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1 Introduction

Carbon dioxide is the most important anthropogenic greenhouse gas. The atmospheric

concentration of carbon dioxide has increased from a pre-industrial level of about 280 ppm

to approximately 400 ppm in 2014. According to results from ice core drilling, this is the

highest concentration in the last 800,000 years. Additionally, anthropological carbon

dioxide emissions have continuously increased during the last century. The data suggests

that not just emission itself, but the average annualized growth rate is increasing over

time.1 Until now, average land and surface temperatures have already risen by approxi-

mately 0.9◦C since the start of the industrial revolution. The fifth assessment report of

the Intergovernmental Panel of Climate Change (IPCC (2014)) provides four represen-

tative climate scenarios depending on the future evolution of greenhouse gas emissions,

referred to as representative concentration pathways (RCPs). Simulations show that the

uncontrolled trajectory RCP 8.5 (used as business-as-usual scenario in this paper) might

result in a carbon dioxide concentration of about 1000 ppm and an unbroken average

temperature increase of approximately 4◦C by the end of this century.2

To study these issues, our paper proposes a stochastic optimization-based general equilib-

rium model for the optimal abatement policy. We provide detailed calibrations where we

simultaneously match two decisive climate-sensitivity measures (TCR, ECS) which play

an important role in the report of the IPCC (2014). In contrast to most of the literature

we allow for random evolutions of the key variables such as CO2 concentration, global

temperature and world GDP. We determine the optimal state-dependent policy and study

this policy across different future scenarios for several models specifications. In partic-

ular, we analyze the implications of different assumptions about the impact of climate

change on output (level vs. growth). This is an important contribution, since there is a

considerably debate on whether climate change has a growth rate or a level impact on

output. We show that the economic consequences can be very different. Our approach

also allows us to make model-based predictions about the variation of the key variables

via confidence bands.

We find that the optimal policy varies significantly with temperature and is thus crucially

1Source: IPCC (2014), Atmospheric carbon dioxide Data: http://co2now.org/Current-CO2/CO2-
Now/, Global Carbon Emission Data: http://cdiac.ornl.gov/trends/emis/meth reg.html

2New et al. (2011) give an overview on the implications of a such an outcome. These range from the
absence of summer sea ice in the Arctic ocean, permafrost melting, heavy sea-level rise far beyond 2100
up to die-back of the Amazon forest. Feedback effects to greenhouse gas warming through releases of
methane and carbon dioxide would further fuel the climate change.
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state-dependent. Therefore, a policy determined in a deterministic model (e.g. DICE

model) leads to suboptimal results, especially along paths with high temperatures. This

is in particular true if climate change has an impact on the level of output. In this case,

the optimal carbon dioxide emission shows a high variation since the optimal abatement

policy is drastic for high temperatures. Consequently, both risk aversion and elasticity

of intertemporal substitution (EIS) have a significant effect on the optimal policy. If

climate change has a growth rate impact on output, then the median results are similar

to our findings for a level impact. However, the corresponding optimal policy is less state-

dependent and thus the emissions are less volatile. Therefore, risk aversion has a negligible

effect on the optimal policy, whereas EIS has still a significant effect. Notice that the so-

called social cost of carbon (SCC) – an indicator of damage done by emitting carbon

dioxide – is tightly varying with the optimal abatement policy. It is thus a stochastic

process that increases in temperature and that depends on risk aversion and EIS in a

similar way as the optimal abatement policy. As one robustness check, we study the effect

of calibrating the economic damages with respect to recent estimates that are based on

either expert opinions or on historical fluctuations in temperature within countries. In

this case, the social cost of carbon is considerable higher, abatement activities are more

dramatic, and optimal emissions are more volatile.

Our paper is related to several studies using integrated assessment models (IAM):3 Firstly,

the DICE model (Dynamic Integrated Model of Climate and the Economy) is the most

common framework to study optimal carbon abatement. It combines a Ramsey-type

model for capital allocation with deterministic dynamics of emissions, carbon dioxide

and global temperature. Notice that it is formulated in a deterministic setting, see for

example Nordhaus (1992, 2008), Nordhaus and Sztorc (2013).4 Kelly and Kolstad (1999)

extend this model to a situation where the decision maker learns about the unknown

relation between greenhouse gas emissions and temperature. Crost and Traeger (2014)

and Ackerman et al. (2013) analyze versions where one component is assumed to be

stochastic.5 Cai et al. (2015) study a stochastic generalization referred to as DSICE

3IAMs can broadly be divided into two classes: welfare optimization models which choose an optimal
abatement policy and simulation models that renounce an optimization routine and rather evaluate
specific policy scenarios. Such a framework combines knowledge from different areas of science to an
unified model that describes interactions between greenhouse gas emissions, the climate system and the
economy.

4When we refer to DICE in this article, we mean the latest version that is presented in Nordhaus and
Sztorc (2013).

5In contrast to our paper, Crost and Traeger (2014) do not allow for stochastic temperature dynamics,
but consider uncertainties in the damage function. Ackerman et al. (2013) introduce transitory uncer-
tainty of the climate sensitivity parameter into the DICE model. At first, only the probabilities of five
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model. Their approach is computationally involved, since it is based on high-dimensional

Markov chains. However, both carbon and temperature dynamics are deterministic and

the model only involves a level impact on economic growth induced by climate change (as

all variants of the DICE model).

By contrast, we suggest a flexible IAM that does not fall into the class of DICE models. All

components are genuinely stochastic. In particular, it involves parsimonious stochastic

dynamics for the world temperature. We can thus offer a way to simultaneously cali-

brate two decisive climate-sensitivity measures (TCR, ECS). Transient climate response

(TCR) measures the total increase in average global temperature at the date of carbon

dioxide doubling. Equilibrium climate sensitivity (ECS) refers to the change in global

temperature that would result from a sustained doubling of the atmospheric carbon diox-

ide concentration after the climate system will have found its new equilibrium. Notice

that the report of the IPCC (2014) provides detailed estimates about the distribution of

these measures in the future. Since our approach allows for a stochastic world temper-

ature, we can match moments beyond the first moment, which gives us the opportunity

to capture some of the inherent uncertainty of the problem.6 Finally, as suggested by

empirical evidence presented in Dell et al. (2009, 2012), our paper also studies the case

where temperature negatively affects the growth rate of output, rather than its level (as

in the DICE approach). To simplify comparisons with the existing literature, we calibrate

the growth rate in the benchmark case such that our economic model closely matches the

evolution of GDP in DICE.

Other related literature involves Pindyck (2011, 2012, 2014) who studies an endowment

economy. He solves a static instead of a dynamic optimization problem and calculates

the so-called willingness to pay. This is the fraction of consumption that is necessary to

keep global warming below some target temperature, e.g. 3◦C. Similarly as in our paper,

he supposes that global warming has a negative effect on the consumption growth rate.

However, he abstracts from carbon dioxide emissions and abatement costs.

Notice that many integrated assessment models apply coarse discretizations. Nordhaus

and Sztorc (2013) present a DICE model using five-year intervals. Nordhaus (2008) even

relies on a model with ten-year intervals. Other models use similar discretizations.7 Only

possible values are known. The actual value becomes known at a predefined date in the future.
6See, e.g., the remarks of Nordhaus (2008) on the uncertainty of the problem.
7Some examples among many others are PAGE (Policy Analysis of the Greenhouse Effect, see Hope

(2006)) and FUND (Climate Framework for Uncertainty, Distribution, Negotiation, see Tol (2002a,b).
Daniel et al. (2015) analyze optimal taxation of carbon emission. They consider a model with 31 nodes
only.
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few recent papers study finer discretizations. For instance, Cai et al. (2012) consider

a continuous-time version of Nordhaus’ DICE model. Their results significantly differ

from those obtained in discrete settings. Besides, many models analyze uncertainty, if

at all, via Monte Carlo simulation. Stanton et al. (2009) review about thirty existing

integrated assessment models. They report that none of these models can generate fat-

tailed distributions of the temperature. This is not in line with the empirical evidence

about non-negligible risks for extreme climate changes given in the fifth assessment report

of the IPCC (2014). To address these issues, our model is formulated in continuous time

and can produce a temperature distribution with fat tails.

As in most of the above-mentioned papers, the starting point for our economic analysis

of climate change is an integrated assessment model. Consequently, our model consists of

three components: carbon dioxide model, climate model, and economic model. Section 2

describes these components and characterizes the equilibrium of the economy. Section 3

calibrates all model components. Section 4 presents our benchmark results. Additional

robustness checks can be found in Section 5. Section 6 concludes.

2 Model Setup

This section presents the model setup and describes its equilibrium. Figure 1 depicts

the three building blocks of our framework (carbon dioxide model, climate model, and

economic model).

Economic Model
‐ Gross Domestic Product
‐ Green Technology
‐ Abatement Cost
‐ Economic Shocks

Equilibrium 
Maximize global welfare by 
choosing an optimal abatement 
policy and optimal consumption

Damage Process: 
Translate damages in the 
ecosystem in reduced 
economic growth

Abatement Policy:  
Expenditures for green 
technologies are costly, 
but reduce emissions

Climate Change Process: 
Emissions yield an increase

in global temperature

Carbon Dioxide Model
‐ Carbon Dioxide Emissions
‐ Carbon Dioxide Concentration
‐ Natural Sinks, Carbon Shocks

Climate Model
‐ Global Temperature
‐ Climate Shocks 
‐ Feedback Effects / Fat Tails

Figure 1: Building Blocks of the Model.

The carbon dioxide model keeps track of the carbon dioxide concentration in the atmo-
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sphere. This concentration increases by anthropological and also non-man made carbon

dioxide shocks and it decreases since natural sinks such as oceans absorb carbon dioxide.

Society can control anthropological carbon dioxide emissions by choosing an abatement

strategy which reduces the current (business-as-usual) emissions. These efforts are costly.

The climate model measures the average world temperature and its departure from the pre-

industrial level. Empirically, there is a (noisy) positive relation between carbon dioxide

concentration and world temperature. Our temperature process captures this relation

and allows for possible feedback effects.

The economic model describes the dynamics of global GDP (syn. output) in a stylized pro-

duction economy. In our benchmark setting, global warming has a negative influence on

economic growth, i.e. on the drift of global GDP. Alternatively, we also study a framework

with a level impact as in DICE. Society can only indirectly mitigate this damaging effect

by choosing the above mentioned abatement strategy. This is the link of the economic

model to the emission model, which completes the circle.

Society (syn. mankind or decision maker) chooses optimal consumption and an optimal

abatement strategy whose costs contemporaneously reduce economic growth. The re-

maining part of output must be invested so that an equilibrium materializes.

2.1 Carbon Dioxide Model

The average pre-industrial concentration of carbon dioxide in the atmosphere is denoted

by Y PI. The total current concentration of carbon dioxide in the atmosphere is given by

Y Σ
t = Y PI + Yt, (1)

where Yt denotes the amount of atmospheric carbon dioxide that is caused by human

activities, i.e. the part of atmospheric carbon dioxide that exceeds the pre-industrial

concentration. Its dynamics are

dYt = Yt [(µy(t)− αt)dt+ σydW
y
t ] . (2)

We refer to (2) as carbon dioxide dynamics or process. Here W y = (W y
t )t≥0 is a standard

Brownian motion that models unexpected shocks on the carbon dioxide concentration.

These could be the result of environmental shocks such as volcano eruptions or earth-

quakes, but they can also be man-made. The volatility of these shocks σy is assumed
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to be constant. Atmospheric carbon dioxide increases with an expected growth rate of

µy that models the current growth path of the carbon dioxide concentration. In other

words, µy is the growth rate if society does not take additional actions to reduce carbon

dioxide emissions. We thus refer to µy as the business-as-usual drift of the carbon dioxide

process. Notice that it also involves all past policies which have been implemented to

reduce carbon dioxide emissions.

