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Abstract 

We compare the empirical performance of models that predict corporate credit ratings with key 
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of predictive ability. CBE is a fast and frugal heuristic suggested in the psychological literature as a 
realistic description of efficient human decision making. Our results are therefore consistent with the 
presence of subjective components in rating decisions. They also show that such components can be 
represented through a structured algorithm.  

 
 
JEL classification: C35, C45, C52, D81, G24  
 
Keywords: credit rating, heuristics, categorization by elimination, ordered probit, bounded rationality  
 
 

 
 
 
Both authors are from the Institute of Finance, University of Ulm, Helmholtzstrasse 18, 89069 Ulm, 
Germany. This research was supported by Deutsche Forschungsgemeinschaft (DFG) through the 
SFB 649 “Economic Risk”.  

 
* Corresponding author, juergen.bohrmann(at)uni-ulm.de



 1

1. Introduction  

Credit rating agencies such as Fitch, Moody's and Standard & Poor’s have been issuing ratings for 

corporate debt since the first half of the 20th century. Today, the majority of large companies in 

developed markets possess a credit rating.1 Over time, the rating process has not undergone major 

changes. Rating agencies combine quantitative information such as accounting ratios with qualitative 

assessments of management quality and other factors. The final rating decision is made by a rating 

committee. According to rating agencies, it does not rest on a fixed weighting algorithm (Standard and 

Poor’s (2008)). 

Recent events have spurred criticism of rating quality. Firms such as Lehman Brother’s and AIG 

collapsed even though they were highly rated until the problems became evident. As part of their 

response, regulators have called for more transparency about rating decisions.2 The presumption is that 

greater transparency will increase consistency in rating assignments and help market participants to 

better assess the information content of a rating. Larger transparency would be straightforward to 

achieve if rating agencies used fixed rules for weighting well-defined input variables. As soon as 

qualitative information and judgmental weightings come into play, however, increasing transparency 

may turn out to be difficult.  

In this paper, we show that a better understanding of the rating process does indeed require a modelling 

of the subjectivity of the rating process. We propose that decision heuristics studied in the field of 

psychology (cf. Gigerenzer, Todd, and ABC Research Group (1999)) are a plausible model for the 

information aggregation performed at the end of the rating process. Specifically, we employ the 

Categorization by Elimination characteristic suggested by Berretty et al. (1997). The heuristic is 

hierarchical and noncompensatory. Available pieces of information, or cues, are used in a certain order; 

                                                 
1 Over 6,000 corporate issuers held a long-term bond, corporate family or loan rating from Moody’s in 2008, over 
5,500 corporate issuers held a Standard & Poor’s rating in 2010 and Fitch had over 1,700 rated corporate issuers 
globally in 2010. 
2 http://www.sec.gov/news/press/2011/2011-113.htm; 
http://ec.europa.eu/internal_market/consultations/docs/2010/cra/cpaper_en.pdf. 
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once a categorization decision is made, it cannot be changed by cues form a lower hierarchical level. In 

a regression by contrast, each variable affects the final outcome, even though its coefficient may be very 

small; variables that are relatively unimportant individually can push the prediction into a direction that 

is not consistent with the most important variable. The categorization heuristic does neither require a 

computer nor a pocket calculator. It is therefore not just an “as if” model of behavior but a plausible 

description of actual human decision-making. 

For a large data set of bond ratings for US corporates, we use the heuristic to derive rating decisions 

from a set of predictors that include leverage, interest coverage, profitability and other commonly used 

variables. Compared to statistical approaches such as linear regression, ordered probit or neural 

neutworks, the heuristic leads to better out-of-sample predictions of actual rating decisions.  

The results are consistent with the presence of subjective components in rating decisions. They also 

show that such components can be represented through a structured algorithm, which can help to clarify 

the rating process. Of course, the fact that the heuristic still leaves a large part of unexplained variation 

in rating decisions justifies some caution. Empirically, it could turn out to be difficult to attain much 

higher levels of transparency because the extent to which subjective components can be made 

transparent may be limited. On the other hand, the paper focuses on the information aggregation stage 

and derives the predictor variables from public sources. With proprietary information from rating 

agencies, a further improvement in the representation of rating decisions should be possible.  

With the decision-making literature, our paper is the first to document for a broad dataset that decision 

heuristics examined in the psychological literature can be very valuable for explaining the behavior of 

important financial market players. Extant psychological research tests the empirical validity using 

small samples and decision tasks which are common in everyday life but of limited economic 

importance.  

The academic literature on the determinants of credit ratings goes back to the 1960s. Horrigan (1966), 

Pogue et al. (1969) and West (1970) employed multivariate linear regression analysis. Pinches et al. 
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(1973) and other researchers used discriminant analysis, before Kaplan et al. (1979) proposed ordinal 

models instead of linear models in order to match the nonlinear ordinal character of credit ratings. In 

recent years, many authors favor ordered probit or logit regressions (Blume, Lim and MacKinlay (1998), 

Amato et al. (2004), Jorion et al. (2009) and Caporale et al. (2009)), but linear regression continues to 

be used (Kisgen (2008)). In addition, neural networks and support vector machines have been 

investigated (Huang et al. (2004) and Lee (2007)).  

The empirical validity of simplified decision rules has already been advocated by Dawes (1979). The 

Categorization by Elimination of Beretty et al. (1997) was inspired by Gigerenzer and Goldstein (1996). 

Recent practical applications are presented in Goldstein and Gigerenzer (2009).  

 

 

2. The rating process and heuristics 

2.1 A description of the rating process 

 

“Bear in mind, however, that a rating is, in the end, an opinion. The rating assignment is as much an 

art as it is a science.”  

Standard & Poor’s, Corporate Ratings Criteria (2008, p. 3) 

 

According to rating agencies, a corporate credit rating is a current opinion of an issuer’s relative 

creditworthiness, i.e. an opinion on the issuer’s willingness and capacity to repay its debt.3 Briefly, the 

rating process can be described as follows. If a rating is to be assigned for the first time or an existing 

rating is to be reviewed, the rating agency designates a rating analyst to prepare the rating decision. 

Analysts usually focus on one or few different industries in order to build up specific expertise. The lead 

analyst is backed by other analysts and support team members. Together, they collect quantitative and 

                                                 
3 The information give in this section largely builds on Standard and Poor’s (2008).  
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qualitative information relevant for assessing the issuer’s creditworthiness. Important sources of 

information are financial statements, the firm’s own projections, meetings with the rated firm’s 

managers, and an analysis of the firm’s competitors and the market it operates in. The lead analyst then 

presents the results of the analysis to the decision-making body – the rating committee. The committee 

members discuss the results and decide on the rating. Before it is published, the issuer is allowed to 

respond. If the firm appeals and brings in new information, the committee reconvenes. 

For several reasons, reproduction of a rating decision faces several changes. Some key indicators such 

as management quality or competitive position are based on a qualitative analysis, making them difficult 

to reproduce. Through their contacts with the firm’s management, agencies may have gained 

information that is not publicly available.4  Finally, rating agencies do not reveal in detail how the 

information is aggregated. Standard and Poor’s (2008), for example, describe eleven key financial ratios 

used in their analysis of financial risk but do not describe how the ratios are weighted relative to each 

other.  According to Standard and Poor’s (2008), the reason for not providing information on 

aggregation schemes is not that it is proprietary. Rather they state that the agency does not employ such 

fixed schemes: “Note that we do not have any predetermined weights for these categories. The 

significance of specific factors varies from situation to situation” (Standard and Poor’s (2008), p. 22).  

