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Abstract

Rating agencies report ordinal ratings in discrete classes. We question the mar-
ket’s implicit assumption that agencies define their classes on identical scales.
To this end, we develop a non-parametric method to estimate the relation of
rating scales for pairs of raters. This scale relation identifies for every rating
class of one rater the extent to which it corresponds to any rating class of
another, and hence enables a rating-class specific re-mapping of one agency’s
ratings to another’s scale. Our method is based purely on ordinal co-ratings
to obviate error-prone estimation of PDs and disputable assumptions involved,
and exploits structure in the joint estimation of all rating classes’ relations from
a pair of raters.

We find evidence against the hypothesis of identical scales for the three major
rating agencies Fitch, Moody’s and Standard & Poor’s, provide the relations of
their rating classes and illustrate the importance of correcting for scale relations
in benchmarking.
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1. Introduction

In the aftermath of the worldwide credit crisis, credit rating agencies (CRAs)
are once again in the spotlight. At least since Pinches and Singleton (1978)
CRAs have been criticized1 repeatedly: for a) their lack of disclosure with re-
gard to the applied rating methodology, b) the potential conflict of interest,
c) their allegedly anti-competitive and unfair business practices as well as d) lack
of diligence and competence (see for example Frost, 2007; Teather, 2003). Es-
pecially the admittedly poor performance2 in rating structured credit products,
in combination with the oligopoly structure of the industry, has revived the dis-
cussions among researchers as well as policymakers and the general public (see
for instance Hunt, 2009; Credit Rating Agency Reform Act, 2006; Lowenstein,
2008).

However, independently of the justification of criticism regarding CRAs, it is
essential to also inquire about the other involved agents and thus to question the
use of CRAs’ assessments by various market participants who played a decisive
role in exacerbating the crisis. We argue if not mis-uses at least severe mis-
conceptions about the information provided via ratings were widespread among
their users.

First, modern pricing and risk-management models require absolute levels of
credit-worthiness as expressed by a probability of default (PD) as input (Kliger
and Sarig, 2000). As a matter of fact a rating does not provide a PD but an as-
sessment expressed through a rating grade (commonly a combination of letters
with symbols or numbers as modifiers) and thus apparently is only an ordinal,

forward-looking measure of an entity’s creditworthiness. To obtain the absolute
measure needed for pricing and risk management, many practitioners and also
academics simply estimate PDs per rating class, based on the vague statements
of CRAs that the likelihood of default is one of the parameters strongly influenc-
ing their assessments (Cantor and Packer, 1997). In the most basic approach,
these rating-based PDs are obtained directly from annual historic default studies
published by CRAs.

We object to this approach since such PD estimates are not comparable
across CRAs for two major reasons. On the one hand, ratings differ across
raters with respect to a) the underlying measure of credit-worthiness (e.g., pure
probability of default estimates vs. expected-loss estimates), b) the time horizon
(e.g., long-term vs. short-term rating), c) the rating philosophy (e.g., point in
time vs. through the cycle) and d) the granularity employed in the assessment
(e.g., with modifiers vs. without modifiers) (BIS, 2006; Elkhoury, 2008). On
the other hand, even if all these defining characteristics were identical among
CRAs, PD estimation would still suffer from portfolio effects: as the sets of

1Thirty-three years ago Pinches and Singleton (1978) observe: “In recent years bond rating
agencies have been under increasing scrutiny because of their obvious failures to accurately
predict and warn investors of impending firm-related financial difficulties.”

2“We’re very disappointed and embarassed” conceded the president of Standard & Poor’s,
Deven Sharma (Lippert, 2011, p. 90).
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ratees differ, so do realised default rates. In the presence of contagion or other
correlation (like country effects due to currency devaluations) the discrepancies
can be arbitrarily large. Hence even if hypothetically rating methodologies were
identical and perfectly accurate, such PD estimates cannot be compared across
agencies unless focus is restricted to a common set of obligors, jointly rated by
all CRAs.

Second, market participants implicitly treat rating assessments from differ-
ent CRAs as equal, based on their relative order or denomination. A rating of
Baa by Moody’s is deemed equivalent to BBB by Standard & Poor’s. This pre-
sumed equivalence of ratings is ubiquitous. Morgan (2002), as many researchers,
measures disagreement of raters by split ratings, and practitioners who demand
a minimum threshold of credit-worthiness define investment grade as a rating
of at least BBB- by Standard & Poor’s or Fitch, of Baa3 by Moody’s or of
BBB(low) by DBRS. Another example are rating triggers, i.e. clauses in loan
contracts stipulating that the loan falls due in full if the company’s credit rating
declines below a certain level (see Atlas (2002) for their role in Enron’s demise
and Bhanot and Mello (2006) for a discussion when they are optimal); so is
the credit-quality threshold for eligible collateral in the Eurosystem’s monetary
policy operations, also currently investment grade (ECB, 2008).

The question how to correctly relate rating classes across agencies becomes
acute when the same entities are rated by more than one CRA. While agencies’
ratings generally show a high level of agreement (Cantor and Packer, 1995)3

there is no sound reason from which to derive equality of risk per class; the fact
that rating technologies are kept secret alone casts doubt that, say, a Standard
& Poor’s AA rating should be exactly equivalent to Moody’s Aa rating.

Failing this, however, the implications are profound: accurate measures of
obligors’ credit-worthiness are crucial for numerous purposes and participants,
including developers of rating systems, financial institutions and supervisory
authorities. As Graham and Harvey (2001) have documented and Kisgen (2006,
2009) has shown, even non-financial firms’ capital structure is influenced by
credit ratings.

Developers of rating systems such as banks or rating agencies need to com-
pare ratings for at least two reasons: On the one hand, to contrast internal
estimates with outcomes of other rating sources when calibrating models, in
particular for segments where data are scarce (e.g., a bank relating internal
estimates to rating agency data in the calibration of models for low-default
portfolios). On the other hand, raters desire to contrast the qualities of com-
peting rating prototypes. In this context benchmarking as proposed by Hui
et al. (2005) proves beneficial.

Commercial banks commonly use internal ratings not only to determine the
regulatory capital to be retained, but also for allocating economic capital and
the pricing of obligations. Hence they need to relate ratings from their internal

3This is sometimes attributed to the publicity of external ratings, see for example Smith
and Walter (2001).
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systems to ones from external sources like rating agencies. After all, differences
in risk-adjusted prices ultimately impact a financial institution’s competitive
position (Lingo and Winkler, 2009).

Correctly relating ratings is also valuable in the validation of rating models.
Besides backtesting, benchmarking ratings from different sources is the primary
aspect of quantitative validation (BIS, 2005a), particularly for models for low-
default portfolios (BIS, 2005b).

The comparison of ratings across different sources needs a mapping, namely
from the domain of one rater’s symbols to that of another. However, the re-
ported grades are already the result of each rater mapping their (unknown) pri-
mary estimates of credit risk via their (unkown) scale to ordinal values. Hence,
for the sake of clarity we refer to the mapping of those (mapped) ordinal grades
across raters as a re-mapping.