Society can however pursue new policies to reduce emissions. We refer to such an addi-

tional effort as an abatement strategy α = (αt)t≥0. In other words, the abatement policy α

models how additional actions change the expected growth of the carbon dioxide concen-

tration, i.e. these are abatement policies beyond business-as-usual (BAU). By definition,

this differential abatement policy has been zero in the past (αt = 0 for all t < 0). If no

abatement policy is chosen and society sticks to BAU, we also use the notation Y BAU

instead of Y .

From our model for the carbon dioxide concentration, we can derive the implied dynamics

of CO2 emissions. These dynamics are equal to the change in the carbon concentration

reduced by the amount of carbon that natural sinks such as oceans absorb. We also add

unexpected carbon dioxide shocks. If et denotes the time-t anthropological carbon dioxide

emissions, then we can express the carbon dioxide dynamics in terms of the carbon dioxide

emissions

dYt = ζee
α
t dt− δy(Xt)Ytdt+ YtσydW

y
t , (3)

dXt = δy(Xt)Ytdt, (4)

where ζe is a factor converting emissions into concentrations.8 The variable Xt measures

the total quantity of atmospheric carbon dioxide that has already been absorbed by

natural sinks. The function δy models the decay rate of carbon dioxide, i.e. the speed at

which carbon dioxide is absorbed from the atmosphere. We assume δy to decrease in X,

i.e. the capacity of natural sinks declines with the quantity of carbon that has already

been absorbed. Equation (3) can be considered as an ecological budget constraint : The

total change in carbon dioxide is (up to environmental shocks) the difference between

anthropological emissions and natural carbon sequestration. By equating (2) and (3), we

8Carbon dioxide emissions are measured in gigatons (GtCO2), whereas concentrations are measured
in parts per million (ppm).
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can solve for the anthropological emissions of carbon dioxide (short: emissions):

eαt =
Yt
ζe

[µy(t) + δy(Xt)− αt] . (5)

Equation (5) provides the relation between the abatement strategy and the anthropo-

logical emissions under that strategy. We use the notation eBAU
t for business-as-usual

emissions (α = 0).

Finally, we define the so-called emission control rate as

εα = (eBAU − eα)/eBAU = 1− Yt
ζeeBAU

t

(µy(t) + δy(Xt)− αt). (6)

This quantity denotes the fraction of abated carbon dioxide emissions compared to BAU.

Equivalently, it is the percentage of carbon dioxide emissions that is prevented from

entering the atmosphere if the abatement policy α is implemented. As in the DICE model,

we assume that the emission control rate εα is between 0 and 1. The assumption εα ≥ 0

excludes strategies that lead to emissions beyond BAU. On the other hand, the assumption

εα ≤ 1 implies that emissions cannot be negative, which might only be possible if there

are major technological breakthroughs (e.g. direct carbon removal (DCR)).

Notice that the restriction εα ≤ 1 yields to the following upper bound on the abatement

policy

αt ≤ µy(t) + δy(Xt) (7)

i.e. technological restrictions prevent society from implementing very high abatement

policies. This constraint makes it harder to make up for opportunities that have been

missed in the past.9

2.2 Climate Model

Our climate model is a stochastic version of the empirically well-documented logarithmic

relationship between global warming and atmospheric carbon dioxide concentrations (see

9If it were really possible to actively remove carbon dioxide from the atmosphere (direct carbon
removal), then negative CO2 emissions would be feasible. As in the DICE model, we do not allow for
negative emissions in our benchmark calibration. However, our results are robust to this assumption.
In robustness checks not reported here, we have assumed that the emission control rate is restricted to
εαt ∈ [0, 1.2], where εαt > 1 involves negative emissions. On a time scale of 100 years, our median main
results however hardly change. Only on extreme paths, society implements more stringent abatement
policies leading to negative emissions.
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IPCC (2014)):

Tt = ητ log

(
Y Σ
t

Y PI

)
. (8)

Since empirically the relation between the temperature increase and carbon dioxide con-

centration is not deterministic, but noisy, we assume that the average global increase in

temperature from its pre-industrial level is given by the dynamics10

dTt =
Ytητ
Y Σ
t

(
µy(t)− αt

)
dt+

Ytστ
Y Σ
t

(
ρyτdW

y
t +

√
1− ρ2

yτdW
τ
t

)
+ θτ (Tt−)dN τ

t . (9)

We refer to (9) as global warming process. The parameter ητ is a constant relating the

change in global temperature to changes in carbon dioxide concentration. The Brownian

motions W τ and W y are independent. The diffusion parameter στ is assumed to be

constant. Furthermore, N τ = (N τ
t )t≥0 is a self-exciting process whose jump intensity

πτ (Tt) and jump size θτ (Tt) can depend on Tt itself. There is empirical evidence that

the distribution of future temperature changes is right-skewed (see IPCC (2014)). One

reason for this is that there might be delayed climate feedback loops triggered by increases

in global temperature. This line of argument suggests that the temperature dynamics

involve a self-exciting jump process whose jump intensity and jump size depend on the

temperature itself. Intuitively, this means that an increase in temperature makes future

increases both more likely and potentially more severe. Therefore, a self-exciting process

captures the idea of feedback loops and at the same time allows for calibrating the skewness

of the distribution of future temperature changes.

2.3 Economic Model

2.3.1 GDP Growth

Following Pindyck and Wang (2013) we assume that real GDP (syn. output) is generated

by a production technology that is linear in capital (AK-technology) and involves capital

adjustment costs.11 In our model, global warming has a negative impact on GDP. We

10Compared to (8) we add additional sources of randomness (Brownian motion and jumps). Appendix A
provides the corresponding details.

11Formally, output is Ct = AKt, where A > 0 is a constant modeling productivity and K is the only
factor of production. K is the total stock of capital, i.e. it includes physical capital, but also human
capital and firm-based intangible capital. Appendix B describes how the GDP dynamics can be derived
from such a production technology.
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assume that real GDP is

Ct = ĈtDt, (10)

where Dt is a damage factor that scales down output in response to climate change.

Section 2.3.3 below discusses the form of the damage factor Dt in greater detail. In

particular, we study a damage factor that influences the growth rate of GDP. Notice that

Ĉt denotes real GDP in the absence of global warming (shadow GDP). Put differently, Ĉt

is what GDP would be if there were no climate change. Its dynamics are given by

dĈt = Ĉt [g(t, χt)dt+ σc(ρcydW
y
t + ρ̂cτdW

τ
t + ρ̂cdW

c
t )− dKαt ] , (11)

where W c = (W c
t )t≥0 is a third Brownian motion that is independent of W y, W τ and N τ .

The volatility σc of the economic shocks is assumed to be constant. Output is correlated

with carbon concentration and temperature via ρcy and ρcτ . Standard arguments then

lead to the following specifications:12

ρ̂cτ =
ρcτ − ρcyρyτ√

1− ρ2
cy

, ρ̂c =
√

1− ρ2
cy − ρ̂2

cτ .

Shadow GDP evolves with an expected growth rate g(t, χ). Here, χ denotes the con-

sumption rate, i.e. the fraction of GDP that is consumed. In our framework, the expected

growth rate of shadow GDP has the following form (see Appendix B for more details)

g(t, χ) = A(1− χ)− δk(t)−
1

2
ϑ(1− χ)2, (12)

where the capital-output ratio A is constant (AK-technology). The deterministic func-

tion δk(t) describes the trend of the capital stock dynamics. It captures the effects of

depreciation, but also the growth of human capital. The parameter ϑ measures the costs

of installing new capital. This specification ensures that capital adjustment costs are

homogenous in capital and convex in investment and abatement. Such an assumption is

widely used in the literature, see e.g. Hayashi (1982) and Jermann (1998), Pindyck and

Wang (2013).

12Formally, this is a Cholesky decomposition.
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2.3.2 Abatement Costs

Output C can be used for consumption C, investments I or abatement expenditures Aα,

Ct = Ct + It +Aαt . (13)

Implementing an abatement policy α can be considered as spending money on more car-

bon efficient technologies that reduce carbon dioxide emissions (green technologies). The

expenditures necessary to implement the policy α are the so-called abatement expen-

ditures denoted by Aαt . To keep the model tractable, we measure and calibrate these

expenditures relative to output.13 As can be seen from dynamics (11), we describe the

relative costs of an abatement policy α via a cost process Kαt . Therefore, implementing α

reduces economic growth over the small interval [t, t + dt] by dKαt . We assume that the

cost process Kαt is of finite variation and can be represented by a sufficiently smooth cost

function κ that depends on time and the emission control rate:

dKαt = κ(t, εαt )dt. (14)

Using relation (6), we can rewrite κ in terms of time t, carbon concentration Y and

abatement policy α. Therefore, we also use the notation κ(t, Yt, αt) instead of κ(t, εαt ).

Appendix B shows that the abatement expenditures can be calculated if the productivity

A, the output C and the costs κ are known:

Aαt =
Ct
A
κ(t, εαt ). (15)

2.3.3 Impact of Global Warming

This paper studies two approaches of how to model economic damages induced by climate

change. First, we consider the standard approach which assumes that current tempera-

tures directly affect the level of GDP (see e.g. Nordhaus (2008), Tol (2002a), Hope (2006)).

Second, we analyze a framework that models damages as a negative effect on the growth

rate of GDP, which is suggested by empirical evidence.

Level Impact The standard approach assumes that global warming has a direct impact

on the level of GDP which is captured by a sufficiently smooth damage function D(T )

13This is standard in the literature (e.g. DICE). Relaxing this assumption would lead to an additional
state variable.
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with D(0) = 1, limT→∞D(T ) = 0. Here T denotes the temperature anomaly. Thus, real

GDP at time t is

Ct = ĈtD(Tt). (16)

Notice that the damage function only depends on the current temperature anomaly.

Therefore, in this specification only the current level of GDP is affected, but not its

growth rate. We thus refer to such a damage specification as level impact. As Pindyck

(2012, 2013) points out, a level impact has the unrealistic drawback that damages from

global warming are reversible. For instance, if global temperatures increase heavily over

100 years, but then come back to the present level, GDP would fully recover without

any permanent losses. Therefore, the impact of global warming as modeled by (16) is

transitory.

Growth Rate Impact There is a lot of empirical evidence that higher temperatures

affect growth rates of GDP rather than just its level (e.g. Dell et al. (2009, 2012)). In line

with these findings, Pindyck (2012, 2013) argues that many damages induced by climate

change are likely to be permanent, rather than transitory (e.g. destruction of ecosystems,

sea level rise, or heat-related fatalities). Therefore, it is relevant to study the effects of a

growth rate impact as well. In this case, we assume that real GDP at time t is given by

Ct = Ĉt exp

(
−ζd

∫ t

0

Tsds

)
(17)

where ζd is a positive scaling parameter that relates temperature increase to loss of eco-

nomic growth. Apparently, in such a framework the growth rate depends on the whole

path of the temperature anomaly rather than just on the current value as in (16). It

thus captures long-lasting damages from climate change that are difficult or impossible

to reverse (at least in human timescales). Combining (11) and (17) yields the following

dynamics of real GDP

dCt = Ct [(g(t, χ)− ζdTt)dt+ σc(ρcydW
y
t + ρ̂cτdW

τ
t + ρ̂cdW

c
t )− dKαt ] , (18)

i.e. the expected growth rate g(t, χ)− ζdTt is negatively affected by current temperatures.

