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1. Introduction

The notion of an economy as a network of more or less tightly linked units has recently

become popular in the finance and economics literature, especially in the aftermath of the

financial and economic crisis. In this paper we analyze the implications of different network

structures for equilibrium asset prices and returns. One special aspect that we focus on is

the fact that links in a network can have a direction, i.e., that it can make a difference if

the link is from node i to node j or the other way around. We show that this directedness

has first-order implications for key asset pricing quantities like valuation ratios, expected

returns, and return volatilities.

A simple example for such a directed link is a customer-supplier relationship between

two firms. Shocks to the profitability of a large customer will certainly have a negative impact

on the small supplier and, among other things, increase its default risk, while a shock to the

small supplier is much less likely to have significant consequences for the large customer.

Another important aspect of this kind of shock propagation is that it has a time dimension

and does not happen in one single instant. In the above example the riskiness of the supplier

increases after the initial shock, implying a higher likelihood of negative shocks in the future,

and this in turn might negatively affect other firms linked to the supplier.

These two features, i.e. the fact that shock propagation can have a direction and that

the spreading of shocks through the system takes time, cannot be captured by a pure diffu-

sion/correlation framework (due to its inherent symmetry) or by contemporaneous jumps.

We therefore propose a model featuring multiple economic units (’firms’)1 whose dividends

are linked via self-exciting and mutually exciting jump processes. With such processes, a

downward jump in the cash flow of one firm then increases the probability of subsequent

negative shocks to its own cash flow as well as to those of other firms. The direction and

magnitude of this shock propagation characterizes the network structure of our economy,

which thus manifests itself only indirectly via the dynamics of jump intensities as state vari-

ables, but not directly in the level of cash flows. Aggregate consumption, a key quantity in

any equilibrium model, is driven by the sum of all the individual jumps, but a given jump

always affects the cash flows of only one firm at a time. Our model is general and flexible

in the sense that it can represent arbitrary network structures. Nevertheless, it still remains

tractable with at least semi-closed form expressions for all equilibrium quantities, since it

belongs to the exponentially affine class, for which there is a well-developed solution theory

based on the work by Eraker and Shaliastovich (2008).

1We will use terms like ‘node’, ‘firm’, and ‘asset’ interchangeably.
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The representative agent in our model has recursive preferences of the Epstein-Zin

type.2 These preferences are a key ingredient, since they generate premia for the risk of

higher future jump intensities of the dividends. The representative agent’s preference for

early resolution of uncertainty, i.e., the fact that she cares about the risk associated with

future values of the state variables, implies that the price-dividend ratios of all assets will

react to a jump in one individual dividend, and it is the structure of the network which

determines the direction and the magnitude of this reaction.

Our first set of results concerns the important issue of how network centrality, i.e., the

relative importance of the individual assets within the network, affects the cross-section of

expected returns. Using data on customer-supplier relationships between different industries,

Ahern (2013) documents a positive market price of centrality, i.e., more central assets earn

higher expected returns. We provide an equilibrium foundation for this empirical finding. In

addition to explaining this key result, our model makes predictions for the relation between

the cross-sectional dispersion of the centrality measure across the nodes in a network and

the associated centrality premium. We find that this premium is the lower the higher the

cross-sectional dispersion of the centrality measure.

Our model provides a controlled environment, so that we can address an important

question raised by Ahern (2013), namely whether the positive centrality premium indeed

represents the premium for a separate risk factor or whether it is just a CAPM-type market

risk premium ‘in disguise’. To this end we regress model-implied local expected excess returns

on the theoretical market and centrality betas. As a result of this exercise we find that both

market and centrality beta command significantly positive risk premia, so that the market

and the centrality portfolio can be regarded as separate risk factors.

The analysis in Ahern (2013) focuses on undirected networks. One of the particular

advantages of our model is its ability to represent directed links, and we show that direction

has first-order implications for equilibrium asset prices and returns. We consider two stylized

cases, the ’star network’ and the ’reverse star network’. In the star network, shocks to the

node at the center of the star are propagated to all the ‘outer’ nodes, but not vice versa.

For the reverse star network the propagation of shocks is exactly the other way around. We

show that, in line with intuition, the sign of the centrality premium is independent of the

direction of the links, i.e., the most central asset has the highest expected excess return in

both networks. However, direction does matter for quantities like return volatilities, market

betas, or Treynor ratios. We also document that, contrary to intuition, the sign of the

2The asset pricing literature has largely documented the importance of such preferences in order to
generate sizeable risk premia, but also to solve many other asset pricing puzzles. See Bansal and Yaron
(2004) as the most important source.
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centrality premium depends on the direction of the links if we assume CRRA preferences as,

e.g., in Buraschi and Porchia (2013).

Our final result concerns the ‘flight-to-quality’ effect. Flight to quality means that

in a crisis certain assets become valuable as safe havens (see, e.g., Baele, Bekaert, Inghel-

brecht, and Wei (2015)). The equilibrium mechanism in our model nicely reproduces this

phenomenon. We study two networks in particular, the ‘directed ring network’, where the

shock in the dividend of a given asset has an impact only on its own jump intensity and

on the one of the next asset in the ring, and the ‘undirected ring network’, where all the

individual links in the ring go both ways. We find that the further away an asset from the

original source of a shock, the less negative the reaction of its price-dividend ratio. For assets

far enough away, the price actually even goes up, resulting exactly in the flight-to-quality

effect. We show that direction is important here as well, since it creates the notion of distance

between two nodes. In the directed ring network with ten assets, asset 1 and asset 10 are

very far apart, and the price of asset 10 goes up in response to a shock in the dividend of

asset 1. This equilibrium price response however seems counterintuitive to an econometrician

using an undirected model where these two assets are very close.

In summary, our model featuring mutually and self-exciting jumps together with recur-

sive utility is flexible, but still tractable, and provides a theoretical explanation for empirical

results with respect to network centrality. It allows a precise analysis of the equilibrium

impact of directed shock propagation in a multi-asset economy, which is an important step

beyond the existing literature.

The paper by Eraker and Shaliastovich (2008) provides the methodological framework

for our model with recursive utility and state variables like stochastic jump intensities. Be-

sides, our project is related to a couple of other strands of literature. There is an increasing

literature about asset pricing models with time-varying jump intensities. Aı̈t-Sahalia, Cacho-

Diaz, and Laeven (2014) are the first to discuss the role of mutually exciting jumps in finance

applications, in particular when it comes to capturing stylized facts like jump clustering in

equity prices. Aı̈t-Sahalia, Laeven, and Pelizzon (2014) find evidence of self-excitation and

asymmetric mutual excitation in the CDS market. Benzoni, Collin-Dufresne, Goldstein, and

Helwege (2014) analyze defaultable bonds which are subject to contagion risk in a general

equilibrium model with a hidden state of nature and a representative investor with fragile

beliefs. Wachter (2013) focuses on the equity premium and the equity volatility in an econ-

omy with a stochastic intensity for rare consumption disasters, but does so in a model with

only one endowment stream which obviously does not lend itself to any network applications.

Nowotny (2011) investigates a similar setup with self-exciting processes. Branger, Kraft, and
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Meinerding (2014) show that such dynamics can endogenously evolve in a framework with

learning about latent disaster intensities.

A group of papers deals with the implications of network structures for asset prices and

returns. The approaches differ with respect to which quantities are linked in a network, how

these linkages are modeled (static vs. dynamic, directed vs. undirected, etc.) and which par-

ticular aspect of the data they are supposed to explain. The paper by Buraschi and Porchia

(2013) is the closest to ours since it also focuses on cash flow networks. But as we are go-

ing to show below, their assumptions in terms of preferences and dividend dynamics may

produce somewhat counterintuitive results. Ahern (2013) empirically analyzes sectoral input-

output linkages and their implications for the cross-section of industry returns. Diebold and

Yilmaz (2014) discuss several connectedness measures based on return variance decomposi-

tions. Aobdia, Caskey, and Ozel (2014) focus on the aspect of cross-industry predictability of

returns and link this to network analysis. Billio, Getmansky, Gray, Lo, Merton, and Pelizzon

(2014); Billio, Getmansky, Lo, and Pelizzon (2012) estimate network linkages directly from

market data like stock returns and CDS spreads of the banking and insurance sector by iden-

tifying Granger-causal relations. They draw conclusions about systemic risk in the financial

sector. Kelly, Lustig, and Nieuwerburgh (2013) propose a model in which the growth rates

of firm sizes are linked in order to analyze the joint evolution of the cross-sectional firm size

and firm volatility distribution. Colla and Mele (2010), Ozsoylev and Walden (2011), Han

and Yang (2013), and Walden (2013) explore the implications of information networks in

theoretical equilibrium asset pricing models with many agents where information flows from

one agent to the other. Naturally, they put a particular emphasis on the trading behavior

generated by such interaction among agents. Ozsoylev, Walden, Yavuz, and Bildik (2014)

provide an empirical analysis of such trader networks. Herskovic (2014) analyzes networks of

input-output relations in a multi-sector production economy model and deduces implications

for cross-sectional asset pricing from this production network. Richmond (2015) applies a

similar logic to a multi-country model and international asset pricing.