If it is certain that both raters’ systems coincide with respect to the four
defining characteristics (measure of credit-worthiness, time horizon, philosophy
and granularity) as well as in their choice of scales for mapping risk estimates
to ordinal grades, the re-mapping corresponds to the identity.

For instance, in the context of Basel II commercial banks are obliged to esti-
mate standardized one-year probabilities of default if they opt for the internal-
ratings-based approach to calculate capital requirements (BIS, 2006). Such a
bank will employ a master scale which associates each rating class with a dis-
tinct PD interval. If then a PD estimate is available for each obligor and both
master scales are known it is straightforward to (re-)map the entities across
raters. In all other—and practically prevalent—cases a correct mapping is less
straightforward.

Against this background our paper proposes a new, non-parametric approach
to make rating assessments from different sources comparable. Our method has
the advantage to allow a mapping even if the ratings differ with respect to
their four defining characteristics (measure of credit-worthiness, time-horizon,
philosophy and granularity), since it obviates probability of default estimation.
The proposed methodology focuses on co-rated entities, i.e. obligors rated by
more than one credit-assessment source. Given a sufficient number of co-ratings,
we are able to relate the rating scales of different credit-assessment sources to
each other. This scale relation enables us to compare the rating outcomes by
mapping the ratings from one credit-assessment source onto the scale of another.

Based on data of all corporate long-term issuer ratings in G7 countries
from the three main rating agencies Fitch, Moody’s and Standard & Poor’s
we demonstrate how our procedure can be applied. In doing so we are able to
illustrate differences among these agencies’ rating behavior. We find evidence
which casts doubt on the market’s implicit hypothesis that equally denomi-
nated rating grades are actually equal. Furthermore, we provide functions for
re-mapping the rating grades of the major rating agencies onto each others’
scales. Finally, we are able to measure the unsystematic rating heterogeneity,
which can be interpreted as relative rating error.

The remainder of the paper is organized as follows. Section 2 elucidates
effect and importance of ratings on different scales by illustrative examples.
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Section 3 lays down the formal framework we propose for the study of the
relation between raters’ scales. Section 4 comprises the empirical application:
Co-ratings data for the three major rating agencies are employed to estimate
their scale relations and the evidence against the assumption of identical scales
is discussed. Section 5 concludes and points to future research.

2. Intuition

Whenever the granularity of scales differs, the need to re-map to achieve
comparability of ratings becomes obvious; nevertheless, even when they do not,
there remains a major leap from an equal number of classes to identical scales.
To illustrate the intuition of informed comparisons, also necessary when granu-
larity among CRAs is equal, this section analyzes the effects of systematic and
unsystematic deviations in rating assessments.

The following simple example illustrates systematic deviations: Consider two
experienced CRAs providing ratings on an extensive common set of obligors,
both on a numerical scale from 1 to n, thus having exactly the same level of
granularity. Furthermore, assume it is known that both track precisely the same
measure of credit-worthiness with the same time horizon, i.e. the four defining
characteristics are identical for both CRAs. Furthermore, assume it holds for
all co-ratings that whenever A assigns rating i, B reports i − 1.4

One natural conclusion is that at least one of them suffers from severe and
systematic bias. Treating ratings as purely ordinal information, bias is irrel-
evant as for any pair of obligors the same relative ranking is observed by A

and B. However, since the risk measure which is estimated and mapped to the
rating grades is not purely ordinal, rating bias can be important from an eco-
nomic perspective. For instance, rating bias between commercial banks using
the internal-ratings-based approach (IRBA) to calculate capital requirements
represents a systematic deviation of one-year PD estimates, see Hornik et al.
(2007b). This can bias regulatory capital and borrower selection if the bank
uses the estimates also in the pricing of loans (Jankowitsch et al., 2007).

Critically though, in contrast to the banks’ ratings in Hornik et al. (2007b),
assessments by CRAs are public information. Moreover, given a) the mean-
inglessness of ordinal classes’ numbers, b) how easy an agency can detect and
correct for systematic bias, and c) the robust relation observed in an extensive
sample, it follows that what appears as rating bias cannot be caused by dif-
ferences in the absolute level of credit-worthiness. That level, given all other
characteristics are equal, should be equal as well—and consequently, that an i

reported by A simply corresponds to an i−1 on B’s scale. These systematic de-
viation between experienced rating agencies can only be caused by a difference
of their scales, i.e. the relationship between the (cardinal) risk measure and the
(ordinal) rating classes.

4Fringe classes require more careful treatment, which we introduce in the full method next
section; for this stylized illustration simply assume A never assigns 1, neither B n.

5
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To elaborate this idea further, we extend the previous example to the case
that ratings contain an absolute level of credit-worthiness and assume that the
PD is known for all classes of B, and that an additional obligor is rated only by
A with the same technology as the other obligors before. If A assigns, say, class
4 and we needed to produce a PD estimate, which one should we quote? One
would naturally use the estimate of B’s class 3. This implies an intuitive correc-
tion for the bias5 and converts A’s rating to B’s scale, enabling comparability
and employing the mapping that in this case yields perfect agreement.

In any practical application observed deviations are not only systematic.
Instead, also unsystematic deviations are observed, and re-mappings to perfect
agreement would require to violate ordinality. If any pair of obligors is not tied
by A and ranked the contrary way by B, monotonic re-mappings6 can never
achieve full agreement; non-monotonic mappings, on the other hand, contradict
the ordinal character of the information. Due to differences with respect to
the four defining characteristics as well as to estimation errors virtually any
credit-rating dataset contains such conflicting assessments.

However, with only few pairs in a large sample of high agreement,7 should
the above approach still be applied? We argue yes, especially when contrasted
with the two alternatives of a) matching classes by their rank, which are numbers
uninformative for inter-rater comparisons or b) using historical default rates as
proxies for PD-estimates.

In essence, we argue that when relating ratings from different sources their
correspondence must not be blindly assumed, but—absent theoretical determi-
nation—estimated. Moreover, a re-mapping which significantly increases agree-
ment captures the systematic relation between two raters’ classes better, and
therefore the relation of their scales can be analyzed via re-mappings, by maxi-
mizing agreement.

Thereby we assume rating agencies produce unbiased estimates of credit
quality. The reason is not only the simplicity of detecting and correcting for bias,
but more fundamentally that biased estimates8 are equivalent to a difference
(namely a shift) in scales and vice versa. In re-mapping from one scale to another
it thus is needless to account for rating bias and scale differences separately.

5Bias, as introduced by Hornik et al. (2007b) to the credit rating literature, and the
measures of association and agreement are related to the re-mapping of ratings as discussed
in detail in Appendix A.

6A re-mapping is monotonic if for any pair of obligors that is not tied the one rated better
is never re-mapped to a class worse than the other obligor is re-mapped to.