The dynamics (18) are the reason why we refer to this damage specification as growth

rate impact.
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2.4 Equilibrium

It is well-known that for a decision maker with CRRA utility changing the degree of

relative risk aversion has at first sight a counterintuitive effect: The abatement policy is

less stringent if risk aversion increases.14 In order to resolve this puzzle and to disentangle

relative risk aversion from elasticity of intertemporal substitution, we assume the decision

maker’s preferences to be of Epstein-Zin type. This allows us to analyze the effects of

varying EIS and risk aversion separately. The society’s time-t utility index Jα,χt associated

with a given abatement-consumption strategy (α, χ) over the infinite planning horizon

[0,∞) is thus recursively defined by

Jα,χt = Et
[∫ ∞

t

f(Cα,χs , Jα,χs )ds

]
, (19)

where Cα,χ = χCα,χ denotes consumption. The aggregator function f is given by the

continuous-time Epstein-Zin aggregator (see e.g. Duffie and Epstein (1992))

f(C, J) =


δθJ

[(
C

[(1−γ)J ]
1

1−γ

)1− 1
ψ − 1

]
, ψ 6= 1

δ(1− γ)J log
(

C
[(1−γ)J ]

1
1−γ

)
, ψ = 1

(20)

with θ = 1−γ
1− 1

ψ

. The parameter γ > 1 measures the degree of relative risk aversion,

ψ > 0 reflects the elasticity of intertemporal substitution (EIS), and δ > 0 denotes the

time preference rate.15 For θ = 1 (or equivalently ψ = 1/γ), the preferences simplify to

standard time-additive CRRA utility with utility function u(c) = 1
1−γ c

1−γ. For θ < 1 (i.e.

ψ > 1/γ) the agent prefers early resolution of uncertainty and is eager to learn outcomes

of random events before they occur. On the other hand, if θ > 1 (i.e. ψ < 1/γ) the agent

prefers late resolution of uncertainty.

The decision maker chooses an admissible abatement-consumption strategy (α, χ) in or-

der to maximize his utility index Jα,χt at any point in time t ∈ [0,∞). An admissible

strategy must ensure that output, consumption, investment and abatement expenditures

remain positive, i.e. Ct, Ct, It,Aαt ≥ 0 for all t ≥ 0. Furthermore, the abatement policy

14Pindyck (2013) explains this fact as follows: For a higher level of risk aversion, the marginal utility
of consumption declines faster. However, consumption is expected to grow and consequently utility
from future consumption decreases with risk aversion. For a higher level of risk aversion society thus
implements a less stringent abatement policy leading to higher emissions and a higher global temperature.

15Although empirical evidence suggests that γ > 1 is the reasonable specification for the index of
relative risk aversion, it is also possible to define aggregator functions for γ ∈ [0, 1].
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must satisfy (7) and lead to a positive emission control rate. The class of all admissible

abatement-consumption strategies at time t is denoted by At. The indirect utility function

is given by

J(t, c, x, y, τ) = sup
(α,χ)∈At

{Jα,χt | Ct = c,Xt = x, Yt = y, Tt = τ} (21)

We solve the utility maximization problem (21) by applying the dynamic programming

principle. In case of a growth rate impact, the Hamilton-Jacobi-Bellman (HJB) equation

reads

0 = sup
α,χ

{
Jt + c (g(t, χ)− ζdτ − κ(t, εα)) Jc +

1

2
c2σ2

cJcc + y(µy(t)− α)Jy +
1

2
y2σ2

yJyy

− δy(x)yJx +
yητ

y + Y PI

(
µy(t)− α

)
Jτ +

1

2

(
στy

y + Y PI

)2

Jττ +
y2

y + Y PI
ρyτσyστJyτ

+ cyρcyσyσcJcy + cσcρcτ
στy

y + Y PI
Jcτ + πτ (τ)

[
J(t, c, y, τ + θτ )− J

]
+ f(χc, J)

}
.

(22)

Subscripts denote partial derivatives (e.g. Jt = ∂J/∂t). Details on how to solve the HJB

equation can be found in Appendix C. It also contains the corresponding HJB equation

in case of a level impact.

2.5 Social Cost of Carbon

Our model can be used to calculate the social cost of carbon (SCC). Following Nordhaus

and Sztorc (2013) we define the social cost of carbon as the marginal rate of substitution

between carbon dioxide emission and GDP. Formally, the social cost of carbon is given by

SCCt = −∂Jt
∂et

/ ∂Jt
∂Ct

. (23)

Intuitively, the social cost of carbon measures the increase in current GDP that is required

to compensate for economic damages caused by an marginal increase of time-t emissions.

Therefore, SCC can be interpreted as an optimal carbon tax, i.e. the tax that compensates

for the negative external effects from burning carbon.
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Carbon Dioxide Model
Y PI Pre-industrial carbon dioxide concentration 280
Y0 Initial excess carbon dioxide concentration 121
ζe Conversion factor 0.1278
σy Carbon dioxide volatility 0.0078

Climate Model
T0 Current global warming 0.9
ητ Temperature scaling parameter 2.592
στ Temperature volatility 0.1
ρyτ CO2/temperature correlation 0.04

Economic Model
C0 Initial GDP (billion US-$) 75.8
A Productivity 0.113
ϑ Adjustment cost parameter 0.372
σc GDP volatility 0.0162
ρcτ GDP/temperature correlation 0
ρcy GDP/CO2 correlation 0.29
ζd Damage scaling parameter 0.00026

Preferences
δ Time preference rate 0.015
γ Relative risk aversion 10
ψ Elasticity of Intertemporal Substitution 1

Table 1: Benchmark Calibration. This table summarizes the parameters of the benchmark
calibration which is described in Section 3.

3 Calibration

This section provides a detailed calibration of all model components. Table 1 summarizes

the calibration results and serves as our benchmark calibration. This calibration assumes

a growth rate effect of climate change. We choose the year 2015 as starting point of our

model (t = 0).16

3.1 Preferences

In order to disentangle risk aversion from elasticity of intertemporal substitution, we use

recursive preferences. In the literature, there is no consensus on how to choose γ and ψ.

Bansal and Yaron (2004) and Vissing-Joergensen and Attanasio (2003) combine equity

and consumption data and estimate an EIS of 1.5 and a risk aversion in the range between

8 and 10. Many studies that incorporate recursive utility in an IAM follow that literature

16Since DICE starts in 2010 and evolves in steps of 5 years, this assumption simplifies comparisons.
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and use similar parameters.17 On the other hand, Hall (1988), Campbell (1999), Vissing-

Joergenen (2002) estimate an EIS well below one. We thus use ψ = 1 as benchmark.

Our benchmark value for the risk aversion is γ = 10 and the time preference rate is

δ = 0.015 which is a standard assumption in the IAM literature (e.g. in the recent version

of the DICE model by Nordhaus and Sztorc (2013)). In robustness checks, we vary these

parameters.

3.2 Carbon Dioxide Model

The fifth assessment report of the IPCC (2014) provides four stylized climate scenarios

depending on the future evolution of greenhouse gas emissions, referred to as representa-

tive concentration pathways (RCPs). The RCP 8.5 scenario is characterized by high CO2

emissions where the atmospheric concentration is supposed to stabilize at a high level in

the second half of the 23th century.18 Consequently, the RCP 8.5 data is well-suited to

serve as the average BAU scenario for CO2 emissions and concentrations. Notice that all

RCPs are deterministic, i.e. they can only be used to calibrate averages. Therefore, we

use historical data to estimate the randomness of the carbon dioxide concentration.

Carbon Dioxide Dynamics To calibrate (1) and (2), we fix the pre-industrial carbon

dioxide concentration at Y PI = 280 ppm, which is a common assumption in the literature.

Furthermore, in the year 2015 (t = 0) the carbon dioxide concentration was 401 ppm,

which implies Y0 = 121 ppm as starting value for the carbon dioxide process (2). Then

we calibrate the drift µy(t) such that the drift of the average BAU evolution (i.e. α = 0

and σy = 0 in (2)) is close to the drift of the RCP 8.5 scenario that is marked by crosses

in Graph (a) of Figure 2.19 Obviously, RCP 8.5 assumes three different regimes. For the

first 40 years, the drift is virtually flat at a level close to the historical trend. Then the

drift falls to zero over the next 200 years where it remains afterwards. This functional

form of the drift rate can be captured in the following way:

µy(t) = 0.0218 1{t<40} + (at2 + bt+ c) 1{40≤t≤240} (24)

17See e.g. Bansal and Ochoa (2011), Ackerman et al. (2013), Crost and Traeger (2014) and Cai et al.
(2015). Bansal et al. (2014) agree to the value of EIS, but use γ = 5.

18The data is available at http://tntcat.iiasa.ac.at/RcpDb
19We have calculated the drift of the RCP 8.5 scenario by computing the log-returns of the excess

carbon dioxide concentration of two consecutive years.
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Figure 2: Calibration of the Carbon Dioxide Model. The crosses in Graph (a) depict the
implied drift of the evolution of atmospheric carbon dioxide in the RCP 8.5 scenario. The solid
line is our calibration of µy(t). The crosses in Graph (b) depict the evolution of atmospheric
carbon dioxide in the RCP 8.5 scenario. The solid line shows our calibration to that data. The
crosses in Graph (c) depict the emission prognosis in the RCP 8.5 scenario. The solid line shows
our calibration to that data and an extension until 2300.

where a = 3.107 · 10−7, b = −1.963 · 10−4, c = 0.0292. Graph (b) shows that, by applying

(24), our median path simulated using the calibration of µy(t) (solid line) fits the the RCP

8.5 concentration data points (crosses) very well (R2 < 99%). To determine the volatility

of carbon dioxide, we cannot apply the RCP 8.5 data which is deterministic. We thus use

historical carbon dioxide records to estimate this parameter.20 Calculating the standard

deviation of the log changes of Y yields a volatility of σy = 0.0078.

Ecological Budget Constraint In a second step, we calibrate the decay rate of carbon

dioxide δy(Xt) such that the model-implied carbon dioxide emissions (5) match the RCP

8.5 emissions (crosses in Graph (c) of Figure 2). The main issue here is that RCP 8.5

provides concentration data until 2300, but emission data only until 2100. We thus

perform our calibration in two steps: First we use both concentration and emission data

until 2100 and determine the functional form of δy. Here we fix the conversion factor at

ζe = 0.1278 ppm
GtCO2

, which converts emissions into concentrations (see e.g. IPCC (2014) and

the references therein). Then we use this functional form and the concentration data to

20Source: Mauna Loa Observatory, Hawaii. Data available at http://co2now.org/Current-CO2/CO2-
Now/.
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extrapolate the emissions until 2300.

As can be seen from Graph (b), the concentration of RCP 8.5 has an inflection point

around 2100 and remains flat after the year 2240. Consequently, the emissions of RCP

8.5 must be hump-shaped. Since these emissions level off around 2100 in the data (crosses

in Graph (c)), it is reasonable to expect a turning point around that year or shortly after,

although - as noted above - RCP 8.5 is silent about emissions after the year 2100.21 This

is exactly what our extrapolation yields.

The solid line in Graph (c) depicts the fit to that data and our BAU-emission forecast

until 2300. It turns out that the following functional form of the decay rate of carbon

dioxide matches the data well:

δy(x) = aδe
−
(
x−bδ
cδ

)2

where we estimate aδ = 0.0176, bδ = −27.63, cδ = 314.8 (R2 > 99%). Appendix D

describes the technical details. Notice that the presumed evolution of BAU emissions

beyond 2100 is similar to the baseline evolution in DICE. For instance, in the year 2200

DICE predicts 59GtCO2, which is close to 54GtCO2 in our model.

