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Abstract

It does. Depending on the forecast horizon, a one standard deviation increase in our mea-
sure for ambiguity about consumption volatility predicts a significant increase in average
excess equity returns varying between 200 and 600 basis points annualized. The ambigu-
ity measure we propose is easily obtained from the cross-section of analysts’ forecasts for
aggregate output growth and represents a simple proxy for latent factors in consumption-
based asset pricing models. We estimate a version of the long-run risks model, where the
investor is concerned about a potential misspecification of the variance dynamics. Since
the usually latent state variables are now observable, we can perform the estimation just
based on fundamental cash flow data, without the use of asset pricing information. The
model produces return predictability patterns via the variance premium, which are in line
with the data.
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1 Introduction

This paper studies the link between ambiguity about macroeconomic volatility and asset prices.

An economic decision problem exhibits ambiguity when agents are uncertain about the distribu-

tion of future states of the world, i.e., about the exact structure of the data generating process.

This is different from risk, where this distribution is assumed to be known, although, of course,

it is still unknown, which state of the world will occur next period.

Following the seminal work of Andersen et al. (2000), the impact of ambiguity on asset

prices has been analyzed in a large number of papers, e.g., Collard et al. (2011), Jahan-Parvar

and Liu (2014), Ju and Miao (2012), and Miao et al. (2012). One thing that all of these papers

have in common is that they focus on ambiguity about expected growth rates.1

In an important step forward Epstein and Ji (2013) have recently proposed a theoretical

(continuous-time) model featuring an investor who is concerned about ambiguity with respect

to volatility, but conclude (p. 1774)

A question that remains to be answered more broadly and thoroughly is “does am-

biguity about volatility [...] matter empirically?”

In this paper we show that it does. To investigate the question, we construct a measure of

ambiguity about volatility based on simple descriptive statistics for the forecasts of aggregate

output growth collected in the Survey of Professional Forecasters (SPF). More precisely, we

use interval forecasts to extract the individual forecaster’s assessment of future macroeconomic

volatility and then take the cross-sectional dispersion of these volatility forecasts as a proxy for

ambiguity about consumption growth volatility.

Regressing future excess returns on the CRSP stock market index on this measure yields

significantly positive coefficients for various forecast horizons. More precisely, a one standard

1The literature on model uncertainty and its implications for asset markets is reviewed by Epstein and
Schneider (2010), Etner et al. (2012), and Guidolin and Rinaldi (2013).
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deviation increase in our measure for ambiguity about macroeconomic volatility predicts a sig-

nificant increase in average excess equity returns varying between 200 and 600 basis points

annualized, depending on the forecast horizon. We interpret this as strong evidence for a sub-

stantial premium for ambiguity about volatility.

Forecast dispersion is a widely used ambiguity measure. Examples are Anderson et al.

(2009), Andrei and Hasler (2014), Buraschi and Jiltsov (2006), Drechsler (2013), and Ulrich

(2013). However, all these papers use dispersion in point forecasts. Engelberg et al. (2009)

criticize this practice on various grounds. They point out that it is not clear whether forecasters

report means, medians, modes, or any other characteristics of their subjective distributions

when asked for a point forecast. When different forecasters report different characteristics,

disagreement in point forecasts is an inconsistent measure for ambiguity. The authors moreover

argue that ‘even if all forecasters make their predictions in the same way [...] point predictions

provide no information about the uncertainty that forecasters feel’. As suggested by Engelberg

et al. (2009), we use interval forecasts to come up with consistent measures and to get our

hands on the risk assessments of the individual analysts.

Our analysis shows that our measure for ambiguity about volatility is different from

other recently proposed measures of uncertainty, like the uncertainty index proposed by Jurado

et al. (2015), the ambiguity measure by Brenner and Izhakian (2011), ‘vol-of-vol’ as analyzed

by Baltussen et al. (2012) or the uncertainty measures used by Bloom (2009). The pairwise

correlations between any of these quantities and our ambiguity measure are low, and including

them in our predictive regressions does not eliminate the predictive power of ambiguity about

volatility.

Our empirical findings are consistent with the results generated by a discrete-time general

equilibrium asset pricing model featuring a representative agent with recursive preferences, who

is concerned about a potential misspecification of volatility. We opt for a discrete time setting,

because the solution of the model appears much more straightforward than in the continuous-

time setup considered by Epstein and Ji (2013, 2014) and because the frequency of the data
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we use to estimate the model is low.

Structurally our model is an extension of the long-run risks model introduced by Bansal

and Yaron (2004), with the innovation that the conditional variance σ2
t of consumption growth

is uncertain, i.e., the representative investor perceives it as ambiguous. Our model features

a state variable representing the volatility level implied by the reference model, i.e., by the

model considered the most likely by the investor. A further state variable then describes the

time-varying magnitude of potential deviations from this reference volatility.

To estimate the dynamics of consumption, dividends, and the state variables we only rely

on data about fundamental cash flows and quantities derived from the SPF, in particular the

ambiguity measure mentioned above. This means that we do not make use of any information

about asset prices, and by doing so we make sure that the cash flow part of the model prop-

erly represents the time-series dynamics of fundamentals (as opposed to just static moments).

Especially with respect to the persistence of the state variables this approach yields estimates

which are substantially different (in this case lower) than the usual parameter values produced

by model calibrations as in, e.g., Bansal and Yaron (2004) and Bansal et al. (2012). The dif-

ficulty to reliably detect such a highly persistent process in the data is well-known (see e.g.

Constantinides and Ghosh (2011)).

This less pronounced persistence directly implies that the model has a hard time generat-

ing return predictability for long forecast horizons, but on the other hand it nicely matches the

properties of shorter term predictive regressions using the variance premium as a forecasting

variable. From a technical perspective, the pronounced predictability observed here is caused by

the joint dependence of the variance premium and the equity premium on the level of ambiguity

about volatility in the model.

Regarding investor preferences we use the recursive smooth ambiguity model proposed

by Klibanoff et al. (2005, 2009) to model the investor’s attitudes towards risk and ambiguity.

This approach allows a clear separation of ambiguity itself from attitudes towards ambiguity,

which is difficult in other models such as the maxmin-model of Gilboa and Schmeidler (1989).
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The preference parameters of this model have been estimated by Thimme and Völkert (2014),

and we use their estimates as a guideline for the analysis of the asset pricing implications of

our model.

In terms of dynamics our approach might look similar to other asset pricing models with

sophisticated volatility structures, like those suggested by Bollerslev et al. (2012), Bollerslev

et al. (2009), Jin (2013), and Zhou and Zhu (2014). The key difference is, however, that the state

variables in these models are assumed to be perfectly observable, while we explicitly consider

the situation that the investor faces ambiguity.

One may, of course, argue that volatility can indeed be observed, e.g. from high frequency

stock return data, so that the dynamics of the volatility process can be estimated rather pre-

cisely. Carr and Lee (2009), however, point out that ‘... noise in the data generates noise in the

estimate, raising doubts that a modeler can correctly select any parametric stochastic process

from the menu of consistent alternatives’.2 A large menu of such basically consistent alterna-

tives may then lead to pronounced ambiguity about volatility, if the different alternatives imply

rather different volatility levels.

The remainder of this paper is organized as follows. In Section 2 we explain the construc-

tion of uncertainty measures based on SPF data. We study the explanatory power of these

measures for returns and volatilities in model-free regressions in Section 3. In Section 4, we

introduce our asset pricing model. In Section 5, we estimate and calibrate the model and study

its implications for asset prices. Section 6 concludes.

2Carr and Lee (2009), p. 325.
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2 A measure of ambiguity about volatility

We assume throughout the paper that growth in log aggregate endowment, ∆ct+1, is (condi-

tionally) Gaussian with conditional mean xt and conditional variance σ2
t , i.e.,

∆ct+1 = xt + σtε
c
t+1,

where the shocks εct are i.i.d. standard normal. We will now describe our empirical proxies

for the state variables x and σ2 as well as for the amount of possible ambiguity about x and

especially σ2.

To obtain our proxies we rely on SPF data. The SPF, which is conducted at a quarterly

frequency by the Philadelphia Fed, contains individual responses by each analyst about the

probability that growth in the gross domestic product (GDP) will realize in a certain interval.3 It

is exactly this structure of the forecast data with subjective interval probabilities, which enables

us to construct an empirical measure for ambiguity about volatility (and other quantities which

will later serve as state variables in our model).

Note that, strictly speaking, we would like to use forecasts of real consumption growth

instead of real GDP growth. The SPF, however, only provides point forecasts of consumption

growth but no interval probabilities as in the case of GDP growth. In the literature it is, however,

common to use GDP as a proxy for consumption, see, e.g., Bansal and Shaliastovich (2010),

Ulrich (2011, 2012), and Colacito et al. (2015). Furthermore, a comparison of the analysts’

individual estimates for mean GDP growth with their assessment of mean consumption growth

shows that both quantities are closely related. Figure 1 presents a scatter plot of all individual

pairs of consumption and GDP forecasts for our sample period. As one can see, the points are

rather close to the 45-degree line, and a regression of consumption on GDP forecasts yields

an R2 of close to 80 percent, so that GDP forecasts represent a good proxy for consumption

3The forecasted growth rate is annual average GDA in the next calender year divided by annual average
GDA in this year minus 1. See Zarnowitz and Braun (1993) for details concerning the SPF. See also Engelberg
et al. (2009) for a detailed analysis of the relation between analysts’ interval forecasts and point forecasts.
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predictions. Finally, from a more theoretical point of view, in endowment models like the one

we are going to present below in Section 4, the representative investor has to instantly consume

all the exogenous endowment, hence there is no difference between consumption and output

anyway.

As mentioned above the SPF contains the subjective probabilities which analysts assign

to prespecified intervals for the growth rate of GDP. Let Jt be the number of analysts featured

in the survey published at time t. Each analyst is asked for her assessment of the probabilities

that GDP growth falls in the intervals I1 ≡ (l0, l1), I2 ≡ (l1, l2) up to IMt+1 ≡ (lMt , lMt+1) with

l0 ≡ −∞, lMt+1 ≡ ∞ and fixed width ∆l for the interior intervals Ik for k = 2, . . . ,Mt.

The probabilities recorded for analyst j at time t are denoted by P j
t = (pj1,t, . . . , p

j
Mt+1,t),

where pjk,t is the analyst’s subjective probability that GDP growth falls in interval Ik (k =

1, . . . ,Mt + 1). Given these probability assessments we compute analyst j’s subjective trend

(i.e., expected) growth rate xj,t and growth volatility σ2
j,t as the mean and the variance of

the normal distribution which most closely approximates the analyst’s interval forecasts. More

precisely, for every j and t we maximize the (log) likelihood function

L =
Mt+1∑
i=1

pji,t log

Φ

 li − xj,t√
σ2
j,t

− Φ

 li−1 − xj,t√
σ2
j,t

 (1)

with respect to xj,t and σ2
j,t. Here Φ(x) denotes the cumulative distribution function of the

standard normal distribution.4

Given the estimates xj,t and σ2
j,t for j = 1, . . . , Jt we then compute our proxies for un-

certainty about trend growth and volatility as the (cross-sectional) average squared deviations

4Alternatively, one could take the midpoint of Ik to represent the interval and then compute the means xj,t
and the variances σ2

j,t as simple descriptive statistics without assuming a certain distribution. When we proceed
like this, our results are basically left unchanged.
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V xt and V σ2
t from the (cross-sectional) averages Ext and Eσ2

t , i.e.,5

Ext =
1

Jt

Jt∑
j=1

xj,t, V xt =
1

Jt − 1

Jt∑
j=1

(xj,t − Ext)2 ,

Eσ2
t =

1

Jt

Jt∑
j=1

σ2
j,t, V σ2

t =
1

Jt − 1

Jt∑
j=1

(
σ2
j,t − Eσ2

t

)2
.

