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Vikrant Vig, Jeffrey Zwiebel, seminar participants at London Business School, Princeton University (Bend-
heim Center for Finance), Frankfurt School of Finance & Management, Tilburg University, Stockholm
School of Economics, INSEAD, University of North Carolina at Chapel Hill (Kenan-Flagler Business
School), Columbia University (Columbia Business School), Stanford University (Graduate School of Busi-
ness), Rice University (Jones Graduate School of Business), University of Cologne (Centre for Financial
Research), and participants at the HEC Finance Ph.D. Workshop for their many helpful comments and sug-
gestions. All errors are my responsibility.
†Department of Finance, Stockholm School of Economics, Drottninggatan 98, 111 60 Stockholm, Swe-

den. Email: jan.starmans@hhs.se. Phone: +46 8 736 9181.

1



1 Introduction

Agency problems between firm insiders and investors can lead to financial constraints such that

investment projects are not undertaken even though they have a positive net present value. While

most firms are likely to be financially constrained to some extent, an important part of the corporate

finance literature (both empirical and theoretical) attempts to understand the heterogeneity in the

intensity of financial constraints across firms and over time.

This paper revisits a standard financial contracting framework to study a potentially important

determinant of firms’ financial constraints: firms’ production technologies. I consider an investor

who can provide capital to a single entrepreneur. An entrepreneur’s effort affects the output dis-

tribution and the investor designs a contract to induce the entrepreneur’s effort, subject to standard

contractual constraints: limited liability and monotonicity. The view taken in this paper is that

entrepreneurs differ in how they affect the output distribution, which can reflect differences in en-

trepreneur characteristics such as human capital or differences in project characteristics such as

assets. For example, consider two entrepreneurs who have different capabilities to develop a new

drug. One entrepreneur has experience with cutting-edge technology to develop a valuable novel

drug, which increases the probability of high profits. The other entrepreneur has experience with

proven technology to develop a less novel and less valuable drug, which increases the probability

of medium profits but is more certain.

The main contribution of the paper is to characterize optimal incentive and financial con-

tracts, agency rents, and the investor’s investment decision for a large class of entrepreneurs.

Entrepreneurs require different optimal contracts, which imply different agency rents. An en-

trepreneur with a higher agency rent has a lower (expected) pledgeable income, defined as the max-

imum expected income that can be pledged to the investor without jeopardizing the entrepreneur’s

incentives. A higher agency rent and lower pledgeable income makes it less likely to receive fi-

nancing from the investor. The central result is that the investor’s investment decision depends on

the productivity of effort, the ratio of the expected value of effort and the disutility of effort. If

the productivity of effort is high (low), the investor prefers an entrepreneur who has the strongest

impact on a higher (lower) region of the output distribution and provides more debt-like (equity-

like) financing. In general, the results relate entrepreneurs’ financial constraints measured by their
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pledgeable income to their production technologies and financial contracts.

I consider the following principal-agent framework with a risk-neutral investor (the principal)

and a set of penniless risk-neutral entrepreneurs (the agents). Each entrepreneur owns a project that

requires financing from the investor and generates a random cash flow from a finite set of possible

cash flows. Without an entrepreneur’s effort, each cash flow has a positive probability, which is

identical for all entrepreneurs and referred to as the baseline technology. Entrepreneurs differ in

that they generate different probability distributions of cash flows when they exert effort, referred

to as entrepreneurs’ technologies. Specifically, I consider entrepreneurs with technologies that

first-order stochastically dominate the baseline technology with a single-peaked likelihood ratio, a

generalization of the monotone likelihood ratio property. Intuitively, the baseline technology cap-

tures the uncertainty that entrepreneurs cannot affect, whereas entrepreneurs’ technologies capture

the uncertainty that entrepreneurs can affect. For example, differences in entrepreneurs’ technolo-

gies can capture differences in entrepreneur characteristics such as human capital or differences in

project characteristics such as assets.

To isolate the paper’s novel contribution, I assume that all entrepreneurs generate the same

increase in their project’s expected cash flow through effort (expected value of effort), incur the

same disutility of effort, and have the same reservation utility equal to zero. In particular, all

entrepreneurs generate the same net present value and are equally productive. In an extension, I

consider entrepreneurs with different net present values as well as different technologies.

The investor has enough capital to invest in a single entrepreneur. Alternatively, she can invest

in an asset with an expected gross return of one. The investor chooses the type of entrepreneur to

invest in and designs a contract to induce the entrepreneur’s effort. As is standard in the financial

contracting literature, contracts have to satisfy three contractual constraints. Entrepreneurs are

protected by limited liability and both the entrepreneur’s and the investor’s contractual payoff has

to be nondecreasing in cash flows.

As a first step, I derive optimal contracts for an arbitrary entrepreneur in closed form. An op-

timal incentive contract is a capped bonus contract, that is, the entrepreneur’s contractual payoff

is zero if the cash flow is below a first threshold, increases one-to-one if the cash flow is between

the first and a second threshold, and remains flat if the cash flow is above the second threshold.
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Intuitively, if the entrepreneur has the strongest impact on a lower (higher) region of the cash flow

distribution, his contractual payoff becomes more debt-like (equity-like). The investor’s contrac-

tual payoff is a combination of debt and equity.1

Next, I characterize the investor’s investment decision. The general insight is that, despite hav-

ing identical net present values, different entrepreneurs require different optimal contracts, which

imply different agency rents. I derive entrepreneurs’ agency rents under optimal contracts in closed

form. The higher an entrepreneur’s rent, the lower his pledgeable income, which is a standard

measure of financial constraints (see, e.g., Tirole, 2006). In addition, I show that an entrepreneur’s

agency rent depends only on the ratio of the expected value of effort and the disutility of effort. I

refer to the ratio as the productivity of effort, which I have assumed is common to all entrepreneurs.

For illustration, consider an example with cash flows 0, 1, and 2, and two entrepreneurs. En-

trepreneur 1’s effort increases the probability of cash flow 1, entrepreneur 2’s increases that of cash

flow 2. The investor has to reward entrepreneur 1 in state 1 to induce effort but also in state 2 due to

the entrepreneur’s monotonicity constraint. If the productivity of effort is high, the investor has to

reward entrepreneur 2 only in state 2 to induce effort and no monotonicity constraint binds. Hence,

everything else equal, entrepreneur 2 requires a lower agency rent and has a higher pledgeable

income if the productivity of effort is high. In particular, entrepreneur 2 requires equity incentives

and receives debt financing. However, if the productivity of effort is low, the investor has to give

entrepreneur 2 a high share of the cash flow in state 2 to induce effort, and also a high share of

the cash flow in state 1 due to the investor’s monotonicity constraint. In contrast, the investor

must give entrepreneur 1 only the same level in state 2 as in state 1 but a lower share. Hence, en-

trepreneur 1 requires a lower agency rent and has a higher pledgeable income if the productivity of

effort is sufficiently low. In particular, entrepreneur 1 requires debt incentives and receives equity

financing.

I solve the investor’s investment decision explicitly for two subsets of entrepreneurs, who re-

ceive debt financing and equity incentives (debt entrepreneurs) and equity financing and debt in-

centives (equity entrepreneurs), respectively. In each of these two subsets of entrepreneurs, there

exists a unique entrepreneur who has the lowest agency rent, the highest pledgeable income, and is

1Following the conventions of the literature, I refer to a contractual payoff as a function of the cash flow x of the
form min{x,φ} for some φ ≥ 0 as debt, and a contractual payoff of the form max{0,x−φ} as equity.
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thus least financially constrained. If the two optimal entrepreneurs have the same maximum like-

lihood ratio, the investor prefers the optimal debt entrepreneur if the productivity of effort is high,

but prefers the optimal equity entrepreneur if the productivity of effort is low. As illustrated in the

example, due to the contractual constraints, it is more costly to incentivize equity entrepreneurs

compared to debt entrepreneurs if the productivity of effort is high but less if it is low.

The set of entrepreneurs who receive debt financing is equal to the set of entrepreneurs satisfy-

ing the monotone likelihood ratio property (MLRP). In particular, the optimal debt entrepreneur is

also the optimal MLRP entrepreneur. This implies that the investor would not choose any MLRP

entrepreneur if the productivity of effort is sufficiently low. Importantly, these are the environments

in which agency rents are high and agency problems are thus likely to matter most for firms and

investors. It is exactly in these environments that MLRP might not be a plausible assumption.

These insights extend to the general case in which entrepreneurs are financed by a combination

of debt and equity and retain a capped bonus for incentive reasons. Given their optimal contracts,

I characterize entrepreneurs as more debt-like (equity-like) if debt (equity) has a higher weight

in their financing. I show that if the investor decides between a more debt- and a more equity-

like entrepreneur, she prefers the more equity-like entrepreneur if the productivity of effort is

sufficiently low.

If entrepreneurs also differ in their net present values (e.g., in their expected value of effort),

in addition to their technologies, the investor may prefer an inefficient entrepreneur from a set of

potential entrepreneurs if this entrepreneur requires a sufficiently lower agency rent relative to the

otherwise efficient choice. Thus, the investor’s investment decision can be distorted due to the

contracting problem.