Such a description is not necessarily inconsistent with the observation that rating agencies have 

developed statistical models that aggregate information in a well-defined way. Moody’s, for example, 

has published both statistical default prediction models (Falkenstein et al. (2001)) as well as a model 

that maps financial ratios into ratings (Metz and Cantor (2006)). Developing such a model can make 

sense even if the rating agency does not incorporate it in its own rating process. For example, the model 

could be marketed to risk managers who need to assess the risk of unrated companies. Metz and Cantor 

                                                 
4 Until 2010, rating agencies were exempt from US regulation FD, meaning that managers could communicate 
material non-public information to rating agencies. Because of the possibility of confidentiality arrangements, it is 
not obvious whether the regulatory change will substantially change information flows between issuers and rating 
agencies. 
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(2006) also hint at the possibility that the presented model can serve as “as an initial input in the rating 

process” but point out “that we can never construct a perfect map, since we simply cannot include all 

the factors which determine ratings” (Metz and Cantor (2006), p. 1).   

Of course, one could argue that rating agencies may employ algorithms that they do not fully disclose. 

With full disclosure, competing agencies, new entrants but also investors and issuers could apply the 

algorithms, eroding the agency’s business model. The analysis of the present paper helps to assess 

whether the agencies’ description of their rating process is consistent with reality. If it is true that the 

rating process is not fully automated but rather contains subjective elements, one should be able to 

improve rating prediction through a realistic modeling of the rating analysts’ decision process. To 

develop such a model, we turn to psychological research on heuristics.  

 

2.2 Heuristics 

The type of heuristics that we apply to credit rating agencies goes back to the research of cognitive 

psychologists Gigerenzer and Goldstein (1996). For binary choices of the type “In terms of population, 

is city A larger than city B?” they propose what they call the “Take the Best” rule. To answer the 

question, decision makers employing this rule would first consider the information – henceforth called 

cue – which they expect to have the largest validity, where validity is measured as the percentage of 

correct answers among the answers generated by a cue. Example cues for the city size problem could 

be: “Did the city host the olympic summer games at some point in the past?”, “Is the city a national 

capital?”,  or “Does the city have an international airport?”.  Assuming that these cues were listed in the 

order of their validity and taking the problem to be “Is Madrid larger than Munich” one would examine 

each cue in the order of validity, and stop once a cue generates an answer. In the example given here, 

the first cue would not discriminate as both cities have an international airport. The decision maker 

would proceed to the second cue. Since Madrid is a national capital while Munich is not, the decision 

maker would then fix the answer, and discard any remaining cues.  
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The Take the Best rule is hierarchical (cues are examined in a pre-specified order) and 

noncompensatory (some pieces of information are neglected and cannot influence the decision). 

Heuristics such as Take the Best are often dubbed fast and frugal, as the less than complete use of 

available information increases the speed of decision making. 

Take the Best and related heuristics have been inspired by Simon’s (1956) theory of bounded 

rationality, which acknowledges that in many decision-making situations, it is either impossible or 

costly to acquire perfect information. Also, the cognitive capacity of decision makers may be limited. In 

such situations, following simplified decision rules can be advantageous because the perfect solution 

may be infeasible or too costly to obtain. Findings by Gigerenzer and Goldstein (1996, 1999) suggest 

that the Take the Best heuristic is ecologically valid. In many different situations, from ranking cities 

according to size to ranking professors according to their salary, they obtain that it performs at least as 

well as more elaborate methods such as linear regression.  

Heuristics also feature prominently in another strand of psychological research, the heuristics and biases 

literature initiated by Tversky and Kahneman (1974). In this strand as well as in much of the behavioral 

finance literature that is built upon it, simplified decision rules are usually associated with biased or 

inaccurate decisions that suffer from violations of the laws of logic and probability. The latter suggests 

that predictive accuracy could easily be increased by avoiding the fallacies associated with the heuristic. 

Proponents of fast and frugal heuristics, by contrast, would argue that they enable efficient decision 

making that cannot improved upon easily (cf. Gigerenzer (2009)). 

To model credit rating decisions, we cannot use the Take the Best heuristic as it is only applicable to 

binary decisions. A generalization to mult-category decision problems is the Categorization by 

Elimination (CBE) heuristic, which was introduced by Berretty et al. (1997). It  bears resemblance to 

Tversky’s (1972) Elimination by Aspects. CBE can be applied to both unordered and ordered 

categories. Berretty et al. (1997) give the illustrative example of categorizing birds (eagle, sparrow or 

stork?), while we apply it to ratings. Assume that there are seven rating categories and that there are a 
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number of cues, e.g. financial ratios such as leverage, return on assets, and so forth. In a first step, we 

need to select the cues that have the potential to enter the process, and sort them according to their 

empirical validity in predicting credit ratings. There are different ways for measuring validity. In the 

subsequent analysis, we suggest to use the Pseudo-R² of an ordered probit analysis of ratings in which 

the respective cue is the only explanatory variable. As a final preparatory step, we need to map cue 

values into rating categories. We associate each category with a range for the cue value. If the cue value 

is inside the range of category k, it is associated with rating category k. Ranges for different categories 

can overlap, meaning that one cue value can be associated with several ratings. Two standard 

procedures for define the ranges are (i) define the range through the maximum or minimum in the data 

used for training the algorithm (ii) use empirical confidence intervals. In the paper, we employ the first 

approach.  

The category is best described with a simple example illustrated in Figure 1. Assume that we have four 

cues: leverage (highest validity), return on assets, operating margin, interest coverage (lowest validity). 

The assumed binning structure is shown in Figure 1. The highest cue, leverage, is associated with 

ratings AA and A. As this set is not unique and therefore does not lead to a rating decision, we proceed 

to the next cue, which is return on assets. Here, it is associated with ratings BBB, BB and B. According 

to CBE, the new set is the intersection of the previous set with the set of categories associated with the 

current cue. If the intersection is empty as is the case here, CBE calls to stay with the previous set and 

proceed to the next cue. This discarding of information is consistent with the hierarchical structure of 

the algorithm. In the example, we move on to operating margin, which is associated with ratings BB, 

BBB and A. The intersection with the previous set is {A}. The considered set is now unique, and the 

CBE algorithm stops. Hence, we would not consider information contained in the fourth cue, which 

exemplifies the noncompensatory character of the algorithm. 
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In practical applications, we may not arrive at a unique set of categories even after all available cues 

have been considered. In such a case, Berretty et al. (1997) suggest to take the average of the categories 

that remain at the end. Alternatively, one could randomly select a category from the remaining ones. 

To complement the exemplary description of the algorithm, Figure 2 shows a flow diagram. Let us 

briefly summarize the algorithm in a more formal language. At the start, a set of cues with their binning 

structure have to be given. Then as a first step, the cue with the highest validity is taken and we compare 

the value of the first cue to our binning structure for the first cue. We eliminate all possible rating 

categories that are inconsistent with the value of the first cue, yielding a set S of possible rating 

categories S. If only one rating category remains in this set S, the algorithm already stops here.  If not, 

we proceed to the cue C* with the next highest validity and once again we check which rating categories 

are consistent with the value of cue C*. We denote the possible rating categories for cue C* by S*. Now 

we intersect the set S with the S* to see whether further rating categories can be eliminated. We denote 

the intersection of S and S* by S again. If S contains only one rating category, we are finished and 

choose this category. If S contains more than one category and if there are still further cues that can be 

checked according to their order of validity, we proceed as before.  If the intersection S is empty, we 

reset S to the previous value, and proceed to the next cue. In the case that no additional cues are 

available and more than one category remains in the set S, we choose the average rating of the 

categories in S.  