7We detail in Appendix A why it is not agreement (which can be 0 even if the raters
produce exactly the same risk scores, see below) but the measure of association (Kendall’s
τx) which is appropriate to judge whether a re-mapping can be meaningful (i.e. raters assess
at least similar risks) because it is scale-free: It does not require knowledge about the scale
and allows valid comparisons of raters applying different scales, even with different numbers
of rating classes, thus eliminating the problem of differences with respect to granularity.

8To be precise, the relative bias of one rater as compared to the other is relevant. If
both raters are subject to the same bias vis-à-vis some absolute scale, for instance on PDs,
this common bias cannot be detected by our method since it is designed to avoid estimating
creditworthiness; however, the re-mapping it yields will be as accurate as with unbiased scales.
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2.1. The direct approach to re-mapping

There exists a straightforward and intuitive approach to re-mapping. While
it may be inconvenient to extend and subject to some shortcomings, it is ideally
suited to convey the objective of the framework presented in Section 3.

Suppose a rater A has produced ratings σA
k for the set of obligors which

are rated σB
k by B, where A classifies into nA and B into nB classes, and k =

1, ..., NA,B indexes the NA,B co-rated obligors. Assume A wishes to transform
his assessments onto B’s scale. Then his task is to sort the co-rated obligors into
nB buckets based on his own original ordering. There are two possible cases
concerning how much information is available to the re-rater.

In the case where A has estimated a continuous credit risk parameter sA
k

to assign his ratings σA
k = σA(sA

k ), he has obtained a total order over the
NA,B obligors via the order statistic sA

(1) > sA
(2) > ... > sA

(NA,B) of their credit

scores. Monotonicity requires any mapping σ yielding an ordinal ranking to
fulfill sk > sl ⇒ σ(sk) ≥ σ(sl). Thus A’s task of mapping his metric scores
onto B’s ordinal scale is equivalent to placing (nB − 1) delimiters in his own
ordering, defining for each obligor k the class of B he is assigned to—and thus
his rating σA→B

k on B’s scale. Note in this case it is irrelevant whether obligors
are in the same class in A’s reported ratings: Different scales will generally
imply that some sets of obligors with the same rating by A need “breaking up”,
i.e. correspond to different ratings in B’s terms.9 The monotonicity requirement
operates on the more informative credit scores.

In the contrasting case, an outside observer is restricted to employ no other
information but the co-ratings. Consequently, (mapped) ordinal data need to be
re-mapped to a potentially different ordinal scale, and the input is only a weak
ordering. Now the monotonicity requirement becomes σA

k > σA
l ⇒ σA→B

k ≥
σA→B

l . Consequently, when classes are broken up, it remains undefined which
obligors of a given class of A should be re-mapped to higher and which to
lower classes (on B’s scale). While all combinatorially possible permutations
are consistent with the information contained in the ordinal credit ratings, it is
clear that with respect to the objective function, namely maximizing agreement,
it will always be preferred to take B’s assessments into account.

It is natural, then, to consider the partial ordering of obligors after sub-

sorting the tied obligors within each of A’s classes according to the assessments
reported by B. This results, as depicted in Figure 1, in a single weak ordering
of up to nA · nB steps10 within which credit-worthiness of obligors is indistin-
guishable.

It is intuitively clear (and shown in Appendix B) that re-mapping obligors
from the same sub-sorted group into different classes cannot increase agreement.
Hence we can still consider re-mapping as placing nB − 1 delimiters in the

9Mapping metric scores sA
k

onto B’s ordinal scale amounts to a substitution of an appro-

priate mapping σA→B(·) for σA(·).
10More precisely, this is the maximum number of levels in the sub-sorted ordering, since

some combinations of ratings will likely be empty.

7
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1 2 3 4

1 2 2 3 4 2 3 3 4

Figure 1: A’s ratings, sub-sorted by B’s.

ordering, now simplified to at most nA · nB + 1 possible positions; often even
significantly fewer as experienced raters seldom disagree by more than a few
rating classes.

Effectively, this straightforward approach to re-mapping involves two steps:

1) Produce an ordering of at most nA · nB levels which is fully consistent
with A’s ratings, by sub-sorting within his classes according to σB

k .
2) There are at most nA · nB + 1 boundaries of these groups at which the

nB −1 delimiters of re-mapped classes can lie. For all these
(

nA·nB+nB−1
nB−1

)

cases, perform the re-mappings and find σA→B
k where agreement with σB

k

is maximal.

2.2. Beyond the direct approach

The most serious drawback of the direct approach is its lack of error treat-
ment. If at least one rater’s assessments are subject to noise, this induces non-
systematic disagreement. However, the direct approach provides no attempt
to distinguish between the systematic relation of classes and the effect of un-
informative noise. Since re-mapping is costless, a single off-by-one co-rating is
sufficient to prevent the direct approach from identifying a bijective re-mapping
from class aA to the analogous aB, irrespective of any indication of noise or
identity of scales.

Not only does the direct re-mapping lend itself badly to incorporate error
treatment (absent strong modeling assumptions on errors), it is moreover fairly
inadequate to study the relation of two raters’ scales since it produces immedi-
ately σA→B

k without addressing the relation of classes.
To deal with these concerns, we formalize a framework to study the scale

relations directly rather than the re-mapping. We thereby aim for strict logical
coherence and avoidance of both unwarranted assumptions and a concrete error
modeling (which can be implemented within the framework as a next step).

The underlying intuition is again illustrated best by a thought experiment:
assume two raters assess exactly the same continuous credit risk parameter,

8
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normalized to the unit interval, for a common set of obligors. Further assume
both know to estimate this credit score completely without error, thus obtaining
identical scores. However not the scores but the discrete ratings are reported.
Therefore they map their (identical) scores to classes denoted by integers. Now
under the condition of monotonicity, i.e. ruling out worse ratings for better
scores, the agencies effectively pick thresholds to delimit their classes. Assume
both decide on the same number of thresholds, i.e. classes.

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

* ** ** *

R
a
te

r
A

R
a
te

r
B

Figure 2: Disagreement purely due to different rating scales. Even identical assessments of
the same risk measure will disagree if classes are defined differently.

Consider the case depicted in Figure 2, where A reports a rating of 1 for
values in the interval [0, .1), rating 2 in [.1, .2) and the like up to rating 8 in
[.7, .8) and rating 9 above a score of .8, while B announces rating 1 for any
score below .2, rating 2 in [.2, .3), rating 3 in [.3, .4) and so on up to a rating
of 9 in [.9, 1). For the sake of simplicity, rule out obligors with scores below .1
and above .9 to be observed. Then, clearly, all these assumptions and identical
credit risk assessment notwithstanding, we find an (unweighted) agreement of
0 for these agencies’ co-ratings—for no obligor do they report the same rating.
The cause, however, is obviously not disagreement about credit-worthiness. The
reason is (disregarding fringe classes 1 and 9) that A’s rating i corresponds to

(i − 1) by B.
The rest of the paper extends the logic from the last two paragraphs to the

case where the risk measures may not coincide and where both raters are subject
to estimation error. The aim is to disentangle the effect of (unsystematic) errors
from the (systematic) relation between the respective rating classes of both.