3.3 Climate Model

The calibration of the global warming process (9) is divided into two steps. First, we

calibrate the direct impact of carbon dioxide concentration on global warming (captured

by the continuous part of the model). The drift is calibrated using historical data, whereas

the estimate of the volatility involves data on the transient climate response (TCR). In

a second step, we calibrate the jump size and jump intensity such that the model can

generate the above mentioned feedback effects. Here we use data on the equilibrium

climate sensitivity (ECS).

Direct Impact: Drift and Volatility To estimate the parameter ητ in the drift of

the process, we use historical data on carbon dioxide concentration and global warming.22

Notice that the starting point for our model of the global warming dynamics is (8).

21Therefore, we can merely extrapolate the emissions from 2100 onwards. It is however obvious that
concentration can only flatten out if emissions eventually decrease and reach a low level where natural
sinks can absorb all emissions such that concentration does not increase any more.

22Source: United Kingdom’s national weather service. Global warming data available at
http://www.metoffice.gov.uk/.
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Figure 3: Calibration of the Climate Model. The crosses in Graph (a) depict pairs of
empirical global warming and atmospheric carbon dioxide concentration. The solid line depicts
the regression curve (25). The estimated parameters of the fitted curve is ητ = 2.592. Graph (b)
shows a histogram of the simulated transient climate response. Graph (c) depicts a histogram
of the equilibrium climate sensitivity. The histograms are based on a simulation of 1 million
sample paths.

Therefore, we estimate ητ by running a linear regression of global warming data on log-

carbon dioxide data. Put differently, we calculate

min
ητ

N∑
i=1

[
Ti − ητ log

(
Y Σ
i

Y PI

)]2

. (25)

Here Ti denotes the temperature above the pre-industrial level and Y Σ
i denotes the carbon

dioxide concentration at time ti. Our estimation yields ητ = 2.592. The linear model

performs well with R2 > 0.8. Graph (a) of Figure 3 depicts the data and the estimate.

We also use that data in order to estimate the correlation between carbon dioxide and

global warming. We obtain a correlation parameter ρyτ = 0.04.

To calibrate the diffusion coefficient στ of (9), we use data on a measure called the transient

climate response (TCR). TCR measures the total increase in average global temperature

at the date of carbon dioxide doubling, t2× = inft{t ≥ 0 | Yt = Y PI}. The data comes

from CMIP5.23 They simulate the future climate dynamics and obtain a multimodel

mean (as well as median) of about E[TCR] = 1.8◦ and a 90% confidence interval of

23CMIP5 refers to Coupled Model Intercomparison Project Phase 5. See http://cmip-
pcmdi.llnl.gov/cmip5/ for further information.
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[1.2◦C, 2.4◦C]. This points towards an approximately symmetric distribution for TCR,

which is in line with our Brownian assumption. Further, notice that our above estimate

of ητ leads to a total temperature increase of about ητ log(2) = 1.797 at the relevant

date t2× for TCR. This is also in line with the CMIP5 estimate. Therefore, we are

left with finding στ , which we achieve by using the information about the confidence

interval. The 95%-quantile is 1.65 standard deviations above the mean. This implies a

standard deviation of σTCR = 0.6◦C/1.65 = 0.364◦C. We choose the volatility parameter

στ such that our model fits the distribution of TCR at the time when carbon dioxide is

supposed to double. For this purpose, we estimate the doubling time t2× via Monte Carlo

simulation: We sample 1 million uncontrolled carbon dioxide paths to determine the time

of carbon dioxide doubling. Then, we simulate 1 million global warming paths and choose

the diffusion parameter such that the simulated distribution of TCR matches the above

mentioned quantiles at the time of carbon dioxide doubling (see Graph (b) of Figure 3).24

On average, doubling occurs in 2055. As a result of the calibration, we estimate στ = 0.1

and a small correlation of about ρyτ = 0.04.

Feedback Effects: Jumps In a second step, we calibrate the jump intensity and

size using IPCC estimates for the equilibrium climate sensitivity (ECS). ECS refers to

the change in global temperature that would result from a sustained doubling of the

atmospheric carbon dioxide concentration after the climate system will have found its new

equilibrium. This process is presumably affected by feedback effects kicking in after the

temperature has increased significantly (e.g. the date related to TCR). Since the jump part

in our model captures feedback effects, we use ECS data to estimate the corresponding

parameters. Unfortunately, there is no consensus distribution for ECS because finding

a new equilibrium might take hundreds of years. Summarizing more than 20 scientific

studies, the IPCC (2014) however states that ECS is “likely” in the range of 1.5◦C to 4.5◦C

with a most likely value of about 3◦C.25 Additionally, there is a probability of 5 to 10%

that doubling the carbon dioxide concentration leads to an increase in global temperature

of more than 6◦C, while its extremely unlikely (i.e. less than 5%) that temperature increase

is below 1◦C. These numbers suggest that ECS has a right-skewed distribution which can

be generated by jumps.

We assume that the climate system will find its new equilibrium 100 years after the

carbon dioxide concentration will have doubled. We choose a functional form and an

24Here we set the jump part equal to zero such that the results are not driven by warming feedback
effects. See also the definition of ECS in the next section.

25In the language of IPCC, the word “likely” means with a probability higher than 67%.
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appropriate parametrization for the jump size and jump magnitude such that we can

reproduce the above mentioned mean and quantiles of ECR by running Monte Carlo

simulations. Furthermore, we perform the calibration in such a way that the constructed

distribution for TCR is preserved. The latter is achieved by allowing for very small

negative jumps when the temperature increase is still low. We thus choose the following

parametrization of the climate shock intensity and magnitude:

πτ (τ) =

(
0.95

1 + 2.8e−0.3325τ
− 0.25

)+

,

θτ (τ) = −0.0029τ 2 + 0.0568τ − 0.0577

Notice that we calibrate the jump intensity such that πτ (τ) = 0 for all τ ≤ 0, i.e. there

are no feedback effects if the global temperature is at or below its pre-industrial level.

The simulated ECS distribution is depicted in Graph (c) of Figure 3.

3.4 Economic Model

3.4.1 GDP Growth

We calibrate the growth rate (12) such that our economic model closely matches the

evolution of GDP growth in the latest version of the DICE model.26 Notice that (12)

is the growth rate before abatement and climate damage. Therefore, we simulate DICE

disregarding abatement and climate damage. This yields data points (t1, Ĉ1), . . . , (tn, Ĉn),

which are used to extract the corresponding future GDP growth rates of DICE. It turns

out that these growth rates (before abatement and damages) can be fitted well using the

following functional form:

gDICE(t) = g0 + g1e−δgt (26)

where g0 = 0.005, g1 = 0.029, δg = 0.011, i.e. the growth rate declines at a rate of 1.1%

to its long-term steady-state level of 0.5%. Figure 4 depicts the simulated data points of

the DICE model (crosses) and the fitted values (solid line).

In a second step, we equate (12) with (26) and determine the unknowns in (12). Following

Pindyck and Wang (2013), we fix the productivity at A = 0.113. To separately identify

26Notice that the GDP growth in DICE is calibrated to historical data along with projected future
growth rates of population, production and technology. In order to simplify the comparison with DICE,
we have decided to match the future evolution of world GDP. The DICE model is however deterministic.
So matching means that we match the average evolution in our model to the DICE dynamics.
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Figure 4: Calibration of the GDP Process. The figure depicts GDP forecasts simulated
by the DICE model (crosses) and our median path based on simulations with the estimated
parameters (solid line).

δk(t) and ϑ, we must make an assumption about the consumption rate χ, which is an

endogenous variable. The optimal χ in DICE is pretty stable over time and close to

75%. This is also in line with historical data. Since unit EIS is our benchmark choice,

the optimal consumption rate is a constant. It can be determined from the following

quadratic equation27

δ = χ∗(A− ϑ(1− χ∗)).

Therefore, assuming that the optimal consumption rate of the society is χ∗ = 0.75 we

obtain ϑ = 0.372 leading to

δk(t) = 0.0116− 0.029e−0.011 t.

To determine the volatility of the GDP process, we cannot use the DICE model which is

deterministic. We thus use historical data from the website of the International Monetary

Fund starting in 1960 to estimate this parameter.28 Calculating the standard deviation

of the log returns yields a volatility of σc = 0.0161. Furthermore we obtain the following

correlations with global temperature and carbon dioxide ρcτ = 0 and ρcy = 0.29.

27See the first-order condition (33) in Appendix C. Notice that for unit EIS this first-order condition
does not depend on abatement or climate change. In the robustness section, we study cases where EIS is
not one.

28Available at: https://www.imf.org/external/data.htm
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3.4.2 Abatement Costs

We provide two different calibrations for the abatement cost function κ. The first calibra-

tion relies on the standard abatement cost function used in the latest version of the DICE

model. This specification serves as the benchmark calibration. As a robustness check,

we also provide an alternative calibration. For this purpose, we use a prognosis for the

marginal greenhouse gas abatement costs for the year 2030 provided by McKinsey and

Company (2009, 2010). Appendix E provides details concerning the McKinsey-cost curve

and Section 5.3 analyzes the effects of that calibration.

DICE Abatement Costs Following Nordhaus (2008) and Nordhaus and Sztorc (2013)

we assume that abatement expenditures are proportional to the current level of GDP:

Aαt = Ctθ1(t)(εαt )θ2 (27)

for a constant θ2 > 1 and a time dependent function θ1 that gradually decreases over time.

The decreasing trend in abatement expenditures reflects the widening menu of sustainable

technological alternatives implying that abatement becomes cheaper over time. We adopt

the parametrization from the DICE model and use θ1(t) = 0.05506 exp(−0.0148t)+0.00043

and θ2 = 2.8. Combining (15) and (27) yields the following cost function

κ(t, εαt ) = Aθ1(t)(εαt )θ2 . (28)

3.4.3 Impact of Warming

In order to analyze the impact of warming, we consider a set of possible specifications.

The standard approach in the literature assumes that warming has a direct impact on

the level of GDP via a sufficiently smooth damage function D(T ) with D(0) = 1. Thus,

GDP at time t is Ct = ĈtD(Tt), where Ĉ denotes GDP in the absence of global warming

(shadow GDP). There is however empirical evidence that rather the growth rate of GDP

than the level is affected by global warming. For instance, Dell et al. (2009, 2012) suggest

that economic growth is of the form g(t) − ζdTt. To compare the effects of different

damage types, we implement our model with four different specifications for the impact

of warming. Table 2 summarizes these specifications.
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Specification Calibrated with respect to Parametrization

Level Impact
(L-N) Nordhaus and Sztorc (2013) DN (T ) = 1

1+0.00266T 2

(L-W) Weitzman (2012) DW (T ) = 1
1+(T/20.64)2+(T/6.081)6.754

Growth Impact
(G-N) Nordhaus and Sztorc (2013) ζNd = 0.00026
(G-DJO) Dell et al. (2009) ζDJOd = 0.00137

Table 2: Damage Specifications. The table summarizes the four different damage specifi-
cations that are studied in this paper. Our main results in Section 4 are based on (L-N) and
(G-N). Section 5.4 explores the effects of (L-W) and (G-DJO).

Level Impact The standard damage function in DICE is inverse quadratic. The latest

version uses the parametrization

DN(T ) =
1

1 + 0.00266T 2
,

which we refer to as (L-N) specification. It serves as the benchmark specification for a

level impact in this paper. Nordhaus and Sztorc (2013) calibrate the damage function to

temperature increases between 0◦C to 3◦C. They acknowledge that adjustments might

be needed in case of higher warming. Weitzman (2012) proposes an alternative damage

function that is based on an expert panel study involving 52 experts on climate economics.