Let us briefly ponder whether the CBE algorithm could be a plausible description of actual rating 

behavior. Binning financial indicators into categories is similar to the representation given in Standard 

and Poor’s (2008, Table 2), There, financial ratios are binned into five categories of financial risk. The 

financial risk categorization is then brought together with the business risk assessment, resulting in a 

rating. Technically, binning ranges can be determined based on empirical ranges. The necessary 

information is available to rating agencies. Standard and Poor’s (2007), for example, contains median 

values per rating category for several financial ratios. However, CBE could be a realistic description of 
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the decision process even if the decision makers did not use well defined binning structure. Based on 

their experience, member of the rating committee could follow a mental mapping. Finally, note that the 

application is not computationally expensive. It could be applied by individual analysts during the rating 

discussion in the committee.  

 

3. Data and methodology 

3.1 Cue selection and variable definition 

We study long-term issuer ratings from Standard & Poor’s for US corporates. Ratings as well as annual 

financial information are obtained from COMPUSTAT for the years 1985 to 2007. Information about 

stock returns is from CRSP. When we link ratings and stock market information to accounting data, we 

use a conservative lag of six months to ensure data availability. For a firm with fiscal-year end 

December, for example, annual financial data for 2005 are coupled with the rating from June 2006.  

In accordance with the literature (e.g. Blume, Lim and MacKinlay (1998))  all accounting variables that 

we use as cues for rating prediction are averaged over the last three years in order to approximate the 

through-the-cycle approach of rating agencies. Looking through the cycle means that rating agencies 

abstract from fluctuations they regard as temporary (Standard and Poor’s (2008), p. 22); since they do 

not provide information on how they separate temporary and long-term components, a simple, 

backward-looking average is used  here. 

If there is only a two-year history for an observation, we use the two-year average instead of the three-

year average so that we do not lose too many observations.  If there is only information about one year, 

the observation is discarded. All variables are winsorized at the 1% and the 99% levels to alleviate 

potential outlier problems, which is again common practice in the literature. 

We use two different sets of cues for our rating prediction models. The first set takes the variables used 

in the influential study of Blume, Lim and MacKinlay (1998) – hereafter: BLM. The predictor variables 
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of BLM have been adopted by other studies (Amato et al. (2004) and Jorion et al. (2009). They include: 

pretax interest coverage; operating income to sales; long-term debt to assets; total debt to assets; market 

capitalization; equity return beta; equity return standard error. Precise variable definitions are given in 

Table 1. Note that market capitalization as well as betas and standard errors are not averaged.  As in 

Amato et al. (2004) and Jorion et al. (2009), betas and standard errors are cross-sectionally demeaned. 

The variables capture business risk (market capitalization, beta, standard error), financial leverage 

(long-term debt to assets, total debt to assets), profitability (operating income to sales), and interest 

coverage.  

The Table also reports the Pseudo-R² of ordered probit regressions, in which the S&P rating is explained 

only with the variable in question. These Pseudo-R² values measure the strength of the bivariate 

relationship between ratings and a given variable; they will be used to measure the empirical validity of 

a cue in the Categorization by Elimination algorithm. 

For the second set of cues, shown in Table 2, we have considered a larger set of 31 candidates. In 

addition to the BLM variables, we consider ratios mentioned in publications of rating agencies 

(Standard and Poor’s (2008) and Metz and Cantor (2006)). Conceptually, the differences between 

variable definitions are often small. In their definition of interest coverage, for example, Metz and 

Cantor (2006) propose to include rental payments and preferred dividends, which are not included by 

BLM (1998). Due to the large similarity among subsets of these 31 candidates, we restrict the further 

analysis eight variables. Within each of four groups (business risk, leverage, profitability, coverage), we 

choose two variables that have the strongest bivariate relationship with ratings, again measured through 

separate ordered probit regressions. 

Our merged COMPUSTAT-CRSP initial data set contains 29,005 firm-years with S&P long-term issuer 

ratings ranging from 1985 to 2007. Deleting all observations with missing data on any of our seven 

BLM cues listed in Table 1, we end up with a sample size of 21,235 firm-years for the data set with the 

BLM variables. Deleting all observations with missing data on any of the eight cues, we arrive at a 
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sample size of 10,301 firm-years. The large reduction in firm-years that comes about when moving from 

the BLM variables to the expanded set of predictors is one reason why we conduct the analysis 

separately for the two sets of variables. Descriptive statistics of the data sets are shown in Table 3. 

 

3.2 Models for rating prediction 

Categorization by Elimination (CBE) 

This paper is the first to apply this heuristic to the prediction of corporate credit ratings. The structure of 

the algorithm was already explained in section 2.2. Here, we only briefly summarize the main 

assumptions made for implementation. The set of cues considered is given either by the BLM variables 

from Table 1 or the expanded set of predictors from Table 2. For each variable j and each letter rating 

category k, a range is defined using the minimum and maximum values of variable j that are observed 

for rating category k in the estimation sample.  The validity of cues, which determines the order in 

which they are checked, is measured with the unconditional Pseudo-R² from Tables 1 and 2. 

 

Tallying 

Weighting each cue equally is referred to as tallying. Such unit-weight linear models sometimes 

perform as well as multivariate linear regression in terms of predictive accuracy. Dawes (1979) and 

Dawes et al. (1974) first concluded that tallying is a serious competitor for linear regression; Czerlinski 

et al. (1999) reaffirm their findings on 20 different and independent data sets. Averaged over all data 

sets, multivariate regression achieved a higher accuracy for the in-sample fit, but tallying slightly 

outperformed linear regression in out-of-sample predictions. Einhorn et al. (1975), however, points out 

that tallying can achieve prediction accuracy comparable to that of multivariate linear regression only 

under special circumstances. 
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Compared to CBE, tallying is not a frugal heuristic because it makes use of all available cues. The 

decision-making process cannot be stopped after the first discriminating cue, but all information at hand 

is used. In our empirical study, we make a modification to the original tallying rule. We do not add up 

the individual decision cues. Instead we add up the individual cue-implied ratings with equal weights 

and then take their average. Implied ratings are determined through ordered probit regressions. 

 

Multivariate linear regression 

In contrast to tallying, multivariate linear regression differentiates individual decision cues according to 

their importance by estimating a separate coefficient for each of them. In line with the literature 

(Horrigan (1966), Pogue et al. (1969), West (1970), and Kisgen (2008), we code the rating information 

in a linear fashion (AAA = 1, … , CCC/CC/C = 7). 

 

Ordered probit regression 

The ordered probit regression has one main advantage over linear regression, which makes it so far the 

state-of-the-art in the empirical literature on rating prediction (cf. Kamstra et al. (2001)). Ordered probit 

does not rely on the assumption of a linear rating scale. Rather, it endogenously determines cutoff points 

for each rating category. These cutoff points are monotonic in the score, but they need not to be 

equidistant. 

More formally, the ordered probit approach can be described as follows. Let itR  be the rating of issuer i 

at time t and itX  a vector of our decision cue variables available at time t that impact on issuer i’s rating. 

itR  is defined as above with AAA corresponding to 1, AA to 2, …, and all CCC/CC/C ratings 

corresponding to 7. Now let us introduce a latent variable 
itZ  that maps values of 

itX  in 
itR . The 

linear equation ititit XZ εβ +=  with β  as a vector of coefficients and itε  as an error term links our 
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observable decision cues 
itX  to the latent variable 

itZ . Furthermore, 
itZ  is linked to our numerical 

rating variable itR  according to: 
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where the iµ  represent our cutoff points for the rating categories. We use the same link and the 

estimated cutoff points to associate a prediction Xβ̂ with a rating. 

 

Linear discriminant analysis 

Discriminant analysis maximizes the variance between classification groups and minimizes the variance 

within classification groups. Pinches et al. (1973) and Kumar et al. (2006) used discriminant analysis in 

order to forecast ratings.  