The model applies to environments in which investors decide between different types of en-

trepreneurs that require tailored financial contracts in an environment that is plagued by agency

problems, which resembles the problem faced by venture capitalists (see, e.g., Kaplan and

Strömberg, 2001). Indeed, venture capitalists (VCs) choose from a number of different invest-

ment opportunities and design the financial contracts, in particular to mitigate agency problems

(Kaplan and Strömberg, 2004). Consistent with the theory presented in this paper, the investment

decision of VCs interacts with the design of financial contracts in the sense that VCs tailor financial
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contracts to the characteristics of individual entrepreneurs, which in turn affect VCs’ investment

decisions (Kaplan and Strömberg, 2000). Moreover, the contractual payoff of the VC corresponds

in most cases to a combination of debt and equity (Kaplan and Strömberg, 2003), in line with the

financial contracts in the model. My theory therefore suggests that an entrepreneur’s ability to

raise financing is a function of his production technology and varies systematically with factors

that affect the productivity of effort.

Related Literature. There is a significant literature on optimal incentive and financial con-

tracting, which takes the nature of the production technology as given. As such, this literature does

not address the choice regarding entrepreneurs. For example, Innes (1990) studies a single en-

trepreneur with a fixed technology and shows that equity is the optimal incentive contract. Poblete

and Spulber (2012) also consider a fixed entrepreneur but allow for more general technologies. In

contrast, I study the investor’s choice between entrepreneurs. Specifically, I derive the investor’s

and entrepreneur’s expected utilities under optimal contracts in closed form, characterize the in-

vestor’s investment decision and how it varies across productivity levels. Further, Hébert (2018)

considers a model with both effort and risk shifting. In my model, the only dimension of moral

hazard is the entrepreneur’s effort and I allow the investor to choose between different types of

entrepreneurs.

This paper is related to the literature on information systems, in particular Blackwell (1951,

1953), Holmstrom (1979), Grossman and Hart (1983), and Kim (1995). While the authors study

the principal’s response to changes in the agent’s information system, they study the risk/incentive

trade-off, which is absent in my model. In contrast, I study the choice of an output distribution in

the presence of standard contractual constraints: limited liability and monotonicity.

In the context of principal-agent models, a number of papers study agent selection. For ex-

ample, Legros and Newman (1996), Thiele and Wambach (1999), Newman (2007), and Chade

and Vera de Serio (2014) study agent selection based on agents’ wealth, and Sobel (1993), Sil-

vers (2012), and von Thadden and Zhao (2012) consider the agent’s information set. Other papers

study the principal’s choice between agents where the main friction is adverse selection (see, e.g.,

Faynzilberg and Kumar, 1997; Lewis and Sappington, 2000, 2001), which is absent in my setting. I

contribute to the literature by studying agent selection based on differences in agents’ technologies,
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in the presence of standard contractual constraints.

The paper proceeds as follows: Section 2 introduces the theoretical framework. Section 3

studies optimal contracts. The main contribution of the paper is to study the resulting agency

rents in Section 4 and the investor’s investment decision in Section 5. Section 6 discusses the

implications of the results. All proofs and additional material can be found in the appendix.

2 Model

There are three dates t ∈ {0,1,2} and no time discounting. There is a risk-neutral investor (the

principal) and a set of penniless risk-neutral entrepreneurs (the agents).2 Each entrepreneur owns

a project, which costs I > 0 at t = 0 and generates a cash flow xi ∈ R+ := [0,∞) in state i ∈ Ω :=

{0, . . . ,n} at t = 2, where 0 = x0 < x1 < · · · < xn and n ≥ 2. The investor has I units of capital,

which allows her to invest in a single entrepreneur. Alternatively, she can invest in an asset with an

expected gross return of one.

If an entrepreneur receives financing at t = 0, he chooses effort e ∈ {0,1} at t = 1, which

is not verifiable. Entrepreneurs have a disutility of effort c ≥ 0, which is noncontractible, and a

reservation utility of zero. If an entrepreneur does not exert effort (e = 0), the cash flow is drawn

according to the probability distribution q, where qi = P(x = xi|e = 0)> 0, i ∈Ω. In particular, all

entrepreneurs have the same q, also referred to as the baseline technology.3 Intuitively, the baseline

technology q captures the uncertainty that the entrepreneur cannot affect such as demand fluctua-

tions. Entrepreneurs differ in their cash flow distributions when they exert effort (e = 1). Denote

the set of entrepreneur types by P . If an entrepreneur p ∈P exerts effort, the cash flow is drawn

according to the probability distribution p, where pi = P(x = xi|e = 1), i ∈Ω. Intuitively, the dif-

ference between an entrepreneur’s technology p ∈P and the baseline technology q captures the

uncertainty that the entrepreneur can affect. For example, differences in p ∈P can capture differ-

ences in entrepreneur characteristics such as human capital or differences in project characteristics

2Appendix C discusses the case of risk-averse entrepreneurs.
3I consider a general q, such that the results can be used to study differences in the no-effort distributions in addition

to the differences in the effort distributions.
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such as assets.4

Assumption 1. Each entrepreneur p ∈P generates the same expected value of effort π ≥ c, that

is, for all p ∈P , Ep[x]−Eq[x] = π .

Since all entrepreneurs have the same baseline technology q, they generate the same net present

value Eq[x]− I when they do not exert effort. Assumption 1 implies that all entrepreneurs generate

the same net present value

Ep[x]− c− I = Eq[x]+π− c− I

when they exert effort. Section 5.3 relaxes this assumption and considers entrepreneurs with dif-

ferent net present values under effort.

Assumption 2. Eq[x]+π− c− I ≥ 0≥ Eq[x]− I.

Assumption 2 implies that effort is a necessary condition for a positive net present value.

Definition 1. Consider a probability measure p. The likelihood ratio l(p) = (li(p))i∈Ω
∈ Rn+1

is defined as follows: li(p) := pi−qi
qi

, i ∈ Ω. Denote the maximum likelihood ratio by l∗(p) :=

maxi∈Ω li(p).

Definition 2. Consider a probability measure p. The likelihood ratio l(p) is called single-peaked

if there exists a state m ∈ Ω, such that for all i ≤ m, l(p) is nondecreasing in i ∈ Ω, and for all

i≥ m, l(p) is nonincreasing in i ∈Ω.

Assumption 3. For all p ∈P , p first-order stochastically dominates q.

Assumption 4. For all p ∈P , the likelihood ratio l(p) is single-peaked.

Assumptions 3 and 4 propose a generalization of the monotone likelihood ratio property. A

monotone likelihood ratio peaks in the highest state n, which implies first-order stochastic domi-

nance. I allow the likelihood ratio to peak in any state m∈Ω while maintaining first-order stochas-

tic dominance.
4The idea is consistent with the view in the production-based asset pricing literature that firms can substitute output

across states of nature (see, e.g., Cochrane, 1993; Belo, 2010).
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At t = 0, the investor can offer a contract s = (si)i∈Ω ∈ Rn+1 to an entrepreneur p ∈P in

exchange for providing capital I to the entrepreneur, where si is the entrepreneur’s and xi− si is the

investor’s contractual payoff in state i ∈Ω at t = 2. The following standard contractual constraints

define the set of feasible contracts.5

Assumption 5. For all i ∈Ω, the contract s satisfies si ≥ 0.

Assumption 6. For all i ∈ {1, . . . ,n}, the contract s satisfies si ≥ si−1.

Assumption 7. For all i ∈ {1, . . . ,n}, the contract s satisfies xi− si ≥ xi−1− si−1.

Assumption 5 corresponds to a limited liability constraint for the entrepreneur.6 Assumptions 6

and 7 require that both the entrepreneur’s and the investor’s contractual payoff is nondecreasing in

the cash flow, and I refer to the two constraints as the entrepreneur’s and the investor’s monotonicity

constraint, respectively.7

Example 1. Consider two entrepreneurs with projects generating cash flows xi = i, i ∈ {0,1,2},

with project cost I = 1
5 , disutility of effort c = 1

2 , and the baseline technology q =
(17

20 ,
2
20 ,

1
20

)
.

Entrepreneur p′ =
( 1

20 ,
18
20 ,

1
20

)
implies the likelihood ratio l (p′) =

(
−16

17 ,8,0
)
, and entrepreneur

p′′ =
( 9

20 ,
2
20 ,

9
20

)
implies the likelihood ratio l (p′′) =

(
− 8

17 ,0,8
)
, with the expected value of effort

π = 4
5 .

In Example 1, both entrepreneurs generate the same net present value Eq[x]+π − c− I = 3
10

when they exert effort, and the same net present value Eq[x]− I = 0 when they do not exert effort.

Entrepreneur p′ has a likelihood ratio that peaks in state i = 1, whereas entrepreneur p′′ implies a

monotone likelihood ratio that peaks in state i = 2.

5See, e.g., Harris and Raviv (1989); Innes (1990); Nachman and Noe (1994); Hart and Moore (1995); DeMarzo
and Duffie (1999); Biais and Mariotti (2005); DeMarzo (2005); DeMarzo et al. (2005).