His damage function is designed to capture tipping point effects for very high temperature

increases:

DW (T ) =
1

1 + (T/20.64)2 + (T/6.081)6.754
,

which we refert to as (L-W) specification. The two damage functions are very close for

temperatures in the range between 0◦C and 3◦C. From 3◦C onwards, the losses start to

deviate significantly. For instance, for a temperature increase of 6◦C, Nordhaus’ damage

function DN predicts a GDP loss of 9.2% percent, while Weitzman’s specification DW

generates a loss of approximately 50% of GDP.

Growth Rate Impact To compare the effects of level and growth rate impacts, we first

calibrate the growth rate impact such that the GDP dynamics are close to those resulting

from a Nordhaus’ level damage (L-N). We choose the damage parameter ζNd such that

the average GDP losses in the year 2100 coincide for both specifications. Formally, using
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(16) and (17) the following equation implicitly determines ζNd

E
[
e−ζ

N
d

∫ t
0 Tsds+σcŴ

c
t

]
= E

[
eσcŴ

c
tDN(Tt)

]
,

where Ŵ c
t = ρcyW

y
t + ρ̂cτW

τ
t + ρ̂cW

c
t and t denotes the year 2100. We obtain ζNd = 0.00026

and refer to the resulting specification as (G-N). Notice that this parameter is in line with

the calibration of Pindyck (2014). We use the damage specification (G-N) as benchmark

for growth impacts. Unless otherwise stated, all results rely on that specification.

Finally, we provide an alternative calibration that is based on recent damage estimates by

Dell et al. (2009, 2012). These studies use historical data on temperature and precipitation

over 50 years for a panel of 136 countries. Dell et al. (2012) show that temperature has

a significant impact on GDP growth rates, but currently only for poor countries.29 They

find a growth reduction of 1.1 percentage points for each 1◦C increase in temperature

in these countries. Dell et al. (2009) estimate a model for which the growth effect can

be decomposed into a transitory short-term impact and a permanent long-term impact.

They find a long-term reduction of 0.51 percentage points of GDP growth for each 1◦C,

but again only in poor countries. Following Pindyck (2012), “poor countries” account

for 26.9% of world GDP. Therefore, the world-wide long-term growth effect is ζDJOd =

0.269 × 0.0051 = 0.00137, which we refer to as (G-DJO). This calibration suggests that

the impact of warming on economic growth is five times larger than in (G-N). Burke et al.

(2015) support this view that future climate damages could be many times larger than

leading models predict.

4 Main Results

This section presents our main results for the model introduced in Section 2. In particular,

we determine the optimal abatement policy, its costs, the evolution of real GDP as well as

the evolution of the carbon dioxide concentration and global average temperature changes

over the next 100 years. Unless otherwise stated, we use our benchmark calibration from

Section 3 that is summarized in Table 1.
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Figure 5: Benchmark Results. Based on the benchmark calibration summarized in Table 1,
the graphs depict our benchmark results for the damage specification (G-N). Median optimal
paths are depicted by solid lines and median BAU paths by dotted lines. Dashed lines show the
5% and 95% quantiles of the optimal solution. Graph (a) depicts the carbon dioxide concentra-
tion in the atmosphere, (b) world GDP, (c) changes in global temperature, (d) carbon dioxide
emissions and the optimal emission control rate (dash-dotted line).

4.1 Benchmark Results

For for the damage specification (G-N), Figure 5 depicts the median evolutions of the key

variables over the next 100 years if the optimal emission control rate is applied (dashed

dotted line in Graph (d)). The graphs show carbon dioxide concentration, GDP growth,

global temperature change and optimally controlled emission. To show the variation

around the median, we also report the corresponding 5% and 95% quantiles (dashed

lines depict). Furthermore, the dotted lines show the BAU median evolutions of all key

variables.

Graph (a) illustrates that by following the optimal abatement policy the median carbon

dioxide concentration peaks at the end of this century. From this point onwards, the decay

capacity of natural carbon dioxide sinks such as oceans and forests exceeds anthropological

emissions, and thus the carbon concentration declines. Furthermore, following the optimal

29The notion “poor” is defined as having below-median PPP-adjusted per capita GDP.
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Model 2015 2035 2055 2075 2095 2115 2150 2200

(G-N) GDP [trillion $] 75.8 138.9 228.9 345.4 483.7 637.1 941.8 1435.6
SCC [$/tCO2] 11.12 21.75 50.67 102.52 171.21 225.10 254.12 353.25
Abatement Costs [trillion $] 0.01 0.11 0.59 2.02 4.58 6.87 7.11 5.72
Emission Control Rate 0.12 0.24 0.41 0.61 0.82 0.95 1 1
Temperature rise [◦C] 0.9 1.3 1.7 2.1 2.4 2.5 2.7 3.1

(L-N) GDP [trillion $] 75.8 139.3 230.4 348.7 490.2 652.7 988.0 1558.3
SCC [$/tCO2] 10.63 24.23 58.37 116.84 183.03 221.77 254.70 376.68
Abatement Costs [trillion $] 0.01 0.12 0.73 2.41 4.98 6.69 6.99 6.00
Emission Control Rate 0.22 0.25 0.44 0.65 0.83 0.93 1 1
Temperature rise [◦C] 0.9 1.3 1.7 2.0 2.3 2.4 2.5 2.9

Table 3: Median Results for Level vs. Growth Impact. The table reports the median
evolution of selected variables for the growth rate (G-N) and level (L-N) impact.

abatement strategy leads to a median increase in world temperature of 2.4◦C by the year

2100, which can be seen in Graph (c). There is however a significant risk for a larger

increase in global temperature triggered by climate feedback loops. For instance, the

95th percentile path of the global temperature change reaches 3.3◦C by the year 2100.

Graph (b) shows that the negative effect of global warming leads to a decline in GDP

growth. This is so for the optimal as well as the BAU scenario. Initially, implementing

the optimal policy reduces GDP growth slightly more than sticking to BAU (α = 0).

Implementing the optimal policy will reduce GDP growth moderately, such that GDP

growth in the BAU case is slightly bigger than in the benchmark case. From the year

2115 onwards, the median of the optimal GDP growth rate exceeds the BAU growth rate

since abatement expenditures start to generate steady GDP growth. Most importantly,

the decline in growth is significantly dampened if the optimal policy is implemented and

the growth rate starts to bounce back around 2115.

4.2 Level vs. Growth Rate Effect

Table 3 and Figure 6 compare the evolutions of key state variables for the growth and

level damage specifications (G-N) and (L-N). Both models behave similarly until the end

of this century. This is not surprising as we calibrated the growth rate impact (G-N)

such that the BAU evolution of world GDP until 2100 it is close to the one in (L-N).

However, there are two main differences between these evolutions. First, although the

optimally controlled outputs in models (G-N) and (L-N) are similar until 2115, they

diverge significantly in later years such as 2200 where the median output is almost 9%

smaller in the model with growth impact. Second, the variation of global temperature in

(G-N) is much higher than in (L-N), while the variability of emissions and concentrations
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Figure 6: Level vs. Growth Damages. Based on the calibrations of Section 3, the graphs
depict our results for the damage specifications (L-N) (left column) and the benchmark spec-
ification (G-N) (right column). Optimal paths are depicted by solid lines and BAU paths by
dotted lines. Dashed lines show 5% and 95% quantiles of the optimal solution. Graphs (a) and
(b) deptict the evolution of world GDP, (c) and (d) the carbon dioxide concentration, (e) and
(f) changes in global temperature, (g) and (h) carbon dioxide emissions and the median optimal
emission control rate (dash-dotted line), (i) and (j) the optimal social cost of carbon.
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is lower.

Table 3 reports these results for both damage specifications. Notice that for a level

impact damages are directly related to the current temperature, whereas for a growth rate

impact damages depend on the whole temperature path so that the weight of the current

temperature is much smaller and the damaging effects of high temperatures are delayed.

Therefore, the abatement policy in (L-N) is slightly more stringent on average, but far

more stringent for high temperatures. This implies a higher variability in carbon dioxide

emissions and concentrations, but a lower variability in global temperature compared to

(G-N). It also leads to a higher median output for (L-N), since more rigorous abatement

policies tend to avoid economic damages more effectively.

Our analysis confirms and extends the results in Pindyck (2012). He shows in a static

model that the willingness to pay30 for keeping global warming below a certain threshold

is higher for level damages than for growth damages, a finding that is in line with our

results. However, Pindyck (2012) also states that there are no substantial differences

between the two models. Our findings challenge this conclusion. First, output levels

are significantly different in the year 2200, which is reported in Table 3. Second, the

optimal emission path depends strongly on both the current state of the climate system

and the damage specification. For instance by 2095, the 95% quantile of temperature is

3.1 (2.6) ◦C in the model with growth (level) impact leading to optimal carbon dioxide

emissions of 19 (0) GtCO2.

4.3 Comparison with DICE

This subsection compares our benchmark results with those obtained in the latest ver-

sion of DICE. In particular, we compare the optimal social cost of carbon to Nordhaus’

calculations. Nordhaus estimates the social cost of carbon in 2015 to be 19.6 dollars (ex-

pressed in 2005-dollars per ton of carbon dioxide). He uses a CRRA utility function with

γ = 1.45 (ψ = 1/γ). By contrast, we use recursive preferences with γ = 10 and ψ = 1.

The starting value of the social cost of carbon in our model is lower than estimated in

the latest version of DICE. In our model, however, society optimally anticipates environ-

mental shocks and adjusts both, the optimal abatement rate and the consumption rate.

Along a path with high optimal abatement (as a response to high temperatures), the

corresponding SCC values are significantly larger than estimated in DICE. It is important

30The willingness to pay is defined as the percentage of output that society is willing to sacrifice to
keep the temperatures below a specified threshold.
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Abatement
Policy 2015 2035 2055 2075 2095 2115 2150 2200

Optimal GDP [trillion $] (5% quantile) 75.8 124.1 195.4 284.7 386.8 501.4 724.7 1083.6
GDP [trillion $] (median) 75.8 139.3 230.4 348.7 490.2 652.7 988.0 1558.3
GDP [trillion $] (95% quantile) 75.8 156.5 272.1 428.0 620.7 852.6 1351.0 2244.8
Temperature rise (5% quantile) [◦C] 0.9 1.0 1.3 1.6 1.8 1.9 1.9 1.8
Temperature rise (median) [◦C] 0.9 1.3 1.7 2.1 2.4 2.5 2.7 3.1
Temperature rise (95% quantile) [◦C] 0.9 1.5 2.0 2.4 2.6 2.9 3.4 4.9
Abatement Costs [trillion $] 0.01 0.12 0.73 2.41 4.98 6.69 6.99 6.00
Emission Control Rate 0.22 0.25 0.44 0.65 0.83 0.93 1 1

DICE GDP [trillion $] (5% quantile) 75.8 123.9 195.1 284.6 389.3 501.9 721.9 1061.4
GDP [trillion $] (median) 75.8 139.1 229.9 348.4 491.3 652.1 979.9 1536.2
GDP [trillion $] (95% quantile) 75.8 156.3 271.4 427.5 620.9 850.2 1335.9 2213.3
Temperature rise (5% quantile) [◦C] 0.9 1.0 1.2 1.4 1.4 1.2 0.9 0.6
Temperature rise (median) [◦C] 0.9 1.2 1.6 1.9 2.2 2.4 2.2 2.2
Temperature rise (95% quantile) [◦C] 0.9 1.5 2.0 2.6 3.1 3.5 4.4 6.4
Abatement Costs [trillion $] 0.05 0.24 0.82 2.20 4.91 8.45 7.74 6.13
Emission Control Rate 0.20 0.32 0.54 0.62 0.81 1 1 1

Table 4: Optimal vs. DICE Abatement Policy for Level Impact. The table summarizes
the simulation results obtained by running our model (L-N) with the optimal abatement policy
and with the DICE abatement policy.

to mention that DICE is formulated in a purely deterministic setting. In particular the

temperature dynamics are calibrated to expected environmental outcomes, but do not

take the uncertainty immanent in the climate system into account.

