evolution of
the economy thus incorporates both normal macroeconomic uncertainty (captured by
the geometric Brownian motion) and the risk of rare macroeconomic disasters as in
Barro (2006, 2009).

Consumption equals:

Ct =
1− At
1 +Dt

Yt, (2.3)

where At denotes the fraction of output used for abatement and Dt is the damage
ratio associated with global warming. Note that Dt is always zero or positive by
construction, so we also have 0 < Ct ≤ Yt. The business-as-usual flow of emissions
Et is equal to the product of endowment and the carbon intensity ψt:

Et = ψtYt. (2.4)

This carbon intensity ψt declines at the following rate: δψt = δψ0 e
−αψt + δψ∞(1− e−αψt).

δψt is calibrated such that the emissions flow Et is (in expectation) initially increasing
over time, but in the long run the business-as-usual flow of emissions will go towards
zero since fossil fuels are exhaustible. Actual emission flows are (1 − ut)Et where
ut denotes the abatement rate. Without carbon capture and sequestration (CCS),
the upper bound of the abatement rate equals 1 in which case all emissions are fully
abated and the economy effectively only uses renewable energy. Carbon capture can
be represented by having ut exceed one which we however rule out in this paper 5.

The cost function for abatement is:

At = c0e
−c1Xtuc2t , (2.5)

where Xt is the accumulated stock of knowledge in using renewable energy and c1
is the parameter that controls how fast the costs decline over time as the stock of
knowledge about green technology increases. Furthermore we assume that c2 > 1,
so abatement costs are a convex function of the abatement rate. We consider two
different processes for the stock of knowledge. In the standard case, the stock of

5For a simple reason: at least as of now there do not seem to exist technologies having for carbon
capture at a scale to make a material difference
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knowledge grows exogenously over time. The abatement cost function then boils
down to the cost function of Nordhaus (2017):

At = c0e
−c1tuc2t . (2.6)

Technological progress in this case is exogenous. In the alternative, more general case
(2.5) we allow for learning by doing by letting the growth of the stock of knowledge be
a function of the cumulative amount of emissions that have been abated. Additionally,
we consider abatement uncertainty. The stock of knowledge then follows:

dXt = utEtdt+ σXdW
X
t , (2.7)

where WX
t is a standard Brownian motion.

Temperature is a linear function of cumulative carbon emissions, so the change
in temperature depends on the flow of emissions, which gives us for the dynamics of
temperature Tt:

dTt = χ(1− ut)Etdt, (2.8)

where χ denotes the transient climate response to cumulative emissions (TCRCE).
The damage ratio is a function of temperature and shocks that take some time to have
their full impact and follow a skewed distribution to reflect ‘tail’ risk. The damage
ratio is given by:

Dt = T 1+θT
t ω1+θω

t with dωt = υ(ω − ωt)dt+ σωt dW
ω
t , (2.9)

where ωt follows a Vasicek (or Ornstein-Uhlenbeck) process with short-run volatility
σωt , mean reversion υ and long-run mean, ω and W ω

t is a standard Brownian motion
(cf. van den Bremer and van der Ploeg (2021)). Here θT controls the convexity with
respect to temperature and θω controls the skew of the shock hitting the damage ratio.
In our benchmark case we assume linear damages in temperature corresponding to
θT = 0, but we extensively analyse the case of convex damages where θT > 0. A novel
feature of our analysis is that we allow for a declining time path of volatility, which
we capture by the specification:

σωt = max
[
(1− t/tω)σω0 , 0

]
, (2.10)

so volatility starts with σω0 and falls linearly to zero after t
ω

years. This allows for
gradual resolution of damage uncertainty. Volatility is constant if we set t

ω → ∞.
When a temperature cap is implemented, we analyse the consequences of imposing
a Paris-like restriction Tt ≤ T cap. This is in our setup equivalent to the restriction
that either only renewable energy must be used once temperature is at its cap, i.e.
ut = 1 if Tt = T cap or any emission must be offset by equal carbon capture once that
temperature cap is reached.

Finally, we allow for the possibility of economic and climatic tipping points. We
assume that the probability of a tipping point occurs increases in global mean temper-
ature. The hazard rate of the economic tipping point equals λ2Tt where λ2 indicates
the rate at which the hazard rate increases with temperature. We assume that when
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the system tips, a share J2 of endowment is destroyed. J2 is a random variable which
also follows a power distribution, but with parameter α2. The main difference be-
tween the economic tipping point and the disaster process, is that the tipping point
can only tip once, while the Barro-style disasters recur over time. We also consider
a climatic tipping point for which the sensitivity of temperature with respect to cu-
mulative emissions suddenly increases after a tip. More specifically, we assume that
before the tip the transient climate response to cumulative emissions is equal to χ0

and after the tip it jumps to χ1. The hazard rate for the climatic tipping point equals
λ3Tt. We show that the two different specifications have very different implications
for the optimal carbon price and abatement rate.

2.1 Implementation of first best in a decentralized economy

We can solve the problem of maximizing expected welfare subject to equations (2.2)
to (2.10) using the method of dynamic programming (see Appendix A). The resulting
social optimum gives rise to the optimal SCC and can be implemented in a decentral-
ized market economy when the carbon tax is set to the SCC and the revenue is rebated
to the private sector as lump sums (see Appendix B). The numerical implementation
is discussed in Appendix C.

Define the value function as function of the four state variables and time: V i,j
t =

Zi,j
(
Yt, Tt, ωt, Xt, t

)
, where i ∈ {0, 1} and j ∈ {0, 1} indicate whether respectively

the economic and the climate tipping point has already occurred. The social cost
of carbon (SCC) corresponds to the expected present discounted value of all present
and future damages to the economy resulting from emitting one ton of carbon today.
It equals the welfare loss of emitting one unit of carbon scaled by the instantaneous
marginal utility of consumption:

SCCt = −χ∂Z
i,j/∂Tt

fC(Ct, Vt)
. (2.11)

We consider two cases for abatement costs. In our benchmark case abatement costs
decline exogenously over time. In the learning-by-doing case abatement costs are
endogenous and increase in the stock of accumulated past abatements (a proxy for
accumulated knowledge about the use of green energy). The social benefit of learning
corresponds to all the present and future marginal benefits in terms of lower mitigation
costs resulting from using one unit of mitigation more today:

SBLt =
∂Zi,j/∂Xt

fC(Ct, Vt)
. (2.12)

In the benchmark case without learning by doing, the SBL is simply equal to zero.
When choosing optimal abatement policy, policy makers must recognize that

abatement serves two purposes in our set-up: 1) it reduces emissions and thus global
warming, which leads to less climate damages in the future and 2) due to learning by
doing, abatement reduces future abatement costs. But abatement is costly. Policy
makers must sacrifice current consumption to make room for abatement if they want
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to curb global warming and increase (expected) future consumption. Optimal abate-
ment ut thus follows from the condition that the marginal abatement cost (MAC)
must equal the social cost of carbon plus the social benefit of learning:

MACt = SCCt + SBLt where MACt = −∂Ct/∂ut
Et

. (2.13)

The marginal abatement cost is the cost of abating one more unit of carbon emissions.
It increases in the abatement rate ut since abatement costs are a convex function of
the abatement rate. The economy increases abatement until the marginal abatement
costs equal the benefits of abatement. If there is no learning by doing, the only benefit
of abatement is the reduction of climate change damages. In that case the marginal
abatement cost is equal to the SCC, which is the expected present discounted value
of all current and future damages caused by emitting one more ton of carbon today.
The learning-by-doing externality gives an additional incentive to reduce emissions.
The marginal abatement cost thus equals the sum of the social cost of carbon and
the social benefit of learning. We denote the optimal abatement policy that solves
the dynamic programming problem by u∗t .