We interpret the cross-sectional averages Ext and Eσ2
t as a representation of the reference

model, which from a theoretical point of view is the parametrization that the investor considers

most likely at time t.

V x is often referred to as forecast dispersion and is widely used as a general representation

of ambiguity, e.g., in Andrei and Hasler (2014), Bansal and Shaliastovich (2010), Buraschi and

Jiltsov (2006), Drechsler (2013), and Ulrich (2012).6 As discussed above in the introduction

we especially focus on ambiguity about volatility, and analogous to the argument in favor of

V x as an ambiguity measure about trend growth we propose V σ2 as a measure for ambiguity

about volatility. In more detail, we assume that each analyst represents one specific economic

model, which is justified by Patton and Timmermann (2010) who find that analysts disagree

because they use different models for forecasting. So the set of subjective (normal) distribu-

tions {N (xj,t, σ
2
j,t)} (j = 1, . . . , Jt) can be considered a reasonable approximation of the set of

possible models the investor faces at time t, and accordingly ambiguity about volatility can be

approximated by the cross-sectional variation in analysts’ individual volatility assessments.

We construct the above measures from SPF data for the period from 1992:Q1 to 2014:Q4.

SPF data are basically available from the fourth quarter of 1968 on, but we discard the data

until 1991, since they do not seem reliable for our purposes. Especially the period which the

forecasts referred to were not clearly identified in the surveys. In addition to that, from 1968

5Our empirical approach could easily be extended to incorporate skewness as in Colacito et al. (2015). Given
that our main interest is in ambiguity about volatility, we restrict the analysis to the first two cross-sectional
moments of analysts’ forecasts.

6In a paper on the link between inflation surveys and bond risk premia D’Amico and Orphanides (2014)
refer to the analogue of V x as disagreement, whereas they call Eσ2 uncertainty.
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to 1991 analysts reported their assessments of growth first in nominal (until the second quarter

of 1981) and then in real (until the end of 1991) GNP. Even when one considers GNP a close

enough proxy for GDP, this would still leave the problem of having to use inflation forecasts

to convert nominal quantities to real ones.7 Engelberg et al. (2009), who also discard all data

from before 1992, note that the Fed changed the number of intervals from six to ten in 1992,

which may lead to inconsistencies when a longer time series is used. Finally, additional analyses

(not shown) suggest a structural break in the time series of our SPF-based measure in the early

1990’s, similar to the one reported by Lettau and Van Nieuwerburgh (2008) for price dividend

ratios. Hence, since the data appear to be nonstationary for the longer sample, we only use the

time series from 1992 onwards.

Before the SPF measures can actually be used for our empirical analysis they have to be

processed in a final step. The analysts’ forecasts are with respect to annual-average over annual-

average output growth. This means that more and more information about the average becomes

available over the course of a year time with an accompanying reduction in the overall statistical

uncertainty associated with the forecast made in later parts of the year. This makes it seem

appropriate to seasonally adjust the time series, which we do via the X-12-ARIMA procedure.

Furthermore, output growth is naturally related to population growth, and to account for this

effect we normalize all growth rates by the 12-month moving average growth of US population.

Figure 2 then presents plots of the seasonally adjusted and standardized per capita time

series for Ex, Eσ2, V x, and V σ2. Our proxy Ex for trend consumption growth shows a clearly

cyclical behavior. During the recessions in 2001 and 2009 analysts obviously predicted much

lower consumption growth rates than over the rest of the sample. Our measure for ambiguity

about trend consumption growth V x spikes in particular during the 2009 financial crisis. Inter-

estingly, the pure risk measure Eσ2 remains low during NBER recessions, which indicates that

uncertainty is indeed different from risk in the data. Ambiguity about volatility V σ2 spikes in

periods of high expected volatility.

7Bansal and Shaliastovich (2010) suggest to proceed like this. In our situation one would have to rely on
the rather strong assumption of independence between inflation and GDP growth to justify this approach.

8



Descriptive statistics for consumption and dividend growth as well as for the measures

derived from SPF data are presented in Table 1. Although the numbers are not directly com-

parable, it is nevertheless interesting to note that the mean of Ex is close to the unconditional

mean of log consumption growth. The unconditional standard deviation of consumption growth

is 4.50 · 10−3, and this number squared (2.03 · 10−5) is close to the average of Eσ2.

While the correlation between Ex and Eσ2 is quite small in absolute value, Ex and V x

exhibit pronounced negative comovement with a time series correlation of −0.54. Moreover,

we find a large positive correlation between Eσ2 and V σ2 (0.63). This makes sense intuitively:

Ambiguity about expected growth is high during economic downturns while ambiguity about

volatility is high if volatility itself is expected to be high. All other pairwise correlations are

small.

Our proxies do not seem to vary due to variation in the number of analysts featured in

the different surveys, since the correlations between the time series of the number of analysts

and the cross-sectional moments derived from the SPF are low.

In Table 2 we compare our SPF-based risk and ambiguity measures to other measures of

ambiguity and uncertainty, recently proposed in the literature. For example, Baltussen et al.

(2012) suggest ‘vol of vol’, the variance of a stock’s implied volatility (normalized by the mean of

the same variable) over a certain period as a measure of ambiguity. They perform their analyses

on the individual stock level, but one can easily apply the idea to the market as a whole by

computing the variance and the mean of the squared VIX index over the given quarter. Jurado

et al. (2015) compose an uncertainty index from a vector autoregressive model for a set of

fundamental macroeconomic variables, and Bloom (2009) suggests the cross-sectional standard

deviations of firm profits and of stock returns as uncertainty measures. Finally, there is also the

‘expected ambiguity measure’ as described by Brenner and Izhakian (2011).

The only correlations in Table 2 which are somewhat more pronounced are those between

Ex and ‘vol of vol’, the firm profits based uncertainty measure, and the uncertainty index

of Jurado et al. (2015). The negative correlations indicate that these uncertainty measures are
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countercyclical. The measure suggested by Jurado et al. (2015) is moreover positively correlated

with V x and also positively correlated (but less so) with our risk measure Eσ2 and ambiguity

about volatility V σ2. The remaining correlations are rather moderate, so that our SPF-based

quantities are clearly not just simple transformations of measures previously suggested in the

literature. Especially V σ2 appears to be largely unrelated to any of them and thus seems to

represent a new dimension of ambiguity.

3 Time-series regressions

In this section we analyze whether the four measures constructed from the SPF have explanatory

power for cash flow dynamics and asset pricing quantities in contemporaneous and predictive

regressions. We do this in a model-free fashion, i.e., we simply regress the quantity of interest

(future excess returns or return volatilities) on our SPF-based measures Ex, Eσ2, V x, and V σ2

without imposing any model-induced restrictions.

We normalize and standardize our SPF-based measures to have a mean equal to zero

and a standard deviation equal to one. The coefficient of a variable in a regression can then be

readily interpreted as the change in the dependent variable implied by a one standard deviation

change in the regressor. Appendix C provides an overview of the data.

The most important empirical results in our paper are those for the relation between

annualized future excess returns and the SPF-based risk and ambiguity measures today, with a

special focus on ambiguity about volatility V σ2. Table 3 presents the results for excess return

forecast horizons ranging from one to eight quarters. For every prediction horizon we show the

results of two regressions with the excess return as the dependent variable, one with the full

set of regressors {Ex, V x,Eσ2, V σ2}, and one with V σ2 as the only right-hand side variable.

The results clearly indicate that from the set of SPF-based measures V σ2 is the most

relevant predictor for future excess returns. It is significant as the only regressor in five out of

eight cases, and together with the other variables in seven out of eight. To get a feel for the
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implications of the results, consider the regression of the excess return over the next six months

rd,t+6− rf,t on the current values of the SPF-based measures and on V σ2 alone. The coefficient

of 4.19 in the latter regression means that excess returns increase on average by 419 basis

points when the regressor goes up by one standard deviation, implying a sizable premium for

ambiguity about volatility. Apparently, investors require a high compensation for holding equity

in periods when ambiguity about volatility V σ2 is high. When excess returns are regressed on

the complete set of SPF predictors the coefficient for V σ2 even exceeds 600 basis points for

horizons of six and nine months. When the forecast horizon is increased, the coefficient for

V σ2 tends to decrease slightly, but for τ = 24 months it is still close to 200 basis points and

significant. There are only few cases when other SPF variables come out as significant in the

predictive regressions, so that overall V σ2 is clearly the dominant force.8

Figure 3 presents the coefficients of V σ2 in the predictive regressions (together with the

90% confidence bands) graphically. It becomes obvious especially from the regressions including

the full set of SPF-based measures that ambiguity about volatility has predictive power for

horizons extending even beyond 24 months. As our sample is rather short the significance of

V σ2 as the only regressor is not so pronounced, but the coefficient pattern is very similar to

the setup with the other variables included. The figures thus provide evidence in favor of the

predictive ability of ambiguity about volatility.

To find out if the predictive power of ambiguity about volatility is robust, we include in

the regressions several other variables, which have been shown to either have predictive power

for excess equity returns or to be related to economic uncertainty. The results are presented

in Table 4 for returns over six and twelve months. The first variables we consider are the

price-dividend ratio and the variance premium of the aggregate stock market, which are well-

known return predictors. Adding them as controls does not alter our results qualitatively: The

coefficient of V σ2 stays significantly positive. Moreover, the R̄2 increases from 14.29% (not

reported) to 16.39% over the 6-month horizon, and from 19.19% to 21.26% over the 12-month

8We also run regressions on V x alone and find that coefficients in these regressions are all insignificant.
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horizon when V σ2 and the other SPF proxies are added to the price-dividend ratio and the

variance premium.

A widely-used macroeconomic predictor variable is cay, introduced by Lettau and Lud-

vigson (2001), which is supposed to approximate fluctuations in the consumption-to-wealth

ratio. Including cay as a control variable does not alter the results. We also use a version of cay

suggested by Bianchi et al. (2015), and the results are similar to those for cay.

Next, we add the five uncertainty measures, discussed in Section 2, to the regression.

Ambiguity about volatility stays a significant predictor of excess returns, even in case of vol-

of-vol. This shows that ambiguity about volatility is different from anticipated fluctuations in

volatility, i.e. volatility risk, which is likely measured by vol-of-vol. In contrast to our measure

V x of macroeconomic ambiguity about trend growth, the ambiguity measure by Brenner and

Izhakian (2011), which is based on high frequency stock return data, predicts returns with a

positive coefficient. However, the coefficient of V σ2 stays stable, significant and high.

We include the cross-sectional skewness of trend growth forecasts, as suggested by Colacito

et al. (2015), and also the skewness of variance assessments. Both skewness measures are not

significant when used together with our proxies in the regression. 9

A concern could be that our results are driven by the time-varying number of analysts

in the SPF. Including the number of analysts as a control variable, however, does not have

an impact on the coefficients. We also exclude the years 2008 and 2009 from our sample to

check if the recent financial crisis drives the results. Moreover, we exclude extreme outliers, i.e.

we discard the 5 highest and 5 lowest trend and volatility assessments in each period when

constructing our measure. For both alternative sets of time series, the coefficient of V σ2 stays

significant.