Our paper is also linked to a broader literature about microeconomic foundations of

macroeconomic effects, which, however, does not put a special emphasis on asset prices

and returns. Elliott, Golub, and Jackson (2014) consider a random graph model of financial

intermediaries. The key result of their analysis is that the banking system is most susceptible

to financial cascades when integration is intermediate and organizations are partly diversified.

In related studies, Acemoglu, Carvalho, Ozdaglar, and Tahbaz-Salehi (2012); Acemoglu,

Ozdaglar, and Tahbaz-Salehi (2013, 2015), focus on the propagation of shocks in basically

static one- or two-period networks. Gabaix (2011) studies the implications of the granularity

of microeconomic networks for aggregate fluctuations in a dynamic macroeconomic model.
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Acemoglu, Akcigit, and Kerr (2015) show that input-output network relations can be a driver

of macroeconomic fluctuations, in particular in an international context.

2. Model

2.1. Consumption and dividends

We assume a Lucas endowment economy. Log aggregate consumption y ≡ lnY follows

dyt = µ dt+
n∑
i=1

Ki dNi,t,

where µ is the constant expected growth rate and the Ni (i = 1, . . . , n) are self- and mutually

exciting jump processes with constant jump sizes Ki.
3 Their stochastic jump intensities `i,t

have dynamics

d`i,t = κi
(

¯̀
i − `i,t

)
dt+

n∑
j=1

βi,j dNj,t, (1)

so that the coefficient βi,j represents the discrete change in `i induced by a jump in Nj. The

βi,j, collected in what we call the ‘beta matrix’, completely determine the structure of the

given network and will play a key role in our analysis. To preclude negative intensities we

assume βi,j ≥ 0 for all pairs (i, j).

There are n firms in the economy, indexed by i, with the following dynamics for log

dividends yi

dyi,t = µi dt+ Li dNi,t (i = 1, . . . , n). (2)

Note that we do not explicitly link aggregate consumption to the sum of dividends, but

model dividends as claims on certain risk factors in the consumption process. This is similar

to the assumptions underlying the pricing of dividend claims in models like Bansal and Yaron

(2004) or Backus, Chernov, and Martin (2011).

The recent literature about the propagation of shocks in firm networks with papers like

Elliott, Golub, and Jackson (2014) and Acemoglu, Ozdaglar, and Tahbaz-Salehi (2013) pro-

3We do not include diffusion terms in the dynamics of aggregate consumption for parsimony. One could of
course generalize the model to generate additional types of diffusive risk premia, e.g., by making the expected
consumption growth rate time-varying as in Bansal and Yaron (2004). We abstract from such extensions to
keep the model tractable and to focus on the jump components in all our analyses.
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vides a number of arguments in support of our specification. According to the authors, Elliott,

Golub, and Jackson (2014) “model contagions and cascades of failures among organizations

linked through a network of financial interdependencies” and “identify how the network

propagates discontinuous changes in asset values triggered by failures (e.g., bankruptcies,

defaults, and other insolvencies).”4 Acemoglu, Ozdaglar, and Tahbaz-Salehi (2013) argue

that “the economy’s input-output structure can fundamentally reshape the distribution of

aggregate output, increasing the likelihood of large downturns from infinitesimal to sub-

stantial.”5 Furthermore, as shown in Branger, Kraft, and Meinerding (2014), when investors

only have partial information about shock propagation in the fundamentals of the economy,

mutually exciting processes can actually arise endogenously due to investor learning.

In addition to these arguments one can make a strong point in favor of mutually

exciting processes as the most natural choice when it comes to the analysis of network effects

in equilibrium asset pricing. First of all, mutually exciting processes allow for the analysis

of both directed and undirected networks whereas pure diffusion models are restricted to

symmetric, i.e., undirected, network structures. Second, within the class of jump processes,

mutually exciting jumps are very tractable because they are affine so that we can solve for the

equilibrium in our economy in semi-closed form applying the log-linearization procedure laid

out in Eraker and Shaliastovich (2008). Third, as argued by Aı̈t-Sahalia, Cacho-Diaz, and

Laeven (2014), “unless exogenous state variables are extremely autocorrelated and jump

themselves, it is not possible using exogenous state variables in intensities to [match] the

empirical observations of jump clusters.”6 Fourth, the structure of the jump processes in our

model is fundamentally different, both in a time series and in a cross-sectional dimension,

from, for instance, contemporaneous jumps in many assets. The serial dependence of shocks

resulting from mutual excitation is particularly relevant for asset pricing where the timing

and sequentiality of shocks plays a prominent role.

Finally, in addition to all the fundamental advantages in terms of modeling and com-

putation of the equilibrium, mutually exciting processes offer a very natural representation

of the structure of a network. Each coefficient βj,i indicates a directed link with a certain

strength from asset i to asset j, so that altogether the beta matrix can easily be translated

into a network graph. Equations (1) and (2) formalize how the beta matrix gives rise to a

dynamic shock propagation mechanism by which negative shocks to one dividend stream

can spread across the economy. When βj,i is positive, a downward jump in dividend i im-

mediately increases the jump intensity of dividend j by βj,i. Once the increased intensity `j

4cp. the abstract of Elliott, Golub, and Jackson (2014)
5cp. the abstract of Acemoglu, Ozdaglar, and Tahbaz-Salehi (2013)
6cp. Aı̈t-Sahalia, Cacho-Diaz, and Laeven (2014), page 6.
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indeed leads to a jump in dividend j and there is a nonzero coefficient βk,j, the initial shock

is passed on to asset k and can in this way be propagated through the whole network. Note

that our specification also allows for ‘feedback loops’. Suppose that, for instance, there is

another directed link from k back to i. Then there is a positive probability that an initial

shock in dividend i is transmitted through the network and eventually reaches asset i again.

Nevertheless, each jump only affects one dividend directly, so that network connectivity is

captured exclusively via linkages in the dynamics of the state variables.

Our specification ensures that the vector X = (y, `1, . . . , `n, y1, . . . , yn)′ follows an affine

jump process.7 The joint process (N, `) is Markov.8 When we analyze the model quantita-

tively we will assume that all state variables (i.e., intensities) are at their respective long-run

means. Due to the presence of the mutually exciting jump terms these long-run means ¯̀̄
i,

i.e., the unconditional expectations, are not equal to the respective mean reversion levels
¯̀
i, as it would be the case, e.g., for a standard square-root process. Instead, the ¯̀̄

i are the

solution to the following system of equations:

¯̀̄
i =

κi ¯̀
i +
∑

j 6=i βi,j
¯̀̄
j

κi − βi,i
(i = 1, . . . , n). (3)

We assume κi > βi,i for i = 1, . . . , n to ensure that all the ¯̀̄
i are positive.

2.2. Representative agent

Our economy is populated by a representative agent with an infinite planning horizon.

As discussed above network connectivity has no direct effect on the level of cash flows, but

only on the state variables. To endogenously generate a risk premium for network connectivity

we therefore assume that the agent has recursive preferences as in Bansal and Yaron (2004)

and Eraker and Shaliastovich (2008).

To see why there is indeed such a nonzero premium, consider for a moment the Epstein-

Zin utility function in discrete time:

Ut =
[(

1− e−δ
)
Y

1−γ
θ

t + e−δ
(
Et
[
U1−γ
t+1

]) 1
θ

] θ
1−γ

,

where δ is the subjective time preference rate, γ is the coefficient of relative risk aversion, ψ

denotes the elasticity of intertemporal substitution (EIS), and θ ≡ 1−γ
1− 1

ψ

. CRRA preferences

7See Appendix A for details.
8See, e.g., Aı̈t-Sahalia, Cacho-Diaz, and Laeven (2014) for details about mutually exciting processes, in

particular conditions for the stationarity of the model.
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are a special case with γ = 1
ψ

and consequently θ = 1.

Using the transformation Vt =
U

1− 1
ψ

t

1− 1
ψ

, Colacito and Croce (2013) derive the following

approximation:

Vt ≈
(
1− e−δ

) Y 1− 1
ψ

t

1− 1
ψ

+ e−δ Et [Vt+1]− Vart [Vt+1]
(1− θ) e−δ

2Et [Vt+1]
. (4)

When θ 6= 1 the last term related to the variance of continuation utility does not vanish as it

would for CRRA. Variations in state variables give rise to variations in continuation utility

and thus affect total utility.