When the government implements a carbon tax which is set it to τt = SCCt and
a renewable energy subsidy which is set to st = SBLt, and the net revenue of these
policy instruments are rebated as lump sums, the social optimum can be replicated in
the decentralized market economy (see Appendix B). Competitive energy producing
firms will then choose the energy mix such that the amount of fossil fuel use equals
Ft = (1− u∗t )Et and the amount of renewable energy use equals Rt = u∗tEt, where Et
is the total amount of energy use in the economy (which we have previously referred
to as business-as-usual emissions).

We adapt the simple but widely used energy model of Nordhaus (2017) and extend
it to allow for uncertainty and tipping points in the economy, the climate sensitivity,
and damages from global warming. One drawback of this is that in our setting,
taxing carbon is equivalent to subsidizing renewable energy since total energy use is
not endogenously chosen by the energy producers and since fossil and green energy are
perfect substitutes. Optimal policy could thus in such a framework also be replicated
by setting a carbon tax equal to τt = SCCt + SBLt. However, it is important
to stress that this is not the case in more general models. When fossil fuel and
renewable energy use can be optimally chosen separately, replication of the command
optimum can only be done by setting τt = SCCt and st = SBLt (e.g. Rezai and van
Der Ploeg (2017)). Taxing carbon then has different implications than subsidizing
green energy. In a more general setting with directed technical change, it can be
shown that when green and dirty inputs are sufficiently substitutable, a temporary
green energy subsidy is optimal to fight climate change by kickstarting the economy in
directions of green technical progress (e.g. Acemoglu, Aghion, Bursztyn, and Hemous
(2012)).6 Although taxing carbon and subsidizing green energy are equivalent in our

6Bovenberg and Smulders (1995, 1996) offer early contributions on climate policy and endogenous
growth. It has also been argued that subsidizing green energy technology is not effective to fight
climate change, since it leads to higher energy use in total instead of substantially less fossil fuel use
(Hassler, Krusell, Olovsson, & Reiter, 2020).
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simple framework, we do interpret the social cost of carbon as the optimal carbon tax
and the social benefit of learning as the optimal renewable energy subsidy, to stress
that the two are in general not equivalent.

We assume that negative emissions are not possible (or at least not at a competi-
tive price) and thus impose an upper bound on the abatement rate of 1. Hence, when
it would be optimal to abate more than 100% of the emissions, the optimality con-
dition (2.13) cannot be satisfied anymore. In this case the marginal abatement costs
are smaller than the sum of the social cost of carbon and social benefit of learning.

2.2 Effects of a temperature cap on carbon pricing

Optimal policy in presence of a temperature cap still satisfies the first-order condition,
but the SCC now must account for the temperature cap. A temperature cap in our
model is equivalent to the restriction that ut = 1 when Tt = T cap since only then
the cap will not be violated. We show that in the case of a pure temperature cap
(i.e. no effect of climate change on damages to aggregate production), intertemporal
optimization implies that the expected growth rate of the SCC and of the MAC must
equal the risk-free interest rate plus a risk premium (for a proof, see Appendix D).
Let πt be the stochastic discount factor. In this case, we thus have that expected
growth in the MAC and in SCC (in the absence of learning by doing) equals:

Et

[dMACt
MACt

]
= rt + Et

[
− d[πt,MACt]

πtMACt

]
, (2.14)

where d[πt,MACt] is the quadratic variation between the stochastic discount factor
and the marginal abatement cost. In expectation, the growth rate of marginal abate-
ment costs is therefore equal to the risk-free rate rt plus a risk premium related to the
correlation between πt and MACt. If changes in consumption and marginal abate-
ment costs are positively correlated, then the stochastic discount factor and marginal
abatement costs are negatively correlated and the risk premium is positive. This leads
to a faster rate of growth of the SCC and thus the optimal carbon price.7

This result echoes the result derived by Gollier (2020) for a two-period model.
It follows from the assumption that temperature increases linearly in cumulative
emissions. In that case, we get an equivalent of the Hotelling rule with the carbon
price growing at a rate equal to the risk-adjusted interested rate.8 This price path
achieves intertemporal efficiency and ensures that temperature does not exceed the
cap. In other words, the risk-adjusted discounted MAC is the same for each period.

Marginal abatement costs (without learning by doing) are given by:

MACt = −∂Ct/∂ut
Et

=
Yt
Et

∂At
∂ut

=
Yt
Et
c0e
−c1tc2u

c2−1
t =

c0e
−c1tc2u

c2−1
t

ψt
. (2.15)

7We discuss the risk premium in more detail in the numerical part of the paper in section 4.6.
8Normally, the Hotelling rule states that the growth rate of the efficient carbon price equals

the (risk-adjusted) interest rate plus the rate of decay of atmospheric carbon. Since in our model
temperature is driven by cumulative emissions rather than the stock of atmospheric carbon, the
decay rate does not appear in our Hotelling rule.

10



The assumption that both total abatement costs and emissions are proportional to
endowment implies that abatement costs per unit of emissions do not scale with
endowment. Uncertainty within marginal abatement costs is driven by uncertainty
around the optimal abatement rate u∗t . We show that the risk premium has a clear
negative time trend, which is not visible in a 2-period model like Gollier (2020). We
will analyse the risk premium in more detail in the results section.

3 Calibration and benchmark results

We discuss our benchmark calibration and then present and discuss the corresponding
optimal time path for respectively the carbon price, the learning-by-doing subsidy,
abatement, and temperature.

3.1 Calibration

In our benchmark calibration, we choose for the coefficient of relative risk aversion
γ = 7, for the elasticity of intertemporal substitution ε = 1.5 and for the rate of
impatience β = 2% per year. These are values that are typically used in the asset
pricing literature with Epstein-Zin preferences (e.g. Table 1, Cai and Lontzek (2019))
based on extensive empirical evidence. The details of our calibration are reported in
Table 1.

The initial endowment is set to world consumption (using purchasing power pari-
ties) of 80 trillion 2015 US dollars. We suppose this endowment is subject to normal
shocks captured by geometric Brownian motion with a drift of 2% per year and an
annual volatility of 3%. In addition, we have macroeconomic disaster shocks along
the lines of Barro (2006, 2009). Here the mean size of the disaster shocks is 8.7%
and the mean arrival rate of these shocks is 0.035 per year corresponding to a mean
arrival time of 29 years. This calibration yields a real risk-free interest rate of 0.75%
and a risk premium of 2.65% if we abstract from the adverse effects of climate change
on the economy. Since in the past century climate change has arguably had no effect
on interest rates, we can compare these numbers to historical averages.

Dimson, Marsh, and Staunton (2011) calculate that the global real risk-free rate
has been on average 1% and the risk premium 4% over the period 1900-2010. We are
currently in a low interest environment and in the long run it is questionable whether
interest rate will return to their old average levels, which makes 0.75% a reasonable
real risk-free interest rate. Our risk premium is lower than the historical average,
but our main purpose is not to solve the equity premium puzzle. Furthermore, a risk
premium of 2.65% is more realistic compared to most other climate-economy models
in which the risk premium is often small or non-existent.9 These numbers are also
close to Gollier (2020) who calibrates the risk-free rate at 1% and the risk premium
at 2.5%.