Finally, we use an alternative uncertainty measure. Instead of the cross-sectional variances

we use the differences between the 90% and the 10% quantiles in the empirical distributions of

9As suggested by Colacito et al. (2015) we also run our regressions using a skewness measure based on
quantile differences as suggested by Bowley (1920). The results (not reported) remain unchanged .
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trend growth and variance assessments. The resulting proxy for ambiguity about volatility is

less strong in predicting returns over the short horizon (the coefficient is high and positive but

insignificant), but again predicts excess returns over the 1 year horizon.

The results of the predictive regressions with return volatility over the next three months

as the dependent variable are presented in Table 5. When used in the regression together with

the other variables, Eσ2 is a significant predictor for future realized variance, which is in line

with intuition. This also holds if we regress on Eσ2 alone (not reported). The effect vanishes

for longer horizons, which was to be expected since the persistence of Eσ2 is rather low.

The insignificance of V σ2 in these regressions underscores the difference between volatility

and ambiguity about volatility. Ambiguity may have an impact on the level of prices but does

not have a great impact on their volatility. In particular, it is plausible to assume that cash-flows

are unaffected by ambiguity about volatility.

Table 6 presents the results of regressions of consumption and dividend growth over the

next one to four quarters on today’s SPF measures. Ex predicts consumption growth with

a positive coefficient, which is what one would assume intuitively. The insignificance of V σ2

in these regressions shows that it is not a cash-flow channel through which ambiguity about

volatility affects future excess returns.

Finally, Table 7 reports the results for contemporaneous regressions of various asset pricing

quantities on the SPF-based measures. The price dividend ratio is high in periods of high

expected consumption growth Ex, and higher values of Eσ2 come together with lower interest

rates. When V σ2 is the only regressor, it is also significantly related to the real interest rate.

These results intuitively make sense, since increases in expected volatility or ambiguity about

volatility are likely to strengthen the investors’ precautionary savings motive, leading to a lower

interest rate. The variance premium is significantly higher in periods of high ambiguity about

volatility. This suggests a positive link between uncertainty about macroeconomic volatility,

as measured by V σ2, and uncertainty about volatility of future stock returns, as quantified

by the variance premium. Notably, time variation in the variance premium might not be due
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to variation in volatility risk alone, so that our analysis suggests an additional new channel

compared to the standard view in the literature (see e.g. Bollerslev et al. (2009)). If a part of

the equity premium is a premium for ambiguity, as suggested by the results described above, it

is also natural to assume that a part of the variance premium is a compensation for ambiguity

about volatility, especially in light of the link between Eσ2 and future stock market volatility,

shown in Table 5 above.

Summing up, our SPF-based measures exhibit very plausible properties: Ex predicts cash

flows, while Eσ2 predicts return volatility. Moreover, the price-dividend ratio covaries with

expected trend growth Ex, whereas there is a precautionary savings motive related to expected

volatility Eσ2. The information content of the two ambiguity measures is different: While

ambiguity about trend growth has only very little or no explanatory power in the time series for

any of the considered quantities, ambiguity about volatility explains the variance premium and

predicts excess returns. For horizons ranging from two to eight quarters the ambiguity premium

in excess equity returns are positive and both statistically and economically significant.

4 A model with ambiguity about volatility

To rationalize our empirical findings we now present an equilibrium model, more precisely a

version of the long-run risks model featuring ambiguity about consumption growth volatility.

We keep the model parsimonious by leaving out ambiguity about trend consumption growth.

The reason is that V x did not turn out to be very important in the regressions in Section 3,

but the model can easily be generalized to include also this feature.

4.1 Endowment

The representative investor is endowed with an exogenous stream of a perishable consumption

good and prices a claim on all future dividends. Growth rates of aggregate consumption and
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aggregate dividends are conditionally lognormal:

∆ct+1 = µc + xt + σ̃tε
c
t+1, (2)

∆dt+1 = µd + ϕxxt + σ̃t(πdε
c
t+1 + ϕσε

d
t+1), (3)

where εc and εd are i.i.d. sequences of standard normal variables. Dividends are represented

as levered consumption, with ϕx and (π2
d + ϕ2

σ) greater than one. Furthermore, consumption

and dividend growth are locally correlated through the common components x and εc. In our

estimation in Section 5.1 it turns out that the parameter πd is very close to zero such that

correlation between the cash flows stems solely from the fact that they both load on x.

To model ambiguity about volatility we assume that the investor is uncertain about the

volatility σ̃t at time t. She entertains a non-degenerate model set, whose elements can be

indexed by the realizations σt of the random variable σ̃t. Several ways to model ambiguity (and

attitudes towards ambiguity) have been suggested in the literature. With maxmin expected

utility as suggested, e.g. by Gilboa and Schmeidler (1989) and Epstein and Schneider (2003),

the investor would consider a set of possible σ’s, e.g. an interval [σ, σ], but would base her

decisions only on the worst case, that is σ if she is risk-averse. We in turn apply the smooth

model proposed by Klibanoff et al. (2005), in which the investor does not only consider the

worst case but a weighted average of alternative scenarios. The weights depend on the investor’s

ambiguity attitude. For this purpose we have to model the investor’s subjective probability

distribution on the set of candidate σ’s, in addition to the set itself.

We assume that this distribution is conditionally Gaussian with dynamics

σ̃2
t = vt +

√
qt ε

σ
t ,

where εσt is standard normal and independent of shocks to consumption and dividends. vt is

called reference volatility, and it characterizes the most likely model from the investor’s point

of view. Given the above specification, there is a continuum of models that all yield the same
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growth rate µc + xt of consumption but different volatility levels. The magnitude of possible

deviations from that reference is driven by qt, which quantifies the time-varying ambiguity

about consumption growth volatility.

The state variables x, v, and q exhibit the following dynamics:

xt+1 = ρxxt +
√
πvvt + πqqt ε

x
t+1 (4)

vt+1 = v̄ + ρv(vt − v̄) + σv ε
v
t+1 (5)

qt+1 = q̄ + ρq(qt − q̄) + σq ε
q
t+1 (6)

where εx, εv, and εq are again standard normal, independent of each other and of all previ-

ously introduced shocks. The state vector st = (xt, vt, qt)
′ represents perceived moments of

consumption growth and volatility. Uncertainty about the future growth rate could in gen-

eral be considered a separate kind of uncertainty and modeled as an additional state variable.

However, to keep the model parsimonious, we tie uncertainty about xt+1 to vt and qt.

The long run risks model of Bansal et al. (2012) (BKY) is the special case of our model,

in which q is identically equal to zero (and consequently q̄ = σq = 0), which means that the

investor always perfectly trusts the reference model represented by vt.

4.2 Preferences

The representative investor in our model has recursive preferences as developed by Epstein

and Zin (1989) and Kreps and Porteus (1978). Future consumption paths C = (Ct)t=0,1,... are

evaluated with respect to the value function

Vt(C) =
[(

1− e−δ
)
C1−ρ
t + e−δ(Rt(Vt+1(C)))1−ρ

] 1
1−ρ ,

where δ and ρ denote the investor’s subjective discount rate and the reciprocal of her elasticity

of intertemporal substitution (EIS), respectively. The uncertainty aggregator R accounts for
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risk and ambiguity in the continuation value Vt+1(C) of future consumption. Here we use the

specification suggested by Klibanoff et al. (2009), i.e.,

Rt(z) = v−1
(
Est
[
v
(
u−1 (Eσt [u(z)])

)])
,

where u and v are utility functions (e.g., of the CRRA type).

The operator Est [ · ] := E[ · |st] denotes expectations conditional on state st with st =

(xt, vt, qt)
′ and Eσt [ · ] := E[ · |σ̃2

t , st+1] denotes expectations conditional on σ̃2
t and state st+1.

10

The curvature of the utility function u characterizes the investor’s risk attitude. The cer-

tainty equivalent u−1 (Eσt [u(z)]) of z is conditional on full information about the distribution

of z. As long as the volatility σ̃t is ambiguous, u−1 (Eσt [u(z)]) is a random variable, and the

investor considers expected utility of certainty equivalents conditional on the available infor-

mation st about the model set.

The curvature of the composite function v ◦ u−1 determines the investor’s ambiguity

attitude. She appreciates a large variation across expected utilities Eσt [u(z)] when v ◦ u−1

is convex, while she is ambiguity-averse if v ◦ u−1 is concave. We choose u(x) = x1−γ

1−γ and

v(x) = x1−η

1−η with uncertainty attitude parameters γ and η. The investor is risk averse whenever

u is concave, i.e. γ > 0, and ambiguity averse whenever v ◦ u−1 is concave, which is equivalent

to η > γ.

A smooth ambiguity investor prices any claim on a future dividend stream (Di,τ )τ≥t, such

that the return Ri,t+1 on this claim in the next period satisfies

1 = Est [ξt,t+1Ri,t+1] , (7)

where ξt,t+1 denotes the stochastic discount factor (SDF). As shown by Hayashi and Miao (2011)

10Our definition of Eσt [ · ] implies that the future state of the economy is ambiguous, not risky. Technically
this implies that Eσt

[εσt ] = εσt , Eσt
[εit+1] = εit+1 for i ∈ {x, v, q} and Eσt

[εit+1] = 0 for i ∈ {c, d}. This choice is
somewhat arbitrary and the model can easily be solved under the assumption Eσt

[ · ] := E[ · |σ̃2
t ] (that means

Eσt
[εit+1] = 0 for i ∈ {c, d, x, v, q}) as well.
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the SDF of a smooth ambiguity investor is given by the expression

ξt,t+1 = e−δθ1
(
Ct+1

Ct

)−ρθ1
Rθ1−1
w,t+1

(
Eσt

[
e−δθ1

(
Ct+1

Ct

)−ρθ1
Rθ1
w,t+1

])θ2−1

(8)

where θ1 = 1−γ
1−ρ , θ2 = 1−η

1−γ , andRw,t+1 denotes the return on the claim on aggregate consumption.

The pricing kernel in Equation (8) simplifies to the standard Epstein and Zin (1989)

stochastic discount factor in two special cases. When there is no ambiguity about σt and st+1,

i.e. Est [Eσt [ · ]] = Eσt [ · ], Equations (7) and (8) together imply

1 = Eσt

[
e−δθ1

(
Ct+1

Ct

)−ρθ1
Rθ1−1
w,t+1Ri,t+1

](
Eσt

[
e−δθ1

(
Ct+1

Ct

)−ρθ1
Rθ1
w,t+1

])θ2−1

.

In the absence of ambiguity the second expectation in parenthesis is equal to one, since it is

the Euler equation of the return on the consumption claim, which yields

ξt,t+1 = e−δθ1
(
Ct+1

Ct

)−ρθ1
Rθ1−1
w,t+1, (9)

i.e., the Epstein and Zin (1989) pricing kernel. Under ambiguity neutrality, i.e., when γ = η

and consequently θ2 = 1, Equation (8) also simplifies to Equation (9).

4.3 Model solution

As in Bansal and Yaron (2004), we use the return approximation of Campbell and Shiller (1988)

and impose affine linear guesses for the valuation ratios of the consumption and dividend claim

to find approximate solutions for the asset pricing quantities of interest.11 The log wealth-

consumption ratio z and the log price-dividend ratio zd of the dividend claim are thus given

as zt = A + B′st and zd,t = Ad + B′dst respectively, with the state st = (xt, vt, qt)
′ and the

coefficients A, B, Ad, and Bd as shown in Appendix A.