In our numerical analysis we will assume γ = 10, ψ = 1.5, and δ = 0.02, so that the

representative agent has a preference for early resolution of uncertainty, since γ > 1
ψ

and

θ < 1. The approximation (4) shows that in this case the agent not only considers future

expected utility Et [Vt+1], but also exhibits an aversion against future utility risk Vart[Vt+1],

i.e., total utility decreases with increasing Vart[Vt+1]. Variation in state variables, i.e., in

the intensities `i, does not affect the level of cash flows directly, but has an impact on the

distribution of the continuation utility Vt+1 and thus on Vart [Vt+1]. This implies an extra

risk premium in equilibrium, which can in our case be interpreted as a premium for the

degree of connectivity in the network.

2.3. Pricing kernel and equilibrium

The derivation of the model solution closely follows Eraker and Shaliastovich (2008).9

They show that the continuous-time dynamics of the pricing kernel M can be consistently

defined in the following way:

d lnMt = −δ θ dt− (1− θ) d lnRt −
θ

ψ
dyt.

The return on the consumption claim Rt satisfies the following continuous-time version of

the Euler equation

0 =
1

dt
E

[
d
(
elnMt+lnRt

)
elnMt+lnRt

]
9Details are presented in Appendix A.
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and follows from the dynamics of the log wealth-consumption ratio v and aggregate con-

sumption.

We employ the usual affine guess for the log wealth-consumption ratio vt, i.e., we

assume vt = A + B′ `t with B = (B1, . . . , Bn)′ and `t = (`1,t, . . . , `n,t)
′. We also use the

Campbell-Shiller log-linear approximation d lnRt = k0 dt+ k1 dvt − (1− k1) vt dt+ dyt with

linearizing constants k0 and 0 < k1 < 1. We solve for the coefficients A and B as well as the

linearizing constants numerically.

The dynamics of the pricing kernel are

dMt

Mt

= −rt dt−
n∑
i=1

MPJRi dNi,t,

where rt is the equilibrium risk-free rate.

The (in general negative) market prices of jump risk are given by

MPJRi = 1− exp

{
−γ Ki + k1 (θ − 1)

[
n∑
j=1

Bj βj,i

]}
(5)

and quantify the impact of jumps on the investor’s total wealth. The exponential term is

a product of two factors. The first one, exp {−γ Ki}, represents the compensation for the

immediate cash flow shock caused by the jump in dividend i. The second one with the

remaining exponents is the compensation for the risk caused by variations in the state vari-

ables. It depends on the impact of the intensities `i on the equilibrium wealth-consumption

ratio, represented by the components of the vector B. In the special case of CRRA utility

(θ = 1) this second term vanishes, implying that state variable risk is not priced.

In general, the components of B are all negative, i.e., the wealth-consumption ratio

is decreasing in each of the jump intensities. For our parametrization with ψ > 1, this is

due to the fact that the substitution effect dominates the income effect, so that the investor

consumes more and saves less in bad times with high jump intensities.10 With k1 > 0,

βi,j ≥ 0, and θ < 1 we thus have k1 (θ − 1)
[∑n

j=1Bj βj,i

]
> 0, which increases (in absolute

terms) the negative market price for jump risk relative to the CRRA case with θ = 1.

The expression above nicely illustrates how the market prices of risk depend on the

network topology represented by the beta matrix. First of all, the market price of risk for

jumps in dividend i is the larger (in absolute terms), the stronger the network linkages from

10Note that with CRRA preferences the Bi would generally be positive, leading to higher price-to-
fundamentals ratios in bad times.
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asset i to other assets, i.e., the larger the coefficients βj,i. When asset i is very central in the

sense that its shocks have the potential to spread out to many other assets because many

βj,i are nonzero, the market price for its shocks, MPJRi, will be large. The same is true

when asset i is linked to only a few assets, but these links are very strong, i.e., when the

corresponding βj,i are large.

Moreover, for given βj,i, the market price of risk for Ni also depends on the coefficients

B1, . . . , Bn. These coefficients quantify the relative importance of the assets (or, equivalently,

the intensities) for the wealth-consumption ratio. Suppose that βj,i 6= 0 and the coefficient

Bj is large (in absolute terms). This can be the case, for instance, if asset j is a very central

and important asset. Then, economically speaking, asset i inherits centrality from asset j

in the sense that the market price of risk for its own jumps is larger simply because it is

linked to the central asset j. Again note that effects like these are not present in a model

with CRRA preferences, since there we have θ = 1.

In analogy to the return on the consumption claim, the returns Ri,t on the individual

dividend claims satisfy the continuous-time Euler equations

0 =
1

dt
E

[
d
(
elnMt+lnRi,t

)
elnMt+lnRi,t

]
.

To compute the expected excess return on asset i, we proceed as in the case of the con-

sumption claim, i.e., we employ an affine guess for the log price-dividend ratio of asset i,

vi,t = Ai + C ′i`t with Ci = (Ci,1, . . . , Ci,n)′, and use the Campbell-Shiller approximation

d lnRi,t = ki,0 dt+ ki,1 dvi,t− (1− ki,1) vi,t dt+ dyi,t with linearization constants ki,0 and ki,1.

Again we solve for the coefficients Ai and Ci,j (j = 1, . . . , n) as well as for the linearization

constants ki,0 and ki,1 numerically.

The return on the i-th individual dividend claim is then given by

dRi,t = . . . dt+
n∑
j=1

JEXPi,j dNj,t

with the jump exposures

JEXPi,j =

{
exp (Li + ki,1

∑n
k=1Ci,k βk,i)− 1 i = j

exp (ki,1
∑n

k=1 Ci,k βk,j)− 1 i 6= j
. (6)

The exponential term in the exposure of asset i to jumps in its own dividend, JEXPi,i,

has two components. First, the price change due to the immediate cash flow shock in the
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dividend is represented via the jump size Li. By assumption this component is only present

in the exposure of asset i to jumps in dividend i, because Ni exclusively affects the level

of yi. The special feature of our (and also any other) model with recursive utility is the

second component, exp(ki,1
∑n

k=1 Ci,k βk,i), which quantifies the price-dividend ratio effect of

the shock. For i 6= j, the exposure JEXPi,j only consists of this price-dividend effect.

The reaction of the price-dividend ratio of asset i to a jump in dividend j depends

on two ingredients: (i) the impact of that jump on the intensities `1, . . . , `n, represented by

β1,j, . . . , βn,j, and (ii) the impact of each of the state variables on the price-dividend ratio of

asset i, measured by the (usually nonzero) coefficients Ci,1, . . . , Ci,n. In particular, a jump

in dividend j can lead to a nonzero return in asset i even if the two assets are not linked,

i.e., even if βi,j = 0. To see this, suppose βk,j > 0 for some arbitrary k. Then Ci,k βk,j 6= 0 so

that JEXPi,j 6= 0. More precisely, as soon as a jump in dividend j affects at least one of the

state variables `1, . . . , `n, this jump leads to equilibrium price reactions of all assets in the

economy.

Finally, the local expected excess return of asset i can be written as follows:

1

dt
E [dRi,t]− rt =

n∑
j=1

`j,t MPJRj JEXPi,j. (7)

The premium which asset i earns for its loading on the jump risk of dividend j is calcu-

lated as the product of the jump intensity, the market price of risk for this jump, and the

corresponding jump exposure.

3. Quantitative Analysis of the Model

3.1. Centrality premium

Our first set of results concerns the relation between the cross-section of expected

excess returns and the degree of connectivity of an asset within the network, referred to in

the literature as network centrality. In his recent empirical study Ahern (2013) finds that

more central assets earn higher average returns, which implies a positive market price of

centrality. He focuses on undirected networks characterized by symmetric beta matrices,

and so we also restrict the analysis in this section to this type of networks. The impact of

the direction of shocks will be discussed in Section 3.2.

Our model provides an equilibrium explanation for the main finding of Ahern (2013).

To show this, we analyze the cross-section of expected excess returns in an economy in which
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assets differ in their eigenvector centrality. This centrality measure has recently been sug-

gested in a number of papers besides Ahern (2013), e.g., in Ahern and Hardford (2014) and

Ozsoylev, Walden, Yavuz, and Bildik (2014). The general idea behind the concept of eigen-

vector centrality is that the centrality of a node depends on the centrality of its neighbors,

so that a node is supposed to be central when it has many neighbors, important neighbors,

or both.

As the name already indicates, eigenvector centrality is related to the eigenvalues and

eigenvectors of the matrix characterizing the network, i.e., the beta matrix. Formally, let

ϕ1, . . . , ϕn denote the eigenvectors of β, sorted in descending order by their absolute values,

and α ∈ Rn×n (with generic element αi,j) the so-called centrality matrix containing the

associated eigenvectors as columns. Then the eigenvector centralities of the network nodes

are given by the eigenvector associated with the principal eigenvalue ϕ1, i.e., by the first

column of α with elements αi,1 (i = 1, . . . , n).