3. A Framework for Re-Mapping

In essence, the framework addresses that what appear to be corresponding
classes (like Standard & Poor’s BBB+ and Baa1 from Moody’s) potentially dif-
fer, since agencies might apply different rating scales. The underlying insights
are twofold: First, the relation between their scales ought to be accounted for

9
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by re-mapping to a common scale. Second, while reported ratings are ordi-
nal, if they stem from a technology monotone in some risk measure (e.g., PD)
this implies theoretical restrictions whose enforcing improves the estimation of
the re-mapping. We propose the following general framework to analyze rat-
ing scales and their relation. The concrete implementation employed in the
empirical part is presented in Section 3.2.

Conforming with industry practice, let every rater r produce a credit score

sr
k for any obligor k he assesses the credit-worthiness of. Whenever there is no

risk of confusion we drop the superscript indicating the rater(s). While we allow
different raters to operate different rating technologies or evaluate different risk
measures, we assume sr

k is strictly monotonically decreasing in the probability
of default P Dr

k ∈ (0, 1]. However, neither scores nor PDs are reported; discrete
ratings on ordinal scales are.

A rating scale is a partition of the score range; or, due to the existence of
a unique bijective link function,11 equivalently of the unit PD range. Industry
practice commonly chooses R as score range and the link function decreasing, so
higher score corresponds to lower PD; however, we focus on the implications for
the PD unit interval. Thus, a scale denotes nr right-closed intervals (tr

a−1, tr
a]

for a = 1, ..., nr, with nr −1 thresholds tr
a defined (implicitly) by the rater, since

tr
0 = 0, tr

nr = 1. These intervals,12 called rating classes, are commonly labeled
from AAA to D in practice, and for clarity from 1 to nr in this paper. By the
definition of partitions the intervals are non-overlapping and exhaustive.

Alternatively to intervals or thresholds, rating scales can be specified by the
increasing, piecewise constant step function a · 1{P Dr

k
<tr

a} for the unit interval
as depicted in Figure 3 for two raters.

The relation between two scales is therefore fully captured by the relation
of their two implied step functions. We coin the term scale relation to capture
for every rating class aA of rater A how much it corresponds to any class aB of
rater B, aA = 1, ..., nA, aB = 1, ..., nB. To formalize this {aA} × {aB} 7→ [0, 1]
mapping, for the purpose of conceptual and computational convenience, define
the scale relation ςA,B as the nA×nB matrix ςA,B = (fA,B

ij ), where f
A,B
ij denotes

the fraction of A’s rating class i coinciding with B’s class j.
Clearly, given the rating scale of a rater A and the scale relation ςA,B to

another rater B, the latter’s scale is exactly determined. Therefore knowledge
of the scale relation ςA,B enables a rater to re-map his score estimates sA

k and
convert his ratings to accord to B’s definition of rating classes.

For outside observers who know no scale but only observe ordinal class rat-
ings, a scale relation, while not sufficient to perfectly re-map on an obligor-
specific level, still specifies the distribution of one rater’s classes over another’s;

11Uniqueness and bijection follow from the strict monotonicity of sr
k

in the PD.
12We thus adopt the convention to denote higher-PD classes with higher class numbers and

speak of “better” and “worse” classes referring to those of lower versus higher PD, respectively.
Also note that for rating technologies that do not produce continuous scores the link function
cannot be bijective; however, a partition of the PD range still exists as long as scores are
monotone in PDs.

10
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Figure 3: A rating scale is a partition of the unit interval, or equivalently a step function on
the measure’s range.
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i.e. conveys for every class of A the fraction of ratings that correspond to various
classes of B. Consequently, ignoring some residual uncertainty that we address
in Section 3.2.2, scale relations define a re-mapping on the rating-class level.
Such a re-rating onto a common scale is essential both to test for and to correct
for the presence of different rating scales, which needs to be disentangled from
rating error when calculating proximity.

3.1. Structure of scale relations

While we consciously abstain from requiring PD estimates, we conceptually
anchor ratings in partitions of the PD interval to the following end. The weak
modeling assumptions made so far already impose considerable structure on the
scale-relation matrix ς = (fij):

1) f11 > 0 and fnAnB > 0. For P Dk → 0, both raters’ best classes must
coincide; likewise for P Dk → 1 and their worst classes.

2)
∑

i fij = 1 for all i. By definition of fij , all rows of ς must sum to one.

3) (fij > 0 ∧fi,j+1 = 0) ⇒ fi,j+k = 0 for k ≥ 1. If a class j + 1 of B contains
only obligors of higher PD than a given class i of A, then classes of still
higher PD cannot correspond to i. Analogously, (fij > 0 ∧ fi,j−1 = 0) ⇒
fi,j−k = 0 for k ≥ 1. In other words, every row of ςA,B contains exactly
one contiguous block of non-zero entries, conforming to the intuition that
any rating class can only correspond to one continuous sequence of the
other’s classes.

4) (fij > 0 ∧ fi+1,j = 0) ⇒ fi+k,j = 0 for k ≥ 1. If a class of A no longer
corresponds to a given class of B, worse classes cannot, either. Similarly,
fij > 0 ∧ fi−1,j = 0 ⇒ fi−k,j = 0. This is the column analogue to point
3).

5) (fij > 0 ∧ fi,j+1 = 0) ⇒ (fi+1,j > 0 ∨ fi+1,j+1 > 0). Successive classes
have a common boundary: If j is the last class to correspond to i, then
either j or j + 1 must correspond to i + 1. The latter is the case if and
only if the thresholds tA

i = tB
j coincide. Additionally, (fij > 0 ∧ fi,j+1 =

0) ⇒ fi+1,j−1 = 0, i.e. B’s classes of lower PD cannot match A’s next
class i + 1.

Taken together, this structure requires a scale relation to resemble a con-
nected “path” of non-zero elements through its matrix, beginning from f11 and
ending at fnAnB .

More precisely, these 5) restrictions stemming from the general framework
constrict the set of permissible scale relations, and hence can and should be
enforced in estimation. Table 1 illustrates the relation between the rating scales
from Figure 3.

Note that the assumption of identical rating scales is equivalent to assuming
all thresholds tA

a = tB
a coincide ∀a, which again is equivalent to assuming the

12
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1 0.67 0.33 0.00 0.00 0.00 0.00 0.00
2 0.00 0.25 0.75 0.00 0.00 0.00 0.00
3 0.00 0.00 0.00 1.00 0.00 0.00 0.00
4 0.00 0.00 0.00 0.00 0.40 0.60 0.00
5 0.00 0.00 0.00 0.00 0.00 1.00 0.00
6 0.00 0.00 0.00 0.00 0.00 0.50 0.50
7 0.00 0.00 0.00 0.00 0.00 0.00 1.00

Table 1: The scale relation of the scales depicted in Figure 3.

scale relation is the identity matrix, ςA,B = In, where n = nA = nB is the com-
mon number of rating classes. Thus, common market practice is nested within
our framework, and can be evaluated like any other potential scale relation.
From this point of view, we generalize existent work—where rating classes are
mapped across raters by the identity matrix—to allow for all permissible scale
relations, with permissibility defined by the constraints above, i.e. as conforming
with PD-linked score partitions.