 

C4.5 – a decision tree algorithm 

As one of two machine learning algorithms, we also include a decision tree algorithm in the list of 

competitors. C4.5 is a decision tree algorithm developed by Quinlan (1993). We have chosen C4.5 

because of its easily accessible free-source implementation in the WEKA data mining environment5 and 

because of the ostensible similarities of the decision tree and the CBE approach. Furthermore, C4.5 

ranks among the most powerful statistical classifiers that can deal with continuous cue values (cf. 

Martinelli et al. (1999)). Based on a learning sample of preclassified instances grouped together with 

their cue values, the decision tree algorithm recursively builds up the decision tree. At each node of the 

tree, the algorithm chooses one cue that – in terms of information entropy – most effectively splits the 

                                                 
5 The name of WEKA’s Java implementation of C4.5 is J48. 
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set of issuers to be classified into subsets. After splitting up the subsets according to a node-specific 

threshold value for the most effective cue, the C4.5 algorithm then recursively gets deeper into these 

subsets until subsets only contain issuers with the same rating category.  

C4.5 shows some similarities to the CBE approach. The decision tree structure is common to both 

approaches, also a stop of classification after the first decision node is possible for C4.5. Despite these 

similarities, one should not forget that C4.5 is a model of unbounded rationality. The decision tree 

structure can become overwhelmingly complex for C4.5, whereas the maximum number of decision 

nodes used in CBE is given by the number of cues. C4.5 might create several decision nodes for the 

same cue, each with differing threshold values. Furthermore, the creation of the C4.5 decision tree is a 

recursive procedure, where the algorithm makes a full recursive optimization at each node. Thus, C4.5 

does not suggest itself as a realistic model of human decision making.   

 

Neural network 

Our second applied machine learning algorithm is the WEKA implementation of a three-layer neural 

network with backpropagation learning. We have experimented with different learning rates, 

momentum and number of hidden layers in order to optimize the out-of-sample prediction performance. 

This should allow the neural network to come as close as possible to the ideal of an unboundedly 

rational model. Finally, we have settled on a learning rate of 0.3, a momentum of 0.2 and a training time 

of 10,000 seconds.  

Huang et al. (2004) give a comprehensive overview on applying backpropagation neural networks to the 

prediction of corporate credit ratings. The studies performed in the literature so far vary greatly in the 

number of rating categories (from 2 to 16), the number of cues used (from 4 to 87), the composition of 

cues, the proportion of training set size to validation set size, and the overall size of the rating data set 

(from 47 to 3,886 observations).  
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4. Empirical results on predictive accuracy  

We compare the rating prediction accuracy of the Categorization by Elimination algorithm with the 

competitor models tallying, multivariate linear regression, ordered probit, linear discriminant analysis, 

C4.5 and the neural network. We compare the models’ performances for different sets of decision cues, 

different sample sizes, and both for in-sample data fitting as well as for out-of-sample prediction.  

The primary accuracy measure that we use is the hit rate. The hit rate is defined as the percentage of 

correctly predicted observations. Again, ratings are coded from AAA=1 to C=7; predictions are rounded 

to the nearest integer. If the actual rating of the firm-year observation was BBB or 4, and our rating 

prediction model made a prediction of 4.4, then we would count it as a hit. If the prediction was 4.6, it 

would not be counted as a hit. The number of hits divided by the number of predictions made is the hit 

rate.  

 

4.1 Analysis with seven cues from Blume, Lim and MacKinlay (1998)  

In this section, we use the variables suggested by BLM (1998) as rating predictors. For CBE and 

tallying we use the seven BLM cues as defined in Table 1. This also holds for the other models, except 

for pretax interest coverage, which is transformed into a piecewise linear function via four transforms 

C1, C2, C3 and C4 to account for skewness of interest coverage.6 Using the pretax interest coverage 

transforms for the heuristics CBE and tallying does not seem to be intuitive. Viewed in isolation, the 

variables used to implement the transformation do not lend themselves easily to a psychologically 

                                                 
6 The transformation is proposed by BLM (1998), and is implemented as follows: first set observations with 

negative numerator to zero, then those with negative denominator to 100, and cap all other observations at 100. 

Call this modified coverage c. Then define four variables: C1 = min(c, 5); C2 = max(0, min(c,10) - 5); C3 = 

max(0, min(c,20) - 10);C4 = max(0, c - 20). 
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plausible processing On the other hand, unreported analysis shows that using only the original pretax 

interest coverage cue without transformations for the other prediction models would decrease the 

prediction accuracy of linear discriminant analysis, linear regression, ordered probit, C4.5 and the neural 

network.  

In Table 4 we validate the prediction models in-sample. Here, training and validation data sets are 

identical. To examine stability over time, we present results for expanding estimation windows. The 

first rating prediction is performed on all observations from 1985 to 1995, i.e. the prediction model is 

trained and validated on the years 1985 to 1995. The second training and validation is performed on the 

period from 1985 to 1996, the third from 1985 to 1997 and so forth. In Table 5 we perform out-of-

sample rating predictions using the same expanding estimation windows as in the in-sample analysis. 

For the out-of-sample validation, we use the years 1985 to 1995 as our first training data set and then 

predict the ratings for the subsequent year 1996. The last training set in our out-of-sample exercise is 

1985 to 2006, on which a prediction for 2007 is based. 

Multivariate linear regression and ordered probit regression estimate their coefficients and cutoff points 

with the training data set. With these estimated coefficients and cutoff points at hand, the cue values of 

the out-of-sample period are transformed in a rating. C4.5 builds the full decision tree with all nodes and 

threshold values based on the training set and then makes predictions with this tree structure for the 

validation set. The neural network learns its weights for all neurons in all layers and then uses this 

neuronal structure to make predictions on the validation set. Both CBE and tallying build their binning 

structure with the held of the training data and then use this binning structure for making classifications 

out-of-sample.  

In the in-sample analysis of Table 4, C4.5 achieves the highest average in-sample prediction accuracy. It 

is followed by CBE, the neural network, linear regression, ordered probit, linear discriminant analysis 

and finally tallying. When looking at the out-of-sample performance presented in Table 5, CBE leads 

the board followed by the neural network, C4.5, ordered probit, linear regression, linear discriminant 
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analysis and once again tallying at the end. Differences appear significant. The average hit rate of CBE 

is 59.9%, compared to 51.8% for the neural network. The dominance of CBE is also stable over time. 

With the exception of 2001, CBE achieves the highest hit rate among the competing prediction models. 

The relative ranking of prediction models other than CBE is consistent with the academic literature. 

Kim (1993), Maher et al. (1997) and Kumar et al. (2006) have demonstrated on their data that neural 

networks achieve higher prediction accuracy out-of-sample than linear models such as linear regression 

or linear discriminant analysis. Kaplan et al. (1979) have stressed that ordinal models such as ordered 

probit or logit are more appropriate than linear models for modeling corporate credit ratings.  Chaveesuk 

et al. (1999) and Huang et al. (2004) have shown that for some specifications neural networks can 

outperform ordered logit regression in terms of prediction accuracy. Outside the rating prediction 

literature, Berretty et al. (1997) have reported that CBE can come close to the performance of neural 

networks in categorizing mushrooms, iris flowers or wine. Furthermore, Brighton (2006) has shown that 

simple heuristics can beat both C4.5 and neural networks on the majority of small exemplary data sets in 

his study. 