We construct a beta matrix such that it represents an economy where all assets in

the network exhibit a different eigenvector centrality. From linear algebra we know that we

can represent the matrix β as β = αϕα−1 where ϕ is the diagonal matrix containing the

eigenvalues of β. We choose ϕ1 = 0.4 and ϕj = 0 for j = 2, . . . , 10. For the centrality

vector, i.e., the principal eigenvector α1 = (α1,1, . . . , α10,1) corresponding to ϕ1, we choose

the components as α10,1 = 0.01 and then with step size s, αi−1,1 = αi,1 + s for i = 3, . . . , 10.

Finally, α1,1 is chosen such that the vector has unit length. With our benchmark step size of

s = 0.04, this results in α1 = (0.8026, 0.33, 0.29, . . . , 0.05, 0.01)′. The remaining eigenvectors

are chosen such that the beta matrix is symmetric, i.e., the network is undirected.11 The left

graph of Figure 1 depicts the corresponding network graphically.

The remaining model parameters are reported in Table 1. For the following exercises

the parameters of the consumption process are µ = 0.05 and K1 = . . . = K10 = −0.01.

The dividend parameters – except for the beta matrix – are identical across assets with

µ1 = . . . = µ10 = 0.05 and L1 = . . . = L10 = −0.10. Finally, we set the mean-reversion level of

the intensities to ¯̀
1 = . . . = ¯̀

10 = 0.1 and the mean reversion speeds to κ1 = . . . = κ10 = 0.8,

i.e., shocks have a half-life of about 0.9 years.

The right graph in Figure 1 shows the local expected excess returns of the assets 1

to 10 as a function of their eigenvector centrality. These expected excess returns defined

in Equation (7) are strongly increasing in network centrality, i.e., more central assets earn

higher expected excess returns, so that there is indeed a centrality premium. Our model thus

11A sufficient condition for a symmetric beta matrix is that its eigenvectors form an orthonormal basis of
Rn, i.e., the eigenvector matrix is an orthogonal matrix. Further details are given in Appendix B.
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provides strong theoretical support for this empirical finding presented in Ahern (2013).

Furthermore, the centrality premium is not simply a CAPM-type market risk premium.

To show this we perform a cross-sectional regression of local expected excess returns on

the sensitivities of the assets to the market and the centrality portfolio, where the market

portfolio is represented by the consumption claim, and the return on the centrality portfolio

is given by the return difference between the most central asset 1 and the least central asset

10. Since we expect the coefficients in these regressions to depend on the state, we simulate

the model to generate 10,000 realizations of the vector of intensities `. For given values of

these state variables the local betas of the ten assets are available in closed form. We then

regress the local expected excess returns on the two local betas individually and jointly.

Table 2 reports the median slope coefficients as well as the 2.5% and 97.5% quantiles.

The coefficients for market and centrality beta are positive and significant both in the uni-

variate and the multivariate case.12 This indicates that the centrality portfolio is a separate

risk factor in addition to the traditional CAPM-type market portfolio.

Besides reproducing the key result in Ahern (2013) our model can also be used to

derive new testable hypotheses related to the centrality premia in networks, which differ

with respect to the cross-sectional dispersion of centrality. In our model we can directly

control this dispersion via the step size s. We compute the centrality premium for different

networks, characterized by step sizes s ranging from 0.02 to 0.055. The dispersion of centrality

is inversely related to s, i.e., the larger s the more evenly spread the centrality values and

the lower both their standard deviation across the ten assets and the centrality of the most

central asset (which is always asset 1).

The main result is that the more disperse the eigenvector centrality in a network, the

smaller the centrality premium. This can be seen from Figure 2 where we plot expected

excess returns as a function of eigenvector centrality for the economies differing with respect

to the step size s and thus the cross-sectional dispersion of centrality. The line is the flatter

and thus the centrality premium is the lower, the more disperse centrality is across the ten

assets.

To see where this effect comes from, we decompose the expected excess return into the

premia for self- and for mutually exciting jumps

1

dt
E [dRi,t]− rt = `i,t MPJRi JEXPi,i +

n∑
j 6=i

`j,t MPJRj JEXPi,j. (8)

12The 2.5% quantile for the centrality beta in the multivariate case is low at first glance. However the
regression coefficients are positive for all 10,000 regressions that we perform, i.e. the regression coefficient is
statistically significant at any possible level.
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Table 3 presents this decomposition for assets 1 and 2 for the two economies characterized by

the most and the least pronounced dispersion of centrality, i.e., by s = 0.02 and s = 0.055,

respectively. The self-exciting part always represents the largest fraction of the total risk

premium. The main reason for this is that the exposure to jumps in its own dividend,

JEXPi,i, is always the largest exposure for any asset i, since it is the only one to contain the

immediate cash flow component.

Given this, the market price of risk of its own jumps MPJRi is the most important

determinant of asset i’s risk premium. Figure 3 shows the market prices of risk, MPJRi,

as a function of eigenvector centrality. Clearly the differences in the slopes in Figure 2 are

mirrored in Figure 3, so that differences in the centrality premium across different economies

are mainly driven by the market prices of jump risk.

In equilibrium market prices of risk have to be related to the riskiness of aggregate

consumption. We simulate the economies for s equal to 0.02 and 0.055, respectively, and es-

timate the unconditional moments of the consumption jump intensity
∑n

i=1 `i. From Table 4

one can see that both mean and standard deviation are significantly higher for the economy

with a lower cross-sectional dispersion of centrality. In such an economy, more assets are rel-

atively central, so that an initial shock will be propagated much more through the economy.

With a higher cross-sectional dispersion of centrality the most central asset can excite the

nine other assets, but due to the relatively weaker links of these other assets to each other

the initial shock is hardly propagated any further. Related to this, Table 3 shows that the

ratio of the risk premium for mutually exciting jumps to the total varies substantially with

the dispersion of centrality. When this dispersion is high, mutually exciting jumps account

for about 8% of the total premium for the central asset, compared to about 32% for low

dispersion.

Finally, a Monte Carlo simulation of the economies characterized by step sizes between

0.02 and 0.055 shows that, consistent with the findings above, the returns of more central

assets are more volatile (see Figure 4). Comparing across economies we note that for high

centrality dispersion the most central asset can exhibit values for its return volatility which

significantly exceed those for the other assets. More pronounced cross-sectional dispersion

of centrality thus also translates into more pronounced differences in the second moments of

returns between the most central and the other assets.
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3.2. Directed shocks

As already discussed, our model allows us to study explicitly whether and to what

degree directedness of a network affects the structural properties of risk premia. Technically

speaking, a network where direction matters is characterized by an asymmetric beta matrix.

We study two stylized directed networks. The first is the ’star network’ which is also

the one analyzed by Buraschi and Porchia (2013). It is presented in the left graph of Figure 5.

Shocks to asset 1 are propagated to all other assets in the economy, but asset 1 does not

receive any shocks from other assets. For the other assets the situation is obviously exactly

reversed. In terms of the beta matrix the star network structure implies that all elements

except for the first column are equal to zero. For our example we set β1,1 = 0 and βi,1 = 0.3

for i = 2, . . . , 10, which means that we exclusively focus on the impact of asset 1 on the

other assets and shut down self-exciting jumps. All other model parameters are chosen as

in Section 3.1. While from a technical point of view the concept of network centrality via

eigenvectors can be guaranteed to work only for symmetric beta matrices with at least one

nonzero eigenvalue,13 one would intuitively still consider an asset central when many links

originate from this asset, like asset 1 in this case. This interpretation of centrality in a

directed network is also in line with the approach in Buraschi and Porchia (2013).

We also analyze the ’reverse star network’ shown in the middle graph of Figure 5. It

is obtained from the star network by simply reversing the direction of all the links, which

formally corresponds to a transposition of the beta matrix. Asset 1 is now receiving shocks

from all other assets 2 to 10, while these are immune to shocks from any other asset. In

analogy to the previous case, asset 1 would nevertheless be considered central in the sense

that it is exposed to all consumption risk factors and therefore to a large amount of systematic

risk. Finally, for the sake of completeness, we also look at the ’undirected star network’

presented in the right graph of Figure 5. This network is obtained by taking the average of

the beta matrices representing the star and the reverse star network. Also in this case asset

1 is obviously central relative to assets 2 to 10.

Table 5 presents the local risk premia as defined in Equation (7), return volatilities,

Sharpe ratios, market betas, and Treynor ratios for all assets, conditional on the jump

intensities being equal to their unconditional means, i.e., `i = ¯̀̄
i.