While identical scales clearly imply a common number of rating classes n, our
framework applies as naturally with non-square matrices when nA 6= nB. In this
case prior research was frequently forced to forfeit information by re-mapping the
ratings with higher granularity to the coarser scale, e.g., by omitting modifiers.
It is a straightforward application of our method to assess how justifiable this
practice is. Moreover, it provides a means to perform this re-mapping accurately,
should it still be necessary.

It is important to emphasize the mutual dependence among elements fij

induced by the constraints: When comparing different scale relations, as detailed
in Section 3.2.3, their matrices need to be treated as atomic, in the sense that it
is in general not possible13 to draw conclusions based on some classes irrespective
of others.

3.2. Method

To address this question, we propose a non-parametric method, based exclu-
sively on co-ratings data which works in three major steps: a) Construct a list of
scale-relation candidates, b) re-map the co-ratings according to each candidate
onto a common scale, and c) evaluate them using the proximity measure for
agreement.

3.2.1. Constructing scale-relation candidates

As mentioned above, due to the strong interdependence of its elements it is
in general not possible to compare potential relations incrementally. An opti-

13As an exception, there exists a class of dominated scale relations which can be ruled out
at the outset, see Section 3.2.1.
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mization over the space of permissible scale relations that does not hinge upon
heuristics therefore involves exhaustively evaluating potential scale-relation can-
didates ς̃A,B = (f̃A,B

ij ).
To tackle the task of evaluating the infinite number of candidates, we split

the problem into two simpler parts: First, construct the patterns of zero and
non-zero entries in the candidate matrices; second, estimate the fractions f̃ij

conditional upon those patterns.
Define formally a scale-relation (candidate) pattern as the binary matrix

ς̊ = (f̊ij); f̊ij =

{

1 if f̃ij > 0,

0 if f̃ij = 0.

Given a candidate’s pattern, it is straightforward to estimate the necessary
fractions. This can be further simplified by excluding rating classes which only
have co-ratings that fall into one category. This task thus reduces to the finite
number of potential scale-relation candidate patterns.

The statement that all candidates need to be evaluated requires a minor
qualification: Let an offside pattern denote a candidate pattern which, in some
rating class, reaches far enough off the observed co-ratings so that it contains
f̊ij = 1 for at least one rating-class pair (i, j) where no co-ratings are actually
observed. Then it can be proved that such patterns imply relation candidates
that are dominated by non-offside patterns. For most practical applications
exploiting this property by not constructing and evaluating offside patterns is
crucial, since it reduces the number of candidates by orders of magnitude and
renders the exhaustive search computationally feasible.

The recursive procedure we devise to construct all permissible non-offside
patterns is available from the authors upon request.

3.2.2. Re-mapping ratings by scale relations

By definition, a scale relation identifies the mapping from one rater’s scale
to another’s. Therefore, given the relation ςA,B it is trivial to map scores sA

k

onto the scale of B, and rating agencies can employ our framework to accurately
assess their ratings on other agencies’ scales, e.g., for correct comparison.

However, since raters commonly neither report their scores nor scales, ob-
servers are constrained to re-map ordinal ratings that have already been mapped
via a scale. Clearly in the first mapping, which reduces to ordinal data, infor-
mation is lost; consequently no re-mapping can reproduce a direct mapping of
scores via ς exactly. This limitation notwithstanding, a scale relation is by con-
struction well suited to re-map ordinal ratings. Each row can be interpreted
as a conditional re-mapping rule: Consider all obligors rated into class i by A:
then the fraction fij belongs to class j in B’s terms, and should be re-rated
there for a correct comparison on an identical scale (in this case, B’s).

This defines the re-mapping for the aggregate class, while it does not tie
down on an obligor-specific level who should belong to which fraction—this is
the information lost with the first mapping to ordinal. Therefore, for fixed i,

14
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the decision problem arises to separate i-rated obligors into as many ordered
subclasses as there are fractions fij which the relation specifies as non-zero.
Note that it is not necessary to produce an ordering of all those obligors, it
suffices to separate them into (mostly very few) lower-PD to higher-PD subsets.

Three basic approaches can be taken:

1) Rely only on A’s published information; accordingly acknowledge that
obligors cannot be distinguished and sample randomly. In this case it is
imperative to integrate out sampling effects.

2) Also consider B’s published information; thus conclude that given an iden-
tical rating by A, ceteris paribus obligors with higher rating from B should
be classified into better classes.

3) Incorporate information by other raters, possibly excluding B. If co-
ratings of the obligors exist with other raters, it appears natural to exploit
this information. However, when more than one rater is taken as refer-
ence, the question arises how to construct their consensus opinion, which
is beyond the scope of this paper.

To motivate our approach, we consider the (hypothetical) case where we
know the rating scales of both A and B, so we can calculate their true scale
relation analytically. Assume furthermore that both assess true scores perfectly
accurately. Due to the absence of rating errors, all disagreement stems from
their different rating scales. Under these circumstances, as a design goal we
would want our algorithm to reproduce the analytical scale relation. It is easy
to show that this requires approach 2) to re-rating.

In the presence of rating errors, the re-rating procedure suffers in proportion
to their magnitude: The higher the impact of noise on estimated scores, the
more the approach will resemble 1).

It is key to correct apprehension of the proposed method to differentiate
between the rating information provided by B per se (on his scale), and its usage
in the conditional re-rating. Only the information from the partial ordering of B

is employed in the re-mapping, which moreover is carried out conditional both
upon the ratings of A and the scale relation.

To illustrate, assume A assigns 100 obligors to his class 5, and the scale
relation ςA,B indicates this class corresponds to B’s classes 3 and 4 in equal
proportion. Then B’s information will only be used to determine which 50
obligors should be re-mapped into the better class and which 50 into the worse.
If, for the sake of the argument, B classifies 50 of those obligors as (his) class
7, another 30 as class 8, and 20 as class 9, this does not imply that anyone is
re-rated to classes 7–9. Given the scale relation, the first 50 are considered as
rated 3 (on B’s scale) by A, while those in classes 8 and 9 (as reported by B)
to be rated 4 by A, again on B’s scale.

This illustration also makes clear that a re-mapping can easily decrease
agreement, and in particular elucidates that a scale relation too accommoda-
tion to one rating class, by virtue of the structure embedded in our framework,
impairs agreement through its need to impose harsh restrictions on the other
classes.

15
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3.2.3. Evaluating scale relations

An exhaustive search over scale-relation candidates begs the question how
to judge them against each other and the identity matrix benchmark. We need
to capture the degree to which two raters assign obligors the same rating class.
This is exactly what is captured by the agreement measure κ, which is briefly
re-examined in Appendix A.