11The solution technique is demonstrated in detail by Eraker and Shaliastovich (2008) and Drechsler and
Yaron (2011).
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Let rf,t be the log return on a risk-free bond from t to t + 1. It is also affine in st, i.e.,

rf,t = Af +B′fst and one obtains

rft =

[
δ − 1

2
(1− θ1θ2)k21

(
B2

2σ
2
v +B2

3σ
2
q

)
+ ρµc

]
+ ρxt

− 1

2

(
(1− θ1θ2)k21πvB2

1 + ρ(γ − 1) + γ
)
vt

− 1

2

(
(1− θ1θ2)k21πqB2

1 +
1

4

(
(γ − η + γη)2 − (ρ− η)(1− γ)2(1− η)

) )
qt. (10)

As shown by Lucas (1978) and Bansal and Yaron (2004), interest rates are related to con-

sumption growth xt via the inverse EIS ρ. Furthermore, we find precautionary savings terms

proportional to the volatility level vt and to ambiguity about volatility qt, where the coefficient

in front of qt is increasing in γ and η, i.e., in risk aversion and ambiguity aversion.

Let rd,t+1 denote the log return on the dividend claim from t to t + 1. The conditionally

expected excess return, i.e. the equity premium is then given by

Est [rd,t+1]− rf,t =

ζ(B2Bd,2σ
2
v +B3Bd,3σ

2
q )−

1

2
k21,d(B

2
d,2σ

2
v +B2

d,3σ
2
q )

+

[
ζB1Bd,1πv −

1

2
k21,dB

2
d,1πv + γπd −

1

2
(π2

d + ϕ2
σ)

]
vt

+

[
ζB1Bd,1πq −

1

2
k21,dB

2
d,1πq

+
η(γ − 1) + γ

2

(
1

2
(π2

d + ϕ2
σ)− γπd

)
− 1

2

(
1

2
(π2

d + ϕ2
σ)− γπd

)2
]
qt, (11)

where ζ = (1 − θ1θ2)k1k1,d. All quadratic terms with a factor −1
2

in front on the right-hand

side of (11) are simply Jensen corrections. The terms featuring (1 − θ1θ2)k1k1,d as a factor

represent long-run premia for fluctuations in the state variables xt, vt, and qt, all of which

ultimately affect consumption growth. These premia are proportional to the variances of the
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state variables, which, as one can see from the specification in Equations (4) to (6), are constant

in the case of vt and qt and equal to πvvt+πqqt in the case of xt. These long run premia highlight

the key characteristic of our model, since it features not only the usual premia for long-run risk

represented by x and v (as in Bansal and Yaron (2004)), but also a compensation for long-run

ambiguity, represented by q. In our empirical analysis in Section 3, we found a large and positive

premium for ambiguity about volatility while a risk premium could not be detected.

Given πd = 0, i.e., a zero local correlation between consumption and dividend innovations

as indicated by our parameter estimates (see Section 5.1), Equation (11) simplifies to

Est [rd,t+1]− rf,t = ζ(B2Bd,2σ
2
v +B3Bd,3σ

2
q )−

1

2
k21,d(B

2
d,2σ

2
v +B2

d,3σ
2
q )

+

[
ζB1Bd,1πv −

1

2
k21,dB

2
d,1πv −

1

2
ϕ2
σ

]
vt

+

[
ζB1Bd,1πq −

1

2
k21,dB

2
d,1πq +

1

4
(η(γ − 1) + γ)ϕ2

σ −
1

8
ϕ4
σ

]
qt.

The term 1
4
(η(γ − 1) + γ)ϕ2

σqt is the short-run premium for ambiguity about volatility. It is

increasing in the investor’s risk and ambiguity aversion γ and η as well as in the dividend

leverage parameter ϕσ.

The local return variance for the dividend claim is given by

Vst [rd,t+1] = k21,dB
2
d,2σ

2
v + k21,dB

2
d,3σ

2
q +

(
k21,dB

2
d,1πv + π2

d + ϕ2
σ

)
vt +

(
k21,dB

2
d,1πq

)
qt. (12)

An important quantity in the context of an equilibrium asset pricing model is the variance

premium vp. In a discrete-time model like ours it is defined at time t as the difference between

the risk neutral and physical expectations of the return variance from t to t+2.12 Its computation

12In a continuous-time model this premium would be equal to the difference between the risk-neutral and
the physical expectation of the integrated variance from t to t + τ . In our setup, setting τ > 2 would lead to
further terms not reported below, which are structurally identical to the terms in Equation (13).
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is shown in detail in Appendix B. One obtains

vpt = EQst [Vσt(rd,t+1 + rd,t+2)]− EPst [Vσt(rd,t+1 + rd,t+2)]

= (θ1θ2 − 1)k1B2

(
k21,dB

2
d,1πv + π2

d + ϕ2
σ

)
σ2
v + (θ1θ2 − 1)k1B3

(
k21,dB

2
d,1πq

)
σ2
q

+
1

2
(η(γ − 1) + γ)(π2

d + ϕ2
σ)qt. (13)

The first two terms of the right-hand side are structurally similar to the variance premium

in other models such as in Bollerslev et al. (2009), who find that the variance premium is

proportional to the variance of the conditional return variance. The third term is special to our

model and is related to uncertainty about the return variance in the period from t to t+1. This

term is absent in standard long run risks models, since σt (and thus the return variance over

the next time step) is known. In our model this additional term is proportional to the amount

of ambiguity about volatility qt and increases in the investor’s risk and ambiguity aversion

coefficients γ and η. This makes sense intuitively, since at time t, the investor faces a variety of

possible realizations of σ̃2
t , and thus a variety of corresponding return variances. The more these

return variances differ from each other, i.e., the larger qt, the higher this part of the variance

premium.

5 Quantitative analysis of the model

In this section, we first describe the estimation of our model via GMM. We then look at the

unconditional asset pricing moments generated by the model and the properties of predictive

regressions in the model relative to the data.

5.1 Estimation

We use our SPF-based measures Ex, Eσ2, and V σ2 as proxies for the state variables x, v,

and q, relying on the assumption that the set of analysts’ subjective distributions presented in
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Section 2, is a good approximation of the representative investor’s model set. This renders a

complex and potentially error-prone recovery of the state variables from cash-flow or even asset

pricing data unnecessary.

The cash flow and state variable dynamics in our model are represented by the system

∆ct+1 = µc + xt + πcσ̃tε
c
t+1,

∆dt+1 = µd + ϕxxt + πdσ̃tε
c
t+1 + ϕσσ̃tε

d
t+1,

xt+1 = ρxxt +
√
πvvt + πqqtε

x
t+1

vt+1 = v̄ + ρv(vt − v̄) + σvε
v
t+1

qt+1 = q̄ + ρq(qt − q̄) + σqε
q
t+1

(14)

Note that shocks to log consumption growth are scaled by the factor πc, which we introduce to

account for the low level of our time series of expected variance Eσ2.

We estimate the vector of model parameters

θ = (µc, πc, µd, ϕx, πd, ϕσ, ρx, π̃, v̄, ρv, σv, q̄, ρq, σq)
′

with π̃ ∈ {πq, πv} via GMM. The parameters πv and πq cannot be identified separately, since

they only appear together in the conditional volatility of x. They are, however, individually

important for model-based asset pricing quantities like the equity premium (see Section 4). We

therefore estimate restricted versions of the model, in which either πq or πv is constrained to

equal zero. These restrictions do not affect any other parameter of the model in the estimation.

The moment conditions we use are the four conditional expectations13 and five conditional

variances arising from Equations (14), together with the covariance between consumption and

dividend growth and the first-order autocovariances of dividend growth and the three state

variables. The parameters are exactly identified. Details concerning the moment conditions are

presented in Appendix D.

13We demean Ex and separately estimate the unconditional mean growth rate µc.
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We would like to emphasize that the estimation of the model is exclusively based on

cash flows (consumption and dividends) and our SPF-based measures Ex, Eσ2, and V σ2.

Using asset prices in the estimation would imply the severe risk in a model like ours that

the parameter estimates for cash flows and state variables are ultimately only chosen to fit

asset pricing moments, as pointed out by Nakamura et al. (2012). The drawback of such a

clean procedure is that the model may have a hard time matching a wide range of asset pricing

moments simultaneously. We analyze the asset pricing implications of the estimated parameters

in Section 5.2.

The point estimates together with standard errors are reported in Table 8. The scaling

factor πc is estimated around 1.8 which indicates that our SPF-based volatility measure Eσ2

is somewhat lower than realized consumption volatility. In the data the evidence in favor of

positive local covariation between consumption and dividends does not appear very strong,

since πd is estimated to be essentially zero.

The difference between estimation based on cash flow data and calibration based mainly

on asset pricing data becomes clear when we look at the persistence coefficient of expected

consumption growth variance vt. Although of course for a different sample period, the fact that

BKY obtain an estimate for ρv of 0.997, as compared to our point estimate of 0.23 (with a

standard error of only 0.08), again highlights the tendency of calibrations to produce extremely

persistent dynamics for state variables. The calibration of BKY implies a half-life of shocks to

σ2 of 57.7 years. Obviously, it is hard to detect such a component in a sample of only 23 years.

However, we do not take a stand on whether this component exists or not. We decided not to

include such a ‘very-long-run’ component in our model, but we are aware that this may come

with some drawbacks for model-implied unconditional asset pricing moments.

The estimate for the long-run mean v̄ is much lower than in BKY, by a factor of about

10. The first order autocorrelation of trend consumption growth xt is estimated at 0.83, which

is close to values in other papers like BKY. Finally, the dynamics of our ambiguity measure

qt exhibit significant persistence with a half life of shocks equal to about two thirds of a year.
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Overall, q is rather small numerically, so that both the long-run mean and the volatility are

very small as well.

5.2 Unconditional asset pricing moments

We use the point estimates obtained in Section 5.1 to parametrize our model and subsequently

generate asset pricing moments. We follow the literature and assume that the investor’s decision

interval is monthly, i.e., we convert our quarterly point estimates to monthly parameters.

To compute model-implied asset pricing moments we set the preference parameters re-

garding intertemporal fluctuations as in BKY, i.e., the investor is impatient with a subjective

time discount rate of δ = − log(0.9989) and has an EIS greater than one (ρ = 1
1.5

). In terms

of the investor’s attitude towards uncertainty we consider two alternative specifications. In the

first, the investor is assumed to be ambiguity neutral and risk averse (γ = η = 10), which cor-

responds to the settings in BKY. In the second, she is mildly risk averse (γ = 2) and ambiguity

averse (η = 24). These values are in line with the estimates in Thimme and Völkert (2014).

We draw 10,000 paths of 123 years of monthly data each and discard the first 100 years

on each path to keep the impact of the initial conditions on the results small. The monthly

data from the simulation are then aggregated to annual.

Table 9 reports the medians of the simulated values, along with 90% confidence bounds.

Since the length of our simulated economies matches the length of the sample period of only

23 years, confidence bands are rather wide.14

In the tables we also show the empirical counterparts of the model-implied values. Note

that the numbers from the data for our sample differ from what is reported in most studies, since

our analysis is based on the relatively short and recent period from 1992 to 2014. In particular,

interest rates are low, while price dividend ratios are high and less volatile compared to earlier

samples.

14As usual the bands become narrower when we extend the simulated sample.
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We consider four versions of our model. The first three feature an ambiguity averse investor

with three different specifications for fundamental dynamics. The first case is given by the model

without ambiguity about volatility (qt ≡ 0, q̄ = σq = 0), which structurally corresponds to the

approach proposed by BKY. Next, the restriction πq = 0 generates a model with ambiguity

about volatility, which, however, does not impact the volatility of expected consumption growth.