Following the heuristics literature (cf. Berretty et al. (1997), Czerlinski et al. (1999) or Brighton (2006)), 

we used the hit rate – the proportion of correct inferences made – as our primary prediction accuracy 

measure. As alternative accuracy measures, we now consider in Table 6 the distribution of rating 

prediction errors and the mean absolute prediction errors.7  

The mean absolute error is highest for tallying, both in- and out-of-sample, while C4.5 leads to the 

lowest in-sample error. For out-of-sample predictions, CBE beats almost all other competitor models 

with respect to hit rates and is ranked second with respect to mean absolute prediction errors. Only the 

neural network shows a lower mean absolute prediction error than CBE. 

                                                 
7 Metz and Cantor (2006, p. 3) advise against the least-squares criterion as a valid accuracy measure for rating 
prediction models: "A least-squares criteria would prefer a model which had 18 issuers with one notch errors and 
one issuer with a nine notch error (total squared errors being 99) to a model which had 18 issuers with a zero notch 
error and one issuer with a ten notch error (total squared errors being 100). But users of the model would almost 
certainly prefer the latter, since, for all intents and purposes, a nine notch error is every bit as bad as a ten notch 
error, but a zero notch error is much better than a one notch error." 
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Looking at the cumulative shares of rating predictions that deviate from the actual rating by a certain 

number of rating categories, we can explain the small discrepancy between the hit rate results and the 

mean absolute error results. CBE achieves a higher hit rate than the other models at the cost of a higher 

dispersion of rating prediction errors around the actual rating. The distribution of rating errors is wider 

for CBE than for the ordered probit and also the two machine learning models.  

 

4.2 Sensitivity analysis: Different cues, different sample sizes 

In this section, we use a simulation study to examine whether the results of the previous section are 

robust to the choice of predictor variables, and whether sample size matters for relative accuracy. We 

use the data set with 10,301 firm-year observations that remain if the eight predictor variables of Table 2 

are considered. We train our models and predict ratings with either four cues – standard error of the 

market model, long-term debt to assets, Moody's ROA and Moody's definition of interest coverage – or 

with eight cues – the aforementioned four cues and in addition market capitalization, Moody's debt to 

assets, S&P's return on capital and S&P's FFO interest coverage. We have chosen the variables such that 

each of the categories business risk, leverage, profitability and interest coverage is represented by one 

variable (if four cues are considered) or two variables (if eight cues are considered). Within each 

category, the cue with the highest bivariate Pseudo-R² was chosen. As before, all cues are winsorized at 

the 1% and 99% levels; accounting variables are averaged over three years. 

In-sample and out-of-sample analysis are conducted as in the previous section, using expanding 

estimation windows from 1985-1995, 1985-1996 and so forth. Table 7 shows the average hit rates, 

averaged over all estimation windows. Relative accuracy is very similar to the previous section. In-

sample, the CBE algorithm ranks second behind C4.5; out-of-sample, CBE again outperforms the other 

competitors, including C4.5. The results are therefore robust to changes in the definition and number of 

cues used for prediction.  
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It is interesting to see that for almost all prediction models prediction accuracy decreases comparing in-

sample to out-of-sample results. This holds true for analyses with both four and eight cues. Only the 

heuristics models CBE and tallying are able to increase their prediction accuracy when switching from 

in-sample to out-of-sample validation. One likely explanation is that outliers in the cue variables can 

have a large effect on the CBE algorithm because they can widen the binning ranges.  If a subset of the 

data is used for estimating the ratings, the impact of outliers will be smaller or equal compared to the 

use of the complete data.  

Next, we use different sample sizes in order to find out whether there is a relationship between sample 

size and prediction accuracy of these models. We use sample sizes of 100, 1,000 and 10,000 firm-year 

observations. The subsamples of 100, 1,000 and 10,000 observations are randomly drawn without 

replacement across issuers and years from the full set of 10,301 observations. In order to get stable 

results for prediction accuracy in the smaller sample sizes, we draw 1,000 independent random sets of 

100 observations, 1,000 independent random sets of 1,000 observations and 1,000 independent random 

sets of 10,000 observations. After running the prediction models separately on the generated random 

sets, we average our prediction accuracy measure. This method is often referred to as repeated random 

sub-sampling validation. 

For the out-of-sample analysis, the randomly drawn samples are split into two halves. The first half is 

used as training set, while the second half serves as the validation data set for prediction. We refer to 

this procedure as cross-validation. 

The results of our simulation study are shown in Table 8. For in-sample validation, once again C4.5 

shows the highest prediction accuracy, whereas in the out-of-sample validation CBE outperforms all 

other rating prediction models for all different sample sizes. When looking at Table 8 in more detail, 

some peculiarities are striking. In-sample, the prediction accuracy of most models decreases with 

increasing sample size. The opposite appears for out-of-sample predictions. How can these patterns be 

explained? In the in-sample analysis, the models are trained and validated on the same observations. 
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The smaller the sample size, the larger is the number of parameters relative to the number of 

observations, making it easier to fit the data. This remark also holds for CBE, which requires the 

estimation of binning ranges. In the out-of-sample exercise, learning and validation data sets are not 

identical. When the model learns on a larger sample, it becomes more likely that the model finds general 

relationships instead of peculiarities that are not representative for the data. 

 

4.3 Determinants of CBE's performance 

To learn more about the determinants of CBE’s success, we analyze the number of cues used in the 

course of the decision process, and split the CBE hit rate into two components – the hit rate of unique 

decisions and the hit rate of averaging decisions. We again use the simulation framework of the 

previous section to differentiate according to the sample size and the number of cues used. Results are 

presented in Table 9.  

The average number of cues considered is very high. For large samples, it is close to 100%. The 

percentage of cases in which the algorithm stops with a unique rating – what we call unique decisions – 

is relatively small, at least if the sample size is 1,000 or larger. The hit rate for these unique decisions is 

considerably smaller than the hit rate of the averaging decisions.  The two observations clarify the 

empirical character of CBE when applied to rating decisions. Though the algorithm is hierarchical and 

possibly discards information, most cues are considered in the application of this paper. Also, the 

decisions rarely lead to a clear-cut rating decision. 

 

5. Conclusion 

We have performed a comparative study of rating prediction models including ordered probit 

regression, multivariate linear regression, linear discriminant analysis, sophisticated machine learning 

algorithms as well as two simple decision-making heuristics. One of these heuristics, Categorization by 
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Elimination (CBE), has achieved a relatively high prediction accuracy. In out-of-sample predictions, it 

outperforms the complete set of competitors in terms of the hit rate. The result is robust to the number 

and the definition of decision cues. 

CBE is a fast and frugal heuristic suggested in the psychological literature as a realistic description of 

human decision making. Our results are therefore consistent with the presence of subjective components 

in rating decisions. They also show that such components can be represented through a structured 

algorithm. While this could help to increase transparency about the rating process, the fact that the 

heuristic still leaves a large part of unexplained variation in rating decisions justifies some caution. 

Empirically, it could turn out to be difficult to attain much higher levels of transparency because the 

extent to which subjective components can be made transparent may be limited.  

Though the paper cannot establish that rating analysts actually follow the heuristic, it is interesting to 

note that it would lend itself easily to an application in a rating committee. The algorithm is hierarchical, 

meaning that the order of discussion is pre-specified as long as committee members agree on the 

ordering of cues; in addition, it does not require a re-assessment of prior evaluations. It is 

noncompensatory, meaning that some cues are either not considered at all or dismissed in between. It 

does not require computations. In consequence, CBE would be an efficient way of structuring the 

decision process. 
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Table 1: Cues for BLM (Blume, Lim, MacKinlay) rating prediction study  
 
The table presents the seven cues that Blume, Lim and MacKinlay (1998) applied in their ordered probit 
regression to model ratings. The first four financial accounting ratios – pretax interest coverage, operating income 
to sales, long-term debt to assets and total debt to assets – are averaged over three years in order to account for 
business cycle effects. Market capitalization, beta and standard error have not been averaged. All cues in the table 
are winsorized at the 1%- and 99%-level. The data is from the COMPUSTAT database and COMPUSTAT was 
merged with CRSP for betas and standard errors. In the rightmost column, the Pseudo-R² of single regressions of 
the S&P long-term issuer rating on the respective cue is reported.  