6Note that an optimal contract in Proposition 1 satisfies the investor’s limited liability constraint: ∀i ∈Ω : si ≤ xi.
7A standard motivation for the two monotonicity constraints is that, if the contract violated one of the constraints,

then the investor or the entrepreneur has an incentive to “sabotage” the project and “destroy” output. The two con-
straints can also be motivated if the entrepreneur can “destroy” output and “secretly borrow” at zero cost to inflate
output. In general, these arguments correspond to the important concern of performance manipulation by firms (see,
e.g., Frydman and Jenter, 2010; Murphy, 2013).
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3 Optimal Contracts

As a first step, I characterize optimal contracts for an arbitrary entrepreneur p ∈P ignoring the

investor’s participation constraint.8 An optimal incentive compatible contract, denoted by s∗(p),

satisfies9

s∗(p) ∈ argmax
s

Ep [x− s] (1a)

subject to

Ep[s]− c≥ Eq[s], (1b)

Ep[s]− c≥ 0, (1c)

∀i ∈Ω : si ≥ 0, (1d)

∀i ∈ {1, . . . ,n} : si ≥ si−1, (1e)

∀i ∈ {1, . . . ,n} : xi− si ≥ xi−1− si−1. (1f)

As is standard with risk-neutrality and limited liability, the entrepreneur earns an agency rent,

and the investor designs the contract to minimize the agency rent. As shown, the incentive con-

straint (1b) binds; that is,

Ep [s∗(p)]− c = Eq [s∗(p)]> 0. (2)

Due to limited liability, the entrepreneur has to receive at least zero in all states and more than zero

in at least one state to induce effort. Since all states have a positive probability under the baseline

technology q, the entrepreneur gets a positive expected utility from shirking. The best the investor

can do is to give the entrepreneur the same positive expected utility in equilibrium. In particular,

the participation constraint (1c) does not bind.

As a benchmark, consider the contracting problem without the monotonicity constraints (1e)

and (1f), such that the only contractual constraint is the entrepreneur’s limited liability (1d). As

shown, (2) also holds in this limited liability benchmark.

Lemma 1. Consider the contracting problem (1) without the monotonicity constraints (1e) and
8The investor’s participation constraint is given by Ep [x− s]≥ I. I discuss its implications in the following sections.
9By a slight abuse of notation, s denotes both the vector and the random variable.
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(1f). Consider an entrepreneur p ∈P and a feasible contract s. If the contract s is optimal, then

si = 0 for i /∈ argmaxi∈Ω li(p). In particular, for j ∈ argmaxi∈Ω li(p), an optimal contract s∗(p) is

given by s∗i (p) = 1{i= j}
c

p j−q j
, i ∈Ω, where 1 denotes the indicator function.

In the limited liability benchmark, the investor minimizes the entrepreneur’s agency rent by

rewarding him only in states with the maximum likelihood ratio, which has the highest incentive

effect per unit of agency rent. In Example 1, the investor would offer the contract s∗ (p′) =
(
0, 5

8 ,0
)

to entrepreneur p′ and the contract s∗ (p′′) =
(
0,0, 5

4

)
to entrepreneur p′′. Clearly, the contract

s∗ (p′) violates the entrepreneur’s monotonicity constraint (1e) and the contract s∗ (p′′) violates the

investor’s monotonicity constraint (1f).

Next, I study the full contracting problem (1). It is useful to introduce two additional defini-

tions.

Definition 3. For each entrepreneur p ∈P , the cumulative likelihood ratio L(p) = (Li(p))i∈Ω
∈

Rn+1 is defined as follows: Li(p) := ∑
n
j=i(p j−q j)

∑
n
j=i q j

, i∈Ω. Denote the maximum cumulative likelihood

ratio by L∗(p) := maxi∈Ω Li(p).

Lemma 2. For all p ∈P , the cumulative likelihood ratio L(p) is single-peaked.

As discussed below, the cumulative likelihood ratio determines optimal contract design in the

full contracting problem. It can be written as a weighted average of the likelihood ratio:

Li(p) =
∑

n
j=i q jl j(p)

∑
n
j=i q j

, i ∈Ω.

Lemma 2 shows that the cumulative likelihood ratio inherits the single-peaked property from the

likelihood ratio.

Definition 4. For each j ∈ {1, . . . ,n}, the tranche s j ∈ Rn+1
+ is defined as s j

i := 1{i≥ j}(x j− x j−1),

i ∈Ω, where 1 denotes the indicator function.

The tranches s j, j ∈ {1, . . . ,n}, partition the cash flow xi in each state i∈Ω, that is, ∑
n
j=1 s j

i = xi,

i ∈Ω. They are the building blocks of optimal contracts in the full contracting problem.

11



Proposition 1. Consider the contracting problem (1) and an entrepreneur p ∈P . Consider a

permutation {i1, . . . , in} of the set {1, . . . ,n} such that Li1(p) ≥ Li2(p) ≥ ·· · ≥ Lin(p). For j ∈

{1, . . . ,n}, define

c̄ j :=
j

∑
k=1

(
xik− xik−1

)
Lik(p)

n

∑
i=ik

qi.

We have 0 =: c̄0 ≤ c̄1 ≤ ·· · ≤ c̄n = π . Let m∈ {1, . . . ,n} such that c̄m−1 < c≤ c̄m. Then an optimal

contract s∗(p) is given by s∗(p) = ∑
m
k=1 λiksik , where λik = 1 for k ∈ {1, . . . ,m−1}, and

λim =
c− c̄m−1

(xim− xim−1)Lim(p)∑
n
i=im qi

∈ (0,1].

In particular, there exist two thresholds φ1(p),φ2(p) ∈ [0,xn] such that an optimal contract s∗(p)

is given by

s∗i (p) = min{max{0,xi−φ1(p)} ,φ2(p)} , i ∈Ω. (3)

Proposition 1 gives optimal contracts in closed form.10,11 In the full contracting problem, the

entrepreneur’s contractual payoff has to be nondecreasing. Thus, if the investor decides to reward

the entrepreneur in a state i < n, she has to reward the entrepreneur in all higher states j > i as

well. Since the cumulative likelihood ratio Li(p) is a weighted average of the likelihood ratios for

these states j ≥ i, the investor first uses a fraction λi1 of the contract tranche si1 with the maximum

cumulative likelihood ratio Li1(p), which has the highest incentive effect per unit of agency rent.

Since the investor’s contractual payoff has to be nondecreasing, we require λi1 ≤ 1. If the contract

tranche si1 is not enough to generate sufficient incentives, the investor adds a fraction λi2 of the

contract tranche si2 with the second highest cumulative likelihood ratio Li2(p), and so on. Since

L(p) is single-peaked, a tranche that is added to the contract can be chosen to be adjacent to a

tranche that has been added before, which yields the specific shape of the contract in (3).

Example 2. Consider an entrepreneur with a project generating cash flows xi = i, i ∈ {0,1,2,3},

and the baseline technology q =
(1

4 ,
1
4 ,

1
4 ,

1
4

)
. Entrepreneur p =

( 1
20 ,

1
20 ,

3
5 ,

3
10

)
implies the cumula-

tive likelihood ratio L(p) =
(
0, 4

15 ,
4
5 ,

1
5

)
, with the expected value of effort π = 13

20 .

10Note that the thresholds φ1(p) and φ2(p) are derived in closed form in the proof of Proposition 1.
11The contracting problems considered in Lemma 1 and Proposition 1 do not always have a unique solution. This

is not relevant for the purpose of this paper, since I focus on an entrepreneur’s agency rent, and different optimal
contracts imply the same agency rent.
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Figure 1a plots the optimal contracts for Example 2, for the three thresholds c̄1, c̄2, and c̄3 = π ,

defined in Proposition 1. If c = c̄1, the investor uses the contract tranche s2 with the maximum

cumulative likelihood ratio L2(p) (dots). If c = c̄2, she adds the contract tranche s1 with the second

highest cumulative likelihood ratio L1(p) (triangles). If c = π , she adds the contract tranche s3

with the lowest positive cumulative likelihood ratio L3(p) (squares).

I refer to the entrepreneur’s contractual payoff s∗(p) specified in (3) as a capped bonus. Using

(3), the investor’s contractual payoff can be written as

xi− s∗i (p) = min{xi,φ1(p)}+max{0,xi−φ1(p)−φ2(p)}, i ∈Ω. (4)

Following the conventions of the literature, I refer to a contractual payoff of the form min{x,φ} for

some φ ∈ [0,xn] as debt, and a contractual payoff of the form max{0,x−φ} for some φ ∈ [0,xn]

as equity. Thus, we can interpret the investor’s contractual payoff as a combination of debt and

equity. The relative importance of debt and equity depends on the thresholds φ1(p) and φ2(p),

which in turn depend on the entrepreneur’s type p ∈P .

Relative to the existing literature (see, e.g., Innes, 1990; Poblete and Spulber, 2012), this section

shows that extending the assumption of a monotone likelihood ratio to a single-peaked likelihood

ratio generates a relevant class of incentive and financial contracts.

The contracting problem determines both the entrepreneur’s incentive contract s∗(p) and the

investor’s financial contract x− s∗(p). In particular, the results have implications for the optimal

compensation of firm insiders such as managers. For example, Innes (1990) provides a stylized

theory of equity compensation (see, e.g., Edmans and Gabaix, 2016). My theory rationalizes a

much larger class of incentive contracts: capped bonuses.

Corollary 1. Consider an entrepreneur p ∈P . If L∗(p) = L1(p), there exists a threshold φ(p) ∈

[0,xn] such that an optimal contract s∗(p) is given by s∗i (p) = min{xi,φ(p)} , i ∈ Ω. If L∗(p) =

Ln(p), there exists a threshold φ(p)∈ [0,xn] such that an optimal contract s∗(p) is given by s∗i (p)=

max{0,xi−φ(p)} , i ∈Ω.

If the cumulative likelihood ratio peaks in state i = 1, an optimal incentive contract for

the entrepreneur is debt: s∗(p) = min{x,φ(p)}. The investor’s contractual payoff is equity:
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x− s∗(p) = max{0,x−φ(p)}. In contrast, if the cumulative likelihood ratio peaks in state i = n,

an optimal incentive contract for the entrepreneur is equity: s∗(p) = max{0,x−φ(p)}. The in-

vestor’s contractual payoff is debt: x− s∗(p) = min{x,φ(p)}, which corresponds to the result

in Innes (1990). In particular, the model rationalizes straight debt financing and straight equity

financing for different types of entrepreneurs.