9Our model does not distinguish between asset price volatility and output growth volatility. We
have calibrated the volatility in our model to output growth volatility. Calibrating the volatility to
asset price volatility would lead to a higher risk premium.
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Table 1: Calibration details

Preferences Coefficient of relative risk aversion: γ = 7
Elasticity of intertemporal substitution: ε = 1.5
Rate of impatience: β = 2%

Economy Initial endowment: Y0 = 80 trillion US dollars
Geometric Brownian motion
Drift in endowment µ = 2%/year
Volatiltiy of shocks to endowment σY = 3%/

√
year

Macroeconomic disasters
Arrival rate of disasters λ1 = 0.035/year
Mean size of disasters E[J1] = 8.7%
Shape parameter of power distribution α1 = 10.5

BAU emissions Initial flow of global emissions in BAU scenario E0 = 10GtC/year

Initial growth rate of carbon intensity δψ0 = −0.5%/year
Long run growth rate of carbon intensity δψ∞ = −6.5%/year
Carbon intensity parameter αψ = 0.0025

Abatement costs Initial cost of full decarbonization c0 = 7.41% of GDP
(Benchmark Rate of technological progress c1 = 1.9%/year
case) Convexity parameter cost function c2 = 2.6

Maximum abatement u ≤ 1
Abatement costs Initial level of knowledge stock X0 = 0
(Learning by Initial cost of full decarbonization c0 = 7.41% of GDP
doing case) Rate of technological progress c1 = 0.375%/unit of knowledge

Convexity parameter cost function c2 = 2.6
Abatement cost volatility σX = 5
Maximum abatement u ≤ 1

Temperature Initial temperature T0 = 1oC
Transient climate response to cumulative emissions
TCRCE = χ0 = 1.8oC/TtC
Temperature cap T cap = 2oC or T cap =∞

Damage ratio Convexity parameter θT = 0 (linear) or θT = 0.56 (convex)
Skew parameter of shocks θω = 2.7
Mean reversion of shocks υ = 0.2/year
Initial and mean steady-state value of shocks ω0 = ω = 0.21
Constant volatility variant σω0 = 0.05, t

ω
=∞

Declining volatility variant σω0 = 0.05, t
ω

= 100 years
Economic Arrival rate of tipping point λ2 = 0.01Tt
tipping point Mean tipping damage level E[J2] = 2.5%

Shape parameter of power distribution α2 = 39
Climatic Arrival rate of tipping point λ3 = 0.006Tt
tipping point TCRCE after tipping χ1 = 2.5oC/TtC
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Figure 1: Expected costs of full abatement (ut = 1) in the benchmark and in the
learning-by-doing case for two different damage specifications (linear and convex)

Parameters for the carbon intensity are chosen to match in expectation the base-
line emissions scenario in Nordhaus (2017). The parameters c0, c1 and c2 of the
abatement cost function in the benchmark case are taken from the DICE calibration
(Nordhaus, 2017). For the learning by doing calibration, we take the same value for
c0 (cost of full abatement in initial period) and for c2 (convexity of abatement costs
in abatement rate ut). The parameter c1 now represents the decline in abatement
costs when one additional Gt of carbon emissions is abated and is set to c1 = 0.375%
(cf. Rezai and van Der Ploeg (2017)). With learning by doing in renewable energy
production, future abatement costs depend on cumulative past abatement efforts and
thus also depend on the damage calibration. Figure 1 compares abatement costs of
the benchmark case with the learning-by-doing case, both when damages from global
warming are linear and when they are convex in temperature.

We set the transient climate response to cumulative emissions (TCRCE) to 1.8oC/TtC
(Matthews et al., 2009). The parameters of the uncertain damage shock and of the
convexity parameter θT are taken from van den Bremer and van der Ploeg (2021).
For the variant with gradual resolution of damage uncertainty, we assume that the
volatility of the damage shock is linearly declining to 0 over a period of 100 years as
in equation (2.10).

Finally, we assume that initially an economic tipping point is expected to tip
once every 100 years (i.e. an arrival rate of 0.01) but that the arrival rate increases
linearly with the temperature. Thus when temperature increases to two (four) degrees
Celsius, this becomes a tip once every 50 (25) years. The size of the damages caused
by the tipping disaster is assumed to be on average 2.5%. For the climate tipping
point, it takes initially on average 167 years for the climate system to tip. With 2
degrees Celsius warming the average time reduces to 83 years. When the system tips,
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Figure 2: Benchmark with linear damages, no learning by doing, no gradual resolution
of uncertainty, no tipping points, and no temperature cap

the TCRCE jumps from 1.8oC/TtC to 2.5oC/TtC. Overall, the main message of the
two tipping point calibrations is that the probability of tipping in both cases is quite
small initally but goes up as temperatures rise, and we will show that the impact on
optimal carbon prices and the abatement rate is considerable.

3.2 Benchmark optimal carbon prices

With this calibration, the benchmark SCC (with linear damages, no learning by doing
and no temperature cap) is shown in Figure 2. The SCC corresponds to the optimal
carbon price. The most striking feature of the top two panels is that the ex-ante
mean and median paths of the optimal carbon price start at almost 45$/tC and then
grow almost in tandem with the growth of the economy.

In fact, there is a modest decline in carbon price corrected for the growth of the
economy as can be seen from the top right panel. The median carbon price path lies
below the mean carbon price path, and the 5% and 95% bounds become wider for
carbon prices that are further in the future as one should expect given that a function
of GBM processes is a GBM process itself (cf Shreve (2004)). As a result of the
technological progress in abatement technology, there is a gradual rise in abatement
efforts over time. Due to the rise in business-as-usual emissions, temperature rises in
expectation to almost 3 degrees Celsius in the next century but by rather less than
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in the absence of abatement efforts. The plots also indicate a sample run in blue.
This suggests that for individual sample paths of the optimal carbon price there may
be substantial volatility, which does not show up in the ex-ante time path for the
mean (or median) optimal carbon price. There is also substantial uncertainty around
optimal abatement policy and future temperature levels.

4 Five generalizations of the benchmark

We now discuss five generalizations of the benchmark. For expositional reasons, we
discuss these generalizations one by one. In practice, all these generalizations are
relevant at the same time. We discuss first the effects of convex damages, then
present the effects of learning by doing and a combination of convex damages and
learning by doing. After that we discuss the implications of gradual resolution of
damage uncertainty and then show the differential impacts of climatic and economic
tipping points. We then analyse the effects of temperature caps on the time path
of carbon prices both with and without damages to economic production. Finally,
we present a combined optimal policy simulation exercise as an alternative for the
benchmark case.