4. Empirical Analysis

We compile a dataset of long-term corporate issuer ratings from the three
major rating agencies Fitch, Moody’s and Standard & Poor’s. Ratings for all
companies headquarted in a G7 country are obtained from Reuters Credit Views
as from February 16th , 2009. In total, 2721 obligors are co-rated, 403 thereof
by all three agencies; the exact number of co-ratings per pair is given in Table 2.

SnP Moody Fitch
SnP 2672

Moody 616 665
Fitch 2459 452 2508

Table 2: Number of co-ratings in the G7 dataset.

Our framework is static in the sense that it estimates the scale relation at
one point in time. Since the systematic relation should be fairly stable over
time, high volatility of ς in the time series would cast doubt on the estimation
procedure. Moreover, if agencies do not adjust ratings simultaneously, this could
contaminate the estimates. To safeguard against these objections, we re-run our
analyses on different earlier dates and find the results qualitatively unchanged.

While the rating agencies abstain from an exact definition of the credit-
worthiness they estimate and keep their rating models secret, it is clear they
assess at least highly related concepts. This can be seen in Figure 4, a scatterplot
of the co-ratings from Moody’s and Standard & Poor’s,14 where the reported
ratings are plotted with jittering, i.e. an added random disturbance to make
the amount of individual data points visible on the discrete grid. Dotted boxes
indicate “corresponding” rating classes, grouping those which differ only by
modifier.

Although the plot is guilty of one of the main points this paper critises,
namely implicitly treating ordinal rating data as if it were metric (and assuming
equi-distant adjacent classes), we include it to illustrate two important facts:
First, unclarity about their construction notwithstanding, agencies’ credit-risk

14Scatterplots of the other pairs of raters are similar and thus available upon request.
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Figure 4: Scatterplot of Moody’s and Fitch with jittering.

measures are indeed highly related. We quantify this prerequisite to meaningful
scale relations appropriately (i.e. with ordinal statistics) in Section 4.1.

Second, the graph is suggestive of asymmetry and class-dependent variation.
For instance, note that while a reasonable number of Aaa-rated obligors exhibit
ratings from Standard & Poor’sof AA- not a single AAA-rated entity received
a Moody’s rating worse than Aa+. Also, the variation around AA/Aa appears
discernibly lower than around e.g., BBB+/Baa+. Both effects would require
a complex structure on the measurement error if rating classes corresponded
exactly, while they arise naturally with non-identity scale relations.

4.1. Proximity measures

The following tables show the proximity measures calculated for the three
rating agencies and include bootstrapped standard errors. Although the mea-
sures appear rather high, their standard errors are small, making differences
between the rating agencies easily significant. This also indicates that improve-
ments due to re-mapping need not appear high in absolute terms in order to
constitute a significant improvement. Table 3 shows agreement, Table 4 associ-
ation, and Table 5 bias as defined in Appendix A.
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Table 3: Agreement

SnP Fitch Moody

SnP 1.0000000
Fitch 0.9690730 1.0000000

(0.002031639)

Moody 0.9054569 0.9054834 1.0000000
(0.009074744) (0.009573705)

Table 4: Association
SnP Fitch Moody

SnP 1.0000000
Fitch 0.8744840 1.0000000

(0.00618836)

Moody 0.7524240 0.7555853 1.0000000
(0.01268925) (0.01341078)

Table 5: Bias
SnP Fitch Moody

SnP 0.000000000
Fitch -0.005040139 0.000000000

(0.0008120209)

Moody -0.022495446 -0.021358025 0.000000000
(0.0027663372) (0.0027916832)
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4.2. Results

Moody

Fitch

Aaa Aa A Baa Ba B Caa

AAA 1 0 0 0 0 0 0

AA 0.09 0.91 0 0 0 0 0

A 0 0.196 0.804 0 0 0 0

BBB 0 0 0.172 0.828 0 0 0

BB 0 0 0 0.562 0.438 0 0

B 0 0 0 0 1 0 0

CCC 0 0 0 0 0 0 1

Table 6: Optimal scale relation on empirical co-ratings for Fitch and Moody’s.

Table 6 shows the results from estimating the optimal scale relation accord-
ing to our framework for Fitch and Moody’s.15 We can observe that at least
for classes of lower credit risk (i.e. lower-number classes) there is indication of a
shift between the scales of Moody’s and Fitch, although the fractions of classes
re-mapped to classes of different rank remain modest to small.

For the higher-risk classes the dataset is thinner, as was visible from Figure 4,
and estimation becomes harder and more imprecise (which we show in the next
section). Since some fractions are small enough to be rounded to zero, we
indicate the path of the optimal scale relation by gray background behind the
numbers.

However, the depicted values depend on the realized sample. If we acknowl-
edge that co-ratings contain a stochastic element due to noise in their estimation
by agencies, the observed sample is one draw from the underlying (joint) distri-
bution. This raises the question how far the scale relation found so far is subject
to sample effects, or, in different words, robust to re-sampling from the empir-
ical distribution of co-ratings. To assess this crucial issue without an ad-hoc
specification of the error structure we employ a bootstrapping procedure.

4.3. Bootstrapping

As mentioned, the scale relations estimated above depend on the samples
at our disposal. In order to account for noise in the ratings, we bootstrap the
cross-tables 1000 times each, i.e. draw 1000 same-size samples of co-ratings with
replacement from their empirical distribution. Note that this approach does not
require modeling the distribution of the errors but only independence between
co-ratings of different obligors.

To gauge the sensitivity of the optimal scale relation to different draws from
the distribution of co-ratings, we report in each element in Table 7 the percent-
age of times (from the 1000 samples) that a scale relation passed through that

15Results on scale relations between the other pairs of raters are similar and will be included
in a future revision of this paper.
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Moody

Fitch

Aaa Aa A Baa Ba B Caa

AAA 1*** 0.156 0 0 0 0 0

AA 0.844 1*** 0 0 0 0 0

A 0 1*** 1*** 0.006 0 0 0

BBB 0 0 0.994*** 1*** 0.176 0 0

BB 0 0 0 0.824 1*** 0.042 0

B 0 0 0 0 0.958** 0.042 0

CCC 0 0 0 0 0.958** 1*** 1***

Table 7: Fraction how often the optimal scale relation linked any two rating classes in 1000
bootstrapped crosstables for Fitch and Moody’s.

position for Fitch and Moody’s. Note that these percentages are based solely
on the binary information in order to pinpoint the variability in the structure

of the relation. Positions with entries close to one are contained in virtually all
scale relations: The (at least partial) correspondence of the respective classes
are robust to the variation in the co-ratings. If such elements are off the main
diagonal this casts doubt on the one-to-one mapping commonly assumed. Ta-
ble 8 and Table 9 show the same results for Moody’s and Standard & Poor’s,
as well as Fitch and Standard & Poor’s.