In Example 1, the investor has to reward entrepreneur p′ in state i = 2 in addition to state

i = 1, due to the entrepreneur’s monotonicity constraint, and the optimal incentive contract for

entrepreneur p′ is debt: s∗ (p′) = min
{

x, 5
8

}
. The investor’s contractual payoff is equity: x−

s∗ (p′) = max
{

0,x− 5
8

}
. The investor has to reward entrepreneur p′′ in state i = 1 in addition to

state i = 2, due to the investor’s monotonicity constraint, and the optimal incentive contract for

entrepreneur p′′ is equity: s∗ (p′′) = max
{

0,x− 3
4

}
. The investor’s contractual payoff is debt:

x− s∗ (p′′) = min
{

x, 3
4

}
.

4 Agency Rents and Pledgeable Income

In this section, I provide a complete characterization of entrepreneurs’ agency rents, which is the

key departure from the existing literature.12 Consider again an arbitrary entrepreneur p ∈P .

Using Assumption 1 and the entrepreneur’s binding incentive constraint (2), we can write the

investor’s expected utility (1a) under an optimal contract s∗(p) as

Ep [x− s∗(p)] = Eq [x]+π− c−Eq [s∗(p)] =: Ī(p). (5)

Since the investor makes the contract offer in my model, (5) is equal to the entrepreneur’s (ex-

pected) pledgeable income, defined as the maximum expected income that can be pledged to the

investor without jeopardizing the entrepreneur’s incentives and without violating any of the con-

tractual constraints, which is a standard measure of financial constraints (see, e.g., Holmstrom and

Tirole, 1997; Tirole, 2006). I therefore refer to an entrepreneur with a higher agency rent and a

12The existing literature determines the shape of optimal contracts but does not characterize agency rents (see, e.g.,
Innes, 1990; Poblete and Spulber, 2012), which is necessary to study the investor’s choice between entrepreneurs.
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lower pledgeable income as more financially constrained.13 In particular, the investor’s participa-

tion constraint is given by Ī(p)≥ I.

Using Lemma 1, it is straightforward to calculate the agency rent in the limited liability bench-

mark, which is given by Eq [s∗(p)] = c
l∗(p) , where s∗(p) is an optimal contract from Lemma 1. The

agency rent is linearly increasing in the disutility of effort c and decreasing in the maximum like-

lihood ratio l∗(p). Intuitively, an entrepreneur with a high maximum likelihood ratio has a high

informativeness of cash flows, which implies a low agency rent and a high pledgeable income.

In Example 1, both entrepreneurs have the same maximum likelihood ratio, which therefore im-

plies the same agency rent and pledgeable income in the limited liability benchmark. In particular,

we have Ī (p′) = Ī (p′′) = 7
16 > 1

5 = I and the investor is indifferent between providing capital to

entrepreneur p′ and entrepreneur p′′.

The contribution of this section is to determine entrepreneurs’ agency rents in the full con-

tracting problem. For an entrepreneur p ∈P , I call the mapping [0,π] 3 c 7→ Eq [s∗(p)] ∈ R+ the

agency rent function, where s∗(p) is an optimal contract from Proposition 1.

Proposition 2. Consider an entrepreneur p∈P and a permutation {i1, . . . , in} of the set {1, . . . ,n}

such that Li1(p)≥ Li2(p)≥ ·· · ≥ Lin(p). Let
(
c̄ j
)

j∈{0,...,n} be the partition of the interval [0,π] from

Proposition 1. Let m ∈ {1, . . . ,n} such that c̄m−1 < c≤ c̄m, then

Eq [s∗(p)] =
c

Lim(p)
+

m−1

∑
k=1

(
xik− xik−1

)(
1−

Lik(p)
Lim(p)

) n

∑
i=ik

qi.

In particular, for c ∈ (c̄m−1, c̄m), we have

∂Eq [s∗(p)]
∂c

=
1

Lim(p)
=

∑
n
i=im qi

∑
n
i=im(pi−qi)

> 0.

The agency rent function is continuous, increasing, piecewise linear, (weakly) convex, and equal

13The investor can provide capital to a single entrepreneur. Thus, only an entrepreneur with the minimum agency
rent and maximum pledgeable income can attract financing provided that Ī(p)≥ I. The interpretation of the pledgeable
income as a measure of financial constraints is much broader. For example, consider a setting in which an entrepreneur
p ∈P faces competitive investors but requires positive net worth to finance the project cost I (see, e.g., Holmstrom
and Tirole, 1997). In this case, Ī(p)< I such that the entrepreneur requires net worth A≥ Ā(p) := I− Ī(p)> 0 to be
able to invest. This implies that an entrepreneur with a lower pledgeable income Ī(p) requires a higher minimum net
worth Ā(p) to be able to invest and is therefore more financially constrained.
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to zero at c = 0.

Proposition 2 gives agency rents in closed form. The shape of the agency rent function mirrors

the design of the optimal contract discussed in Section 3. If the investor uses a fraction λim of

the contract tranche sim with cumulative likelihood ratio Lim(p) to incentivize the entrepreneur, the

marginal agency rent is given by the inverse of the cumulative likelihood ratio, 1
Lim(p) . The investor

first uses the tranche with the maximum cumulative likelihood ratio and the lowest marginal agency

rent, and adds tranches with lower cumulative likelihood ratios and higher marginal agency rents.

Figure 1b plots the agency rent function for Example 2. If 0 < c < c̄1, the investor uses a

fraction λ2 of the contract tranche s2 with the maximum cumulative likelihood ratio L2(p) and

marginal agency rent 1
L2(p) (dashed line). If c̄1 < c < c̄2, the investor adds a fraction λ1 of the

contract tranche s1 with the second highest cumulative likelihood ratio L1(p) and marginal agency

rent 1
L1(p) (solid line). If c̄2 < c < π , the investor adds a fraction λ3 of the contract tranche s3 with

the lowest positive cumulative likelihood ratio L3(p) and marginal agency rent 1
L3(p) (dotted line).

In contrast to the limited liability benchmark, the agency rent function is (weakly) convex due

to the monotonicity constraints. This implies that small variations in the disutility of effort can

lead to large changes in an entrepreneur’s agency rent and pledgeable income. In other words,

small changes in the economic environment can lead to large changes in entrepreneurs’ financial

constraints. Moreover, the size of this effect depends on an entrepreneur’s type such that the same

change in the economic environment can significantly change the financial constraints of some

types of entrepreneurs, while barely affecting other types of entrepreneurs.

The result implies that the pledgeable income Ī(p) is strictly decreasing in the disutility of

effort c. A higher disutility of effort reduces the expected surplus of effort π− c and increases the

agency rent. Since Eq[x]≤ I, there exists a threshold c̄(p) ∈ [0,π) such that Ī(p)≥ I if and only if

c≤ c̄(p). In particular, since the agency rent function depends on the entrepreneur’s type p ∈P ,

entrepreneurs can have different thresholds c̄(p).

In Appendix B, I show that it is possible to derive an entrepreneur’s agency rent as a function

of the expected value of effort π ≥ c, for a given disutility of effort c > 0. The key insight is that an

entrepreneur’s agency rent depends only on ratio π

c , which I refer to as the productivity of effort.
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Figure 1: Optimal Contracts and Agency Rents

c̄1

c̄2

π

0 1 2 3
0

1

2

3

xi

s∗ (p)

(a) Optimal contracts

0 c̄1 c̄2 π
0

0.5

1

1.5

c

Eq [s∗ (p)]

(b) Agency rent function

This figure considers Example 2. Figure 1a plots the optimal contracts s∗(p) from Proposition 1
for the three thresholds c̄1, c̄2, and c̄3 = π , defined in Proposition 1, where c̄1 = 2

5 , c̄2 = 3
5 , and

c̄3 = π = 13
20 . Figure 1b plots the agency rent function from Proposition 2.

In other words, a high agency rent can be the result of a high disutility of effort or a low expected

value of effort, which we can simply refer to as a low productivity of effort.

5 Optimal Agents

In this section, I characterize the investor’s decision between different types of entrepreneurs

p ∈P . In the absence of frictions, the investor would be indifferent between all entrepreneurs

p ∈P since all entrepreneurs generate the same nonnegative net present value Eq [x]+π − c− I

under effort. In the presence of frictions, the investor’s choice between entrepreneurs amounts to

choosing the entrepreneur with the lowest agency rent, or equivalently, the entrepreneur with the

highest pledgeable income, provided that the entrepreneur’s pledgeable income exceeds the project

cost. In Section 5.1, I study the two classes of entrepreneurs from Corollary 1, who are either fi-

nanced by debt or by equity. I extend the analysis to general entrepreneurs who are financed by a

combination of debt and equity in Section 5.2. Section 5.3 extends the analysis to entrepreneurs

with different expected values of effort.
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5.1 Debt and Equity Entrepreneurs

In this section, I solve the investor’s investment decision for the two subsets of entrepreneurs from

Corollary 1. First, consider the subset P1 := {p ∈P|L∗(p) = L1(p)}. Corollary 1 shows that

for each entrepreneur p ∈P1, an optimal incentive contract for the entrepreneur is debt and the

investor’s contractual payoff is equity. Since these types of entrepreneurs are financed by equity, I

refer to them as equity entrepreneurs.