In the third case, with πv = 0, this volatility is driven exclusively by the amount of ambiguity

qt. To get a feel for the impact of the ambiguity attitude, we compare this third version of the

model to an otherwise identical setup with an ambiguity-neutral investor.

The most important finding from the analysis is that the model with ambiguity aversion

and a long-run ambiguity premium due to πq > 0 is the one that delivers a high equity and a

high variance premium, structurally similar to what we observe in the data. Compared to the

specification with πv > 0 (and consequently πq = 0) this version generates a higher persistence

in the variance of the expected growth rate x, since q is more persistent than v and more volatile

relative to its mean (see Table 8).

The results for the case of ambiguity neutrality, but with πq > 0 furthermore show that

it is not enough just to have an impact of q on x, it is also necessary that the investor is

actually ambiguity averse. Under ambiguity neutrality there is also a premium for fluctuations

in q when πq > 0, but it is too small to generate a large enough total equity premium. Only

when the impact of q on x and ambiguity aversion come together, there is a substantial long

run ambiguity premium which generates high expected returns on the dividend claim. In fact,

the average return generated by the model is even larger than in the data. This is a direct

consequence of the model being estimated only on cash flow data, but without the use of asset

pricing information.

Figure 4 shows decompositions of the equity premium stated in Equation (11) into a

constant part, a risk premium, and a premium for ambiguity about volatility. With πq = 0 and

πv > 0 the ambiguity premium is close to zero. If q 6≡ 0, the unconditional ambiguity premium

is positive but negligible. Accordingly, setting πv = 0 leads to a negligible risk premium. While
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the long-run risk premium is exactly equal to zero, the short-run risk premium is even negative

but very close to zero. This version of the model with πv = 0 and πq > 0 is in line with our

results in Section 3, where we found a high positive premium for ambiguity about volatility, but

no significant risk premium. The negative short-run risk premium is a result of our estimate

of the local correlation between consumption and dividend innovations πd being close to zero.

Thus short-run innovations in dividend growth are not priced.

Due to the high volatility of the expected growth rate of consumption xt the return

volatility is high in all specifications considered, and all of the versions of the model also match

the low persistence of stock market excess returns in the data. Also concerning the real risk-free

rate our model with a long-run ambiguity premium and ambiguity aversion is generally closest

to the data with respect to the point estimate, although the confidence bands in all specifications

contain a negative risk-free rates. Interest rate volatility and persistence are about the same for

all models.

The price dividend ratio is not precisely matched by any of the models. Interestingly,

the model with ambiguity premium and ambiguity aversion produces price-dividend ratios

which are on average lower than in the data, while we observe the opposite for the other

three specifications. In contrast, the models perform very well with respect to the volatility of

the price-dividend ratio. This is an important feature of our model(s), since, e.g., Beeler and

Campbell (2012) consider the low volatility of the price dividend ratio as a major shortcoming

of the BKY model.

As discussed above in Section 4 the variance premium is constant without ambiguity about

volatility. Even if ambiguity about volatility is included the magnitude of the time-varying part

of the variance premium is generally very small.15 However, the level of the variance premium for

the specification with πq > 0 and ambiguity aversion is strikingly high. The average variance

premium of 17.19%, reported in column 1 refers to the measure of Bollerslev et al. (2009).

There is, however, a debate about appropriate ways to approximate the P-expectation of return

15Note that the variance premium could easily be made more volatile by allowing for time-varying volatility
levels σv and σq of vt and qt, for example by introducing square root processes (see e.g. Zhou and Zhu (2014)).
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variances. Bekaert and Hoerova (2014) and Drechsler and Yaron (2011) report much lower values

for the average variance premium, and their estimates are well in line with the value produced

by our model. This shows that it is possible to generate a sizable variance premium also without

jumps, so that our model offers an alternative to the approaches suggested by Todorov (2010)

and Drechsler and Yaron (2011).

Overall we find that our model is reasonably well able to explain asset pricing moments.

This is even more remarkable given that we estimate the model only based on observable data

on cash flows and state variables and chose the preference parameters as suggested in the

literature. Ambiguity about volatility, in combination with ambiguity aversion, leads to high

and volatile excess returns, low interest rates, and a sizable variance premium.

5.3 Return predictability

In the data we observe that price dividend ratios predict excess returns over long horizons of

several years. The rationale in the long run risks model of Bansal and Yaron (2004) is that the

price dividend ratio decreases with positive innovations in volatility σt. At the same time, risk

premia are proportional to σ2
t . The key to explain predictability is then that σ2

t is very persistent

such that once risk premia are high, they are likely to remain high for very long periods of time.

As mentioned in Section 5.1, our model does not feature such a highly persistent uncertainty

measure, and hence it is ‘by construction’ not able to generate return predictability over long

horizons of several years.

Since the uncertainty measures vt and qt in our model are less persistent, their most

pronounced predictive power should be observed over shorter horizons up to one year. Such

short horizon predictability has been documented in the literature when the variance premium

is used as a predictor (see, among others, Bollerslev et al. (2009), Bollerslev et al. (2011), and

Drechsler and Yaron (2011)). Motivated by this we run regressions of the form

rd,t+h − rf,t = α(h) + β(h) vpt + εt+h, (15)
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where vpt denotes the variance premium at time t, and h is the prediction horizon measured in

months. We annualize all returns before running regression (15).

The results are presented in Table 10. In the data the coefficients are significant at the

10% level for horizons up to 12 months and decreasing in magnitude with the forecast horizon.

As is known from the literature the R2 peaks at a horizon of three months. Again the model

with πq > 0 and ambiguity aversion matches the properties of the data best. It is the only

version of the model which produces significantly positive slope coefficients and values for R2

very close to the data. The model-implied betas are somewhat large, which is due to the fact

that the model tends to generate equity returns which are higher than in the data, as described

in Section 5.2. In this specification, there is a large positive long run ambiguity premium in

periods of high ambiguity about volatility qt. In these periods, the variance premium is also

higher and, due to the persistence in ambiguity about volatility, predicts high excess returns

in the following periods. As the persistence of qt is moderate (compared to, e.g., in BKY) the

predictive power is highest for short horizons, with the largest value of the R2 for the three

month horizon. Here the model-implied R2 is also very close to the empirical value.

The median slope coefficients for the case of ambiguity neutrality are closer to the empir-

ically observed values, but none of them is significantly different from zero. With πq = 0 there

is only a short run ambiguity premium, since q does not have an impact on the volatility of x,

and the variance premium cannot predict future excess returns.

Overall, the findings from this prediction exercise, together with the empirical results from

Section 3, strongly suggest that there is a substantial positive premium for ambiguity about

macroeconomic volatility.

6 Conclusion

We propose a measure for ambiguity about consumption growth volatility which can be com-

puted easily from publicly available data as the cross-sectional variance of professional fore-
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casters’ variance predictions. This measure predicts excess returns and explains time-variation

in the variance premium. These findings are consistent with a general equilibrium asset pricing

model with long-run risks. The key feature of the model, besides ambiguity aversion in general,

is the existence of a long run ambiguity premium.

Interestingly, our proxy for ambiguity about trend growth does not appear as powerful in

explaining asset pricing quantities as ambiguity about volatility. Ambiguity about trend growth

has been commonly used in the literature as a proxy for ambiguity in general, but our results

seem to indicate that ambiguity about volatility is at least as important as ambiguity about

the trend growth rate.

Our paper represents a first step towards a better understanding of the role of ambiguity

about volatility in an asset pricing context. The scope of analysis is certainly not limited to

equity, but can be extended to other asset classes like, e.g., bonds or derivatives. Furthermore,

different, possibly richer, dynamics of the uncertainty processes may yield further insights con-

cerning the importance of ambiguous volatility. For example, it could be interesting to analyze

the impact of large positive innovations (jumps) to ambiguous volatility in the course of extreme

events such as the recent financial crisis.
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A Model solution

We impose an affine guess for the log wealth-consumption ratio

zt = A+B′st = A+B1xt +B2vt +B3qt, (A.1)

and approximate the log return on the claim to aggregate consumption with the linearization of Campbell and
Shiller (1988)

rw,t+1 = k0 + k1zt+1 − zt + ∆ct+1, (A.2)

where k0 and k1 are linearizing constants. It holds that k0 = log(1 − ez̄) − k1z̄ and k1 = ez̄

1+ez̄ , where z̄ is the
long run mean of the log wealth-consumption ratio. Introducing Equations (A.1), (A.2), and the pricing kernel
in Equation (8) into the Euler equation 1 = Est [ξt,t+1Rw,t+1] and solving for the coefficients yields

A =
1

1− k1

(
−δ + k0 + (1− ρ)µc + k1B2(1− ρv)v̄ + k1B3(1− ρq)q̄ +

1

2
θ1θ2k

2
1(B2

2σ
2
v +B2

3σ
2
q )

)
,

B1 =
1− ρ

1− k1ρx

B2 =
1

2(1− k1ρv)

(
θ1θ2k

2
1B

2
1πv + (1− ρ)(1− γ)

)
B3 =

1

2(1− k1ρq)

(
θ1θ2k

2
1B

2
1πq +

1

4
(1− ρ)(1− γ)2(1− η)

)
With these coefficients at hand we calculate coefficients for the log risk-free interest rate rf,t = − logEstEσt [ξt,t+1]
which are given in Equations (10). The price dividend ratio zd,t = Ad + B′dYt can be calculated similar to the
wealth-consumption ratio. Its constant coefficient is

Ad =
1

1− k1,d

(
− δ + k0,d + µd − ρµc + k1,dBd,2(1− ρv)v̄ + k1,dBd,3(1− ρq)q̄

+
1

2
(1− θ1θ2)k2

1(B2
2σ

2
v +B2

3σ
2
q )− (1− θ1θ2)k1k1,d(B2Bd,2σ

2
v +B3Bd,3σ

2
q ) +

1

2
k2

1,d(B
2
d,2σ

2
v +B2

d,3σ
2
q )
)

while Bd is given by

Bd,1 =
ϕx − ρ

1− k1,dρx

Bd,2 =
1

2(1− k1,dρv)

(
(1− θ1θ2)k2

1B
2
1πv − 2(1− θ1θ2)k1k1,dB1Bd,1πv + k2

1,dB
2
d,1πv

+ (πd − γ)2 + (γ − ρ)(1− γ) + ϕ2
σ

)
Bd,3 =

1

2(1− k1,dρq)

(
(1− θ1θ2)k2

1B
2
1πq − 2(1− θ1θ2)k1k1,dB1Bd,1πq + k2

1,dB
2
d,1πq

+
1

4

([
(πd − γ)2 + (γ − η)(1− γ) + ϕ2

σ

]2
+ (η − ρ)(1− γ)2(1− η)

))
Introducing these coefficients into Equation (A.2) yields a representation of the return on the dividend claim
from which the conditional equity premium and the return volatility can easily be calculated. The formulae can
be found in Equations (11) and (12).

30



B Computation of the variance premium

The variance premium is

vpt = EQst [Vσt(rt+1 + rt+2)]− EPst [Vσt(rt+1 + rt+2)] . (B.1)

Using Vσt(x) = Vσt(Est+1 [x]) + Eσt [Vst+1(Eσt+1 [x])] + Eσt [Est+1 [Vσt+1(x)]] yields

Vσt
(rt+1 + rt+2) = (k1,dBd,2σv)

2 + (k1,dBd,3σq)
2 + ((k1,dBd,1)2πv + π2

d + ϕ2
σ)vt+1

+(k1,dBd,1)2πqqt+1 + (π2
d + ϕ2

σ)σ2
t (B.2)

with σ2
t = vt +

√
qtε

σ
t and, thus,

EPst [Vσt
(rt+1 + rt+2)] = (k1,dBd,2σv)

2 + (k1,dBd,3σq)
2

+((k1,dBd,1)2πv + π2
d + ϕ2

σ)(1− ρv)v̄ + (k1,dBd,1)2πq(1− ρq)q̄
+[((k1,dBd,1)2πv + π2

d + ϕ2
σ)ρv + (π2

d + ϕ2
σ)]vt + (k1,dBd,1)2πqρqqt.