SnP

Moody

AAA AA A BBB BB B CCC

Aaa 1*** 0.999*** 0 0 0 0 0

Aa 0.001 1*** 1*** 0 0 0 0

A 0 0 1*** 1*** 0 0 0

Baa 0 0 0 1*** 0.959** 0 0

Ba 0 0 0 0.041 1*** 0.4 0.043

B 0 0 0 0 0.6 0.357 0.043

Caa 0 0 0 0 0.6 0.957** 1***

Table 8: Fraction how often the optimal scale relation linked any two rating classes in 1000
bootstrapped crosstables for Moody’s and SnP.

The results of the bootstrapping procedure elucidate that ideally the in-
formation obtained via the re-sampling procedure should be incorporated in
the estimation of the scale relations. Otherwise the scale relation is estimated
by just one optimization of agreement, and thus conditional on the sampling
distribution. By using the information obtained by bootstrapping this condi-
tionality can be addressed and a potential bias in the fractions of scale relations
prevented; this issue is detailed in future revisions of our paper.

In any case it is important to highlight that for all three pairs of rating
agencies we find that several positions off the main diagonal have values of 1,
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SnP

Fitch

AAA AA A BBB BB B CCC

AAA 1*** 0.87 0 0 0 0 0

AA 0.13 1*** 0.999*** 0 0 0 0

A 0 0.001 1*** 0.999*** 0 0 0

BBB 0 0 0.001 1*** 0.859 0 0

BB 0 0 0 0.141 1*** 0.383 0

B 0 0 0 0 0.617 1*** 0.884

CCC 0 0 0 0 0 0.116 1***

Table 9: Fraction how often the optimal scale relation linked any two rating classes in 1000
bootstrapped crosstables for Fitch and SnP.

indicating clearly a systematic relation between rating classes that differs from
identical rating scales. While the thresholds defining the classes on the scales of
Standard & Poor’s with respect to Fitch as well as to Moody’s appear shifted,
the relation of the scales of Moody’s to Standard & Poor’s seem to exhibit a
more complicated pattern, with some classes specified broader by one and some
classes broader by the other agency.

5. Conclusion

Rating agencies report ordinal ratings in discrete classes. We question
the market’s implicit assumption that agencies define their classes on identi-
cal scales. To this end, we develop a non-parametric method to estimate the
relation of rating scales for pairs of raters. This scale relation identifies for every
rating class of one rater the extent to which it corresponds to any rating class
of another, and hence enables a rating-class specific re-mapping of one agency’s
ratings to another’s scale.

In its simplest application, the re-mapping based on an estimated scale re-
lation is equivalent to a straightforward direct re-mapping: Produce a weak
ordering by sub-sorting your rating assessments according to the information
provided by another rater, then subdivide this ordering into as many classes as
the competitor’s scale encompasses. By maximizing agreement the re-mapping
is aligned with the external scale. However, this re-mapping is conditional upon
the concrete realization of co-ratings and thus treats effects from random noise
deficiently.

In the presented framework for the estimation of scale relations it is eas-
ily possible to specify a desired error modeling; in addition, it is also possible
to draw inference without doing so by bootstrapping from the empirical dis-
tribution of co-ratings. In this way, we find that for the three major rating
agencies Fitch, Moody’s and Standard & Poor’s the deviations from identical
scales of long-term corporate issuer ratings of corporations in G7 countries are
too pronounced to be attributed to random chance.
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We thus conclude that the implicit assumption of identical scales and hence
the common regulatory and industry practice of equating rating outcomes from
these agencies seems doubtful. Due to the critical importance for financial
institutions, rating agencies, and supervisors to accurately assess credit risk, as
exemplified also in the current credit crisis, this topic calls for further research.
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A. Proximity measures and their relation to re-mapping

A.1. Proximity measures

As rating data is not metric but ordinal, consistency requires to rely on
appropriate measures for their relation. The application of contemporaneous
versions of the proximity measures Cohen’s κ and Kendall’s τ (as well as the
introduction of a measure for bias) was pioneered by Hornik et al. (2007b);
empirical results based on these measures can be found in Hornik et al. (2010)
and Hornik et al. (2007a). In the following we give a brief recollection of the
proximity measures used.

All measures are defined for pairs of raters A and B, where the calculations
build on those of their ratings σA

k and σB
k for which the obligors k = 1, ..., NA,B

are (co-)rated by both A and B.

A.1.1. Agreement

Agreement captures the degree to which two raters assign obligors into the
same rating class. Note that this only makes sense if the raters assign into
a common number of rating classes n.16 The classical measure, Cohen’s κ,
quantifies if agreement is better than (κ > 0), equal to (κ = 0), or worse (κ < 0)
than by chance. The intuition builds on a cross-tabulation of ratings: Let the
matrix C

A,B = (pA,B
ij ) tabulate the observed relative frequency of obligors rated

as class i by A and j by B, so

p
A,B
ij =

#{σA
k = i, σB

k = j}

NA,B
.

Ratings on the main diagonal of C
A,B are clearly in agreement. However,

considering only them as agreeing would treat an obligor rated differently by
only one notch the same as one rated AAA by one agency and C by the other.
Thus the literature has often considered the first case fractional agreement rather
than complete disagreement. This implies, instead of weighing the main diago-
nal with 1 and the rest with 0 as Cohen’s κ does, weights that are a decreasing
function of the difference in rating classes, gradually falling from 1 on the main
diagonal to complete disagreement furthest from it. One common choice makes
the function linear; in the credit-rating literature Hornik et al. (2007b) suggest
the weights proposed by Fleiss and Cohen (1973), quadratic in the difference,

w = (wij) with wij = 1 −
(

i−j
n−1

)2

.

The agreement-weighted sum of observed relative frequencies of co-ratings
P A,B

o ,

P A,B
o (w) = w : C

A,B =

n
∑

i

n
∑

j

wijp
A,B
ij , (1)

however, does not consider that—even with independent ratings—some co-
ratings are expected to lie on or close to the main diagonal. Assuming the

16All matrices in the calculation of agreement have dimension n × n.
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agencies rated independently, the expected cross-table is C
A,B
x = (pi·p·j), com-

prising the products of the marginal proportions p·j =
∑n

i pij and pi· =
∑n

j pij .
Consequently, for given weights,

P A,B
e (w) = w : C

A,B
x =

n
∑

i

n
∑

j

wijpi·p·j .

(Weighted) κ subtracts this correction before normalizing maximal agreement
to 1:

κA,B(w) =
P A,B

o (w) − P A,B
e (w)

1 − P
A,B
e (w)

Finally, it is important to note that the choice of a weight matrix implicitly
treats the data as if they were on an interval scale since it specifies relative
distances between classes. Only the unweighted case (where w is the identity
matrix) is theoretically fully consistent with ordinal—even nominal—data.

A.1.2. Association

We measure association (also denoted rank correlation) with τx, the extension
of Kendall’s τ developed by Emond and Mason (2002) as the unique rank corre-
lation coefficient to fulfill the elementary axioms outlined by Kemeny and Snell
(1962). It differs from τ only in the treatment of ties, yet ensures any ranking
to be perfectly correlated with itself,17 and the triangle inequality to hold, i.e.
the distance of two objects cannot exceed the sum of their distances to a third
one.