Proposition 3. Let π ≤ x1q0.14 There exists a unique entrepreneur p1 ∈P1 such that for all c ∈

(0,π], the agency rent of entrepreneur p1 is lower than the agency rent of all other entrepreneurs

in P1.

The optimal equity entrepreneur p1 has the lowest agency rent, the highest pledgeable income,

and is thus least financially constrained within the set of equity entrepreneurs P1.

Next, consider the subset Pn := {p ∈P|L∗(p) = Ln(p)}. Corollary 1 shows that for each

entrepreneur p∈Pn, an optimal incentive contract for the entrepreneur is equity and the investor’s

contractual payoff is debt. Since these types of entrepreneurs are financed by debt, I refer to them

as debt entrepreneurs.

Proposition 4. There exists a unique entrepreneur pn ∈Pn such that for all c ∈ (0,π), the agency

rent of entrepreneur pn is lower than the agency rent of all other entrepreneurs in Pn.

The optimal debt entrepreneur pn has the lowest agency rent, the highest pledgeable income,

and is thus least financially constrained within the set of debt entrepreneurs Pn. Importantly, Pn

is equal to the set of entrepreneurs satisfying the monotone likelihood ratio property (MLRP).15

Thus, the optimal debt entrepreneur pn has the lowest agency rent among all MLRP entrepreneurs.

I next determine whether the optimal equity entrepreneur p1 ∈P1 or the optimal debt en-

trepreneur pn ∈Pn has a lower agency rent, which provides a complete characterization of the
14The restriction π ≤ x1q0 ensures that we consider the largest possible set of entrepreneurs P1. In general, the set

of entrepreneurs P is defined as a set P ⊂Rn+1 such that all p∈P satisfy ∀ j∈Ω : ∑
j
i=0(pi−qi)≤ 0, ∑

n
i=0(pi−qi)=

0, l(p) is single-peaked, Ep[x]−Eq[x] = π , and ∀i ∈ Ω : 0 ≤ pi ≤ 1. A sufficiently low π ensures that the last set of
constraints does not bind. See Appendix B for a detailed discussion of how P depends on π .

15A monotone likelihood ratio always implies a monotone cumulative likelihood ratio. While the converse is not
true for general probability distributions, it is true for the set of probability distributions with a single-peaked likelihood
ratio.
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investor’s decision for debt and equity entrepreneurs.

Proposition 5. Let π ≤ x1q0. Consider the optimal equity entrepreneur p1 ∈P1 and the optimal

debt entrepreneur pn ∈Pn from Propositions 3 and 4, respectively. There are two cases.

(i) If l∗ (pn) > q1
q1+···+qn

l∗
(

p1), then there exists a threshold c̄ ∈ (0,π) such that for all c ∈

(0, c̄), the optimal debt entrepreneur pn has a lower agency rent than the optimal equity

entrepreneur p1, and for all c∈ (c̄,π], the optimal equity entrepreneur p1 has a lower agency

rent than the optimal debt entrepreneur pn.

(ii) If l∗ (pn)< q1
q1+···+qn

l∗
(

p1), then for all c ∈ (0,π], the optimal equity entrepreneur p1 has a

lower agency rent than the optimal debt entrepreneur pn.

If the optimal equity and debt entrepreneurs p1 and pn have the same maximum likelihood

ratio l∗(p) and would therefore require identical agency rents in the limited liability benchmark,

we obtain the first case of Proposition 5. In this case, if the disutility of effort is low, the investor

chooses the optimal debt entrepreneur pn, provided that the investor’s participation constraint is

satisfied, that is, provided that Ī (pn) ≥ I. If the disutility of effort high, the investor chooses the

optimal equity entrepreneur p1, provided that the investor’s participation constraint is satisfied, that

is, provided that Ī
(

p1)≥ I.

Since the pledgeable income of each entrepreneur is decreasing in the disutility of effort, there

are cases in which both Ī
(

p1)< I and Ī (pn)< I. In these cases, the investor is unwilling to provide

capital to any debt or equity entrepreneur independent of their types.

Using the results from Appendix B (discussed in Section 4), I can rephrase the result in terms

of the expected value of effort π . If the expected value of effort is high, the investor prefers the

optimal debt entrepreneur pn.16 If the expected value of effort is low, the investor prefers the

optimal equity entrepreneur p1.

The reason for the change in the investment decision is the changing exposure to the contractual

constraints. If the productivity of effort is high (low disutility of effort or high expected value of

effort) and the investor gives the optimal equity entrepreneur p1 a small fraction of the cash flow
16Notice that there is an upper bound for the choice of π as discussed in Appendix B. However, there always exists

a c such that both regions exist.
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in state i = 1, she is forced to give the entrepreneur the same level in higher states due to the

entrepreneur’s monotonicity constraint (Assumption 6). In contrast, the investor gives the optimal

debt entrepreneur pn a small fraction of the cash flow in state i = n and no monotonicity constraint

binds. As a result, the optimal debt entrepreneur pn requires a lower agency rent. If the productivity

of effort is low, the investor gives the optimal debt entrepreneur pn a high fraction of the cash flow

in state i = n and is therefore forced to give the entrepreneur a high fraction of the cash flows in

lower states due to the investor’s monotonicity constraint (Assumption 7). In contrast, giving the

optimal equity entrepreneur p1 a high fraction of the cash flow in state i = 1, forces the investor to

give the entrepreneur the same level but lower fractions in higher states. As a result, the optimal

equity entrepreneur p1 requires a lower agency rent if the productivity of effort is sufficiently low.

Figure 2 plots the agency rent functions for the equity entrepreneur p′ (dotted line) and the debt

entrepreneur p′′ (solid line) from Example 1. Both entrepreneurs have the same maximum likeli-

hood ratio and would therefore require identical agency rents in the limited liability benchmark. If

the productivity of effort is high, the investor is forced to reward the equity entrepreneur p′ in state

i = 2 in addition to state i = 1, whereas no monotonicity constraint binds for the debt entrepreneur

p′′. As a result, the agency rent of the equity entrepreneur p′ is higher. If the productivity of effort

is low, the investor is forced reward the debt entrepreneur p′′ in state i = 1 in addition to state

i = 2. A sufficiently low productivity of effort implies that the investor is forced to give the debt

entrepreneur p′′ a high fraction of the cash flow in both states. In contrast, she is forced to give

the equity entrepreneur p′ only the same level but a lower fraction in state i = 2. As a result, the

agency rent of the debt entrepreneur p′′ is higher if the productivity of effort is sufficiently low.

The differences in entrepreneurs’ types p ∈ P can be interpreted as differences in en-

trepreneurs’ production technologies. For example, they capture differences in entrepreneur char-

acteristics such as human capital or differences in project characteristics such as assets. The result

relates differences in entrepreneurs’ production technologies to differences in their financial con-

straints. Specifically, if the productivity of effort is high, entrepreneurs with a production technol-

ogy pn are less financially constrained compared to entrepreneurs with a production technology

p1. In contrast, if the productivity of effort is low, entrepreneurs with a production technology p1

are less financially constrained compared to entrepreneurs with a production technology pn.
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In addition, the result relates financial constraints to financial contracts. Specifically, if the

productivity of effort is high, debt financing is associated with lower financial constraints compared

to equity financing. In contrast, if the productivity of effort is low, equity financing is associated

with lower financial constraints compared to debt financing.

Since Pn is equal to the set of MLRP entrepreneurs, the optimal debt entrepreneur pn is also

the optimal MLRP entrepreneur. The result implies that the investor would not choose any MLRP

entrepreneur if the productivity of effort is sufficiently low. Importantly, these are the environments

in which agency rents are high and agency problems are thus likely to matter most for firms and

investors. My theory suggests that it is exactly in these environments that MLRP might not be a

plausible assumption.

Figure 2: Agency Rent Functions
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The figure plots the agency rent functions for entrepreneurs p′ (dotted line) and p′′ (solid line) from
Example 1.

The second case of Proposition 5 shows that there are environments in which the investor al-

ways chooses the optimal equity entrepreneur p1, provided that the investor’s participation con-

straint is satisfied, that is, provided that Ī
(

p1) ≥ I. This is the case when the optimal debt

entrepreneur pn has a significantly lower maximum likelihood ratio than the optimal equity en-

trepreneur p1 and would therefore have a considerably higher agency rent, even in the limited

liability benchmark.
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5.2 General Entrepreneurs

In this section, I study general entrepreneurs p ∈P , who are financed by a combination of debt

and equity. To begin, I study the existence of an optimal entrepreneur.

Lemma 3. The set of entrepreneurs P is compact.

Since the set P is compact, and since the mapping P 3 p 7→ Eq [s∗(p)] ∈ R+ is continuous,

the extreme value theorem applies and an optimal entrepreneur p∗ ∈P exists.

Corollary 2. There exists an optimal entrepreneur p∗ ∈P; that is, minp∈P Eq [s∗(p)] exists, and

we have minp∈P Eq [s∗(p)] = Eq [s∗ (p∗)].

An optimal entrepreneur p∗ has the lowest agency rent, the highest pledgeable income, and is

thus least financially constrained within the full set of entrepreneurs P . The investor is willing to

provide capital to an optimal entrepreneur p∗ if Ī (p∗)≥ I.

Lemma 4. Consider an entrepreneur p ∈P . Let p 6= q. There exist states j,m ∈ {1, . . . ,n},

1≤m≤ j ≤ n, such that p0 < q0; for all i ∈ {1, . . . ,m−1}, pi ≤ qi; for all i ∈ {m, . . . , j}, pi > qi;

and for all i ∈ { j+1, . . . ,n}, pi = qi.