The log pricing kernel mt,t+1 = log(ξt,t+1) is

mt,t+1 = Est [mt,t+1]− Λcε
c
t+1 − Λσε

σ
t+1 − Λxε

x
t+1 − Λvε

v
t+1 − Λqε

q
t+1

where

Λc = γσt

Λσ =
1

2
(η − γ)(1− γ)

√
qt

Λx = (1− θ1θ2)k1B1

√
πvvt + πqqt

Λv = (1− θ1θ2)k1B2σv

Λq = (1− θ1θ2)k1B3σq

To calculate EQst [Vσt(rt+1 + rt+2)] we use that Vσt(rt+1 + rt+2) is normal conditional on st, so that

EQst [Vσt
(rt+1 + rt+2)] +

1

2
Vst [Vσt(rt+1 + rt+2)] = logEQst [exp(Vσt(rt+1 + rt+2))]

= logEPst [exp(mt,t+1 + Vσt(rt+1 + rt+2))]− logEPst [exp(mt,t+1)] (B.3)

Introducing (B.2) gives

logEPst [exp(mt,t+1 + Vσt
(rt+1 + rt+2))]

= (k1,dBd,2σv)
2 + (k1,dBd,3σq)

2 + Est [mt,t+1] + ((k1,dBd,1)2πv + π2
d + ϕ2

σ)(1− ρv)v̄

+ (k1,dBd,1)2πq(1− ρq)q̄ + [π2
d + ϕ2

σ +
1

2
γ2 + ((k1,dBd,1)2πv + πd + ϕ2

σ)ρv]vt

+ (k1,dBd,1)2πqρqqt +
1

2
[(π2

d + ϕ2
σ)
√
qt +

1

2
(η(γ − 1) + γ)

√
qt]

2 +
1

2
Λ2
x

+
1

2
[((k1,dBd,1)2πv + (π2

d + ϕ2
σ))σv − Λv]

2 +
1

2
[(k1,dBd,1)2πqσq − Λq]

2 (B.4)

According to Equation (B.3), we have to subtract 1
2Vst [Vσt(rt+1 + rt+2)] and logEPst [exp(mt,t+1)] from the

expression in Equation (B.4). These terms are
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Vst [Vσt(rt+1 + rt+2)] = (π2
d + ϕ2

σ)qt + ((k1,dBd,1)2πv + π2
d + ϕ2

σ)2σ2
v + ((k1,dBd,1)2πq)

2σ2
q

and

logEPst [exp(mt,t+1)] = EPst [mt,t+1] +
1

2
γ2vt +

1

2

[
1

2
(η(γ − 1) + γ)

]2

qt +
1

2
Λ2
x +

1

2
Λ2
v +

1

2
Λ2
q

Putting the pieces together yields formula (13) for the variance premium in Section 4.3.

C Data

We use quarterly data from the first quarter of 1992 to the fourth quarter of 2014.

Analysts’ forecasts: We use data from the table Individual PRGDP, which can be downloaded from the sites
of the Philadelphia Fed (https://www.philadelphiafed.org/research-and-data/real-time-center/
survey-of-professional-forecasters/data-files).

Consumption: We use data from NIPA Table 2.3.5 released by the Bureau of Economic Analysis (www.bea.
gov/iTable/index_nipa.cfm). The data is seasonally adjusted at annual rates. We only use nondurables
and services and transform to 2014 U.S. dollars by adjusting with the Consumer Price Index (CPI). We
obtain the CPI from the Bureau of Labor Statistics (www.bls.gov/cpi). We divide by a one year moving
average of U.S. population to calculate real per capita consumption. We use a one-year moving average
due to the strong seasonality in U.S. population growth. Data about U.S. population is from NIPA Table
7.1. For the predictive regressions in Section 3 we use consumption growth in the quarters that followed
the quarter in which the respective surveys were published.

Dividends: Dividends are taken from the homepage of Robert Shiller at Yale (www.econ.yale.edu/~shiller/
data.htm). It comprehends real dividends of all firms that are listed in the S&P Composite Index. To
calculate real growth rates we subtract log dividends of the preceding month from log dividends of the
current month. For the predictive regressions in Section 3 we add log growth rates in the months following
the month in which the respective survey was published.

Price-dividend ratio: We use the price dividend ratio from the same table as the dividends, i.e. from
Robert Shiller’s homepage (www.econ.yale.edu/~shiller/data.htm). For the regressions in Section 3
we use log price dividend ratios from February, May, August, and November, i.e. the months in which
the respective surveys were published.

Risk-free rate: The risk-free rate is proxied by the 3-month secondary market Treasury bill rate taken
from the H.15 release of the Federal Reserve Board of Governors (http://www.federalreserve.gov/
releases/h15/data.htm). To calculate real rates, we proceed as described in Beeler and Campbell (2012)
and Constantinides and Ghosh (2011), i.e., we regress the ex post real yield on a 3-month Treasury bill
on the three-month nominal yield and the realized growth in the CPI and use the fitted value as ex ante
real rate. For the regressions in Sections 3 we use the rates from February, May, August, and November,
i.e., from the months in which the surveys were published.

Variance premium: The data are taken from Hao Zhou’s webpage (series V RP , file VRPtable.txt,
https://sites.google.com/site/haozhouspersonalhomepage/). For the regressions in Section 3 we
use variance premia from February, May, August, and November, i.e., from the months in which the
surveys were published.
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Stock returns: Monthly excess returns are taken from Kenneth French’s homepage (http://mba.tuck.
dartmouth.edu/pages/faculty/ken.french/data_library.html). They are based on the CRSP value-
weighted stock return index. For the predictive regressions in Sections 3 we add log excess returns of the
months following the month in which the respective survey was published.

Return volatility: We use daily excess returns from French’s homepage (http://mba.tuck.dartmouth.
edu/pages/faculty/ken.french/data_library.html), based on the CRSP value-weighted stock return
index. To calculate realized variance, we follow Anderson et al. (2009) and employ the formula

σ̂2
t =

√√√√ 1

n− 1

(
n∑
t=1

(rt − r̄)2 + 2

n∑
t=2

(rt−1 − r̄)(rt − r̄)

)
,

i.e., we take potential serial correlation in daily returns into account. r̄ denotes the mean of the n daily
returns considered. For the regressions in Section 3 we use daily returns from the 66 trading days after
the end of the month in which the respective surveys were published.

D Moments used in GMM estimation

We estimate the following two vectors of parameters:

ϑ1 = (µc, πc, µd, ϕx, πd, ϕσ, ρx, πv, v̄, ρv, σv, q̄, ρq, σq)
′

ϑ2 = (µc, πc, µd, ϕx, πd, ϕσ, ρx, πq, v̄, ρv, σv, q̄, ρq, σq)
′.

As explained in Section 5.1, we constrain πq to be zero when estimating ϑ1 and we constrain πv to be zero when
estimating ϑ2. We use the following moment conditions:

1. 0 = ∆ct+1 − µc (unconditional mean of consumption growth)

2. 0 = (∆ct+1 − µc)2 − πv v̄+πq q̄
1−ρ2

x
− π2

c v̄ (unconditional variance of consumption growth)

3. 0 = ∆dt+1 − µd (unconditional mean dividend growth)

4. 0 = (∆dt+1 − µd)2 − ϕ2
x
πv v̄+πq q̄

1−ρ2
x
− (π2

d + ϕ2
σ)v̄ (unconditional mean consumption growth)

5. 0 = (∆dt − µd)(∆dt+1 − µd)− ϕ2
xρx

πv v̄+πq q̄
1−ρ2

x
(autocovariance of dividend growth)

6. 0 = (∆dt+1 − µd)(∆ct+1 − µc)− ϕx πv v̄+πq q̄
1−ρ2

x
− πcπdv̄ (covariance of consumption and dividend growth)

7. 0 = x2
t+1 −

πv v̄+πq q̄
1−ρ2

x
(unconditional variance of expected consumption growth)

8. 0 = xt+1xt − ρx πv v̄+πq q̄
1−ρ2

x
(autocovariance of expected consumption growth)

9. 0 = vt+1 − v̄ (unconditional mean of variance of expected consumption growth)

10. 0 = (vt+1 − v̄)2 − σ2
v

1−ρ2
v

(unconditional variance of variance of expected consumption growth)

11. 0 = (vt+1 − v̄)(vt − v̄)− ρv σ2
v

1−ρ2
v

(autocovariance of variance of expected consumption growth)

12. 0 = qt+1 − q̄ (mean ambiguity)

13. 0 = (qt+1 − q̄)2 − σ2
q

1−ρ2
q

(variance of ambiguity)

14. 0 = (qt+1 − q̄)(qt − q̄)− ρq
σ2
q

1−ρ2
q

(autocovariance of ambiguity)
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Table 1: Descriptive statistics

mean std AC(1) skewness kurtosis

Cash flow growth ∆c 3.59×10−3 4.50×10−3 0.6309 -0.6034 1.1057

∆d 7.21×10−3 2.22×10−2 0.8011 -1.2209 2.9577

Asset pricing moments rf -0.0095 0.3943 0.9300 -0.0713 -1.2897

p− d 5.3439 0.2631 0.9479 -0.0458 -0.4673

E(rd − rf ) 1.6315 8.3253 0.0984 -1.3072 4.5375

σ(rd − rf ) 1.0062 0.5641 0.6136 2.6699 11.0108

vp 16.5372 20.1864 -0.0091 3.3959 16.6133

SPF-based measures Ex 3.84×10−3 3.07×10−3 0.8243 -1.6554 4.7447

Eσ2 1.44×10−5 2.85×10−6 0.2441 0.2459 1.2030

V x 1.29×10−6 1.10×10−6 0.6413 3.3615 15.0737

V σ2 3.91×10−10 2.90×10−10 0.3550 2.6156 11.2304

Correlations Ex Eσ2 V x V σ2 # analysts

Ex 1.0000 -0.1431 -0.5408 -0.1070 -0.1655

Eσ2 1.0000 0.1010 0.6309 0.1270

V x 1.0000 0.1706 -0.0229

V σ2 1.0000 0.1193

This table shows descriptive statistics for fundamental cash flow growth, asset pricing moments, and

the time series Ext, Eσ
2
t , V xt, and V σ2t derived from SPF data (see Section 2). ∆c (∆d) denotes

the growth in log consumption (dividends), rd − rf is the excess return on the CRSP index with rf
as the risk-free rate. All moments are on a quarterly basis. Growth rates and returns are in percent,

the variance premium in percent squared. The sample period is from 1992:Q1 to 2014:Q4. AC(1)

denotes first order autocorrelation. The data for cash flows and asset pricing moments are described

in Appendix C.
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Table 3: Predictive regressions for excess returns