4.1 Convex damages

Figure 3 presents the effects of convex damages captured by the proportion of output
lost due to global warming being a convex rather than a linear function of temper-
ature. Following van den Bremer and van der Ploeg (2021), we let this function be
proportional to temperature to the power of 1.56. This is slightly less convex than
the damage function of Nordhaus (2017) but serves to illustrate the effects of convex
damages. The most striking effect of convex damages is that the carbon price starts
at a higher level, 87$/tC instead of 44$/tC, and then grows in expectation at a faster
pace than in the benchmark. We can see this most strikingly by comparing the top
right panel of Figure 2 with the left panel of Figure 3. This shows that with convex
damages, the path of optimal carbon prices corrected for growth of the economy rises
whilst with linear damages, this path declined mildly. Hence, the abatement efforts
are much stronger. The average mitigation rate now rises in a century to 83% instead
of 47% in the benchmark. We thus confirm the earlier Monte-Carlo results of Dietz
and Stern (2015) in our fully stochastic framework: climate policies get intensified if
damages are convex.10

4.2 Learning by doing in abating emissions

Including learning by doing into the analysis gives an additional reason for abatement.
The MAC is now equal to the SCC plus the SBL. The SCC adjusted for economic
growth is very similar to the base situation, so changing the abatement cost structure

10Crost and Traeger (2013) show that Monte-Carlo simulations do not properly take account of
uncertainty on the optimal carbon price and can lead to misleading results.
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Figure 3: Convex damages

has no significant effect on optimal carbon prices. The only difference is that growth
adjusted carbon prices have a slight downward trend over time (i.e. grow slightly
slower than GDP). But optimal carbon prices still grow almost in tandem with the
economy (see top left panel of Figure 4).

The SBL shown in the top right panel of Figure 4 has a very different shape. It
grows faster than the economy in the first 50 years: the panel displays the growth-
adjusted SBL, hence an upward-sloping time path of this SBL implies that the SBL
grows at a higher rate than the economy. But in the second half of this century
(after 2050) abatement costs have been reduced substantially because of learning by
doing to such an extent that even lower abatement costs do not give much additional
benefit anymore, the SBL falls below its 2020 value. Another notable difference is due
to the stochastic nature of the learning-by-doing externality: there now is much more
uncertainty in the optimal abatement rate. This is reflected in much wider confidence
intervals for the abatement rate u∗t .

4.3 Convex damages and learning by doing in abatement

Figure 5 shows that combining convex damages and learning by doing leads to a much
stronger incentive for abating energy. The optimal carbon price is again quite similar
to the optimal carbon price without learning by doing. The SBL now has a clearer
hump shape compared the linear case. It starts much higher and declines towards
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Figure 4: Learning by doing in abating emissions

zero faster. Since damages are more severe, more abatement is optimal and lowering
abatement costs by investing in knowledge is even more beneficial, which explains
the higher level of the SBL. In this scenario it is optimal to fully decarbonize the
economy around the end of the century in the median scenario, much earlier than in
the previous scenarios. The main takeaway from the learning-by-doing simulations is
that optimal abatement of emissions is understated if learning-by-doing externalities
are not properly internalized.

4.4 Gradual resolution of damage uncertainty

Our third generalization is to allow for gradual resolution of damage uncertainty.
More precisely, we let the annual volatility of the damage ratio fall to zero linearly
in a century. This is a shortcut to capturing slow resolution of uncertainty without
delving into the intricacies of learning 11. The left panel of Figure 6 indicates that
the expected optimal path of carbon prices now grows more slowly than the economy
itself: corrected for growth of the economy the SCC now falls over time, much more
strongly than the modest decline shown in the benchmark (see top right panel of
Figure 2). We find that the optimal carbon price does not only grow much more
slowly than the economy, but also starts at only 33$/tC instead of 44$/tC. The fact

11See Gerlagh and Liski (2018) for similar results in a formal model of learning and uncertainty
resolution over time.
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Figure 5: Convex damages and learning by doing in abating emissions

that there is declining uncertainty about the damage ratio means that policy makers
can pursue a less vigorous climate policy than in the benchmark. Declining volatility
in the future already has an impact on the optimal carbon price today. This implies
that the mitigation rate rises in a century to only 34% compared to 47% in the
benchmark. Note that if there is no or very little growth in the economy, the optimal
carbon price would decline over time as found by Daniel et al. (2019) for a 7-period
model for integrated assessment of economy and the climate. The general point is
that gradual resolution of damage uncertainty slows down the rate of growth of the
optimal carbon price and actually shifts the entire time path down also. The initial
carbon price is also lower than in the benchmark case.

4.5 Climatic and economic tipping points

Our fourth generalization is to allow for climatic and economic tipping points. There
is a growing literature on the effects of various stochastic tipping points on optimal
climate policy (Cai & Lontzek, 2019; Lemoine & Traeger, 2014, 2016; van der Ploeg
& de Zeeuw, 2018). Most of these studies are quite challenging from a numerical
point of view. Here we simply present the effects (relative to our benchmark) of two
illustrative tipping points.

We first present a single climatic tipping point for which we assume that there is a
risk of a regime shift in which the transient climate response to cumulative emissions
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Figure 6: Gradual resolution of damage uncertainty.

Figure 7: Risk of a climate tipping point

at an unknown future moment suddenly jumps up from 1.8oC/TtC to 2.5oC/TtC.
Moreover, we assume that the arrival rate is higher at higher temperatures: the
initial hazard of this tip at the initial temperature of 1 oC is 0.006, which implies
an expected arrival time of 167 years, but for every increase in temperature by 1
oC we let the hazard rate rise by a further 0.006. This means that at 3 oC the
hazard is 0.018 and the mean arrival time for the catastrophe is only 56 years. Global
warming makes the tipping point thus more imminent. Although these small risks are
likely to occur in the very distant future, they have consequences on optimal climate
policy now already, as can be seen by comparing Figure 7 with Figure 2. The mean
optimal carbon price now starts somewhat higher at 48$/tC than in the benchmark
and then rises over time. Hence, the mitigation rate ends up higher after a century,
at 55% instead of 47%. The blue lines indicate a sample path with the tipping point
occurring in 2047. At that time, the carbon price jumps up substantially because of
the bigger climate challenge resulting from the increased sensitivity of temperature
to cumulative emissions.

Figure 8 shows the optimal policy simulations for a different type of tipping point,
namely one that leads to a higher effect of global warming on damages instead of
increased temperature sensitivity. We assume that the size of the economy drops on
average by 2.5% once this tipping point occurs. The initial hazard of this tip at initial
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temperature is 0.01, which implies an expected arrival time of 100 years. For each
increase in temperature by 1 oC, the hazard rate is assumed to rise by 0.01. Hence,
at 3 oC the hazard is 0.03 and the mean arrival time for the tipping point goes down
to 33 years. This economic tipping point is thus expected to occur more rapidly than
the climate tipping point. The most striking feature is that for this tipping point,
the initial carbon price is much higher than in the benchmark, i.e., 85$/tC instead of
44$/tC, but that the mean and median paths of the optimal carbon price corrected
for growth of the economy fall strongly over time. The blue line indicates a sample
run where the tipping point occurs at the end of the century. At that time, the carbon
price drops down instantaneously and, as a result, the mitigation rate drops down at
that time too. The intuition behind this drop is obvious: initially, a large fraction of
the carbon price is reflecting the urgency of preventing the tipping point. A higher
carbon price leads to more mitigation efforts and therefore a lower probability of
the tipping. But when despite these additional abatement efforts, the system tips
eventually, there are no further tipping points to prevent. Moreover, after the tip
has occurred the economy is smaller because of the sudden increase in damages. The
social costs of carbon are proportional to output, which is another factor behind the
drop in the SCC after the damage catastrophe occurs. Another way of saying this is
that the stochastic discount factor is higher in this case, which implies both a higher
initial SCC and a slower growth rate. The benefit of carbon reduction after the tip
is the same as the benefit in the benchmark model without the tipping point for the
same level of output.