Lemma 4 shows that an entrepreneur p∈P reduces the probability of a region of low cash flow

states {0, . . . ,m−1} and increases the probability of a region of high cash flow states {m, . . . , j}.

Put differently, by exerting effort, an entrepreneur shifts probability mass from low to high states.

Lemma 5. Let π > 0. Consider an entrepreneur p ∈P . Let j,m ∈ {1, . . . ,n}, 1≤ m≤ j ≤ n, be

defined as in Lemma 4. For all c ∈ [0,π] and all i ∈ Ω, we have s∗i (p)≤min{xi,x j}, which holds

with equality for c = π .

Lemma 5 determines an upper bound for an optimal contract. If an entrepreneur p ∈P affects

the probability of cash flow states only up to a state j ∈ {m, . . . ,n}, then the bound is given by a

debt contract with face value x j. The investor’s claim therefore satisfies

xi− s∗i (p)≥ xi−min{xi,x j}= max{0,xi− x j}, i ∈Ω.
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A lower x j therefore implies a larger equity component in the entrepreneur’s financing. I therefore

refer to an entrepreneur with a lower x j as more equity-like, consistent with the notion of debt and

equity entrepreneurs from Section 5.1. Intuitively, an entrepreneur who improves a lower region

of the cash flow distribution requires more debt-like incentives and therefore more equity-like

financing. An entrepreneur who improves a higher region of the cash flow distribution requires

more equity-like incentives and more debt-like financing.

Proposition 6. Let π > 0 and 0 < m1 < m2 < n. Consider two entrepreneurs p′, p′′ ∈P . Let

j ≤ n−m2 such that the entrepreneurs positively affect the states in the regions {m1, . . . ,m1 + j}

and {m2, . . . ,m2 + j}, respectively, that is, p′i > qi ⇔ i ∈ {m1, . . . ,m1 + j} and p′′i > qi ⇔ i ∈

{m2, . . . ,m2 + j}. Then there exists a c̃ ∈ [0,π) such that for all c ∈ (c̃,π], entrepreneur p′ has a

lower agency rent than entrepreneur p′′.

Similar to the intuition for Proposition 5, if the productivity of effort is high (low disutility of

effort or high expected value of effort) and the investor gives the more equity-like entrepreneur p′

a small fraction of the cash flows in low states, she is forced to give the entrepreneur the same level

in higher states due to the entrepreneur’s monotonicity constraint (Assumption 6). In contrast, the

investor gives the more debt-like entrepreneur p′′ a small fraction of the cash flows in higher states

such that the entrepreneur’s monotonicity constraint binds less. If the productivity of effort is low,

the investor gives the more debt-like entrepreneur p′′ a high fraction of the cash flows in high states

and is therefore forced to give the entrepreneur a high fraction of the cash flows in lower states due

to the investor’s monotonicity constraint (Assumption 7). In contrast, if the investor gives the more

equity-like entrepreneur p′ a high fraction of the cash flows in low states, she is forced to give the

entrepreneur the same level but lower fractions in higher states. As a result, the more equity-like

entrepreneur p′ requires a lower agency rent if the productivity of effort is sufficiently low.

5.3 Entrepreneurs with Different Net Present Values

This section extends the model to entrepreneurs with different expected values of effort π and

therefore different net present values.17 In this case, the investor takes into account both agency
17Given that agency rents depend only on the productivity of effort (see Appendix B), I could also consider the case

where entrepreneurs differ in their disutilities of effort or differ in both their expected values and disutilities of effort.
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rents and the expected value of effort, which both affect an entrepreneur’s pledgeable income.

Denote by Pπ the set of entrepreneurs with expected value of effort π . Further denote the set

of optimal entrepreneurs for a given disutility of effort c ∈ [0,π] by P∗
π ; that is,

P∗
π := argmin

p∈Pπ

Eq [s∗(p)] .

The set P∗
π contains all entrepreneurs with the lowest agency rent, potentially including the opti-

mal debt entrepreneur or the optimal equity entrepreneur from Section 5.1.

Proposition 7. Consider a level of the expected value of effort π1 > c > 0. Consider an en-

trepreneur p′ ∈Pπ1 with p′ /∈P∗
π1

and Ī (p′)≥ I. There exists a lower level of the expected value

of effort π2 < π1 and an entrepreneur p′′ ∈Pπ2 such that the investor prefers entrepreneur p′′ over

entrepreneur p′.

Proposition 7 shows that a less productive entrepreneur can require a lower agency rent, which

offsets the loss in expected surplus. An entrepreneur with an expected value of effort π1 generates

the net present value Eq[x] + π1− c− I. If the investor chooses a less productive entrepreneur

with an expected value of effort π2 < π1, the net present value reduces by π1−π2 > 0, implying a

welfare loss for the economy. As a result, the investor may prefer an inefficient entrepreneur from

a set of potential entrepreneurs if this entrepreneur requires a sufficiently lower agency rent relative

to the otherwise efficient choice. Thus, the investor’s capital allocation decision can be distorted

due to the presence of agency rents.

6 Discussion

In this section, I discuss several implications of the model.

6.1 Entrepreneurial Finance

While the model proposed in this paper has implications for firms’ capital structure and financial

constraints in general, it specifically applies to entrepreneurial finance and in particular to venture
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capitalists (VCs). As the investor in the model, VCs choose the entrepreneurs they invest in from a

number of investment opportunities and design financial contracts, in particular to mitigate agency

problems (see, e.g., Kaplan and Strömberg, 2001, 2004).

Kaplan and Strömberg (2000) study how VCs choose the entrepreneurs they invest in. VCs

prepare detailed investment analyses, which discuss a large number of deal characteristics (e.g.,

the entrepreneur’s product) and risk factors (e.g., demand uncertainty). In my model, I capture

deal characteristics which are subject to the entrepreneur’s moral hazard by p ∈P , and the gen-

eral uncertainty which entrepreneurs cannot control by q. My theory suggests that these deal

characteristics affect an entrepreneur’s ability to obtain financing, even if they do not affect the

entrepreneur’s net present value. The bias of the investor depends on the productivity of effort as

discussed in detail in Section 5. For example, the productivity of effort can differ across industries.

A more competitive industry has a lower expected value of effort and a lower productivity of effort

compared to a less competitive industry. My theory suggests that the differences in the productivity

of effort lead to systematic differences in the structure of the supply of capital to entrepreneurs.

Kaplan and Strömberg (2003) show that the VC’s contractual payoff corresponds in most cases

to a combination of debt and equity, in line with the financial contracts in my model. Moreover,

VCs tailor financial contracts to the characteristics of individual entrepreneurs and, in line with

the mechanism I propose, they in turn take the contract terms into account when making their

investment decision.

6.2 Firms’ Financial Constraints

The corporate finance literature has identified a number of explanations for the existence of firms’

financial constraints (see, e.g., Tirole, 2006). These theories imply that a number of firm char-

acteristics are likely to affect firms’ financial constraints and several empirical papers attempt to

measure firms’ financial constraints (see, e.g., Fazzari et al., 1988; Kaplan and Zingales, 1997;

Graham and Harvey, 2001; Whited and Wu, 2006; Hadlock and Pierce, 2010).

My theory suggests a potentially important determinant of firms’ financial constraints: firms’

production technologies. I show that there is a systematic relationship between firms’ financial

25



constraints (i.e., firms’ pledgeable income) and firms’ production technologies p∈P . In addition,

my theory maps production technologies p ∈P to financial contracts. As shown, an entrepreneur

who has the strongest impact on a higher region of the output distribution receives more debt-like

financing and an entrepreneur who has the strongest impact on a lower region of the output distri-

bution receives more equity-like financing. The results thus relate financial constraints to financial

contracts. In particular, if the productivity of effort is high, debt financing is associated with lower

financial constraints compared to equity financing. In contrast, if the productivity of effort is low,

equity financing is associated with lower financial constraints compared to debt financing. In line

with this view of financial constraints, Hoberg and Maksimovic (2014) differentiate between debt

and equity financing and find significant differences between firms who desire equity and firms

who desire debt financing. My paper provides a unified theory of debt and equity financing that

can rationalize these differences.

6.3 Debt and Equity Financing

In the model, entrepreneurs are financed by a combination of debt and equity. Indeed, in reality,

small firms rely on both debt and equity financing (see, e.g., Berger and Udell, 1998). An im-

portant question is how the supply of debt and equity financing for firms depends on fluctuations

in the macroeconomic environment.18 While my theory does not feature macroeconomic shocks,

some of the insights can be used to derive implications for the supply of debt and equity financing.

Specifically, we can think of the expected value of effort π as being a function of the macroeco-

nomic environment such as the business cycle. For example, π is lower in a downturn compared

to an upturn. An increase in π leads to an increase in the productivity of effort, which reduces

agency rents and increases the net present value of entrepreneurs’ projects, implying an increase

in entrepreneurs’ pledgeable incomes. Simply put, an increase in the productivity of effort relaxes

financial constraints for all entrepreneurs. Importantly, the change in entrepreneurs’ pledgeable

incomes differs across entrepreneurs. Specifically, the model implies that firms who require debt

financing are associated with lower financial constraints compared to firms who require equity fi-

18For example, see Covas and Den Haan (2011) for an analysis of the cyclical behavior of debt and equity financing
by publicly listed firms.
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nancing if the productivity of effort is high (e.g., in an upturn) and vice versa if the productivity of

effort is low (e.g., in a downturn). Simply put, an entrepreneur who finds it easier to raise financ-

ing relative to similarly profitable entrepreneurs in an upturn, might find it relatively harder to raise

financing in a downturn. The broader interpretation of the result is that the structure of the sup-

ply of capital for entrepreneurs with different technologies who require different types of financial

contracts changes systematically in response to changes in the macroeconomic environment.