14 We see that the central

asset 1 has the highest risk premium in all three types of networks, which at first glance might

13The symmetry of a real matrix guarantees that all eigenvalues are real. The converse is not true.
14Conditional on `i = ¯̀̄

i, the local return volatility of asset i is given by
√∑n

j=1
¯̀̄
j (JEXPi,j)

2
. The return

on the consumption claim is dRt = . . . dt +
∑n

i=1 JEXPy,i dNi,t with the exposure to jumps in dividend i
given by JEXPy,i = exp (Ki + k1

∑n
k=1Bk βk,i)− 1. From this we can deduce the volatility of the return on

the consumption claim and the covariance between the return on asset i and the return on consumption claim,
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be interpreted as evidence that the direction of shocks does not matter. In fact, it does matter

significantly, as indicated by the other quantities. In the star network the central asset has

the least volatile return, whereas we observe the exact opposite in the reverse star and the

undirected star network. Similarly the central asset exhibits the smallest beta relative to the

consumption claim in the star network (where all betas are pretty similar), but has a much

higher beta than the other assets in the other two networks. This impact of the direction

of shocks also carries over to the Treynor ratio, where the central asset exhibits the highest

value in the star and the undirected star network, but the lowest in the reverse star network.

In addition to the discussion of the undirected case in Section 3.1, these results show that

also in directed networks centrality and market beta are fundamentally different concepts.

To explain these results, we analyze the properties of jump intensities, jump exposures,

and market prices of jump risk in the three networks in more detail. Table 6 shows that the

market prices of jump risk are in general higher for shock-spreading assets (i.e., asset 1 in

the star network and assets 2 to 10 in the reverse star network). In the undirected network

all assets are of course shock-spreading, but asset 1 obviously more so than the others. The

unconditional means of the jump intensities behave exactly the other way round in that they

are higher for shock-receiving assets, which is not surprising. Jump exposures also exhibit

the expected pattern. Shock-receiving assets react negatively to shocks in shock-spreading

assets, and this result again highlights that direction matters.

Overall, the fact that a shock originates from asset i and then impacts asset j and

not the other way around is relevant for all the individual components of risk premia. The

ranking of assets with respect to their risk premia can however be the same for different shock

directions. This also explains why return volatilities and market betas are not monotonically

related to risk premia in the star network, since volatilities and betas only depend on the

jump intensities and the jump exposures, but not on the market prices of risk.

Besides the direction of shocks also the preference specification is important for the

equilibrium results delivered by the model. We employ recursive Epstein-Zin preferences,

whereas Buraschi and Porchia (2013) consider the restricted case of CRRA. They show that

in their model, like in ours, the central asset commands the highest risk premium in the star

network.

To see if this type of centrality premium is robust with respect to preferences we restrict

our model to the case of CRRA utility by setting ψ = 1
γ
. The right column in Table 7 shows

which are equal to
√∑n

j=1
¯̀̄
j (JEXPy,j)

2
and

∑n
j=1

¯̀̄
j JEXPy,j JEXPi,j , respectively. From the covariance

and the variance of the return on the consumption claim we readily obtain the market beta of asset i as∑n
j=1

¯̀̄
j JEXPy,j JEXPi,j∑n

j=1
¯̀̄
j (JEXPy,j)2

.
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the risk premia for this case. As one can see, the structure of risk premia changes dramatically.

They all become negative, and the central asset 1 even exhibits the lowest expected excess

return.

This apparent divergence between our results and the findings in Buraschi and Porchia

(2013) can be reconciled by looking at the specification of dividend dynamics in the two

models. In Buraschi and Porchia (2013) the expected dividend growth rates depend on the

state of the economy and are higher in bad states. Together with the fact that in CRRA

models valuation ratios tend to go up when the state of the economy worsens, this leads

to the pattern in expected excess returns in the Buraschi and Porchia (2013) model. In the

reverse star network with CRRA preferences asset 1 exhibits the highest risk premia. This

ranking is consistent with Buraschi and Porchia (2013), however, in their metric, asset 1

would no longer be central.

To sum up, in our model more central assets earn higher risk premia in different types of

networks and independent of the direction of links. Both shock-spreading and shock-receiving

assets carry a positive risk premium. However, decomposing the risk premia into their com-

ponents reveals that return volatilities, market betas, and risk premia do not always line up

in directed networks. Moreover, the result that central assets always earn the highest overall

risk premium would be significantly harder to obtain in a model with simpler preferences.

3.3. Flight to Quality

In crises one often observes that most assets exhibit negative returns, but that there

are also some, whose price actually goes up, despite the fact that the economy as a whole

has become significantly riskier. This is sometimes referred to as a ’flight to quality’, i.e.,

there is a strong demand for safer assets which then makes the prices of these assets go up.15

We will now show that our model provides an equilibrium foundation for this effect.

To this end, we study two stylized networks. The ‘directed ring network’ is characterized by

a structure where shocks in asset i are propagated only to the next asset i + 1. Technically

this means that βi,j 6= 0 only for i = j+1 and, to close the ring, for (i, j) = (1, 10). In detail,

we set β2,1 = β3,2 = . . . = β10,9 = β1,10 = 0.4. Again we shut down self-exciting jumps by

setting βi,i = 0 for i = 1, . . . , 10. All the other model parameters are kept at the previously

used values. The ‘undirected ring network’ is derived from the directed version by making

all the links symmetric, i.e., we set β1,2 = β2,1 = β3,2 = β2,3 = . . . = 0.2. The two networks

are presented graphically in Figure 6.

15See, e.g., Baele, Bekaert, Inghelbrecht, and Wei (2015).
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First consider the directed ring network. Table 8 reports the jump exposures JEXPi,1

for i = 1, . . . , 10, which are computed according to Equation (6). All asset prices react to a

jump in dividend 1, and this happens despite the fact that it is only the jump intensity of

asset 2 which is directly affected by this jump. In equilibrium all coefficients Ci,k are generally

nonzero, i.e., the price-dividend ratios of all assets i are affected by a change in any of the

state variables `k.

The jump exposure is negative and largest in absolute value for asset 1 itself, which

is not surprising, since this asset suffers from a large negative cash flow effect. For assets 2

to 5 the jump exposure JEXPi,1 is still negative, so they represent examples for contagion

in the ring network. Assets 6 to 10 on the other hand exhibit positive exposures to jumps

in dividend 1. This is an example for the ‘flight-to-quality’ effect described above. The

dividend of asset 1 has experienced a downward jump, the levels of all other dividends have

remained unchanged, all assets have become and will become riskier in the future due to the

propagation of the shock in dividend 1 through the ring network. Nevertheless, the prices of

some assets go up, and the reason is that they are far enough away from the source of the

shock and thus provide a hedge.

An interesting feature of the equilibrium price reactions to a jump in dividend 1 is that

(at least for the parametrization in this example) the total realized return on asset 1 is less

negative than if caused by the cash flow shock alone. If the price-dividend ratio of asset 1 did

not change, the return would be equal to e−0.10 − 1 = −0.095, but the total effect as shown

in Table 8 is −0.085, so that the log price-dividend ratio v1 has actually gone up after the

jump. The reason is that this shock is directly propagated only to asset 2 due to β2,1, but

then asset 1 is furthest away from the most likely source of the next shock in the directed

ring network.

We now perform the same type of exercise in the undirected ring network. As shown

by the results presented in Table 9 essentially the same mechanism as before is at work here.

The difference is that now, with the initial shock in asset 1 spreading in two directions, asset

6 becomes the ‘safe haven’ in this economy, since it is furthest away from the source of the

shock.

Viewed through the lens of our model, these results are almost obvious. However,

from a more general standpoint, this result has important consequences for how we think

about the results of empirical studies applying network theory to stock returns like Ahern

(2013), Herskovic (2014), or Chen (2014). Many papers in this strand of the literature employ

undirected measures of connectedness. For example, although the basic data for the analysis

in Ahern (2013) are directed industry input-output tables, the links between industries are
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made symmetric, before they are used in the estimation process. Herskovic (2014) proposes

a production economy model which takes direction into account. In his empirical analysis he

constructs factors like network sparsity or network concentration from input-output tables

and uses the loadings on these factors in cross-sectional regressions. However, he does not

study whether changes in the direction of links have an effect on the cross-section of returns

via network sparsity or network concentration factor loadings.

The empirical approaches in these papers are thus implicitly based on the assumption

that the direction of shocks does not matter, while our model shows that it certainly can.

Imagine the data are actually generated by the directed ring network, but the econometrician

neglects the directional information in the test of the model. As shown above, asset 10 will

exhibit a positive return in response to a jump in the dividend of asset 1 in this case. Without

taking the direction of the shock into account in the empirical analysis, assets 1 and 10 seem

closely linked, but then the price increase in asset 10 would appear strongly counterintuitive.