This is an important point: a tipping point in the climate system that speeds up
warming or leads to a slower decay of carbon emissions has very different implications
than a tipping point that directly damages economic production. In the case of
a climatic tipping point abatement efforts can be higher before the tip to prevent
tipping, but when the system tips eventually abatement efforts jump up even further
since one unit of emissions now leads to more global warming. The expected growth
adjusted carbon price is therefore growing faster than economic growth. In the case
of an economic tipping point, abatement efforts before tipping are also higher than
in the absence of a tipping point to prevent tipping, but once the damage tipping
point has happened, the economy is actually smaller in the future and the carbon
price jumps down since damages are still proportional to the economy.

We can also combine both types of tipping points in a single simulation. Figure 9
shows a sample path in which the climate tipping point tips very early and in which
the economic tipping point tips around 2055. The initial carbon price is equal to
88$/tC. The left panel indicates that the declining effect of the economic tipping
point dominates the increasing effect of the climate tipping point. However, the
growth-adjusted carbon price or SCC is now much flatter compared to the left panel
of Figure 8. Abatement efforts are higher when both tipping points are present; the
optimal abatement rate is 58% after a century.

Of course, in practice, the full impact of a tipping point (e.g., the effects of the
melting of the Greenland Ice Sheet) may take a very long time to materialize (Cai
& Lontzek, 2019; van der Ploeg & de Zeeuw, 2018). We have abstracted from this,
but protracted effects of tipping points are clearly important in terms of the result-
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Figure 8: Risk of an economic tipping point

Figure 9: Risk of two tipping points affecting the climate system and the size of the
economy
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Figure 10: Effects of a 2 degrees Celsius temperature cap without damages

ing time path of optimal policy, which will then change more gradually. It is also
important to allow for cascading tipping points where the onset of one tip might
increase the likelihood of another tipping point occurring, by more than implied by
the temperature-dependence of the hazard rate (Cai et al., 2016; Lemoine & Traeger,
2016). In particular, the downward jump after the damage tip occurs will be smaller
in that case since there is the remaining incentive to delay future tipping points.

4.6 Pricing carbon to enforce temperature caps

Although most economists have adopted a welfare-maximizing approach where poli-
cymakers internalize the global warming externalities, many governments (as well as
central banks and the Network of Greening the Financial System) have followed the
IPCC and have decided that the best way to deal with global warming is to enforce
a ceiling on global mean temperature.

Given that temperature increases with cumulative emissions, the optimal carbon
price must then grow at a rate that is equal to the interest rate plus a risk premium.
In Figure 10 we show the optimal climate policies when a cap on global mean temper-
ature of 2 oC is implemented and where we abstract from damages to global warming.
The top left panel indicates a rise in the median carbon price. The carbon price ini-
tially also rises when adjusted for the growth rate of the economy, but eventually the
growth rate of the carbon price drops below the growth rate of the economy. The
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Figure 11: Expected growth rate of marginal abatement costs under a temperature cap
of 2 degrees Celsius without global warming damages to production

initial carbon price is a bit lower than in the benchmark, but the carbon price grows
much faster than the growth rate of the economy. This steep growth in carbon prices
ensures a rapid rise in the abatement rate and quick decarbonization of the economy
(bottom left panel). Hence, temperature is much lower in a century: 2 oC instead of
almost 3 oC (bottom right panel).

We numerically confirm our theoretical result that the expected growth rate of
the carbon price and the MAC indeed equals the risk-free interest rate plus the risk
premium. As discussed in section 2.2, we have that:

Et

[dMACt
MACt

]
= rt + Et

[
− d[πt,MACt]

πtMACt

]
. (4.1)

What matters for the risk premium is the correlation between marginal abatement
costs MACt and the stochastic discount factor πt (via consumption). Marginal abate-

ment costs are given by: MACt =
c0e−c1tc2u

c2
t

ψt
. Uncertainty in MACt comes directly

from uncertainty in ut. When endowment and thus consumption is high (in ‘good’
states of the world), emissions are also high. The emissions control rate must be high
in these states as well, in order to comply with the temperature cap. There is thus
clearly a positive correlation between MACt and consumption Ct. This results in a
positive risk premium and the expected growth rate of the carbon price is therefore
higher than the rate of interest.

Figure 11 shows however that the expected growth rate of MACt is declining over
time. This is because the risk premium is declining over time. The intuition behind
this result is as follows. In the beginning, the abatement rate u∗t is close to 0. Actual
emissions are equal to (1 − u∗t )ψtYt. When there is a negative shock to endowment
(and thus to consumption), for example because of a disaster shock, emissions are
very responsive. The drop in emissions will then lead to a drop in abatement, since
there are less emissions and the temperature cap is the same. Over time, abatement
becomes cheaper. So further in the future, emissions are less responsive to a change in
output (since u∗t is larger). The abatement policy reaction to a change in endowment
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Figure 12: Effects of a 2 degrees Celsius temperature cap with convex damages

becomes smaller over time. It is also intuitive that there is not much room to change
policy when the temperature level is close to the temperature cap. This results in
a declining risk premium, and thus the rate of growth of the optimal carbon price
tapers off as full mitigation is reached (see top left panel of Figure 10).

In practice, this implies that the optimal path of the carbon price with a temper-
ature cap starts low initially. It then grows fast in the beginning, but the growth rate
is declining over time. Around the point where u∗t is close to 1, the risk premium is
close to zero and growth rate is almost equal to the interest rate. The result that the
risk premium is declining when the economy gets closer to carbon-neutral cannot be
found in a 2-period model like Gollier (2020), since there is only a single uncertain
period in that case.

Figure 12 plots the optimal climate policies under a 2 oC cap when there are also
convex damages from global warming to the aggregate economy. We then find that
the growth rate of the optimal path of carbon prices is somewhere in between the
risk-adjusted rate of interest and the rate of economic growth (cf. van der Ploeg
(2018)). Postponing abatement can be more cost-efficient due to discounting and
technological progress in abatement technology, but that also leads to more warming
and therefore more damages. The initial price, with both a temperature cap and
damages, is therefore much higher (100$/tC compared to 35$/tC without damages)
and the growth rate lower.

Finally, figure 13 shows the optimal policy function at the initial date (2015) for the
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Figure 13: Optimal policy functions for the abatement rate as function of temperature
at the initial date (2015)

abatement rate in state space, so as a function of global mean temperature. The solid
line shows that the abatement rate increases more and more rapidly in the direction
of 100% mitigation as the temperature of cap of 2 degrees Celsius is approached. This
very nonlinear feature is necessary to ensure that temperature stays below its cap.
One can see that the corresponding optimal policy function for the benchmark case
of linear damages is flat. The optimal policy function for the case of convex damages
is, of course, much higher and slopes gently upwards as the convexity of damages
kicks in. Although the policy function with convex damages starts higher than the
one with a temperature cap, it rapidly is overtaken as temperature increases. If we
combine linear damages and a temperature cap, the policy function starts slightly
higher compared to the case with linear damages only. A similar result emerges for
the case with convex damages.

4.7 Alternative to benchmark: combination of effects

Most cases discussed in section 4 imply that the growth rate of the carbon price
should be at least as high as the rate of economic growth. But in particular economic
damage tipping points may at times reverse or slow down that trend. So what do
we conclude from all these conflicting trends? It is important to note that all the
extensions considered separately are in fact all relevant simultaneously. Therefore we
conclude with a combination run featuring convex damages, economic and climate
tipping points, and an economists’ approach to deriving optimal policy: minimizing
damages/maximizing welfare. We leave out active learning by doing, not because
it is irrelevant but because it should be stimulated by a dedicated subsidy to new
technology, not by manipulating carbon prices; and we have shown that once such
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Figure 14: Convex damages and risk of two tipping points affecting the climate system
and the size of the economy

a subsidy is introduced the time path of carbon prices is mostly unaffected12. To
illustrate this we present an optimal policy simulation run which we consider to be
more relevant than the benchmark case in Fig 14.