6.4 Innovation and Technological Change

Since my model features differences in characteristics of entrepreneurs which can be interpreted as

different types of ideas and innovations, it has implications for innovation and technological change

(see, e.g., Tinbergen, 1974, 1975).19 For illustration, consider the optimal debt entrepreneur pn and

the optimal equity entrepreneur p1 from Section 5.1. For example, the two entrepreneurs have dif-

ferent ideas for an innovation that improves an existing drug as discussed in the introduction. As

shown, whether entrepreneur p1 or entrepreneur pn obtains financing depends on the productiv-

ity of effort. If the productivity of effort is low, entrepreneur p1 obtains financing rather than

entrepreneur pn and it is his innovation that is realized.

Consider a productivity shock, which leads to a reduction in the disutility of effort or an in-

crease in the expected value of effort, implying an increase in the productivity of effort. If the

productivity of effort increases sufficiently, then entrepreneur pn obtains financing rather than en-

trepreneur p1 and it is his innovation that is realized. Thus, an increase in the productivity of effort

leads to changes in the composition of entrepreneurs and the types of projects and ideas, which

are realized. This interpretation of the model as a theory of technological change does not require

differences in the productivity of different entrepreneurs to drive the adoption of new technologies.

Instead, technological change is driven only by the contracting problem between entrepreneurs and

investors.
19See Acemoglu and Autor (2011) for a survey.
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7 Concluding Remarks

In this paper, I consider a theory of financial constraints of entrepreneurs with different production

technologies. The theory is based on a standard risk-neutral principal-agent model with contractual

constraints: limited liability and monotonicity. Different entrepreneurs generate different probabil-

ity distributions of output under unverifiable effort. The paper provides a complete characterization

of optimal incentive and financial contracts, agency rents, and pledgeable incomes, and relates en-

trepreneurs’ production technologies to financial contracts and financial constraints.

The central idea in the paper is that an entrepreneur’s type is a probability distribution p ∈P ,

which determines the entrepreneur’s output distribution under effort. The entrepreneur’s type

p ∈P captures entrepreneur specific characteristics such as human capital and project specific

characteristics such as the characteristics of the assets required for the project. The view taken

here is that these characteristics affect not only the value of a project but also the nature of the

contracting problem between the entrepreneur and an investor. As shown, in the presence of con-

tractual constraints, these characteristics affect entrepreneurs’ financial constraints.

The theory has implications for optimal incentive contracts for firm insiders and optimal finan-

cial contracts. The results therefore also apply to questions of optimal compensation (see, e.g.,

Edmans and Gabaix, 2016). In this context, the principal is a firm hiring an agent such as a man-

ager. The results then imply a joint theory of incentives and hiring, treated largely separately (and

hence separably) in the literature (see, e.g., Oyer and Schaefer, 2011).

References

Acemoglu, Daron, and David Autor, 2011, Skills, Tasks and Technologies: Implications for Em-

ployment and Earnings, in Orley Ashenfelter, and David Card, Eds., Handbook of Labor Eco-

nomics, Volume 4B, 1043–1171 (Elsevier).

Belo, Frederico, 2010, Production-Based Measures of Risk for Asset Pricing, Journal of Monetary

Economics 57, 146–163.

Berger, Allen N., and Gregory F. Udell, 1998, The Economics of Small Business Finance: The

28



Roles of Private Equity and Debt Markets in the Financial Growth Cycle, Journal of Banking &

Finance 22, 613–673.

Biais, Bruno, and Thomas Mariotti, 2005, Strategic Liquidity Supply and Security Design, Review

of Economic Studies 72, 615–649.

Blackwell, David, 1951, Comparison of Experiments, in Jerzy Neyman, Ed., Proceedings of the

Second Berkeley Symposium on Mathematical Statistics and Probability, 93–102 (University of

California Press).

Blackwell, David, 1953, Equivalent Comparisons of Experiments, Annals of Mathematics and

Statistics 24, 265–272.

Chade, Hector, and Virginia N. Vera de Serio, 2014, Wealth Effects and Agency Costs, Games and

Economic Behavior 86, 1–11.

Cochrane, John H., 1993, Rethinking Production Under Uncertainty, Manuscript, University of

Chicago.

Covas, Francisco, and Wouter J. Den Haan, 2011, The Cyclical Behavior of Debt and Equity

Finance, American Economic Review 101, 877–899.

DeMarzo, Peter M., 2005, The Pooling and Tranching of Securities: A Model of Informed Inter-

mediation, Review of Financial Studies 18, 1–35.

DeMarzo, Peter M., and Darrell Duffie, 1999, A Liquidity-Based Model of Security Design,

Econometrica 67, 65–99.

DeMarzo, Peter M., Ilan Kremer, and Andrzej Skrzypacz, 2005, Bidding with Securities: Auctions

and Security Design, American Economic Review 95, 936–959.

Edmans, Alex, and Xavier Gabaix, 2016, Executive Compensation: A Modern Primer, Journal of

Economic Literature 54, 1232–1287.

Faynzilberg, Peter S., and Praveen Kumar, 1997, Optimal Contracting of Separable Production

Technologies, Games and Economic Behavior 21, 15–39.

29



Fazzari, Steven M., R. Glenn Hubbard, and Bruce C. Petersen, 1988, Financing Constraints and

Corporate Investment, Brookings Papers on Economic Activity 1, 141–195.

Frydman, Carola, and Dirk Jenter, 2010, CEO Compensation, Annual Review of Financial Eco-

nomics 2, 75–102.

Graham, John R., and Campbell R. Harvey, 2001, The Theory and Practice of Corporate Finance:

Evidence from the Field, Journal of Financial Economics 60, 187–243.

Grossman, Sanford J., and Oliver D. Hart, 1983, An Analysis of the Principal-Agent Problem,

Econometrica 51, 7–45.

Hadlock, Charles J., and Joshua R. Pierce, 2010, New Evidence on Measuring Financial Con-

straints: Moving Beyond the KZ Index, Review of Financial Studies 23, 1909–1940.

Harris, Milton, and Artur Raviv, 1989, The Design of Securities, Journal of Financial Economics

24, 255–287.

Hart, Oliver D., and John Moore, 1995, Debt and Seniority: An Analysis of the Role of Hard

Claims in Constraining Management, American Economic Review 85, 567–585.
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A Proofs

A.1 Proof of Lemma 1

From Assumption 1 and the incentive constraint (1b), it follows that

Ep [x− s] = Eq [x]+π−Ep [s] = Eq [x]+π− c− (Ep [s]− c)≤ Eq [x]+π− c−Eq [s] .

I will show that this quantity is less than or equal to Eq [x]+π−c− c
l∗(p) , by showing that we have

Eq[s]≥ c
l∗(p) . Using (1b), it follows that

l∗(p)Eq[s] = l∗(p)
n

∑
i=0

qisi ≥
n

∑
i=0

qisi

(
pi

qi
−1
)
= Ep[s]−Eq[s]≥ c, (6)

and hence Eq[s]≥ c
l∗(p) . Thus, we have

Ep [x− s]≤ Eq [x]+π− c− c
l∗(p)

. (7)

Notice that there exist feasible contracts such that (7) holds with equality, for example, the contracts

in the statement of the lemma. In particular, s is optimal if and only if l∗(p)Eq[s] = c.

If s is optimal, then all inequalities in (6) turn to equalities, in particular,

l∗(p)
n

∑
i=0

qisi =
n

∑
i=0

qisi

(
pi

qi
−1
)
,

which can be rewritten as

n

∑
i=0

qisi

(
l∗(p)−

(
pi

qi
−1
))

=
n

∑
i=0

qisi (l∗(p)− li(p)) = 0.

All summands are nonnegative, and all summands must therefore be equal to zero. As qi > 0, i∈Ω,

it follows that si = 0 if li(p)< l∗(p). Hence, if s is optimal, then si = 0 if i /∈ argmaxi∈Ω li(p). �
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A.2 Lemma A.1

Lemma A.1. Each technology p ∈P has the following properties:

(i) ∀ j ∈Ω : ∑
n
i= j(pi−qi)≥ 0.

(ii) p0 ≤ q0 and pn ≥ qn.

(iii) p0 < q0 if and only if p 6= q.

Proof. First-order stochastic dominance of p over q is defined as ∀ j ∈Ω : ∑
j
i=0(pi−qi)≤ 0. Given

the restriction ∑
n
i=0(pi−qi) = 0, we have for every j ∈ {0, . . . ,n−1},

j

∑
i=0

(pi−qi)≤ 0⇔ 0≤
n

∑
i= j+1

(pi−qi).

In particular, we have p0 ≤ q0 and pn ≥ qn.

Assumption 4 implies that the minimum value of l(p) is achieved at the ends of the domain,

that is,

min
i∈Ω

li(p) = min{l0(p), ln(p)}.