To analyze these points, we run our model with the optimal abatement policy obtained

from DICE. Notice that following this policy is suboptimal in our model. The simula-

tion results are summarized in Table 4. It turns out that the DICE abatement policy is

more stringent than the median optimal policy. This leads to significant welfare losses,

since the benefits of the DICE policy are lower than their abatement costs. Additionally,

the DICE abatement policy is insensitive to unexpected variations in temperature, since

it is determined in a deterministic model. By contrast, the optimal abatement policy

anticipates climate shocks and reacts to high temperatures by tightening the abatement

activities. This raises the social cost of carbon beyond the optimal value suggested by

DICE. Conversely, along paths with low abatement, society raises consumption and SCC

values are smaller. In contrast to the outcomes of following the (suboptimal) DICE pol-

icy, the variation of optimally controlled global temperatures and in turn the variation of

climate damages is significantly smaller, while the variation of emissions is much higher.
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γ
ψ 1 2 5 10 15

0.5 5.58 (5.75) 5.61 (5.80) 5.72 (5.98) 5.93 (6.34) 6.16 (6.79)
1 10.80 (9.25) 10.83 (9.38) 10.94 (9.82) 11.12 (10.63) 11.29 (11.59)
2 16.16 (12.55) 16.16 (12.71) 16.13 (13.24) 16.05 (14.24) 15.90 (15.41)

Table 5: Sensitivity Analysis for Risk Aversion and EIS. The table shows the SCC
[$/tCO2] in 2015 for different values of γ and ψ. The results are calculated using the (G-N)
damage specification. The numbers in brackets are the corresponding results for the (L-N)
specification.

5 Robustness Checks

This section presents robustness checks for different preference parameters as well as

different specifications of the cost function. Stanton et al. (2009) and Pindyck (2013),

among others, argue that these factors have a crucial effect on the abatement policy. We

discuss the main drivers of the abatement demand and examine the effect of randomness

on this demand. Unless otherwise stated, we use the damage specification (G-N).

5.1 Preference Parameters

Elasticity of Intertemporal Substitution We first consider the effect of varying the

elasticity of intertemporal substitution, ψ ∈ {0.5, 1, 2}. Figure 7 and Table 5 present the

results.31 It turns out that the optimal abatement policy and the social cost of carbon

strongly depend on the chosen level of EIS.32 For a high level of EIS, society is willing to

accept less smooth consumption streams. Consequently, it implements a more rigorous

abatement policy, which raises the SCC. The opposite is true for a low level of EIS.

Risk Aversion The effect of varying the degree of relative risk aversion is less pro-

nounced. Our results confirm the findings of Ackerman et al. (2013) and Crost and

Traeger (2014) that risk aversion has a much smaller effect than EIS on the optimal

31For our benchmark choice of unit EIS, Section 3.4 calibrates ϑ in order to match a consumption rate
of 75%. For non-unit EIS the consumption rate is not constant, but (moderately) state-dependent. If
we keep ϑ at 0.372, then for an EIS of 0.5(2) we obtain a consumption rate in the range of 76%(72%)
and 82%(74%). If we choose ϑ to be 0.32(0.4) for an EIS of 0.5(2), then the consumption rate is in the
range of 72%(74%) and 79%(76%), which is well in line with the historical range of 72% and 78%. More
importantly, the SCC for the different choices of ϑ are almost identical.

32This is in line with the findings of Cai et al. (2015). The results are however less sensitive than
reported in Bansal et al. (2014).
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Figure 7: Sensitivity Analysis for EIS. The graphs show the median paths of the key
variables for different levels of EIS, ψ ∈ {0.5, 1, 2}. Median optimal paths are depicted by solid
lines and median BAU paths by dotted lines. The benchmark scenario (ψ = 1) is depicted
by black lines. Grey lines depict the case ψ = 0.5 and light lines ψ = 2. Graph (a) shows
the carbon dioxide concentrations, (b) median GDP growth rates, (c) median changes in global
temperature, (d) carbon dioxide emissions and the optimal emission control rates (dash-dotted
lines).

abatement decision and in turn the SCC.33 It is negligible in a model with growth rate

impact (G-N) and slightly more pronounced with a level impact (L-N). These findings

complement the results of Section 4.2: Since the damaging effects in (L-N) are more

volatile than in (G-N), risk aversion plays a more important role for a level impact.

Comparison with Standard Preference Choices We now compare our benchmark

preference structure with two specifications that are standard in the literature. First, we

consider a time-additive CRRA utility function with a risk aversion parameter of γ = 1.45

and time preference rate of δ = 1.5%. This utility specification is used as benchmark

33Crost and Traeger (2014) point out that most integrated assessment models are formulated for a
CRRA decision maker with ψ = 1/γ. Since risk aversion plays an inferior role for the social cost of carbon
and the optimal abatement policy, it is important to calibrate the entangled preference parameters to
match EIS, rather than risk aversion. Especially for deterministic models, where risk aversion is in fact
irrelevant, this might lead to significant changes in the optimal abatement policies.
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Figure 8: Sensitivity Analysis for the Preferences. The graphs show the median paths of
the key variables for different preference specifications. Median optimal paths are depicted by
solid lines and median BAU paths by dotted lines. The benchmark scenario is depicted by black
lines. Grey lines show the DICE preference structure and light lines represent Stern discounting.
Graph (a) shows the carbon dioxide concentrations in the atmosphere, (b) median GDP growth
rates, (c) median changes in global temperature, (d) carbon dioxide emissions and the optimal
emission control rates (dash-dotted lines).

specification in DICE. Earlier versions and other models use similar CRRA specifications.34

Second, we simulate our model using a log-utility function (ψ = γ = 1) with a very low

discount rate (δ = 0.1%). Pindyck (2013), among others, argues that optimal abatement

policies crucially depend on the time preference rate. In general, there is a lot of debate

about this parameter in the IAM literature. This is because time preferences put implicitly

weights on the current and future generations: A higher value puts more weight on the

current generation, whereas a lower value shifts some of this weight to future generations.

A tension arises since the current generation is not as severely affected by the climate

change as the future generations, but must today decide upon an optimal abatement

policy and pay for it. Of course, more stringent actions reduce current consumption, but

have far reaching consequences for future generations who might benefit the most. We

refer to the very low discount rate of δ = 0.1% in combination with log-utility as Stern

34See e.g. Nordhaus (2008), Pindyck (2012), Ackerman et al. (2011), among many others.
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Preferences 2015 2035 2055 2075 2095 2115 2150 2200

Benchmark 11.12 21.75 50.67 102.52 171.21 225.10 254.12 353.25
DICE 7.67 14.03 35.15 77.01 137.83 201.57 243.49 324.95
Stern 38.11 77.30 139.02 185.47 208.60 223.44 250.53 377.84

Table 6: SCC for Different Preference Specifications. The table compares the SCC
[$/tCO2] for different preference specifications. The results are generated using the (G-N) dam-
age specification. DICE preferences are γ = 1.45, ψ = 1/γ, δ = 1.5%. Stern refers to γ = 1,
ψ = 1, δ = 0.1%.

discounting since Stern (2007) suggests this preference structure. Intuitively, with such

a low rate of time preference, real interest rates are lower and, in turn, the social cost of

carbon is higher. This also implies that society implements a very stringent abatement

policy.

Table 6 and Figure 8 summarizes our findings on how the preference structure affects our

results. With the standard DICE preference structure, both risk aversion and EIS are lower

which leads to a moderate abatement policy. The resulting evolution of median global

warming is in line with the results presented in Nordhaus and Sztorc (2013) although the

SCC is significantly smaller. Stern discounting yields a very stringent abatement policy

and a high social cost of carbon. Following this policy reduces carbon dioxide emissions

so that the median temperature increase peaks by the end of this century at 1.5◦C.

Additionally, climate variability is significantly dampened (not shown in the figure).

5.2 Influence of Diffusive Shocks

Table 7 shows how the SCC in the year 2015 changes if the diffusion parameters of output

and temperature, σc and στ , are varied. It turns out that the volatility σc of economic

shocks has a negligible effect on the current SCC. On the other hand, the effect of στ

is significant, since high variation in temperature amplifies the risk of ending up in a

feedback loop during which temperature increases heavily.35 This is because the jump

intensity increases in temperature. Therefore, society tries to avoid feedback loops by

implementing a more rigorous abatement policy. Since Table 7 reports the SCC for both

the level impact (L-N) and the growth rate impact (G-N), it can also be seen that the

SCC are more sensitive for the level impact. This confirms our results in Section 4.2.

35In robustness checks not reported here, we have run the model without the jump process. Then the
effect of στ is also negligible.
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σc 0 0.0162 0.0324
SCC 11.10 (10.61) 11.12 (10.63) 11.13 (10.65)

στ 0 0.1 0.2
SCC 10.14 (7.44) 11.12 (10.63) 12.34 (17.47)

Table 7: SCC for Different Volatility Parameters. The table compares the SCC [$/tCO2]
for different volatility parameters (zero, benchmark, benchmark doubled) for the (G-N) and (L-
N) damage specification. The results of the (L-N) specification are in brackets.

5.3 Alternative Abatement Costs

We now study the effects of using an alternative cost function κ. Instead of the bench-

mark specification, we derive an abatement cost function using the prognosis for the

marginal greenhouse gas abatement costs for the year 2030 provided by McKinsey and

Company (2009, 2010). Appendix E describes the data and our calibration procedure.

As a result of the calibration, we obtain the following parametrization of (28): θ1(t) =

0.0443 exp(−0.0148t) + 0.00043 and θ2 = 3.186. Notice that the calibration based on the

McKinsey prognosis makes abatement slightly cheaper than in DICE since θ1 is smaller.

Figure 9 depicts the median results for both cost specifications and (G-N).36 It turns out

that the results are similar. Implementing the McKinsey specification, slightly raises the

optimal abatement policy leading to lower carbon dioxide concentrations and tempera-

tures compared to the benchmark case. Therefore, net GDP growth is slightly higher and

the SCC in the year 2015 is reduced from $11.12 to $10.05. Notice that by the end of this

century, the optimal abatement activity becomes higher for the DICE cost function. This

is because for high emission control rates the marginal costs of the McKinsey calibration

are higher than for DICE since θ2 is higher (3.186 instead of 2.8). In turn, the marginal

benefits from abatement are lower when control rates are high.

5.4 Alternative Damage Specifications

This subsection studies the impact of alternative damage specifications. We consider the

models (L-W) and (G-DJO), which are described in Section 3.4. Since both specifications

predict economic damages that are significantly more severe than in the cases (G-N) and

(L-N), we use a moderate risk aversion of γ = 1 so that society has log-utility (γ = ψ = 1).

For γ = 10 the thread of serious economic damages induces a radical abatement policy

36The results for (L-N) are similar and available from the authors upon request.
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Figure 9: Sensitivity Analysis for the Cost Function. The graphs show the median
paths of the key variables for different specifications of the cost function. Median optimal paths
are depicted by solid lines and median BAU paths by dotted lines. The benchmark scenario is
depicted by black lines. Grey lines show the results using McKinsey abatement costs. Graph
(a) shows the carbon dioxide concentrations, (b) median GDP growth rates, (c) median changes
in global temperature, (d) carbon dioxide emissions and the optimal emission control rates
(dash-dotted lines).

where society essentially stops emitting carbon dioxide almost immediately.37 Figure 10

compares the results for the two scenarios. Of course the abatement activities are much

more stringent compared to the benchmark models. For the level impact (L-W), society

reduces carbon dioxide emissions rigorously. This keeps temperature at a low level and

leads to tight quantiles as can be seen from Graph (e). Therefore, most of the damaging

effects of climate change can be avoided resulting in steady economic growth. Notice that

the BAU path of GDP is significantly lower than the optimally controlled path.