Clearly, allowing for the combined effects does not only lead to a higher SCC and
price of carbon but also to a growth of carbon prices that is somewhat faster than
that of the rate of growth of GDP (see top two panels of Fig 14. As a result, the
abatement efforts are higher and the transition to a fully carbon-free economy occurs
more quickly (third panel) than under the benchmark. The global mean temperature
is lower and reaches a plateau of a little more than 2 degrees Celsius relative to pre-
industial by the end of this century (fourth panel), approximately equal to the target
agreed upon in Paris.

12Others have argued that it is optimal to have an upfront spike in carbon prices followed by
a decline in carbon prices if there are learning-by-doing effects in renewable energies (e.g. Daniel
et al. (2019)). As we have seen, the carbon price that is put forward in Daniel et al. (2019) is a
combination of a gradual rise in carbon prices and a spike in renewable energy subsidies. Once the
carbon price and renewable energy subsidies are introduced separately, the spike upfront in carbon
prices disappears
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5 Conclusion

We have shown that convex damages, tipping points and temperature caps all argue
in favour of a rising path of carbon prices. Only if there is gradual resolution of
uncertainty will there be a declining component in the optimal carbon price, but this
effect is dominated by rising components if damages and the economy are growing at
empirically plausible rates. Furthermore, convex damages and especially temperature
caps require that the carbon prices grow at a faster rate than the economy. Our policy
recommendation is therefore that decision makers should start with a significant car-
bon price and at the same time commit to a rising path of carbon prices. This rising
path of carbon prices can, if required by learning-by-doing externalities, be supple-
mented with renewable energy subsidies separate from taxing emissions through the
carbon price. These two policies give the best guarantee for redirecting investments
from carbon-intensive to green technologies.

More generally, if in addition to the normal growth uncertainty, risk of macroe-
conomic disasters and uncertainty about the damage ratio highlighted in our model,
account is taken of climatic forms of uncertainty such as uncertainty in the carbon
stock and temperature dynamics (van den Bremer & van der Ploeg, 2021) or about
tipping of the Greenland or Antarctic Ice Sheet or reversal of the Gulf Stream (Cai
& Lontzek, 2019), the optimal response is also a rising path of carbon prices. If inte-
grated assessment models are extended to allow for long-run risk in economic growth
with temperature-induced tail risks, the temperature risk premium increases with
temperature (Bansal, Kiku, & Ochoa, 2016; Bansal & Yaron, 2004) and it is even
more difficult to get a declining carbon price.13

An interesting extension is to investigate whether a growing and credible path of
carbon prices has the added advantage that businesses get clear incentives to invest
in the long-term projects necessary to make the transition from carbon-intensive to
carbon-free production. We did not allow for irreversible investments and did not
consider hold-up problems in investments resulting from policy transition risk and
uncertainty about the path of future carbon prices. However, real option theory
might be used to investigate whether by credibly committing to a growing carbon
price path corporations are more likely to make the investments that are needed to
transition to the carbon-free economy.
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Appendix A Solving for optimal climate policy

Since we include two tipping points each of which can only tip once, we must solve
four sub-problems. Define by V 1,1

t the value function for the problem where both
tipping points have already taken place. V 1,0

t is the value function for the problem
where the economic (or more precisely the endowment) tipping point has tipped but
the climate tipping point has not tipped yet. V 0,1

t is defined similarly for the climate
tipping point. Lastly, V 0,0

t is the value function before any of the two tipping points
have taken place. Each of the four sub-problems satisfies its own Hamilton-Jacobi-
Bellman (HJB) equation. The HJB-equation for V i,j

t , i ∈ {0, 1}, j ∈ {0, 1} equals:

0 = max
ut

{
f(Ct, V

i,j
t ) + Zi,j
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2
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Y Y σ
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Y Y

2
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(A.1)

subject to ut = 1 if Tt = T cap, where the value function V i,j
t = Zi,j

(
Yt, Tt, ωt, Xt, t

)
depends on the four state variables and time and its partial derivatives are denoted
by subscripts. I is an indicator function. Note that the state-variable Xt and all
related terms drop out when abatement costs are exogenous.

Define gi,jt = hi,j
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Yt, Tt, ωt, Xt, t

)
such that V i,j

t = gi,jt
Y 1−γ
t

1−γ . The derivatives of V
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Furthermore, we can calculate:
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(A.3)

Substituting everything into the HJB equation gives:
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Dividing by
Y 1−γ
t

1−γ and rearranging yields:
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(A.5)

subject to ut = 1 if Tt = T cap.
We define the SCC as the welfare loss of emitting one unit of carbon divided by

the instantaneous marginal utility of consumption:

SCCt = −χ∂Z
i,j
t /∂Tt

fC(Ct, Vt)
. (A.6)

The SBL corresponds to all the present and future marginal benefits in terms of lower
mitigation costs resulting from using one unit of mitigation more today:

SBLt =
∂Zi,j

t /∂Xt

fC(Ct, Vt)
. (A.7)

The optimality of the abatement rate implies that ut is chosen such that the MAC
is equal to the sum of the SCC and the SBL. Abatement on the one hand leads to
lower emissions and on the other hand lowers the costs for future abatement, which
implies that SCCt + SBLt = MACt, where:

MACt = −∂Ct/∂ut
Et

=
Yt/(1 +Dt)

Et

∂At
∂ut

=
1

ψt(1 +Dt)
c0e
−c1Xtc2u

c2−1
t . (A.8)

The relation SCCt + SBLt = MACt holds if the restriction u ≤ 1 is not binding.
If u = 1, then the sum of the SCC and the SBL will be larger than MAC, but it is
not possible to abate more (in the absence of negative emissions). The single control
variable ut thus tackles both externalities.

The main insight is that in more disaggregated models of energy use two separate
policy instruments should be included. In that case carbon emissions should be priced
at the SCC whilst mitigation should be subsidized at the SBL. We also refer to the
SCC as the optimal carbon price and to the SBL as the optimal mitigation subsidy,
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while we note that this relation only holds as long as there is an interior solution to
optimal abatement.

We also report the growth-adjusted quantities of the SCC, SBL and MAC to
analyse the determinants of these variables other than economic growth. We define
the growth-adjusted social cost of carbon by SCCt

Y0
Yt

. The growth-adjusted SCC is
scaled with Y0 to make the initial SCC equal to the actual initial SCC. The growth-
adjusted SBL and MAC are defined in the same way.

Appendix B Decentralized market economy

In the decentralized market economy, we need to consider energy producers, house-
holds, and the government separately. We assume that the households own the energy
producers. We denote the consumer price for fossil fuel by pt. Since fossil fuel and
renewable energy are perfect substitutes, the consumer price for renewable energy is
also equal to pt. We let τt and st denote the specific tax on fossil fuel and the subsidy
on renewable energy, respectively. Fossil fuel use is denoted by Ft and renewable
energy use by Rt, so that the mitigation rate is defined by ut = Rt

Ft+Rt
. Total energy

use is equal to Et = ψtYt. Profits of and lump-sum rebates to energy producers are
denoted by Πt and St, respectively. Profits of energy firms, the household budget
constraint and the government budget constraint are given by:

Πt = ptFt + ptRt − τtFt + stRt − A(ut, Xt)
Yt

1 +Dt

,

Ct =
Yt

1 +Dt

+ Πt − τtFt − ptFt − ptRt,

St = τtFt − stRt.