Obviously when the econometric model explicitly allows for directed shocks, the returns on

assets 1 and 10 would be perfectly in line with theory.

4. Conclusion

Networks have recently received considerable attention in the economics and finance

literature. With this paper we provide an equilibrium foundation for asset pricing when the

direction of the connections between the individual nodes in a network is relevant.

Our setup is very general, featuring a representative investor with recursive utility and

dynamics of firms’ cash flows driven by self- and mutually exciting jump processes. This

means that a shock to the cash flow of a given firm can increase its own jump intensity as

well as those of other firms in the network. It is this type of process which allows to model

the direction of shock propagation together with its time dimension in a still parsimonious

and tractable setup, and the mechanics of our model are substantially different from what

would be generated by contemporaneous jumps or a diffusion-based model.

In line with recently documented empirical findings our model generates a positive

market price of centrality, i.e., more central assets earn higher risk premia. Beyond this

our model also shows that the exact network topology has an influence on the amount of

this market price of centrality, which turns out to be a decreasing function of the centrality

dispersion in the network. Using cross-sectional regressions with data simulated from the

model, we also document that network centrality is a separate risk factor in addition to

CAPM-type market risk.
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We further provide an equilibrium justification for the flight-to-quality effect by showing

that in equilibrium the price effects of a jump in a given dividend are less negative for assets

‘further away’ from the source of the shock, and can even become positive. The latter is a

remarkable outcome, since the economy as a whole and all dividend streams become riskier

after the initial shock. In the context of this analysis we highlight the importance of taking

the direction of shock propagation into account when analyzing a network. Ignoring the

potential asymmetry of links may lead to a severe mis-interpretation of empirical findings.

The issue of direction is also important when we look at the impact of preferences.

With recursive utility we obtain plausible results for a variety of network structures in the

sense that assets which are either shock-spreading or shock-receiving in a pronounced fashion

command high premia. With CRRA preferences these results cannot be obtained with more

standard dividend dynamics.
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APPENDIX

A. Model solution

Our equilibrium solution follows Eraker and Shaliastovich (2008). The vectorX ≡ (y, `1, . . . , `n, y1, . . . , yn)′

follows the affine jump process

dXt = µ (Xt) dt+ ξt dNt

where we use the following notation:

• µ(Xt) =M+KXt

with M =



µc

κ1
¯̀
1

...

κn ¯̀
n

µ1

...

µn


and K =



0 0 . . . 0 . . . 0

0 −κ1 . . . 0 . . . 0
...

...
. . .

...
. . .

...

0 0 . . . −κn . . . 0

0 0 . . . 0 . . . 0
...

...
. . .

...
. . .

...

0 0 . . . 0 . . . 0


,

• `t = l0 + l1Xt

with l0 =


0
...

0

 and l1 =


0 1 . . . 0 0 . . . 0
...

...
. . .

...
...

. . .
...

0 0 . . . 1 0 . . . 0

,

• ξt =
(
ξ1,t, . . . , ξn,t

)
=



K1 . . . Kn

β1,1 . . . β1,n

...
. . .

...

βn,1 . . . βn,n

L1 . . . 0
...

. . .
...

0 . . . Ln


,

• jump transform % (u) = E
[(

eu
′ ξ1,t , . . . , eu

′ ξn,t
)]′

=
(
eu
′ ξ1,t , . . . , eu

′ ξn,t
)′

.

We define dyt = δ′y dXt, d`1,t = δ′`,1 dXt, . . . , d`n,t = δ′`,n dXt, dy1,t = δ′y,1 dXt, . . . , dyn,t = δ′y,n, dXt

where δ(·) represents an appropriate selection vector. The discrete-time Euler equation for the

claim on aggregate consumption is Et [Mt+∆tRt+∆t] = 1. The continuous-time version of the Euler
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equation can be written as

0 =
1

dt
E

[
d
(
elnMt+lnRt

)
elnMt+lnRt

]
. (A.1)

The logarithm of the pricing kernel has dynamics

d lnMt = −δ θ dt− (1− θ) d lnRt −
θ

ψ
dyt.

We apply the usual affine conjecture for the log wealth-consumption ratio

vt = A+B′Xt = A+
(

0, B1, . . . , Bn, 0, . . . , 0
)
Xt

= A+
(
B1, . . . , Bn

)
lt,

and use the Campbell-Shiller approximation for the return on the consumption claim

d lnRt = k0 dt+ k1 dvt − (1− k1) vt dt+ dyt.

Combining the Campbell-Shiller approximation, the affine guess for vt, and the dynamics of the log

pricing kernel, we get

d
(
elnMt+lnRt

)
elnMt+lnRt

=
{
−δ θ + θ k0 − θ (1− k1)

(
A+B′Xt

)
+ χ′y (M+KXt)

}
dt

+
{
eχ
′
y ξt − 1

}
dNt,

where

χy = θ

[(
1− 1

ψ

)
δy + k1B

]
=

(
−θ

(
1

ψ
− 1

)
, θ k1B1, . . . , θ k1Bn, 0, . . . , 0

)′
and 1 is a vector of ones with length n. We plug this expression into the Euler equation (A.1) to

get a system of equations for AC and BC :

0 = θ [−δ + k0 − (1− k1) A] +M′ χy + l′0 [% (χy)− 1] (A.2)

0 = K′ χy − θ (1− k1) B + l′1 [% (χy)− 1] . (A.3)

We have two additional equations for the loglinearization constants k0 and k1:

0 = −k0 − ln k1 + (1− k1)
[
A+B′ µX

]
(A.4)

0 = A+B′ µX − ln (k1) + ln (1− k1) (A.5)
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where µX is a vector with i-th component E [Xi] if that number exists and 0 otherwise. According

to Aı̈t-Sahalia, Cacho-Diaz, and Laeven (2014), the n unconditional expectations E [dNi] = ¯̀̄
i dt

satisfy the system of n linear equations

¯̀̄
i =

κi ¯̀
i +
∑n

j=1,j 6=i βi,j
¯̀̄
j

κi − βi,i
.

We solve the four equations (A.2), (A.3), (A.4) and (A.5) via iteration. We start with k1 = δ,

then compute k0, A and B. Then we compute k1 again and iterate forward until the system

converges.

The pricing kernel has dynamics

dMt

Mt
= −rt dt− [1− % (−λ)]′ dNt

with

λ = γ δy + (1− θ) k1B = (γ, (1− θ) k1B1, . . . , (1− θ) k1Bn, 0, . . . , 0)′

so that we can immediately read off the risk-free rate and the market prices of risk. The risk-free

rate equals

rt = Φ0 + Φ′1Xt

Φ1 = (1− θ) (k1 − 1) B +K′ λ− l′1 [% (−λ)− 1]

Φ0 = θ δ + (θ − 1)
[
ln k1 + (k1 − 1) B′ µX

]
+M′ λ− l′0 [% (−λ)− 1] .

The market prices of jump risk are given by

[1− % (−λ)] =


MPJR1

...

MPJRn

 =


1− exp (−γ K1 + k1 (θ − 1) [B1 β1,1 + . . .+Bn βn,1])

...

1− exp (−γ Kn + k1 (θ − 1) [B1 β1,n + . . .+Bn βn,n])

 .

The return on the consumption claim is given by

dRt = {. . .} dt+ {% (δy + k1B)− 1} dNt

with jump exposure

% (δy + k1B)− 1 =


JEXPy,1

...

JEXPy,n

 =


exp (K1 + k1 [B1 β1,1 + . . .+Bn βn,1])− 1

...

exp (Kn + k1 [B1 β1,n + . . .+Bn βn,n])− 1

 .
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To obtain the expected excess returns on the dividend claims, we follow the same approach

as for the consumption claim. The continuous-time Euler equation reads

0 =
1

dt
E

[
d
(
elnMt+lnRi,t

)
elnMt+lnRi,t

]
.

Applying the Campbell-Shiller approximation

d lnRi,t = ki,0 dt+ ki,1 dvi,t − (1− ki,1) vi,t dt+ dyi,t

and the usual affine guess for the log price-dividend ratio

vi,t = Ai + C ′iXt = Ai +
(

0, Ci,1, . . . , Ci,n, 0, . . . , 0
)
Xt

= Ai +
(
Ci,1, . . . , Ci,n

)
`t,

we arrive at

d
(
elnMt+lnRi,t

)
elnMt+lnRi,t

=
{
−δ θ − (1− θ)

[
k0 − (1− k1)

(
A+B′Xt

)]
+ ki,0

− (1− ki,1)
[
Ai + C ′iXt

]
+ χ′y,i (M+KXt)

}
dt

+
{
eχ
′
y,i ξt − 1

}
dNt,

where χy,i = ki,1Ci + δy,i− λ. Plugging this expression into the Euler equation, we get a system of

equations for Ai and Ci:

0 = −θ δ + (1− θ)
[
ln k1 − (1− k1) B′ µX

]
− ln ki,1 + (1− ki,1) C ′i µX

+M′ χy,i + l′0 [% (χy,i)− 1]

0 = K′ χy,i + (1− θ) (1− k1) B − (1− ki,1) Ci + l′1 [% (χy,i)− 1] .