Comparing the growth rate impact (G-DJO) to our benchmark (G-N) shows that optimal

carbon dioxide emissions and concentrations have a higher variation since society reacts

more drastically to changes in temperature. This results in a lower variation of economic

damages and in steady economic growth (see Graph (b)).

37In robustness checks available from the authors upon request, we analyze the effect of varying risk
aversion in the models (L-W) and (G-DJO). It turns out that for those damage specifications the risk
aversion has a significant positive impact on the optimal abatement policy.
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Figure 10: Sensitivity Analysis for Damage Preferences The graphs depict our results
for the damage specifications (L-W) (left column) and (G-DJO) (right column). Optimal paths
are depicted by solid lines and BAU paths by dotted lines. Dashed lines show 5% and 95%
quantiles of the optimal solution. Graphs (a) and (b) show the evolution of world GDP, (c) and
(d) the carbon dioxide concentration in the atmosphere, (e) and (f) median changes in global
temperature, (g) and (h) carbon dioxide emissions and the median optimal emission control rate
(dash-dotted line), (i) and (j) the optimal social cost of carbon.
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6 Conclusion

This paper studies a flexible dynamic stochastic equilibrium model for optimal carbon

abatement. All key variables such as carbon concentration, global temperature and world

GDP are modeled as stochastic processes. Therefore, we can determine state-dependent

optimal policies and provide model-based confidence bands for all our results. We perform

a sophisticated calibration of all three model components (carbon concentration, global

temperature, economy). In particular, we match the future distributions of transient

climate response (TCR) and equilibrium climate sensitivity (ECS) from the report of the

IPCC (2014).

Our model has several empirically relevant features that are of growing interest in the

literature. First, since the relevant key variables are stochastic, the social cost of carbon

is itself a stochastic process. We show that it is highly state dependent and increasing in

temperature. This also implies that solutions determined in deterministic models are less

informative for policy makers. Second, our model is able to incorporate several different

specifications for the impact of climate change on the economy. We run our model with

both, growth and level impact and compare the results. If the damage specification is

moderate and close to DICE, then the median results are similar for a level and growth

rate impact. However, a level impact induces a high variation in optimal carbon dioxide

emissions. On the other hand, a growth rate impact leads to a less state-dependent

abatement policy and hence a low variation in emissions. If the impact is calibrated

according to recent estimates that are based either on expert opinion as collected by

Weitzman (2012) or on historical climate data as in Dell et al. (2009, 2012), then the

social cost of carbon is considerably higher, the abatement policy is much more stringent,

and optimal emissions are more volatile. Third, using recursive preferences allows us to

disentangle risk aversion from elasticity of intertemporal substitution. It turns out that

the risk aversion has a smaller effect than the elasticity of intertemporal substitution.

For a model with a growth rate impact of climate change, the effect of risk aversion is

negligible unless drastic specifications of the economic damages induced by climate change

are used.
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A Global Warming Process

The starting point for our climate model is the empirically well-documented logarithmic

relationship between global warming and atmospheric carbon dioxide concentrations (see

IPCC (2014)). A deterministic description of this relation is (8). Applying Ito’s lemma

to (8) and using (2) implies

dTt =
Ytητ
Y Σ
t

(
µy(t)− αt −

1

2

Yt
Y Σ
t

σ2
y

)
dt+

Ytητ
Y Σ
t

σydW
y
t . (29)

Notice that σy is empirically negligible. In Section 3.2, we use historical carbon dioxide

data and estimate σy = 0.0078. This implies
∣∣ − 1

2
Yt
Y Σ
t
σ2
y

∣∣ ≤ 3 · 10−5, so that the term

−1
2
Yt
Y Σ
t
σ2
y is close to zero. In the sequel, we thus drop this term.

Empirically, the relation between the temperature increase and carbon dioxide concen-

tration is not deterministic (as assumed in (8)), but noisy. This calls for an additional

modification wherefore we add two additional sources of randomness: First, we allow the

temperature to be driven by a Brownian shock that is not necessarily perfectly correlated

with W y and that potentially induces more noise than the shock in (29), which is in

line with empirical evidence. The latter means that we replace the diffusion parameter

σy by στ . Second, there is empirical evidence that the distribution of future tempera-

ture changes is right-skewed (see IPCC (2014)) as a response to delayed climate feedback

loops climate feedback loops. Therefore, we add a self-exciting process captures the idea

of feedback loops. We thus arrive at (9).

B Production Technology

Following Pindyck and Wang (2013), among others, we assume that the output C is

generated by an AK-production technology

C = AK, (30)

where K denotes the capital stock, which is the only factor of production. The parameter

A denotes its productivity that is assumed to be constant. In this specification, K is the

total stock of capital including physical, human, and firm-specific intangible capital. Fol-

lowing Nordhaus (2008), we assume that output can be used for investment I, abatement
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expenditures A and consumption C, i.e. the restriction (13) holds

C = C + I +A.

To express these values relative to output, we use the notation χ = C
C

for the consumption

rate, ν = I
C

for the investment rate and κ = A
C

for the relative abatement expenditures.

Therefore,

1 = χ+ ν + κ.

In a setting with growth rate impact, the dynamics of the capital stock are assumed to

follow

dKt =
(
It − δk(t)Kt − Φ(νt,κt, Kt)− ζdTtKt

)
dt+ σkKtdW

k
t

= Kt

[(
Aνt − δk(t)− φ(νt + κt)− ζdTt

)
dt+ σkdW

k
t

]
,

where the costs Φ(ν,κ, K) of investment or abatement are homogenous of degree one:38

Φ(ν,κ, K) = φ(ν + κ)K.

In the sequel, we assume that the cost function φ is quadratic, i.e. φ(1−χ) = 0.5ϑ(1−χ)2.

Capital grows due to investments I. The combined effect that physical capital depreciates

and human capital appreciates is captured by the (time-dependent) rate δk. Finally,

capital is affected by economic shocks modeled by a Brownian motion W k that can be

correlated with W τ and W y. By (30), the output dynamics are then given by

dCt = Ct
[(
A(1− χt)− δk(t)− φ(1− χt)− ζdTt

)
dt+ σkdW

k
t − Aκtdt

]
.

Comparing these dynamics with (14) and (18) yields (12) and

κ = Aκ

Therefore, (15) follows.

For the specification with level impact, we can repeat the same steps as above, but replace

all economic variables by the corresponding shadow variables (e.g. C by Ĉ). Using Ct =

ĈtDt, It = ÎtDt and At = ÂtDt implies χ̂ = χ and κ̂ = κ, and hence (15) follows.39

38The homogeneity assumption is widely used in the literature; see e.g. Pindyck and Wang (2013),
Hayashi (1982) and Jermann (1998).

39A detailed derivation is available from the authors upon request.
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C Solution Method

The optimization problem (21) cannot be solved explicitly. Therefore, we apply a numer-

ical approach similar as in Munk and Sørensen (2010). This appendix summarizes how

the problem can be solved numerically.

C.1 Hamilton-Jacobi-Bellman Equation

This appendix deals with the HJB equation (22) that involves a growth rate impact. The

corresponding HJB equation for a level impact can be found in Section C.3. First, we

establish the following separation result:

Lemma C.1. The indirect utility function of the optimization problem (21) has the form

J(t, c, x, y, τ) =
1

1− γ
c1−γF (t, x, y, τ), (31)

where F solves the simplified HJB equation

0 = sup
α,χ

{
Ft + y

[
µy(t)− α + (1− γ)σcσyρcy

]
Fy +

1

2
y2σ2

yFyy + δy(x)yFx (32)

+
yητ

y + Y PI

[
µy(t)− α + (1− γ)ρcτσcστ

]
Fτ +

1

2

(
yστ

y + Y PI

)2

Fττ

+
y2

y + Y PI
ρyτσyστFyτ + (1− γ)

[
g(t, χ)− ζdτ − κ(t, εα)− 1

2
γσ2

c −
δ

1− 1/ψ

]
F

+πτ (τ)
[
F (t, y, τ + θτ (τ))− F

]
+ δθχ1−1/ψF 1−1/θ

}
,

The optimal abatement strategy is given by

α∗t = κα(t, y, ·)−1

(
yFy + yητ

y+Y PIFτ

(γ − 1)F

)
,

and the optimal consumption rate satisfies

δ(χ∗t )
−1/ψF−1/θ = − ∂

∂χ
g(t, χ∗). (33)

Proof. Substituting the conjecture into the HJB equation yields the simplified HJB equa-

tion (32). The representations of the optimal controls are then obtained by calculating

the first-order conditions. 2
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The HJB equation cannot be simplified further. Therefore, we have to determine F by

solving equation (32) numerically. First, we consider a simplified problem where the

capacity of natural sinks is assumed to be unconstrained, i.e. the decay rate of carbon

dioxide is assumed to be constant at δy = δy(0). This provisional assumption makes the

state variable X redundant and significantly simplifies the solution algorithm. In a second

step, we address the general case.

C.2 Numerical Solution Approach

Basic Idea We use a grid based solution approach to solve the non-linear PDE. We

discretize the (t, y, τ)-space using an equally spaced lattice. Its grid points are defined by

{(tn, yi, τj) | n = 0, · · · ,Mt, i = 0, · · · ,My, j = 0, · · · ,Mτ},

where tn = n∆t, yi = i∆y, and τj = j∆τ for some fixed grid size parameters ∆t, ∆y, and

∆τ that denote the distances between two grid points. The parameters Mτ and My are

chosen sufficiently large such that it is very unlikely that these boundaries are reached

within the given time horizon. In the sequel, Fn,i,j denotes the approximated indirect

utility function at the grid point (tn, yi, τj) and αn,i,j refers to the corresponding optimal

abatement policy. We apply an implicit finite difference scheme.

Terminal Condition Since the optimization problem (21) has an infinite time horizon,

we must transform it into a problem with a finite horizon. Therefore, we approximate the

indirect utility function at some point tmax = Mt∆t in the distant future – we choose the

year 2500 – by the solution of a similar problem where the world is in a steady state: We

assume that from time tmax onwards the emission control rate is one, i.e. anthropological

carbon dioxide emissions are zero. To approximate the indirect utility function at the

grid point (tmax, yi, τj), we simulate sample paths for further 500 years and determine the

utility index (19).

Finite Differences Approach In this paragraph, we describe the numerical solution

approach in more detail. We adapt the numerical solution approach used by Munk and

Sørensen (2010).