 

Cues (explanatory 
variables) 

Definition of variable 

Pseudo-R² in bivariate 
ordered probit regression 
with dependent variable 
‘rating’ 

Pretax interest 
coverage 

(Operating income after depreciation +  
interest expense) / interest expense 

0.6% 

Operating income to 
sales 

EBITDA / sales 0.7% 

Long-term debt to 
assets 

Long-term debt / total assets 8.6% 

Total debt to assets 
(Long-term debt + debt in current liabilities) /  

total assets 
6.3% 

Market capitalization Natural logarithm of real market capitalization 12.6% 

Beta 
Beta of market model estimated with 200 daily returns 

using the Dimson procedure with one lead and lag of the 
value-weighted market return 

0.6% 

Standard error 
 

Standard error of market model estimated with 200 daily 
returns using the Dimson procedure with one lead and 

lag of the value-weighted market return 
 

20.4% 
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Table 2: Selected cues for rating prediction simulation study  
 
The table presents the eight cues that we have selected from Blume, Lim and MacKinlay (1998), Standard and 
Poor’s (2006), Standard and Poor’s (2008) and Metz and Cantor (2006). 
The list of potential cues selected from the rating literature comprises a total of 31 variables. We order the cues 
according to the Pseudo-R² in ordered probit regressions of the S&P long-term issuer rating on the respective cue. 
For each of the categories – business risk, leverage, profitability, interest coverage – the two cues with the highest 
Pseudo-R² are reported here and are used in our simulation studies.  

 

Select cues  Definition of variable; source 

Pseudo-R² in bivariate 
ordered probit regression 
with dependent variable 
‘rating’ 

Standard error 

Standard error of market model estimated with 200 daily 
returns using the Dimson procedure with one lead and 

lag of the value-weighted market return;  
BLM (1998) – proxy for business risk 

20.4% 

Market capitalization 
Natural logarithm of real market capitalization;  

BLM (1998) – proxy for business risk 
12.6% 

Long-term debt to 
assets 

Long-term debt / total assets;  
BLM (1998) – leverage 

8.6% 

Moody's  
debt to assets 

(Long-term debt + debt in current liabilities) /  
total assets; 

Metz and Cantor (2006) – leverage 

6.3% 

Moody's  
ROA 

Income before extraordinary items /  
two-year average of total assets;  

Metz and Cantor (2006) – profitability 
6.0% 

 
S&P's  
return on capital 

Operating income after depreciation /  
two-year average of (long-term debt + debt in current 

liabilities + deferred taxes + stockholder's equity + 
minority interest); 

S&P (2006) – profitability 

 
4.2% 

Moody's  
interest coverage 

(EBIT – interest capitalized + (1/3)*rental expense) / 
(interest expense + (1/3)*rental expense +  

preferred dividends / 0.65); 
Metz and Cantor (2006) – interest coverage 

3.6% 

S&P's 
FFO interest coverage 
 

Total funds from operations / 
interest expense; 

S&P (2008) – interest coverage 
0.5% 
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Table 3: Descriptive statistics  

 
The table presents descriptive statistics for the initial data set with 29,005 firm-year observations between 1985 
and 2007,  a data set with 21,235 firm-year observations for which the Blume, Lim, MacKinlay (BLM, 1998) 
variables are available, and a data set with 10,301 firm-year observations for which a set of eight variables is 
available. Except for the number of observations, we report the means of the respective variables per rating 
category. 
 

Variables 
Rating  

1 
AAA 

Rating  
2 

AA 

Rating  
3 
A 

Rating  
4 

BBB 

Rating  
5 

BB 

Rating  
6 
B 

Rating  
7 

CCC-C 

Firm-year 
observations in 

data set 

 
Number of 
observations 
 

412 
1.4% 

2,101 
7.2% 

6,841 
23.6% 

8,107 
28.0% 

6,251 
21.5% 

4,713 
16.3% 

580 
2.0% 

Initial data set 

29,005 
100.0% 

Long-term debt to 
assets 

12.4% 14.2% 18.8% 26.2% 35.7% 45.0% 51.2% 28.9% 

Interest coverage 
(Moody’s) 

13.1 8.9 7.0 4.4 3.4 0.9 -0.8 4.3 

Operating income 
to sales 

30.0% 23.5% 23.5% 19.5% 12.0% -17.0% -347% 6.0% 

Total  
assets ($ billion) 

79.3 60.4 28.1 9.0 3.1 1.8 1.7 15.7 

 
Number of 
observations 
 

309 
1.5% 

1,661 
7.8% 

5,428 
25.6% 

5,864 
27.6% 

4,486 
21.1% 

3,113 
14.7% 

374 
1.7% 

BLM variables 

21,235 
100.0% 

Long-term debt to 
assets 

12.2% 14.6% 18.8% 25.3% 35.2% 43.3% 49.2% 28.4% 

Interest coverage 
(Moody’s) 

14.2 8.3 6.4 4.3 3.0 1.0 -0.6 4.2 

Operating income 
to sales 

30.2% 23.3% 22.9% 18.5% 9.6% 1.0% -103% 14.9% 

Total  
assets ($ billion) 

88.4 58.3 27.1 8.9 3.1 1.9 1.7 16.2 

 
Number of 
observations 
 

125 
1.2% 

681 
6.6% 

2,205 
21.4% 

2,679 
26.0% 

2,514 
24.4% 

1,858 
18.1% 

239 
2.3% 

Eight variables 

10,301 
100.0% 

Long-term debt to 
assets 

9.7% 16.7% 20.9% 27.3% 36.4% 46.3% 53.4% 31.3% 

Interest coverage 
(Moody’s) 

14.5 8.4 6.2 3.9 2.9 1.1 -0.4 4.0 

Operating income 
to sales 

21.3% 22.8% 21.4% 18.8% 3.2% 9.3% -358% 5,5% 

Total  
assets ($ billion) 

41.9 28.2 15.8 7.7 2.8 1.5 1.4 8.7 
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Table 4: In-sample hit rates of rating prediction models using seven variables from Blume, Lim 

and MacKinlay (1999) 
 
The table contains the hit rates – i.e. the percentage of correctly predicted observations – for the rating prediction 
models linear discriminant analysis (LDA), linear regression, ordered probit regression, tallying, Categorization by 
Elimination (CBE), the decision-tree algorithm C4.5 and a multilayer perceptron neural network. 
The cues used for rating prediction are those used by BLM (1998). The cues are winsorized at the 1%- and 99%-
quantiles. For CBE, they are ordered according to their unconditional Pseudo-R² in an ordered probit regression of 
ratings. Training and validation data coincide.  