Association quantifies the extent to which two agencies report the same
relative ordering of obligors. The ranking of rater A is condensed in the NA,B ×
NA,B score matrix A = (aij) where18

aij =











1 if obligor i is ranked ahead of or tied with obligor j,

−1 if obligor i is ranked behind obligor j,

0 if i = j.

Given the analogous definition of B = (bij), similarity with regard to a single
pair of obligors is indicated by aijbij > 0, while dissimilarity entails a negative
product. The measure τA,B

x is then defined as the sum of these products scaled
to the [−1, 1] interval; or, equivalently, as the Frobenius inner product of the
score matrices divided by its maximum possible value:

τA,B
x =

A : B

N(N − 1)
=

∑n
i=1

∑n
j=1 aijbij

N(N − 1)

17In fact, Kendall’s τ is undefined for all-ties rankings.
18The requirement that any ranking be perfectly correlated with itself implies that aij needs

to be defined as ±1 when i and j are tied. Only then will a2

ij
= 1 for all i 6= j and τ

A,A
x = 1

for any xA.
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The intuition of the measure is to consider the N2 − N pairs19 formed from
the co-rated obligors and compare the assessments of the two raters: Those
pairs where one rater ranks the first obligor below the other while the second
rater disagrees, decrease τA,B

x ; the other pairs, where the raters are considered
in accord, increase it. The denominator ensures τx maps to the interval [−1, 1],
where +1 indicates perfect association, i.e. all the pairwise ratings are in the
same order, and −1 indicates the opposite.

It is important to note that τx is scale-free: Because only relative orderings
are considered, no knowledge about the scale is required and valid comparisons
of raters with different scales, even with different numbers of rating classes, can
be drawn.

Finally, in the context of credit ratings high τx indicates the two agencies
assess identical or highly correlated risk measures. With a minor qualification20

this is independent of the scale they employ (and in particular independent of
using the same scale), and thus necessary for any re-mapping to make sense.

A.1.3. Rating bias

The average number of rating classes which A’s assessment lies above B’s,
scaled to the interval [−1, 1], was defined as rating bias:

θA,B =
n

∑

i

n
∑

j

i − j

n − 1
pij

Equivalently, and likely simpler to calculate, θA,B equals the difference of
the mean ratings, divided by n − 1:

θA,B =
x̄AB − x̄BA

n − 1

Yet another way to obtain θA,B is as the intercept in a linear regression
of x

AB on x
BA, with the slope parameter restricted to 1.21 This perspective

allows, provided correct handling of standard errors, an analytical significance
test of rating bias.

A.2. Lack-of-proximity patterns and their interpretation

Lack of proximity arises in three cases: a) Raters estimate different risk
characteristics (eg., PD vs. EL), b) they map rating scores differently to rating
classes, or c) at least one of them estimates inaccurately.

19The “pairs” of obligors with themselves are excluded as they are trivially always tied and
thus contribute no information.

20Because of the treatment of ties even independent random ratings have no expected τx of
zero: it depends on the number of ties, and thus on the number of rating classes. Therefore a
potential discretization effect arises when continuous data (like a rating score or PD estimate)
are discretized (to rating classes) insofar as estimates close to the discretization thresholds
can be mapped to classes with different numbers of ties.

21Since the slope is restricted to 1, it is equivalent to regress xBA on xAB .
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Case a), with the risk characteristics closely correlated, can be treated econo-
metrically as if different scales were employed; the proposed method then yields
the mapping from one risk measure to the other. If the characteristics have only
a weak relation,22 the case is indistinguishable from c).

Case b), the focus of this paper, is indicated by high τx, low κ and potentially
high θ. Since the association measure does not require a common scale, τx can
be validly calculated directly on the raw rating data as provided by both raters.
If high, by definition of τx, the raters tend to judge the same obligor in any co-
rated pair less risky,23 which indicates that raters estimate the same (or highly
correlated) risk. After re-mapping, which puts the ratings on a common scale,
θ should get close to 0 and κ significantly higher.

Case c) implies both τx and κ are low (with arbitrary θ), and additionally
that no re-rating by a different scale will be able to significantly improve κ.

A.3. First step of re-rating: Correcting for bias

A first step to re-map the data to a common scale is to correct for θ. Since
θ is by definition the systematic difference in two sets of ratings, a shift of
α = θ(n−1) removes the bias. If α = 1, as in the example in Section 2, treating
all ratings of B as one class higher allows for an unbiased benchmarking of the
two raters. However, given the discrete nature of rating classes, a non-integer
shift of ratings is not meaningful. The appropriate interpretation of a fractional
α of, say, .5 in this context is not that all ratings are on average rated half a
class higher, but that, on average, ratings are one class higher for half of the
obligors. Therefore we argue that to correct for any bias a first step shifts ratings
by the integer part of α; the second step re-maps the number of obligors per
rating class given by the fraction of α. The question whom to select into this
percentage and how to employ co-rater information is covered in Section 2.1.

While treatment of the bias illustrates the underlying insight into the neces-
sity of re-mapping clearly, it is evident that the elementary correction stated in
the last paragraph implicitly imposes severe restrictions on the structure of the
bias which remains doubtful.24 The framework in Section 3 can be viewed as
per-class specific generalization of the bias correction.

B. Sketch of proof: Identically sub-sorted groups are re-mapped jointly

Assume that we have a cross-tabulation of co-ratings C = (pij) such that
there exist at least two co-ratings in an off-diagonal element pij > 1, i 6= j. Now

22Negative correlation appears unlikely since raters commonly do not estimate sufficiently
different concepts of credit risk. The case would be indicated by τx ≪ 0 and could be dealt
with by our method slightly adapted.

23Note that nevertheless even identical scores generally produce τx < 1 when mapped to
different rating scales. Scores near the boundaries are mapped into different classes and
consequently tie with different obligors. For instance, PDs of (.01, .02, .03) can be mapped by

different scales to xAB = (1, 1, 2) and xBA = (1, 2, 2) and thus give τ
A,B
x = 1

3
.

24While it seemingly imposes a uniform distribution over rating classes, disputable in itself,
this is hard to reconcile with any (yet unspecified) treatment of fringe classes.
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it follows from the definition of the weights as non-increasing in Appendix A.1.1—
which follows from the transitivity property of ordinal data—that re-mapping
an off-diagonal element closer to the main diagonal cannot decrease κ. Thus
there remain two cases:

1) In the corner case where the re-mapping does not affect agreement, all
pij obligors can be re-mapped jointly without harming agreement (for
instance with unweighted κ when a re-mapping does not reach the main
diagonal).

2) In the base case where agreement is (strictly) improved by re-mapping a
subset of the pij ratees, it must be optimal to move all the others too,
because doing so would increase κ due to linearity in Equation (1).
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