Ext Eσ2
t V xt V σ2

t R2

rd,t+3 − rf,t -6.12 -1.82 -4.91 4.45 -0.92
[-1.54] [-0.46] [-1.72] [0.91]

rd,t+3 − rf,t 3.12 -0.22
[0.95]

rd,t+6 − rf,t -5.21 -2.38 -6.35 6.23 4.06
[-1.55] [-0.85] [-2.39] [2.17]

rd,t+6 − rf,t 4.19 1.82
[2.07]

rd,t+9 − rf,t -4.54 -3.99 -5.75 6.02 5.82
[-1.42] [-1.62] [-1.92] [2.99]

rd,t+9 − rf,t 3.01 1.12
[1.75]

rd,t+12 − rf,t -3.42 -3.13 -3.54 4.76 2.71
[-1.11] [-1.41] [-1.09] [2.67]

rd,t+12 − rf,t 2.55 1.02
[1.48]

rd,t+15 − rf,t -3.32 -3.12 -2.25 3.88 1.80
[-1.16] [-1.62] [-0.77] [2.56]

rd,t+15 − rf,t 1.88 0.29
[1.48]

rd,t+18 − rf,t -3.86 -2.74 -2.28 3.89 4.09
[-1.55] [-1.38] [-0.99] [2.38]

rd,t+18 − rf,t 2.17 1.08
[1.82]

rd,t+21 − rf,t -4.36 -2.02 -2.59 3.44 5.99
[-1.85] [-1.22] [-1.20] [2.46]

rd,t+21 − rf,t 2.19 1.42
[1.91]

rd,t+24 − rf,t -4.41 -1.83 -2.26 2.99 6.45
[-1.87] [-1.16] [-1.02] [2.16]

rd,t+24 − rf,t 1.94 1.07
[1.83]

This table presents results of regressions of excess returns on the CRSP market index (annualized and

in percent) on the SPF-based measures Ex, Eσ2t , V xt, and V σ2t presented in Section 2. rd,t+τ − rf
represents the excess return over the next τ months. A detailed description of the data can be found in

Appendix C. The numbers shown are the estimated coefficients together with their Newey and West

(1987) t-statistics (in brackets). Coefficients in bold face are significant at a level of 10% or lower. The

last column presents the adjusted R2.
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Table 4: Predictive regressions - robustness

Ext Eσ2
t V xt V σ2

t Y1 Y2 R2

Y1 = pt − dt, Y2 = vpt

rd,t+6 − rf,t -1.80 -1.64 -5.01 5.64 -6.02 7.35
[-0.55] [-0.60] [-2.18] [2.05] [-2.14]

rd,t+12 − rf,t 0.81 -2.02 -1.89 3.80 -7.34 15.01
[0.31] [-0.92] [-0.67] [2.22] [-2.83]

rd,t+6 − rf,t -4.17 -3.15 -6.42 6.36 5.80 8.16
[-1.20] [-1.18] [-2.21] [2.19] [2.10]

rd,t+12 − rf,t -3.00 -3.57 -3.54 4.97 2.40 3.53
[-0.92] [-1.56] [-1.05] [2.76] [1.13]

rd,t+6 − rf,t 1.67 -1.56 -4.45 4.56 -9.15 8.47 16.39
[0.49] [-0.69] [-1.77] [1.88] [-3.79] [3.37]

rd,t+12 − rf,t 2.88 -1.98 -1.56 3.16 -9.22 5.08 21.26
[1.06] [-0.93] [-0.53] [2.18] [-3.78] [2.90]

Y1 = cayt

rd,t+6 − rf,t -4.88 -1.82 -6.14 5.94 1.81 3.42
[-1.38] [-0.63] [-2.25] [2.05] [0.77]

rd,t+12 − rf,t -2.68 -2.11 -3.00 4.21 3.88 6.35
[-0.84] [-1.07] [-0.89] [2.41] [1.94]

Y1 = cayMS
t

rd,t+6 − rf,t -5.09 -2.25 -6.35 6.12 0.36 2.91
[-1.46] [-0.80] [-2.38] [2.12] [0.13]

rd,t+12 − rf,t -1.70 -2.31 -3.07 3.40 4.25 6.48
[-0.58] [-1.15] [-0.96] [1.83] [1.79]

Y1 = vol-of-vol (Baltussen et al. (2012))

rd,t+6 − rf,t -4.73 -2.66 -6.31 6.29 2.33 3.84
[-1.36] [-0.94] [-2.29] [2.22] [1.87]

rd,t+12 − rf,t -2.84 -3.50 -3.51 4.90 3.02 4.47
[-0.89] [-1.54] [-1.03] [2.72] [3.54]

Y1 = std. of firm profits (Bloom (2009))

rd,t+6 − rf,t -5.12 -2.38 -6.32 6.20 0.29 2.96
[-1.49] [-0.85] [-2.34] [2.12] [0.21]

rd,t+12 − rf,t -3.32 -3.11 -3.52 4.77 0.44 1.62
[-1.06] [-1.40] [-1.08] [2.58] [0.28]

Continued on next page
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Table 4 – continued from previous page

Ext Eσ2
t V xt V σ2

t Y1 Y2 R2

Y1 = std. of stock returns (Bloom (2009))

rd,t+6 − rf,t -5.22 -2.15 -5.43 5.46 -5.03 7.16
[-1.66] [-0.76] [-3.18] [1.96] [-2.27]

rd,t+12 − rf,t -3.46 -2.81 -2.75 4.05 -4.61 8.44
[-1.35] [-1.27] [-1.19] [2.27] [-2.20]

Y1 = uncertainty index (Jurado et al. (2015))

rd,t+6 − rf,t -8.09 -1.03 -4.47 7.02 -8.54 11.41
[-2.48] [-0.36] [-2.14] [2.78] [-1.76]

rd,t+12 − rf,t -5.17 -2.28 -2.47 5.26 -5.09 7.41
[-1.81] [-1.23] [-0.87] [3.15] [-1.35]

Y1 = ambiguity measure (Brenner and Izhakian (2011))

rd,t+6 − rf,t -5.80 -3.05 -6.18 7.47 4.68 11.99
[-1.56] [-0.94] [-2.27] [2.33] [1.81]

rd,t+12 − rf,t -3.75 -3.71 -3.01 6.04 5.24 15.54
[-1.17] [-1.47] [-0.85] [2.95] [2.46]

Y1 = cross-sectional skewness of x, Y2 = cross-sectional skewness of σ2

rd,t+6 − rf,t -3.53 -2.87 -5.79 6.54 3.38 4.52
[-0.98] [-1.04] [-2.23] [2.32] [1.22]

rd,t+12 − rf,t -3.20 -3.17 -3.49 4.85 0.49 1.62
[-1.03] [-1.44] [-1.10] [2.62] [0.25]

rd,t+6 − rf,t -5.30 -4.80 -5.91 10.72 -5.49 5.92
[-1.52] [-1.77] [-2.06] [3.75] [-1.22]

rd,t+12 − rf,t -3.52 -5.00 -3.21 8.30 -4.24 5.00
[-1.08] [-1.68] [-0.93] [2.97] [-1.24]

rd,t+6 − rf,t -3.27 -5.68 -5.18 11.65 4.11 -6.17 7.12
[-0.85] [-1.87] [-1.80] [3.48] [1.29] [-1.32]

rd,t+12 − rf,t -3.03 -5.16 -3.05 8.49 0.97 -4.39 4.10
[-0.89] [-1.74] [-0.90] [2.99] [0.50] [-1.31]

Y1 = number of analysts in survey t

rd,t+6 − rf,t -5.64 -2.29 -6.66 6.39 -1.45 3.46
[-1.73] [-0.80] [-2.46] [2.36] [-0.53]

rd,t+12 − rf,t -3.82 -3.06 -3.82 4.96 -1.49 2.26
[-1.24] [-1.45] [-1.14] [2.93] [-0.48]

Continued on next page
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Table 4 – continued from previous page

Ext Eσ2
t V xt V σ2

t Y1 Y2 R2

Excluding the 2008/2009 crisis

rd,t+6 − rf,t -1.75 -3.65 -5.82 7.55 14.34
[-0.73] [-1.39] [-2.25] [3.61]

rd,t+12 − rf,t -1.69 -2.79 -2.62 5.16 4.55
[-0.56] [-1.57] [-0.77] [3.25]

Excluding extreme outliers

rd,t+6 − rf,t -4.26 -8.65 -6.04 9.72 8.12
[-1.51] [-1.86] [-2.29] [1.82]

rd,t+12 − rf,t -4.43 -5.29 -6.77 5.92 13.21
[-1.91] [-1.90] [-2.43] [2.06]

Y1 = interquantile diff. in means, Y2 = interquantile diff. in variances

rd,t+6 − rf,t -4.36 -6.13 -5.40 8.83 3.31
[-1.41] [-1.34] [-2.00] [1.63]

rd,t+12 − rf,t -4.32 -5.69 -6.01 6.95 9.01
[-1.82] [-2.01] [-2.63] [2.59]

This table presents results of regressions of excess returns on the CRSP market index (annualized and

in percent) on the SPF-based measures Ex, Eσ2t , V xt, and V σ2t presented in Section 2. In addition,

we add controls to the regressions. These are in order: the log price-dividend ratio and the variance

premium (see Appendix C), cay as in Lettau and Ludvigson (2001), Markov-switching cay as in

Bianchi et al. (2015), the five uncertainty measures described in Table 2, the number of analysts

featured in the SPF at time t, and the cross-sectional skewness of individual x and σ2. We exclude the

years 2008 and 2009 from the sample to control for the impact of the recent financial crisis. “Excluding

extreme outliers” means that we discard the five highest and five lowest mean growth rate forecasts, as

well as the five highest and five lowest variance forecasts before calculating the SPF-based measures.

The interquantile difference is the difference between 90%- and 10%-quantiles in the cross-section

of mean and variance forecasts. rd,t+τ − rf represents the excess return over the next τ months. A

detailed description of the data can be found in Appendix C. The numbers shown are the estimated

coefficients together with their Newey and West (1987) t-statistics (in brackets). Coefficients in bold

face are significant at a level of 10% or lower. The last column presents the adjusted R2.
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Table 5: Predictive regressions for return volatilities

Ext Eσ2
t V xt V σ2

t R2

σ(rd,t+3) -1.06 2.09 0.85 0.15 7.03
[-0.70] [2.07] [0.83] [0.12]

σ(rd,t+3) 1.73 2.74
[1.50]

σ(rd,t+6) -0.66 1.83 1.61 -0.64 5.81
[-0.47] [2.02] [1.63] [-0.79]

σ(rd,t+3) 0.86 -0.04
[0.99]

σ(rd,t+9) -0.62 1.86 1.68 -0.67 6.91
[-0.48] [1.80] [1.57] [-0.78]

σ(rd,t+9) 0.86 0.02
[0.88]

σ(rd,t+12) -0.75 1.75 1.21 -0.61 4.80
[-0.57] [1.66] [1.19] [-0.71]

σ(rd,t+12) 0.76 -0.19
[0.76]

This table presents results of regressions of return volatility of the CRSP market index on the SPF-

based measures Ex, Eσ2t , V xt, and V σ2t presented in Section 2. σ(rd,t+τ ) represents the volatility in

daily returns over the next 21 · τ trading days, annualized by multiplication with
√

252 and expressed

in percent. A detailed description of the data can be found in Appendix C. The numbers shown are the

estimated coefficients together with their Newey and West (1987) t-statistics (in brackets). Coefficients

in bold face are significant at a level of 10% or lower. The last column presents the adjusted R2.
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Table 6: Predictive regressions for cash flow growth

Ext Eσ2
t V xt V σ2

t R2

∆ct+3 0.75 -0.39 0.17 0.09 27.53
[4.25] [-2.71] [1.48] [0.65]