 

Training & validation data sets Hit rates of the competitor models 

Training & 
validation 

# obs. 
validation 

LDA 
Linear 

regression 
Ordered 
probit 

Tallying CBE C4.5 
Neural 

network 

1985-1995 8,170 46.7% 45.9% 49.1% 25.1% 62.9% 85.1% 56.3% 

1985-1996 9,178 46.4% 45.8% 48.7% 25.6% 63.2% 85.4% 56.5% 

1985-1997 10,262 46.1% 45.9% 48.9% 25.9% 62.7% 84.6% 56.7% 

1985-1998 11,428 46.2% 46.1% 49.2% 26.2% 63.6% 83.9% 56.9% 

1985-1999 12,600 46.6% 46.5% 49.3% 26.6% 63.8% 82.9% 56.7% 

1985-2000 13,745 46.6% 46.9% 49.3% 26.9% 49.8% 83.4% 55.5% 

1985-2001 14,877 46.5% 47.0% 49.8% 27.2% 50.4% 84.2% 56.2% 

1985-2002 15,991 46.5% 47.3% 49.9% 27.4% 50.3% 84.8% 54.6% 

1985-2003 17,102 46.3% 47.6% 49.8% 27.7% 50.8% 84.7% 55.1% 

1985-2004 18,159 46.0% 47.6% 49.8% 28.0% 51.2% 84.0% 54.2% 

1985-2005 19,159 45.2% 47.5% 49.5% 28.2% 51.1% 83.4% 53.4% 

1985-2006 20,050 46.9% 47.3% 49.4% 24.4% 51.4% 85.3% 56.8% 

1985-2007 21,235 46.5% 47.0% 49.0% 28.4% 50.7% 83.0% 51.6% 

 
Average over estimation 

windows 

 

 

46.3% 

 

46.8% 

 

49.3% 

 

26.7% 

 

55.5% 

 

84.2% 

 

55.4% 
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Table 5: Out-of-sample hit rates of rating prediction models using seven variables from Blume, 

Lim and MacKinlay (1999) 
 
The table contains the hit rates – i.e. the percentage of correctly predicted observations – for the rating prediction 
models linear discriminant analysis (LDA), linear regression, ordered probit regression, tallying, Categorization by 
Elimination (CBE), the decision-tree algorithm C4.5 and a multilayer perceptron neural network. 
The cues used for rating prediction are those used by BLM (1998). The cues are winsorized at the 1%- and 99%-
quantiles. For CBE, they are ordered according to their unconditional Pseudo-R² in an ordered probit regression of 
ratings. Estimation windows are expanding. They start in 1985 and end in the year prior to the one for which an 
out-of-sample prediction is made. 

 

Training & validation data sets Hit rates of the competitor models 

Training 
 

Validation 
 

# obs. 
validation 

LDA 
Linear 

regression 
Ordered 
probit 

Tallying CBE C4.5 
Neural 

network 

1985-
1995 

1996 1,008 38.9% 47.7% 50.6% 30.6% 65.8% 53.2% 51.0% 

1985-
1996 

1997 1,084 40.9% 48.4% 50.9% 30.0% 66.0% 52.6% 55.1% 

1985-
1997 

1998 1,166 40.6% 50.0% 52.8% 29.5% 66.0% 53.4% 53.9% 

1985-
1998 

1999 1,172 42.7% 51.1% 53.6% 30.4% 65.5% 54.9% 56.5% 

1985-
1999 

2000 1,145 47.0% 50.5% 52.6% 30.5% 61.3% 55.1% 58.9% 

1985-
2000 

2001 1,132 46.6% 47.3% 50.1% 30.8% 53.0% 52.2% 55.7% 

1985-
2001 

2002 1,114 43.9% 49.8% 52.7% 30.5% 54.9% 51.9% 52.2% 

1985-
2002 

2003 1,111 41.9% 46.8% 49.0% 31.2% 58.0% 53.1% 51.3% 

1985-
2003 

2004 1,057 37.7% 48.7% 49.7% 32.8% 60.7% 53.3% 48.6% 

1985-
2004 

2005 1,000 37.7% 46.3% 49.2% 33.2% 59.2% 49.4% 53.5% 

1985-
2005 

2006 891 33.9% 43.5% 44.5% 33.8% 58.5% 47.3% 46.3% 

1985-
2006 

2007 1,185 32.2% 37.3% 39.1% 31.0% 50.3% 43.3% 38.6% 

 
Average over estimation 

windows 

 

 

40.3% 

 

47.3% 

 

49.6% 

 

31.2% 

 

59.9% 

 

51.6% 

 

51.8% 
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 Table 6: Alternative measures for prediction accuracy 

 
The table presents the cumulative distribution of deviations between predicted and actual ratings. The category of 
+/- 0.5 rating grades corresponds to the hit rate. The results shown in this table are for predictions based on the 
seven variables from Blume, Lim and MacKinlay (1999). 
 

Vali-
dation 

Model analysed 

Cumulative share of ratings (in %) with deviation between 
predicted and actual rating smaller or equal than … 

Mean 
absolute 

error +/- 0.5 +/- 1.0 +/- 2.0 +/- 3.0 +/- 4.0 +/- 5.0 +/- 6.0 

In-
sample 

LDA 46.3 90.7 98.1 99.5 100.0   0.65 

Linear regression 46.8 79.6 98.4 99.9 100.0   0.75 

Ordered probit 49.3 95.2 99.8 100.0    0.56 

Tallying 26.7 69.2 96.3 100.0    1.08 

CBE 55.5 83.0 98.0 99.9 100.0   0.63 

C4.5 84.2 97.8 100.0     0.18 

Neural network 55.4 96.6 99.2 100.0    0.49 

Out-of-
sample 

LDA 40.3 83.6 95.7 99.1 99.9 100.0  0.81 

Linear regression 47.3 79.4 98.0 99.9 100.0   0.75 

Ordered probit 49.6 94.8 99.6 100.0    0.56 

Tallying 31.2 73.9 97.0 100.0    0.98 

CBE 59.9 86.0 98.5 99.9 100.0   0.55 

C4.5 51.6 91.5 99.0 100.0    0.58 

Neural network 51.8 95.0 99.2 100.0    0.54 
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Table 7: Average hit rates of rating prediction models using expanding estimation windows and 

sets of four or eight variables 
 
The table contains the average hit rates – i.e. the average percentage of correctly predicted observations – for the 
rating prediction models linear discriminant analysis (LDA), linear regression, ordered probit regression, tallying, 
Categorization by Elimination (CBE), the decision tree algorithm C4.5 and a multilayer perceptron neural network. 
 
Cues are selected from Blume, Lim and MacKinlay (1998), Standard and Poor’s (2006, 2008) and Metz and 
Cantor (2006), comprising a total of 31 variables. We order the cues according to the Pseudo-R² in ordered probit 
regressions of the S&P rating on the respective cue. For each of the categories – business risk, leverage, 
profitability, interest coverage – the two cues with the highest Pseudo-R² are used in our simulation studies. For 
the analyses with 4 cues we have chosen the highest-scoring cues for the categories business risk, leverage, 
profitability and interest coverage – i.e. the standard error, long-term debt to assets, Moody's ROA and Mooody's 
interest coverage. For the analyses with 8 cues, market capitalization, Moody' debt to assets, S&P's return on 
capital and S&P's FFO interest coverage join the cue selection. The cues are winsorized at the 1%- and 99%-
quantiles and are ordered according to their validity. 
 
For the in-sample analysis, the training and validation sets are identical. Estimations are performed on expanding 
windows (1985-1995, 1985-1996,…, 1985-2007). For the out-of-sample analysis, the training sets are also 
expanding (1985-1995, 1985-1996,…, 1985-2006). The validation is always performed on the observations of the 
subsequent year. The hit rates shown in the table are hit rates averaged over the estimation windows.  