The two additional equations for the loglinearization constants ki,0 and ki,1 read

0 = −ki,0 − ln ki,1 + (1− ki,1)
(
Ai + C ′i µX

)
0 = Ai + C ′i µX − ln ki,1 + ln (1− ki,1) .

The return of the individual dividend claim i is then given by

dRi,t =
{
− ln ki,1 + (1− ki,1) C ′i (µX −Xt) + [δi + ki,1Ci]

′ (M+KXt)
}
dt

+ {% (δy,i + ki,1Ci)− 1} dNt.
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The jump exposure of the return is thus given by

[% (δy,i + ki,1Ci)− 1] =



JEXPi,1
...

JEXPi,i
...

JEXPi,n


=



exp (ki,1 [Ci,1 β1,1 + . . .+ Ci,n βn,1])− 1
...

exp (Li + ki,1 [Ci,1 β1,i + . . .+ Ci,n βn,i])− 1
...

exp (ki,1 [Ci,1 β1,n + . . .+ Ci,n βn,n])− 1


.

The expected return on the i-th dividend claim can then be written as

1

dt
E [dRi,t] = − ln ki,1 + (1− ki,1) C ′i (µX −Xt) + [δi + ki,1Ci]

′ (M+KXt)

+ [% (δy,i + ki,1Ci)− 1] (l0 + l1Xt) .

The expected excess return is given by

1

dt
E [dRi,t]− rt = (l0 + l1Xt)

′ [% (χy,i + λ) + % (−λ)− % (χy,i)− 1]

which can be reformulated as

1

dt
E [dRi,t]− rt =

n∑
j=1

`j,t MPJRj JEXPi,j .

B. Setting up the beta matrix

In the following, we describe how we operationalize the concept of eigenvector centrality to

determine the beta matrix

β =


β1,1 . . . β1,n

...
. . .

...

βn,1 . . . βn,n

 .

W.l.o.g., we assume that the eigenvalues ϕ1, . . . , ϕn of β are sorted according to their absolute

size, i.e., ϕ1 is the principal eigenvalue. The eigenvectors for these eigenvalues are collected in the

matrix

α =


α1,1 . . . α1,n

...
. . .

...

αn,1 . . . αn,n


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so that we have the usual diagonalization

β = α


ϕ1 . . . 0
...

. . .
...

0 . . . ϕn

α−1.

W.l.o.g. we assume that the eigenvectors in α are normalized to have length 1.

The β matrix is supposed to be non-negative because there is no economic interpretation for a

negative βij in our model. The Perron-Frobenius theorem then says that there exists an eigenvector

with only non-negative components. The Perron-Frobenius theorem also says that the non-negative

eigenvector is associated with the absolutely largest eigenvalue (called the spectral radius) which is

also non-negative. The eigenvectors related to all other eigenvalues must contain negative entries.16

Besides, the beta matrix is supposed to be symmetric in the benchmark case. Simple linear

algebra implies that the matrix β is symmetric if the eigenvector matrix is an orthogonal matrix

(i.e. αα′ = 1 or α′ = α−1):

(
α · diag(ϕ1, . . . , ϕn) · α−1

)′
=

(
α−1

)′ · diag(ϕ1, . . . , ϕn)′ · α′ = α · diag(ϕ1, . . . , ϕn) · α−1.

Taking these two facts into account, we construct the beta matrix using the following al-

gorithm. We assume that ϕ2 = . . . = ϕn, i.e., the eigenvalues other than ϕ1 are equal and then

construct the eigenvectors as follows. We assume that α2
1,1+. . .+α2

n,1 = 1. This implies that the first

eigenvector is normalized to length 1. Moreover, we assume that all entries αi,1 in the first column

are positive because of the Perron-Frobenius theorem. The remaining elements of the matrix α are

then chosen such that the matrix becomes an orthogonal matrix, i.e. the columns of the matrix are

mutually orthogonal and normalized to length 1. In a first step, we choose the vectors such that

they are all mutually orthogonal:

α1,1 1 1 1 . . . 1

α2,1 −α1,1

α2,1
− 1
α2,2

− 1
α2,2

. . . − 1
α2,2

α3,1 0 −α1,1+α2,1α2,3

α3,1
−1+α2

2,4

α3,3
. . . −1+α2

2,n

α3,3

α4,1 0 0 −α1,1+α2,1α2,4+α3,1α3,4

α4,1
. . . −1+α2

2,n+α2
3,n

α4,4

...
...

...
...

. . .
...

αn,1 0 0 0 . . . −α1,1+α2,1α2,n+α3,1α3,n+...+αn−1,1αn−1,n

αn,1


In a second step, we scale every column by its norm so that all eigenvectors have length 1. The

eigenvalues and eigenvectors uniquely determine the beta matrix. We have thus reduced the choice

16Moreover, the Perron-Frobenius theorem says that the principle eigenvalue is simple if the matrix is
irreducible and that there is no other eigenvalue with the same absolute value if the matrix is aperiodic. The
matrix constructed below is irreducible and aperiodic.
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of the beta matrix to the choice of two eigenvalues ϕ1 and ϕ2 and one eigenvector which contains

the eigenvector centrality of each node.
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Investors
Relative risk aversion γ 10
Intertemporal elasticity of substitution ψ 1.5
Subjective discount rate δ 0.02

Aggregate consumption
Expected growth rate of log aggregate consumption µ 0.05
Jump size of log aggregate consumption K1 = . . . = K10 -0.01

Dividends 1, . . . , 10
Expected growth rate of log dividends 1, . . . , 10 µ1 = . . . = µ10 0.05
Jump size of log dividends 1, . . . , 10 L1 = . . . = L10 -0.10

Stochastic jump intensities
Mean reversion level ¯̀

1 = . . . = ¯̀
10 0.10

Mean reversion speed κ1 = . . . = κ10 0.80

Table 1: Parameters

The table reports the general parametrization of our economy. These parameters are held constant

throughout the paper. Only the network matrix (βi,j)i,j=1,...,n varies across Sections 3.1, 3.2, and

3.3, and is therefore discussed in each of these sections separately.
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Regressors
const. market portfolio beta centrality portfolio beta

-0.000842 0.004724
[-0.0015,-0.0007] [ 0.0032, 0.0110]

0.001525 0.020714
[ 0.0013, 0.0026] [ 0.0106, 0.0611]

-0.000522 0.004076 0.002874
[-0.0007,-0.0002] [ 0.0032, 0.0075] [ 0.0002, 0.0196]

Table 2:
Cross-sectional regressions of local expected returns on market and centrality

betas

The table reports the results from cross-sectional regressions of local expected excess returns on

local market betas and local centrality portfolio betas. Given the intensities and the equilibrium

solution of the model, the local market beta of asset i at time t is given as
∑n
j=1 `j,t JEXPy,j JEXPi,j∑n

j=1 `j,t JEXP2
y,j

with JEXPy,i = exp (Ki + k1
∑n

k=1Bk βk,i)− 1 and JEXPi,j as defined in Equation (6). The local

return on the centrality portfolio is given by the difference between the local returns on the most

and the least central asset (i.e., return on asset 1 minus return on asset 10). The exposure of the

centrality portfolio to jump j is given by JEXPCEN,j ≡ JEXP1,j−JEXP10,j , which implies that the

local centrality beta of asset i is equal to
∑n
j=1 `j,t JEXPCEN,j JEXPi,j∑n

j=1 `j,t JEXP2
CEN,j

. Given these betas, we perform

cross-sectional regressions of the local expected excess returns of the ten assets from t to t + dt

given by Equation (7) on their betas at time t. Since the cross-sectional slope coefficients depend

on the value of the state variables `1, . . . , `10, we simulate the model to obtain a representative

sample of state variable combinations. We simulate a daily time series (2,500,000 days) of the jump

intensities of the ten assets based on the dynamics in (1). We then take every 250-th observation

from this time series to have 10,000 realizations of the vector of state variables. The table reports

the median coefficients for these regressions. The numbers is square brackets represent the 2.5%

and 97.5% quantiles. The parameters are given in Section 3.1.
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self-exciting mutually exciting total
jumps jumps

High cross-sectional dispersion of centrality (s = 0.02)

Asset 1 0.0174 0.0015 0.0190
Asset 2 0.0018 0.0003 0.0021

Low cross-sectional dispersion of centrality (s = 0.055)

Asset 1 0.0102 0.0048 0.0150
Asset 2 0.0064 0.0039 0.0103

Table 3:
Decomposition of expected excess returns for varying cross-sectional dispersion

of centrality

The table reports the local expected excess return due to self-exciting and mutually-exciting jump

risk, and the total risk premium as the sum of both components for assets 1 and 2. The results

are shown for economies with a high (s = 0.02) and a low (s = 0.055) cross-sectional dispersion of

centrality as described in Section 3.1. Expected excess returns are computed according to Equa-

tion (8). For the analysis the jump intensities `1, . . . , `10 are set equal to their unconditional means
¯̀̄
1, . . . ,

¯̀̄
10 as defined in Equation (3). The parameters are given in Section 3.1.