The numerical procedure works as follows. At any point in time, we make a conjecture

for the optimal abatement policy α∗n,i,j. A good guess is the value at the previous grid
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point since the abatement strategy varies only slightly over a small time interval, i.e. we

set α∗n,i,j = αn+1,i,j. Substituting this guess into the HJB equation yields a semi-linear

PDE:

0 = Ft +K1F
1− 1

θ +K2F +K3Fy +K4Fyy +K5Fτ +K6Fττ +K7Fτy + πτF (t, c, τ + θτ )

with state dependent coefficients Ki = Ki(t, y, τ). Due to the implicit approach, we ap-

proximate the time derivative by forward finite differences. In the approximation, we use

the so-called ’up-wind‘ scheme that stabilizes the finite differences approach. Therefore,

the relevant finite differences at the grid point (n, i, j) are given by

D+
y Fn,i,j =

Fn,i+1,j − Fn,i,j
∆c

, D−y Fn,i,j =
Fn,i,j − Fn,i−1,j

∆c

,

D+
τ Fn,i,j =

Fn,i,j+1 − Fn,i,j
∆τ

, D−τ Fn,i,j =
Fn,i,j − Fn,i,j−1

∆τ

,

D2
yyFn,i,j =

Fn,i+1,j − 2Fn,i,j + Fn,i−1,j

∆2
c

, D2
ττFn,i,j =

Fn,i,j+1 − 2Fn,i,j + Fn,i,j−1

∆2
τ

D+
t Fn,i,j =

Fn+1,i,j − Fn,i,j
∆t

, D2
τyFn,i,j =

Fn,i,j+1 − Fn,i−1,j+1 − Fn,i+1,j−1 + Fn,i−1,j−1

4∆τ∆y

.

We approximate the jump terms via linear interpolation between the closest grid points:

F (t, y, τ + θτ ) = kτ1Fn,i,j+θ̂τ1
+ kτ2Fn,i,j+θ̂τ2

,

where θ̂τ1 and θ̂τ2 denote the closest grid points of τ + θτ . The variables kτ · denote the

weights resulting from linear interpolation. Substituting these expressions into the PDE

above yields the following semi-linear equation for the grid point (tn, yi, τj)

Fn+1,i,j
1

∆t

= Fn,i,j

[
−K2 +

1

∆t

+ abs

(
K3

∆y

)
+ abs

(
K5

∆τ

)
+ 2

K4

∆2
y

+ 2
K6

∆2
τ

]
+ Fn,i−1,j

[
K−3
∆y

− K4

∆2
y

]
+ Fn,i+1,j

[
−K

+
3

∆y

− K4

∆2
y

]
+ Fn,i,j−1

[
K−5
∆τ

− K6

∆2
τ

]
+ Fn,i,j+1

[
−K

+
5

∆τ

− K6

∆2
τ

]
+ Fn,i−1,j+1

K7

4∆τ∆y

+ Fn,i+1,j−1
K7

4∆τ∆y

− Fn,i+1,j+1
K7

4∆τ∆y

− Fn,i−1,j−1
K7

4∆τ∆y

+ πτ (kτ1Fn,i,j+θ̂τ1
+ kτ2Fn,i,j+θ̂τ2

)−K1F
1− 1

θ
n,i,j .

Therefore, for a fixed point in time each grid point is determined by a non-linear equation.
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This results in a non-linear system of (My + 1)(Mτ + 1) equations that can be solved for

the vector

Fn = (Fn,1,1, · · · , Fn,1,Mτ , Fn,2,1, · · · , Fn,2,Mτ , · · · , Fn,My ,1, · · · , Fn,My ,Mτ ).

Notice that in case of CRRA utility the system becomes linear. Using this solution we

update our conjecture for the optimal abatement policy at the current point in the time

dimension. We apply the first-order condition (C.1) and finite difference approximations of

the corresponding derivatives. In the interior of the grid, we use centered finite differences.

At the boundaries, we apply forward or backward differences. For instance, for (i, j) ∈
{2, . . . ,My − 1} × {2, . . . ,Mτ − 1}, we compute the new guess as

α∗n,i,j = κα(tn, yi, ·)−1

(
(yi + Y PI)∆τyi(Fn,i+1,j − Fn,i−1,j) + ∆yyi(Fn,i,j+1 − Fn,i,j−1)

∆y∆τ (yi + Y PI)(γ − 1)Fn,i,j

)
.

With this new guess for the optimal policy we perform a new iterative step. We continue

the iteration until there is no significant change of the result. Then the algorithm continues

with the previous point tn−1 in the time directions until we reach the end of the grid.

Implementation of State-Dependent Sinks The solution procedure described so far

does not deal with state dependent sinks. Since in general the constraint (7) involves X,

the separation (31) does not hold anymore. For this reason, we first solve for the optimal

abatement policy if the weaker constraint αt ≤ µy(t) + δy is imposed. This constraint

does not compromise the separation and the corresponding abatement decision is then

given by

αt = min

[
µy(t) + δy, κα(t, y, ·)−1

(
yFy + yη

y+Y PIFτ

(1− γ)F

)]
.

Since the modified constraint is always weaker, we obtain an upper bound J(t, c, x, y, τ) ≥
J(t, x, c, y, τ) for the indirect utility function of the true model where (7) is imposed. Of

course, αt is not feasible in the true model. To obtain a feasible strategy, we thus define

αt = min [µy(t) + δy(Xt), αt] ,

where we cut off αt if it violates (7). Notice that the strategy αt is suboptimal. Since

we have the upper bound J , we can compute an upper bound on the loss that occurs if

we implement αt instead of the (unknown) optimal strategy. If J(t, c, x, y, τ) denotes the
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indirect utility associated with αt, the upper bound on the welfare loss is given by

J(t, c, x, y, τ) = J(t, c(1− L), x, y, τ).

It turns out that this upper bound for the welfare loss is significantly below 0.1% and

thus the strategy αt is close to optimal.

C.3 Level Impact

For a level impact, the HJB equation reads

0 = sup
α,χ

{
Jt + ĉ (g(t, χ)− κ(t, εα)) Jĉ +

1

2
ĉ2σ2

cJĉĉ + y(µy(t)− α)Jy +
1

2
y2σ2

yJyy − δy(x)yJx

+ ĉyρcyσyσcJĉy +
yητ

y + Y PI

(
µy(t)− α

)
Jτ +

1

2

(
στy

y + Y PI

)2

Jττ

+
y2

y + Y PI
ρyτσyστJyτ + ĉσcρĉτ

στy

y + Y PI
Jĉτ + πτ (τ)

[
J(t, ĉ, y, τ + θτ )− J

]
+ f(ĉD(τ)χ, J)

}
.

Lemma C.1 is then modified as follows:

Lemma C.2. The indirect utility function of the optimization problem has the form

J(t, ĉ, x, y, τ) =
1

1− γ
ĉ1−γF (t, x, y, τ),

where F solves the simplified HJB equation

0 = sup
α,χ

{
Ft + y

[
µy(t)− α + (1− γ)σcσyρcy

]
Fy +

1

2
y2σ2

yFyy + δy(x)yFx

+
yητ

y + Y PI

[
µy(t)− α + (1− γ)ρcτσcστ

]
Fτ +

1

2

(
yστ

y + Y PI

)2

Fττ

+
y2

y + Y PI
ρyτσyστFyτ + (1− γ)

[
g(t, χ)− κ(t, εα)− 1

2
γσ2

c −
δ

1− 1/ψ

]
F

+πτ (τ)
[
F (t, y, τ + θτ (τ))− F

]
+ δθχ1−1/ψD(τ)1−1/ψF 1−1/θ

}
,

The optimal abatement strategy is given by

α∗t = κα(t, y, ·)−1

(
yFy + yη

y+Y PIFτ

(γ − 1)F

)
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and the optimal consumption rate satisfies

δ(χ∗t )
−1/ψF−1/θD(τ)1−1/ψ = − ∂

∂χ
g(t, χ∗).

D Calibration of Natural Sinks

We now provide the details on how to calibrate the natural carbon dioxide sinks. We use

annual RCP 8.5 emission data denoted by {Ên}Nn=1 at times {tn}Nn=1. This data represents

our BAU-emissions. Additionally, we use RCP 8.5 concentration data {Y BAU
n }Nn=1 at the

same time points. In the first step, we solve (5) for δy and use that data to calculate a

set of model-implied carbon dioxide decay rates via

δy(X
BAU
n ) =

ξÊn − Y BAU
n µy(tn)

Y BAU
n

, n = 1, . . . , N.

Since the RCP 8.5 emission and concentration data is only available for steps of five years,

we interpolate the decay rate and the concentration between the data points via cubic

splines. Then we simulate the process XBAU
t applying the Euler method to (4) with one

time step per year:

XBAU
t+1 = XBAU

t + δy(X
BAU
t )Y BAU

t .

Here, we choose without loss of generality XBAU
0 = 0 as the starting point of the process.

We obtain pairs of annual data points {XBAU
t , δy(X

BAU
t )}. It turns out that these decay

rates can be fitted well using the following functional form:

δy(x) = aδe
−
(
x−bδ
cδ

)2

,

where aδ = 0.017, bδ = 11.64, cδ = 279.7. This parametrization achieves an almost perfect

fit to the data (R2 > 99%), and Graph (b) in Figure 2 shows that the model excellently

replicates the RCP 8.5 emission data.

E Calibration of McKinsey Abatement Costs

This appendix provides an alternative calibration of the abatement costs. The effects

of this calibration is studied in Section 5.3. The calibration is based on a prognosis for

the marginal greenhouse gas abatement costs for the year 2030 provided by McKinsey
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Figure 11: Calibration of the Abatement Costs. The figure depicts the marginal abate-
ment cost (MAC) for the reference year 2030 (solid line). The prices of the y-axis are in 2005
euros. The MAC function is calibrated such that it fits the positive part of the McKinsey data
(crosses).

and Company (2009, 2010). For that year, they estimate that under BAU the total

emissions of greenhouse gases would reach 66GtCO2e and analyze the expected abatement

expenditures. Under rather optimistic assumptions, they report an abatement potential

of 38GtCO2e at a total cost of 150 billion euros. McKinsey supposes that for 11GtCO2e of

abatement the net costs are negative because savings from implementing energy-efficient

measures – compared to the BAU scenario – exceed the initial investment costs. To avoid

issues arising from negative abatement costs, we follow Ackerman and Bueno (2011) and

disregard the negative part of the marginal costs. Therefore, our calibration is more

conservative than the McKinsey prognosis.

In a first step, we fit the McKinsey data using the following functional form for the

marginal abatement cost function:

MAC(q) =
c1q

c2 + c3q + c4q2
.

The variable q is the absolute quantity of greenhouse gas abatement (measured in GtCO2)

compared to the business-as-usual scenario, i.e. the difference between BAU-emissions and

controlled emissions, q = eBAU − eα. As can be seen in Figure 11, our estimates of ci fit

the positive part of the marginal abatement costs well (R2 > 0.96). The coefficients are

c1 = 0.00039, c2 = 0.0016, c3 = −3.25 · 10−5, c4 = −7.27 · 10−8. Then, we transform the
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marginal costs MAC into (absolute) expenditures, which in our paper are denoted by A.

We thus compute the anti-derivative A(q) of the marginal costs with respect to q and

evaluate A at the available data points q1, . . . , qn. This yields values A1, . . . ,An.

The resulting data points (q1,A1), . . . , (qn,An) can now be used to determine the cost

function κ(t, εα) for the year 2030. Notice that the McKinsey data maps absolute quan-

tities of abatement q into marginal expenditures, whereas our cost function maps emis-

sion control rates into reductions of economic growth. Therefore, we transform absolute

quantities of greenhouse gas abatement q into emission control rates using εi = qi/e
BAU,

i = 1, . . . , n, and absolute abatement expenditures A in relative expenditures by κi =

Ai/E[C], i = 1, . . . , n, where E[C] denotes the expected GDP in 2030. We assume the

functional form (27) still to hold. We calibrate the parameters such that (27) is close to

the data points (ε1,κ1), . . . , (εn,κn). As a result of the calibration we obtain θ1 = 0.035,

θ2 = 3.186 (R2 > 99%) for the year 2030. We take the rate at which abatement be-

comes cheaper over time from DICE, i.e. the relative expenditures for complete abatement

(ε = 1) decline at rate of 1.48% to its long-term level of 0.043%. As a result, we obtain

θ1(t) = 0.0443 exp(−0.0148t) + 0.00043.
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