 

 
Average hit rates of the competitor models  

(over all estimation windows) 

Validation 
 

# of cues used 
 

LDA 
Linear 

regression 
Ordered 
probit 

Tallying CBE C4.5 
Neural 

network 

In-sample 4 46.2% 47.4% 51.2% 29.2% 57.2% 70.6% 52.1% 

In-sample 8 46.5% 48.8% 52.3% 27.4% 58.9% 84.5% 57.0% 

Out-of-sample 4 39.8% 47.1% 50.5% 33.3% 64.7% 49.6% 50.6% 

Out-of-sample 8 37.2% 46.0% 49.0% 30.3% 68.1% 51.6% 52.4% 

 



 8

Table 8: Average hit rates of rating prediction models using time-independent cross-validation 

and sets of four or eight variables 
 
The table contains the average hit rates – i.e. the average percentage of correctly predicted observations – for the 
rating prediction models linear discriminant analysis (LDA), linear regression, ordered probit regression, tallying, 
Categorization by Elimination (CBE), the decision tree algorithm C4.5 and a multilayer perceptron neural network. 
 
Cues are selected from Blume, Lim and MacKinlay (1998), Standard and Poor’s (2006, 2008) and Metz and 
Cantor (2006), comprising a total of 31 variables. We order the cues according to the Pseudo-R² in ordered probit 
regressions of the S&P rating on the respective cue. For each of the categories – business risk, leverage, 
profitability, interest coverage – the two cues with the highest Pseudo-R² are used in our simulation studies. For 
the analyses with 4 cues we have chosen the highest-scoring cues for the categories business risk, leverage, 
profitability and interest coverage – i.e. the standard error, long-term debt to assets, Moody's ROA and Mooody's 
interest coverage. For the analyses with 8 cues, market capitalization, Moody' debt to assets, S&P's return on 
capital and S&P's FFO interest coverage join the cue selection. The cues are winsorized at the 1%- and 99%-
quantiles and are ordered according to their validity. 
 
The rating prediction models are tested on samples of 100, 1,000 and 10,000 observations that are randomly drawn 
from the 1985-2007 data set. For each sample size, 1,000 simulation draws are performed. The results of these 
1,000 simulations are then aggregated to receive the average hit rate per rating prediction model. For the out-of-
sample analysis, each of the randomly drawn sample is split into two halves. 

 

 Average hit rates of the competitor models 

Validation 

 
# of 
cues 
used 

 

Sample 
size 

(training/ 
validation) 

LDA 
Linear 

regression 
Ordered 
probit 

Tallying CBE C4.5 
Neural 

network 

In-sample 

4 100 47.0% 43.0% 47.5% 33.0% 63.3% 80.6% 55.4% 

4 1,000 42.0% 41.6% 46.0% 28.5% 57.8% 75.9% 50.7% 

4 10,000 42.1% 41.5% 45.8% 26.4% 51.1% 68.1% 49.6% 

In-sample 

8 100 54.0% 47.9% 51.1% 35.5% 65.9% 89.0% 60.8% 

8 1,000 44.2% 46.1% 48.5% 30.2% 58.2% 83.5% 53.9% 

8 10,000 44.1% 47.3% 48.6% 27.5% 57.5% 82.9% 53.6% 

Out-of-
sample 

4 50/50 33.5% 37.3% 38.2% 33.0% 47.5% 33.6% 35.2% 

4 500/500 34.9% 40.8% 42.4% 32.1% 58.4% 43.2% 49.8% 

4 5,000/5,000 35.3% 41.6% 43.1% 28.7% 61.9% 48.7% 50.1% 

Out-of-
sample 

8 50/50 32.6% 35.1% 36.5% 32.2% 42.1% 28.8% 37.1% 

8 500/500 33.7% 38.6% 41.3% 34.1% 56.0% 45.9% 51.3% 

8 5,000/5,000 32.4% 39.5% 41.4% 29.0% 60.5% 53.4% 54.1% 
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Table 9: Performance decomposition of CBE 
 
The table contains detailed results on the CBE rating prediction algorithm. Unique decisions are those decisions 
where CBE stops before the last cue that could be considered. All other decisions are averaging decisions. 
 

Panel 1: In-sample analysis 

 

Sample size 
# of 
cues 
used 

CBE –  
overall  
hit rate 

CBE performance split 

Unique  
decisions  

Unique decision  
hit rate  

Averaging 
decisions  

Averaging 
decision hit rate  

Data from 

Table 7 
 

     

100 3.68 / 4 63.3% 24.0% 58.4% 76.0% 64.8% 

1,000 3.98 / 4 57.8% 3.0% 30.2% 97.0% 58.6% 

10,000 3.99 / 4 51.1% 0.2% 20.0% 99.8% 51.2% 

Data from 

Table 7 
 

 
    

100 6.50 / 8 65.9% 31.7% 63.0% 68.3% 67.2% 

1,000 7.89 / 8 58.2% 6.1% 35.8% 93.9% 59.7% 

10,000 7.99 / 8 57.5% 0.5% 25.9% 99.5% 57.6% 

Data from 

Table 4 
 

 
    

21,235 6.92 / 7 55.9% 0.8% 25.5% 99.2% 56.1% 

 

 
Panel 2: Out-of-sample analysis 

 

Sample size 
(training/ 

validation) 

# of 
cues 
used 

CBE –  
overall  
hit rate 

CBE performance split 

Unique  
decisions  

Unique decision  
hit rate  

Averaging 
decisions  

Averaging 
decision hit rate  

Data from 

Table 7 
 

     

50/50  3.01 / 4 47.5% 49.5% 32.3% 50.5% 62.4% 

500/500 3.90 / 4 58.4% 9.9% 24.2% 90.1% 62.2% 

5,000/5,000 3.99 / 4 61.9% 0.4% 18.0% 99.6% 62.1% 

Data from 

Table 7 
 

 
    

50/50 4.32 / 8 42.1% 68.2% 35.2% 31.8% 56.9% 

500/500 7.43 / 8 56.0% 21.4% 28.1% 78.6% 63.6% 

5,000/5,000 7.95 / 8 60.5% 2.0% 25.6% 98.0% 61.2% 

Data from 

Table 5 
 

 
    

21,235 6.85 / 7 59.9% 0.1% 21.3% 99.9% 60.0% 
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 Figure 1 – Example for the application of the Categorization by Elimination (CBE) to rating 

decisions. 

 
In the example, the following cues are considered: leverage (highest validity), return on assets, operating margin, 
interest coverage (lowest validity).  A given cue value is associated with a rating if it falls in the range defined for 
the rating. CBE starts with the most valid cue, proceeding to the one with the next highest validity.  

 

 
 
 

AAA

A

C

B

BB

BBB

AA

Leverage

{AA;A} are considered

⇒ proceed to next cue

firm i‘s leverage

C

BB

AAA

AA

A

BBB

B

Return on Assets

categories associated
with profitbability are not

considered as 
intersection with

previous set is empty

{AA;A} continue to be
considered

⇒ proceed to next cue

firm i‘s return on assets   
 
 

C

BB

AAA

AA

A

BBB

B

Operating Margin

Intersection of previous
set {AA;A} with

categories associated

with current cue yields
{A}

⇒ Stop categorization. 

Assign rating A.
firm i‘s operating margin

C

BB

AAA

AA

A

BBB

B

Interest rate coverage

Information in interest
rate coverage is ignored

as algorithm has 
stopped before

considering coverage

firm i‘s interest rate coverage  
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Figure 2 – Flow diagram of the Categorization by Elimination algorithm 

(Source: Berretty et al. (1997)) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 

Stop if S contains  

only one category 

Select current cue C to be the one 

with the highest validity 

Set possible categories S to 
categories associated with the 

previous cue C’s value 

Get next cue C*  
if number of possible ratings in in 

S does not equal one 

Set possible categories S* to 
categories corresponding to 
current cue C*’s value 
 

Set S to intersection  

of S and S* 

if S is empty 

if S contains more 

than one rating  

Stop –  

choose average category in S 

if S contains more 
than one category 
and no more cues  

 