(B.1)

Provided that it is not optimal to fully decarbonize the economy, the first-order
optimality conditions for fossil fuel and renewable energy use are:

pt = τt − Au(ut, Xt)ut(1− ut)
Yt

Ft(1 +Dt)
,

pt = −st + Au(ut, Xt)ut(1− ut)
Yt

Rt(1 +Dt)
.

(B.2)

Now use that Ft = (1− ut)Et and Rt = utEt to obtain:

pt = τt − Au(ut, Xt)ut
Yt

Et(1 +Dt)
,

pt = −st + Au(ut, Xt)(1− ut)
Yt

Et(1 +Dt)
.

(B.3)

Combining these two equations gives:

τt + st =
Yt

Et(1 +Dt)
Au(ut, Xt) =

1

ψt(1 +Dt)
Au(ut, Xt). (B.4)
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Note that MACt = 1
ψt(1+Dt)

Au(ut, Xt). Imposing a carbon tax and a renewable
energy subsidy implies that optimal policy is chosen such that the marginal abatement
cost equals the sum of the carbon tax and the renewable energy subsidy. We can
therefore replicate optimal policy of the command optimum by setting τt = SCCt
and st = SBLt and rebating any net revenue in lump-sum to the private sector.

Appendix C Numerical implementation

The HJB-equation is a set of partial integro-differential equations. We solve this
system of partial differential equations using a finite-difference method. More details
on the finite difference method are given in Olijslagers (2021b). One difference is that
we have to integrate within the finite-difference scheme to calculate the expectations
within the HJB-equation. Recall that the HJB-equation was given by:
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ut
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)}
,

(C.1)

subject to ut = 1 if Tt = T cap. For the numerical implementation, it is useful to make
the change of variables Ỹt = log(Yt) (see for example(Carr & Mayo, 2007)). The
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HJB-equation becomes:

0 = min
ut
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Ỹt + hi,jω υ(ω − ωt)

+ hi,jX µX +
1

2
hi,jωω(σωt )2 +

1

2
hi,jXXσ

2
X

+ λ1E
[
hi,j
(
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(C.2)

Define J̃1 = log(1− J1). We then obtain that:

E
[
hi,j
(
Ỹt + log(1− J1), Tt, ωt, Xt, t

)
(1− J1)1−γ

]
=

∫ 1

0
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(C.3)

J̃2 is defined similarly. We use an equally spaced grid for the finite-difference method.
To calculate the expectation, we use fourth-order Newton-Cotes integration. The
integral is approximated at the points of the finite difference grid with step size δY
in the Y dimension:

α1

∫ 0

−∞
h
(
Ỹt + J̃1, Tt, ωt, Xt, t

)
eJ̃1(α1+1−γ)dJ̃1

≈ α1

N∑
i=1

wih
(
Ỹt − iδY , Tt, ωt, Xt, t

)
e−iδY (α1+1−γ),

(C.4)

where wi are the Newton-Cotes weights.
We can solve the model analytically when there are no climate damages. We use

this as our initial guess at time tmax = 500, and from there solve the system backwards
with time step δt = 1. The four-dimensional grid is equally spaced with upper
boundaries [Y max Tmax ωmax Xmax]′ = [log(1.5) 5 0.6 1750]′ if there is learning
by doing and [Y max Tmax ωmax]′ = [log(1.5) 5 0.6]′ without learning by doing. The
lower boundaries are equal to [Y min Tmin ωmin Xmin]′ = [log(0.01) 0.75 0 − 25]′
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with learning by doing and [Y min Tmin ωmin]′ = [log(0.01) 0.75 0]′ without learning
by doing. When a temperature cap is implemented, Tmax is chosen equal to T cap.
Optimal policy is calculated every period by solving for ut such that the sum of the
SCC and the SBL is equal to the marginal abatement cost. If this requires ut > 1, we
set ut = 1. The restriction of the temperature cap is implemented by imposing ut = 1
on the boundary Tt = Tmax. The restriction at the boundary also affects optimal
policy at all interior grid points of temperature since it will affect the derivative of
the value function with respect to temperature. A temperature cap will thus lead to
a higher SCC and to a higher emissions control rate ut.

To speed up the computations, we use a sparse grid combination method. This
method solves multiple sub-problems on smaller full grid and combines the solutions
of the sub-problems. The sparse-grid combination method that we use in this paper
is slightly different from the implementation in Olijslagers (2021b). The difference is
that we allow for asymmetry in the grids. Define the ‘level’ of the grid for dimension
i by Li, i ∈ {T, ω,X}. The number of grid points on the edge of the sparse grid
in dimension i is equal to 2Li + 1. The level therefore controls the amount of grid
points and the accuracy in dimension i. When the value function is non-linear in a
specific dimension it is possible to have more grid points in that dimension. This is
for example useful when we solve the problem with a temperature cap, since in this
case the value function becomes quite non-linear in the temperature dimension.

Let L =
{
l : lT−1

LT−1
+ lω−1

Lω−1 + lX−1
LX−1

≤ 1
}

be the set of all admissible sub-grids where

l = (lT , lω, lX). The weight of sub-grid l is equal to:

wl =
1∑

iT=0

1∑
iω=0

1∑
iX=0

(−1)iT+iω+iX I(lT+iT ,lω+iω ,lX+iX)∈L. (C.5)

We solve for g on all subgrids that have a non-zero weight wl. Note that all grids
have different grid points. To find the approximation gl on sub-grid l in a specific
point, we use linear interpolation. We then combine the solutions on all sub-grids by
summing over the product of the weight and the solutions: g =

∑
l∈Lwlgl.

Figure 15 shows an example of the sparse-grid combination method in two di-
mensions. In the example L1 = 3 and L2 = 4, so the sparse grid will be denser in
the second dimension. First, the set L is constructed, which in this example consists
of the following grids: (1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (3, 1). Of all grids within
this set, the grids (1, 4), (2, 2), (3, 1) all have weight +1 and the grids (1, 2), (2, 1) have
weight −1. The other two grids have weight zero and therefore these do not have to
be evaluated.
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Figure 15: The sparse grid combination method.

Appendix D Derivation of the growth rate of marginal

abatement costs with a temperature

cap and no damages

If climate damages are not taken account of and a temperature cap is in place
instead, it does not matter for the time at which the temperature cap is reached
whether a unit of emissions is abated today or in some period in the future before
that time, at least as long as the relationship between temperature and cumulative
emissions is linear. Therefore, along the optimal path, a marginal increase of abate-
ment today combined with a marginal decrease of abatement in the future should
not lead to a change in welfare. The cost of a marginal increase of abatement to-
day equals MAC0, while the benefit of a marginal decrease of abatement in time t
equals MACt. Optimal behaviour therefore implies that π0MAC0 = E0[πtMACt]

where πt = exp
( ∫ t

0
fV (Cs, Vs)ds

)
fC(Ct, Vt) is the stochastic discount factor (Duffie

& Epstein, 1992). We therefore must have that the product πtMACt is a martingale.
Now calculate:

dπtMACt
πt−MACt−

=
dπt
πt−

+
dMACt
MACt−

+
d[πt,MACt]

πt−MACt−
. (D.1)

Applying the martingale property and rearranging gives:

Et

[dMACt
MACt−

]
= Et

[
− dπt
πt−

]
+ Et

[
− d[πt,MACt]

πt−MACt−

]
, (D.2)

where [πt,MACt] denotes the quadratic covariation for the processes πt and MACt.