∆ct+3 -0.21 0.96
[-1.03]

∆ct+6 0.64 -0.36 0.13 0.09 25.64
[3.50] [-2.70] [0.99] [0.54]

∆ct+6 -0.19 0.95
[-0.88]

∆ct+9 0.53 -0.35 0.11 0.06 20.01
[2.74] [-2.41] [0.83] [0.36]

∆ct+9 -0.20 1.38
[-0.96]

∆ct+12 0.42 -0.36 0.08 0.07 15.28
[2.21] [-2.34] [0.57] [0.42]

∆ct+12 -0.19 1.28
[-0.95]

∆dt+3 2.71 0.68 -3.70 0.01 36.99
[1.28] [0.65] [-2.25] [0.02]

∆dt+3 -0.48 -0.82
[-0.38]

∆dt+6 2.75 0.63 -2.96 0.27 31.59
[1.19] [0.70] [-1.61] [0.33]

∆dt+6 -0.13 -1.09
[-0.10]

∆dt+9 2.62 0.33 -2.45 0.79 26.65
[1.16] [0.38] [-1.28] [1.01]

∆dt+9 0.29 -1.00
[0.24]

∆dt+12 2.37 0.24 -2.17 1.01 22.97
[1.16] [0.30] [-1.16] [1.45]

∆dt+12 0.53 -0.66
[0.49]

This table presents results of regressions of log consumption growth and log dividend growth (both

annualized and expressed in percent) on Ext, Eσ
2
t , V xt, and V σ2t . A detailed description of the data

can be found in Appendix C. The numbers shown are the estimated coefficients together with their

Newey and West (1987) t-statistics (in brackets). Coefficients in bold face are significant at a level of

10% or lower. The last column presents the adjusted R2.
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Table 7: Contemporaneous regressions for asset pricing quantities

Ext Eσ2
t V xt V σ2

t R2

pt − dt 0.15 0.05 0.06 -0.04 22.32
[3.94] [1.43] [2.66] [-1.38]

pt − dt -0.02 -0.48
[-0.68]

rf,t 0.64 -1.47 0.24 -0.36 11.63
[0.74] [-2.47] [0.30] [-0.74]

rf,t -1.31 6.67
[-2.63]

vpt -1.65 4.09 1.04 -0.71 -0.56
[-0.74] [1.43] [-1.00] [-0.33]

vpt 1.90 -0.23
[1.90]

This table presents results of regressions of the log price dividend ratio pt − dt, the log of one plus

the real risk-free rate rf,t (expressed in percent), and the variance premium vpt (expressed in percent

squared) on the SPF-based measures Ext, Eσ
2
t , V xt, and V σ2t . A detailed description of the data can

be found in Appendix C. The numbers shown are the estimated coefficients together with their Newey

and West (1987) t-statistics (in brackets). Coefficients in bold face are significant at a level of 10% or

lower. The last column presents the adjusted R2.
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Table 8: Parameter estimates

Aggregate consumption growth

Parameter µc πc

Estimate 3.68×10−3 1.77
[7.41×10−4] [0.13]

Aggregate dividend growth

Parameter µd φx πd ϕσ

Estimate 7.05×10−3 6.79 -0.03 3.51
[4.62×10−3] [0.75] [0.88] [0.47]

Trend consumption growth

Parameter ρx πv πq

Estimate 0.83 0.20 7.30×103

[0.06] [0.11] [3.85×103]

Expected consumption growth variance

Parameter v̄ ρv σv

Estimate 1.44×10−5 0.25 2.76×10−6

[4.16×10−7] [0.08] [2.21×10−7]

Ambiguity about consumption growth variance

Parameter q̄ ρq σq

Estimate 3.93×10−10 0.36 2.70×10−10

[4.22×10−11] [0.07] [5.80×10−11]

The table shows the GMM parameter estimates for the cash flow and state variable dynamics in

our model represented by the system (14). The estimate of πv is conditional on the assumption

πq = 0 and the estimate of πq is conditional on the assumption πv = 0. The table thus presents

results from two different estimations. Since the constraints πq = 0 (resp. πv = 0) do not influence

the other parameter estimates, we show the results for these other paramters only once for the two

estimations. The moments used for estimation are described in Appendix D. Standard errors adjusted

for heteroskedasticity and autocorrelation according to Newey and West (1987) are shown in square

brackets. The data on consumption and dividend growth are described in Appendix C.
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Table 9: Unconditional asset pricing moments

Ambiguity attitude averse averse averse neutral

Data qt ≡ 0 πq = 0, πv > 0 πq > 0, πv = 0 πq > 0, πv = 0

Equity premium

mean 6.43 3.24 3.23 13.71 1.76
[-10.91,17.36] [-10.95,17.41] [0.45,26.96] [-13.58,17.01]

std 18.67 34.16 34.18 33.63 36.86
[24.51,45.11] [24.48,45.13] [23.48,45.70] [25.62,50.09]

AC1 0.05 -0.05 -0.05 -0.09 -0.05
[-0.42,0.34] [-0.42,0.34] [-0.45,0.30] [-0.41,0.33]

Risk-free rate

mean -0.10 1.09 1.09 0.72 1.61
[-0.44,2.57] [-0.44,2.57] [-0.97,2.31] [-0.05,3.20]

std 4.62 1.89 1.89 2.09 2.02
[1.23,2.78] [1.23,2.78] [1.34,3.11] [1.28,3.04]

AC1 0.74 0.52 0.52 0.48 0.51
[0.15,0.76] [0.15,0.76] [0.11,0.74] [0.14,0.76]

Price-dividend ratio

mean 3.96 4.37 4.37 2.18 5.59
[4.11,4.64] [4.11,4.64] [1.91,2.43] [5.30,5.87]

std 0.27 0.35 0.35 0.35 0.38
[0.23,0.51] [0.24,0.51] [0.23,0.51] [0.25,0.55]

AC1 0.67 0.43 0.43 0.42 0.43
[0.03,0.71] [0.03,0.71] [0.08,0.70] [0.02,0.71]

Variance premium

mean 17.19 0.66 0.66 8.39 1.79
[0.66,0.66] [0.66,0.66] [8.39,8.39] [1.79,1.80]

std 20.41 0.00 0.00 0.00 0.00
[0.00,0.00] [0.00,0.00] [0.00,0.00] [0.00,0.00]

AC1 0.29 - 0.65 0.65 0.65
[0.54,0.73] [0.54,0.73] [0.54,0.73]

The table presents asset pricing moments from the data for the period from 1992:Q1 to 2014:Q4 and

from Monte Carlo simulations of four versions of our model. The preference specifications in the first

three cases are γ = 2 and η = 24, i.e., the investor is ambiguity averse. In the fourth case the investor

is ambiguity-neutral with γ = η = 10. The model-implied values shown are the medians and the 90%

confidence intervals (in brackets) from a simulation of 10,000 paths, each of the same length as the

data. The data are described in Appendix C. The model labeled qt ≡ 0 corresponds to the dynamics

(14) with σq = q̄ = 0. The versions of the model corresponding to the restrictions πq = 0 and πv = 0

are obtained analogously.

48



Table 10: Return prediction via the variance premium

Ambiguity attitude averse averse neutral

Data πq = 0, πv > 0 πq > 0, πv = 0 πq > 0, πv = 0

β(1) 12.68 0.14 34.03 12.13
[-14.36,14.07] [1.73,13.24] [-5.74,30.02]

t-stat 5.22 0.02 4.07 1.40
[-2.03,2.02] [1.84,6.76] [-0.64,3.69]

R2(1) 5.72 0.16 6.27 0.86
[0.00,1.78] [1.73,13.24] [0.00,5.16]

β(3) 10.23 0.04 23.47 8.32
[-12.16,12.03] [9.94,36.72] [-6.51,22.85]

t-stat 6.81 0.01 3.86 1.25
[-2.25,2.18] [1.41,7.01 [-0.93,3.80]

R2(3) 9.94 0.35 10.13 1.34
[0.00,3.88] [1.89,22.80] [0.00,9.86]

β(6) 6.21 -0.06 15.05 5.33
[-10.07,10.22] [4.45,25.84] [-6.60,17.51]

t-stat 4.07 -0.01 3.31 1.05
[-2.33,2.37] [0.86,6.44] [-1.23,3.59]

R2(6) 6.60 0.51 9.30 1.24
[0.00,5.59] [0.84,24.35] [0.00,10.37]

β(12) 2.57 0.02 8.05 2.85
[-7.90,8.00] [0.15,16.18] [-6.22,11.95]

t-stat 1.87 0.72 2.55 0.78
[-2.45,2.48] [0.04,5.43] [-1.65,3.40]

R2(12) 2.08 0.68 6.12 1.04
[0.00,6.89] [0.08,21.08] [0.00,10.35]

β(24) 1.62 0.01 4.03 1.45
[-6.04,6.02] [-1.69,9.99] [-5.27,8.10]

t-stat 1.46 0.00 1.85 0.57
[-2.57,2.52] [-0.70,4.66] [-1.93,3.19]

R2(24) 1.46 0.79 3.59 0.99
[0.00,8.29] [0.01,17.69] [0.00,9.88]

β(36) 0.61 -0.04 2.66 0.95
[-5.12,5.09] [-2.20,7.78] [-4.66,6.67]

t-stat 0.67 -0.02 1.54 0.48
[-2.66,2.62] [-1.06,4.44] [-2.09,3.16]

R2(36) 0.31 0.84 2.75 0.99
[0.00,9.21] [0.01,17.28] [0.00,10.42]

This table presents results of regressions as specified in Equation (15) in the data between
1992:Q1 and 2014:Q4 and on simulated data from our model. It reports regression coefficients
β(h), Newey and West (1987) t-statistics, and R2s for return horizons of 1, 3, 6, 12, 24, and 36
months. The median values and 90% confidence intervals (in brackets) reported in columns 2-5
are from 10,000 simulation runs of equivalent length to the data.
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Figure 1: Point forecasts of consumption vs output growth

The figure shows the individual point forecasts of annual average over annual average growth in real

GDP plotted against the individual point forecasts of annual average over annual average growth in

real consumption. The sample comprises all analysts’ forecasts between 1992:Q1 and 2014:Q4.
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Figure 2: Time series of state variables extracted from SPF data
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The figure shows plots of the time series for the state variables (from top to bottom) Ext, Eσ
2
t , V xt,

and V σ2t . All time series are standardized to have a mean of zero and a standard deviation of one.

The sample period is from 1992:Q1 to 2014:Q4. Shaded areas represent NBER recessions.
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Figure 3: Predictability of excess returns over different horizons by V σ2
t
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The figure shows the coefficients βτ in the regressions rd,t+τ −rf,t = ατ +βτV σ
2
t +εt+τ plotted against

τ (expressed in months). rd,t+τ is the excess return on the CRSP stock market index (annualized and

expressed in percent) and V σ2t is normalized to have a mean of zero and a variance of one. In the

upper panel, the full set of SPF-measures are used in the regression, while in the lower panel, only

V σ2t is used in the regression. The sample period is from 1992:Q1 to 2014:Q4. Shaded areas represent

90%-confidence bounds.
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Figure 4: Decomposition of the equity premium in the four specifications
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The figure shows the size of the different parts of the equity premium for the four specifications referred

to in Table 9. The decomposition is according to Equation (11), where we introduce the unconditional

average reference variance v̄ for vt and the unconditional average ambiguity about the volatility q̄ for

qt. The white numbers in the center of the pies are the unconditional mean excess returns in annual

terms as reported in Table 9.
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