Mean Std.dev.

High cross-sectional dispersion of centrality (s = 0.02) 1.3015 0.3517

Low cross-sectional dispersion of centrality (s = 0.055) 1.6917 0.5099

Table 4:
Moments of consumption jump intensity

The table reports the unconditional mean and standard deviation for the consumption jump in-

tensity which is equal to the sum over all individual jump intensities. The results are shown for

economies with a high (s = 0.02) and a low (s = 0.055) cross-sectional dispersion of centrality as

described in Section 3.1. All quantities have been generated from a monthly Monte Carlo simulation

over 80 years with monthly time steps (∆t = 1/12) and 10,000 paths. The parameters are given in

Section 3.1.
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Exp. excess Return Sharpe Market Treynor
return volatility ratio beta ratio

Star network

Asset 1 0.0038 0.0228 0.1667 0.9173 0.0042
Asset 2,. . . ,10 0.0021 0.0356 0.0590 0.9495 0.0022

Reverse star network

Asset 1 0.0089 0.0708 0.1257 4.8407 0.0018
Asset 2,. . . ,10 0.0010 0.0294 0.0340 0.5024 0.0020

Undirected star network

Asset 1 0.0469 0.1014 0.4625 4.1641 0.0113
Asset 2,. . . ,10 0.0034 0.0389 0.0874 0.3862 0.0088

Table 5:
Expected excess returns, return volatilities, Sharpe ratios, market betas, and

Treynor ratios in different types of star networks

The table reports the local expected excess returns, return volatilities, Sharpe ratios, market

betas, and Treynor ratios of the ten assets for different types of star networks. Expected ex-

cess returns are computed according to Equation (7), the return volatility of asset i is given by√∑n
j=1

¯̀̄
j (JEXPi,j)

2, and the Sharpe ratio is the quotient of these two quantities. The market beta

of asset i is as
∑n
j=1

¯̀̄
j JEXPy,j JEXPi,j∑n

j=1
¯̀̄
j (JEXPy,j)

2 with JEXPy,i = exp (Ki + k1
∑n

k=1Bk βk,i)−1 and JEXPi,j as

defined in Equation (6). The Treynor ratio is the ratio of expected excess return and market beta.

The star, reverse star, and undirected star networks are shown graphically in Figure 5. In all three

networks assets 2 to 10 are identical, so that all quantities shown in the table are the same for all

of them. For the analysis the jump intensities are assumed to be at their unconditional means, i.e.,

`i = ¯̀̄
i for i = 1, . . . , 10. The remaining parameters are given in Table 1.
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i 1 2 3,. . . ,10

Star network

MPJRi -0.5314 -0.1052 -0.1052
¯̀̄
i 0.1000 0.1375 0.1375

JEXP1,i -0.0721 -0.0000 -0.0000
JEXP2,i -0.0139 -0.0952 -0.0000

Reverse star network

MPJRi -0.1052 -0.1460 -0.1460
¯̀̄
i 0.4375 0.1000 0.1000

JEXP1,i -0.0952 -0.0341 -0.0341
JEXP2,i 0.0000 -0.0926 0.0028

Undirected star network

MPJRi -0.5950 -0.2299 -0.2299
¯̀̄
i 0.3931 0.1737 0.1737

JEXP1,i -0.1444 -0.0365 -0.0365
JEXP2,i -0.0019 -0.0930 0.0024

Table 6:
Market prices of jump risk, jump intensities, and jump exposures in different

types of star networks

The table reports the market prices of risk for jumps in dividend i, MPJRi given in Equation (5),

the unconditional mean jump intensities ¯̀̄
i as defined in Equation (3), and the exposures of asset

1 and 2 to a jump in dividend i, JEXP1,i and JEXP2,i computed according to Equation (6). The

star, reverse star, and undirected star networks are shown graphically in Figure 5. The remaining

parameters are given in Table 1.
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Expected excess return Expected excess return
EZ CRRA

Star network

Asset 1 0.0038 -0.0015
Asset 2,. . . ,10 0.0021 -0.0011

Reverse star network

Asset 1 0.0089 0.0044
Asset 2,. . . ,10 0.0010 -0.0015

Undirected star network

Asset 1 0.0469 -0.0058
Asset 2,. . . ,10 0.0034 -0.0133

Table 7:
Expected excess returns with EZ and CRRA preferences in different types of

star networks

The table reports the expected excess returns with Epstein-Zin (EZ) preferences (γ = 10, ψ = 1.5)

and with CRRA preferences (γ = 10, ψ = 1
10) of the ten assets for different types of star networks.

The risk premium for asset i with Epstein-Zin preferences is defined in Equation (7). The risk

premium for asset i under CRRA utility is obtained from the model with Epstein-Zin preferences

by setting ψ = 1
γ . The star, reverse star, and undirected star networks are shown graphically in

Figure 5. In all three networks assets 2 to 10 are identical, so that all quantities shown in the

table are the same for all of them. For the analysis the jump intensities are assumed to be at their

unconditional means, i.e., `i = ¯̀̄
i for i = 1, . . . , 10. The remaining parameters are given in Table 1.
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Figure 2:
Centrality premium for varying cross-sectional dispersion of centrality

The figure depicts local expected excess returns as a function of eigenvector centrality for economies

with different cross-sectional dispersions of centrality (CSDC). To determine the eigenvector cen-

tralities of the ten assets in each economy, we set α10 = 0.01 and αi−1 = αi + s for i = 3, . . . , 10,

where s ∈ {0.02, 0.03, 0.04, 0.05, 0.055}. α1 is then determined such that the vector α has length 1.

The black dashed line shows the results for s = 0.02 (highest CSDC), the gray dashed line those

for s = 0.03, the black solid line those for s = 0.04, the gray dotted line those for s = 0.05 and

the black dotted line those for s = 0.055 (lowest CSDC). Each dot represents the combination

of eigenvector centrality and expected excess return for an asset which is computed according to

Equation (7). The jump intensities `1, . . . , `10 are equal to their unconditional means ¯̀̄
1, . . . ,

¯̀̄
10 as

defined in Equation (3). The parameters are given in Section 3.1.
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Figure 3:
Market prices of jump risk for varying cross-sectional dispersion of centrality

The figure depicts the market price of jump risk for assets 1 to 10 as a function of eigenvector cen-

trality for economies with different cross-sectional dispersions of centrality (CSDC). To determine

the eigenvector centralities of the ten assets in each economy, we set α10 = 0.01 and αi−1 = αi + s

for i = 3, . . . , 10, where s ∈ {0.02, 0.03, 0.04, 0.05, 0.055}. α1 is then determined such that the vec-

tor α has length 1. The black dashed line shows the results for s = 0.02 (highest CSDC), the gray

dashed line those for s = 0.03, the black solid line those for s = 0.04, the gray dotted line those

for s = 0.05 and the black dotted line those for s = 0.055 (lowest CSDC). Each dot represents the

combination of eigenvector centrality and market price of jump risk for an asset which is computed

according to Equation (5). The parameters are given in Section 3.1.
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Figure 4:
Return volatility as a function of eigenvector centrality

The figure depicts the volatility of asset returns as a function of eigenvector centrality for economies

with different cross-sectional dispersions of centrality (CSDC). The returns have been generated

from a monthly Monte Carlo simulation over 80 years with monthly time steps (∆t = 1/12) and

10,000 paths. To determine the eigenvector centralities of the ten assets in each economy, we set

α10 = 0.01 and αi−1 = αi + s for i = 3, . . . , 10, where s ∈ {0.02, 0.03, 0.04, 0.05, 0.055}. α1 is then

determined such that the vector α has length 1. The black dashed line shows the results for s = 0.02

(highest CSDC), the gray dashed line those for s = 0.03, the black solid line those for s = 0.04, the

gray dotted line those for s = 0.05 and the black dotted line those for s = 0.055 (lowest CSDC).

Each dot represents the combination of eigenvector centrality and return volatility for an asset.

The parameters are given in Section 3.1.
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