Note that the first term Et

[
− dπt

πt

]
is exactly equal to the real risk-free interest

rate, while the second term is a risk premium related to the correlation between the
stochastic discount factor and the marginal abatement costs. Equation (D.2) implies
that the optimal carbon price must grow at a rate equal to the sum of the real risk-free
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interest rate plus an interest premium to be determined, similar to Gollier (2020). In
the following we derive the risk-free rate and the risk premium.

D.1 Derivation of stochastic discount factor, interest rate,
and risk premium

We can work out the stochastic discount factor πt and the marginal abatement cost
function MACt. The model without climate damages can be written as follows. The
log-endowment follows from:

dỸt = (µ− 1

2
σ2
Y )dt+ σY dW

Y
t + log(1− J1)dN1,t. (D.3)

Consumption is equal to endowment minus abatement expenditure: Ct = (1 −
At)e

Ỹt , where the abatement cost function At = c0e
−c1tuc2t . Define the consumption-

endowment ratio ξt = 1 − At, which depends on the two state variables and time.
The state variable Tt (temperature) follows from:

dTt = χ(1− ut)ψteỸtdt. (D.4)

The temperature cap adds the restriction ut = 1 if Tt = T cap. The HJB-equation
corresponding to the value function Vt for this problem is thus given by:

0 = min
ut

{
βζ
(
g
−1/ζ
t

(Ct
Yt

)1−1/ε
− 1
)
gt

+ (1− γ)
(
µ− 1

2
γσ2

Y

)
gt

+ hỸ

(
µ− γσ2

Y

)
+

1

2
hỸ Ỹ σ

2
Y

+ ht + hTχ(1− ut)ψteỸt

+ λ1

(
E
[
h
(
Ỹt + log(1− J1), Tt, t

)
(1− J1)1−γ

]
− gt

)}
(D.5)

subject to ut = 1 if Tt = T cap. The derivatives of instantaneous utility f(Ct, Vt) can
be calculated as:

fC(Ct, Vt) =
βC
−1/ε
t(

(1− γ)Vt

)1/ζ−1 ,
fV (Ct, Vt) = βζ

(
(1− 1/ζ)C

1−1/ε
t

(
(1− γ)Vt

)−1/ζ
− 1
)
.

(D.6)

Now substitute in Vt = gt
Y 1−γ
t

1−γ and ξt = Ct
Yt

to obtain:

fC(Ct, Vt) = βξ
−1/ε
t g

1−1/ζ
t Y −γt ,

fV (Ct, Vt) = βζ
(

(1− 1/ζ)ξ
1−1/ε
t g

−1/ζ
t − 1

)
.

(D.7)
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Substituting this and Y −γt = e−γỸt into the stochastic discount factor gives:

πt = exp
(∫ t

0

βζ
(

(1− 1/ζ)ξ1−1/εs g−1/ζs − 1
)
ds
)
βξ
−1/ε
t g

1−1/ζ
t e−γỸt . (D.8)

Define ft = ξ
−1/ε
t g

1−1/ζ
t = ν(Ỹt, Tt, t). Write πt as a differential equation:

dπt
πt

= βζ
(

(1− 1/ζ)ξ
1−1/ε
t g

−1/ζ
t − 1

)
dt

+
dft
ft

+
de−γỸt

e−γỸt
+
d[ft, e

−γỸt ]

fte−γỸt

+
ν
(
Ỹt− + log(1− J1), Tt, t

)
e−γ

˜Yt−(1− J1)−γ − ft−e−γ ˜Yt−

ft−e−γ
˜Yt−

dN1,t.

(D.9)

Applying Ito’s lemma to Ỹt (without jump terms) gives:

de−γ
˜Yt−

e−γ ˜Yt−
= −γ

(
µ− 1

2
(γ + 1)σ2

Y

)
dt− γσY dW Y

t . (D.10)

Similarly, we apply Ito’s lemma to ft to get:

dft
ft

=
(νt
ft

+
νT
ft
χ(1− ut)ψteỸt +

νỸ
ft

(µ− 1

2
σ2
Y ) +

1

2

νỸ Ỹ
ft

σ2
Y

)
dt+

νỸ
ft
σY dW

Y
t . (D.11)

Define µf,t = νt
ft

+ νT
ft
χ(1 − ut)ψte

Ỹt +
νỸ
ft

(µ − 1
2
σ2
Y ) + 1

2

νỸ Ỹ
ft
σ2
Y . Putting everything

together yields:

dπt
πt−

=
{
βζ
(

(1− 1/ζ)ξ
1−1/ε
t g

−1/ζ
t − 1

)
− γ
(
µ− 1

2
(γ + 1)σ2

Y

)
+ µf,t

− γσ2
Y

νỸ
ft

}
dt− γσY dW Y

t +
νỸ
ft
σY dW

Y
t

+
ν
(
Ỹt− + log(1− J1), Tt, t

)
(1− J1)−γ − ft−

ft−
dN1,t.

(D.12)

The interest rate can be calculated as:

rtdt = Et

[
− dπt

πt

]
=
{
− βζ

(
(1− 1/ζ)ξ

1−1/ε
t g

−1/ζ
t − 1

)
+ γ
(
µ− 1

2
(γ + 1)σ2

Y

)
− µf,t

− λ1
E
[
ν
(
Ỹt− + log(1− J1), Tt, t

)
(1− J1)−γ

]
− ft−

ft−

}
dt.

(D.13)

Marginal abatement costs are given by:

MACt = −∂Ct/∂ut
ψtYt

= ψ−1t
∂At
∂ut

= ψ−1t c0e
−c1tc2u

c2−1
t = η(Ỹt, Tt, t). (D.14)
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We then get:

Et

[d[πt,MACt]

πt−MACt−

]
= −γσ2

Y

ηỸ
MACt−

dt+ σ2
Y

νỸ ηỸ
ftMACt−

dt

− λ1
E
[
ν
(
Ỹt− + log(1− J1), Tt, t

)
(1− J1)−γ

]
− ft−

ft−
dt

+ λ1
E
[
ν
(
Ỹt− + log(1− J1), Tt, t

)
η
(
Ỹt− + log(1− J1), Tt, t

)
(1− J1)−γ

]
MACt−ft−

dt

− λ1
E[η
(
Ỹt− + log(1− J1), Tt, t

)
]

MACt−
dt.

(D.15)

41


	Introduction
	Integrated assessment model for optimal climate policy evaluation under risk
	Implementation of first best in a decentralized economy
	Effects of a temperature cap on carbon pricing

	Calibration and benchmark results
	Calibration
	Benchmark optimal carbon prices

	Five generalizations of the benchmark
	Convex damages
	Learning by doing in abating emissions
	Convex damages and learning by doing in abatement
	Gradual resolution of damage uncertainty
	Climatic and economic tipping points
	Pricing carbon to enforce temperature caps
	Alternative to benchmark: combination of effects

	Conclusion
	Solving for optimal climate policy
	Decentralized market economy
	Numerical implementation
	Derivation of the growth rate of marginal abatement costs with a temperature cap and no damages
	Derivation of stochastic discount factor, interest rate, and risk premium