The inequalities p0 ≤ q0 and pn ≥ qn imply l0(p)≤ 0 and ln(p)≥ 0. If p0 = q0, then

min
i∈Ω

li(p) = 0,

and for all i ∈ Ω, we have pi ≥ qi. As ∑
n
i=0 pi = ∑

n
i=0 qi, it follows that p = q. Hence, if p 6= q,

then necessarily, p0 < q0. �

A.3 Proof of Lemma 2

For i ∈ {0, . . . ,n−1}, we have Li(p)≥ Li+1(p) if and only if

(pi−qi)+(pi+1−qi+1)+ · · ·+(pn−qn)

qi +qi+1 + · · ·+qn
≥ (pi+1−qi+1)+ · · ·+(pn−qn)

qi+1 + · · ·+qn
,
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which is equivalent to
pi−qi

qi
≥ (pi+1−qi+1)+ · · ·+(pn−qn)

qi+1 + · · ·+qn
,

and also equivalent to
pi−qi

qi
≥ (pi−qi)+ · · ·+(pn−qn)

qi + · · ·+qn
.

Hence, we have the following equivalence:

Li(p)≥ Li+1(p)⇔ li(p)≥ Li+1(p)⇔ li(p)≥ Li(p). (8)

Consider the following representation of the cumulative likelihood ratio:

Li(p) =
∑

n
j=i q jl j(p)

∑
n
j=i q j

. (9)

As the case p = q is obvious, we consider the case p 6= q, which implies p0 < q0 by Lemma

A.1. From Assumption 4, there is an m ∈ {1, . . . ,n} such that lm(p) ≥ lm+1(p) ≥ ·· · ≥ ln(p) and

l0(p)≤ l1(p)≤ ·· · ≤ lm(p).

If it exists, consider i∈ {m, . . . ,n−1}. For all j≥ i, we have li(p)≥ l j(p). From representation

(9), we have li(p)≥ Li(p), and by (8), we have Li(p)≥ Li+1(p); that is, L(p) is nonincreasing on

{m, . . . ,n}. It remains to prove that L(p) is single-peaked on {0, . . . ,m}. As l0(p) < 0 = L0(p),

it follows by (8) that L0(p) < L1(p). Consider the first index j ∈ {1, . . . ,m} such that L j−1(p) >

L j(p). If such an index does not exist, then L(p) is nondecreasing and hence single-peaked on

{0, . . . ,m}. If j = m, then L(p) is single-peaked on {0, . . . ,m}. Let 1≤ j ≤m−1. I will show that

for any i∈ { j, . . . ,m−1}, the inequality li(p)≥ Li(p) holds, which implies Li(p)≥ Li+1(p) by (8).

For i = j, it is true, since from L j−1(p) > L j(p) and (8), it follows that l j(p) ≥ l j−1(p) > L j(p).

By induction, if li(p)≥ Li(p) for some i ∈ { j, . . . ,m−2}, then by (8), Li(p)≥ Li+1(p), and

li+1(p)≥ li(p)≥ Li(p)≥ Li+1(p).

Hence, for all i ∈ { j, . . . ,m−1}, we have li(p) ≥ Li(p), and L(p) is nonincreasing on { j, . . . ,m}.

By construction of j, L(p) is nondecreasing on {0, . . . , j}. As a result, L(p) is single-peaked on

{0, . . . ,m}. �
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A.4 Proof of Proposition 1

I first show that an optimal contract s∗(p) satisfies s∗0(p) = 0. We observe that the contract s̃i :=

s∗i (p)− s∗0(p), i ∈Ω, is feasible and satisfies

Ep [x− s̃] = Ep [x− s∗(p)]+ s∗0(p)> Ep [x− s∗(p)] ,

unless s∗0(p) = 0.

Next, I show that an optimal contract s∗(p) satisfies Ep [s∗(p)]− c = Eq [s∗(p)]. Assume that,

on the contrary, Ep [s∗(p)]− c > Eq [s∗(p)]. Rewrite this relation in the following form:

c < Ep [s∗(p)]−Eq [s∗(p)] =
n

∑
i=1

(pi−qi)s∗i (p) =
n

∑
i=1

(pi−qi)
i

∑
k=1

(
s∗k(p)− s∗k−1(p)

)
=

n

∑
k=1

(
s∗k(p)− s∗k−1(p)

) n

∑
i=k

(pi−qi).

In the latter sum, all summands are non-negative. Hence, there exists a j ∈ {1, . . . ,n} such that

(
s∗j(p)− s∗j−1(p)

) n

∑
i= j

(pi−qi)> 0.

Consider a new contract s̃i := s∗i (p)− δ1{i≥ j}, where 1 denotes the indicator function and δ > 0

is chosen in such a way that

δ < min

{
s∗j(p)− s∗j−1(p),

Ep [s∗(p)]−Eq [s∗(p)]− c
∑

n
i= j(pi−qi)

}
.

The contract s̃ is feasible, since s̃i− s̃i−1 = s∗i (p)− s∗i−1(p)−δ1{i= j}, and

Ep [s̃]−Eq [s̃] =
n

∑
k=1

(s̃k− s̃k−1(p))
n

∑
i=k

(pi−qi) = Ep [s∗(p)]−Eq [s∗(p)]−δ

n

∑
i= j

(pi−qi)> c.

Finally,

Ep [x− s̃] = Ep [x− s∗(p)]+δ

n

∑
i= j

pi > Ep [x− s∗(p)] ,

a contradiction.
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The previous two statements imply that the set of feasible contracts can be reduced to the set

S =

{
s ∈ Rn+1

∣∣∣∣∣s0 = 0,∀i ∈ {1, . . . ,n} : si− si−1 ∈ [0,xi− xi−1] ,
n

∑
k=1

(sk− sk−1)
n

∑
i=k

(pi−qi) = c

}
.

I next show that each s∈S can be written as a linear combination of the n tranches from Definition

4. For j ∈ {1, . . . ,n}, set

λ j =
s j− s j−1

x j− x j−1
.

Due to the first monotonicity constraint (Assumption 6), we have s j ≥ s j−1, which implies λ j ≥ 0.

Due to the second monotonicity constraint (Assumption 7), we have s j− s j−1 ≤ x j− x j−1, which

implies λ j ≤ 1. In particular, we have s = λ1s1 + · · ·+λnsn. As a result, we can write the set S as

S =

{
λ1s1 + · · ·+λnsn

∣∣∣∣∣λ ∈ [0,1]n,
n

∑
k=1

λk (xk− xk−1)
n

∑
i=k

(pi−qi) = c

}
.

We observe that the equality constraint can be written as

n

∑
k=1

λk (xk− xk−1)Lk(p)
n

∑
i=k

qi = c.

The set S is compact and nonempty, as 0≤ c≤ π and the values 0 and π are attained, respec-

tively, with λ1 = · · ·= λn = 0 and λ1 = · · ·= λn = 1. In particular, an optimal contract exists.

Using the relation Ep[x− s] = Eq[x]+π−c−Eq[s], we can rewrite the contracting problem as

s∗(p) ∈ argmin
s∈S

Eq[s].

We will make use of the equality

Eq[s] =
n

∑
k=1

(sk− sk−1)
n

∑
i=k

qi =
n

∑
k=1

λk(xk− xk−1)
n

∑
i=k

qi.

Hence, we get the following unified form of the problem:
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min
λ∈[0,1]n

n

∑
k=1

λk(xk− xk−1)
n

∑
i=k

qi

subject to
n

∑
k=1

λk (xk− xk−1)Lk(p)
n

∑
i=k

qi = c.

Consider a permutation {i1, . . . , in} of the set {1, . . . ,n} such that Li1(p)≥Li2(p)≥ ·· ·≥Lin(p).

For j ∈ {1, . . . ,n}, let

c̄ j =
j

∑
k=1

(xik− xik−1)Lik(p)
n

∑
i=ik

qi.

Then 0 =: c̄0 ≤ c̄1 ≤ ·· · ≤ c̄n = π . Let m ∈ {1, . . . ,n} such that c̄m−1 < c≤ c̄m. Equivalently,

c̄m−1 < c≤ c̄m−1 +(xim− xim−1)Lim(p)
n

∑
i=im

qi.

Set λik = 1 for k ∈ {1, . . . ,m−1}, λik = 0 for k ∈ {m+1, . . . ,n}, and

λim =
c− c̄m−1

(xim− xim−1)Lim(p)∑
n
i=im qi

.

Then, by construction

n

∑
k=1

λk (xk− xk−1)Lk(p)
n

∑
i=k

qi =
m

∑
k=1

λik
(
xik− xik−1

)
Lik(p)

n

∑
i=ik

qi

=
m−1

∑
k=1

(
xik− xik−1

)
Lik(p)

n

∑
i=ik

qi +λim (xim− xim−1)Lim(p)
n

∑
i=im

qi

= c̄m−1 +λim (xim− xim−1)Lim(p)
n

∑
i=im

qi = c,

and the contract ŝ = ∑
m
k=1 λiksik is feasible. I will prove that it is optimal. Consider another contract

s̃ = ∑
n
k=1 µksk ∈S . In particular,

c =
n

∑
k=1

µk (xk− xk−1)Lk(p)
n

∑
i=k

qi.
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Consequently,

µim (xim− xim−1)
n

∑
i=im

qi =
c−∑k 6=im µk (xk− xk−1)Lk(p)∑

n
i=k qi

Lim(p)
,

and we can write the objective function in the form

Eq [s̃] =
n

∑
k=1

µk (xk− xk−1)
n

∑
i=k

qi

=
c−∑k 6=im µk (xk− xk−1)Lk(p)∑

n
i=k qi

Lim(p)
+ ∑

k 6=im

µk (xk− xk−1)
n

∑
i=k

qi

=
c

Lim(p)
+ ∑

k 6=im

µk (xk− xk−1)

(
1− Lk(p)

Lim(p)

) n

∑
i=k

qi

≥ c
Lim(p)

+
m−1

∑
k=1

(
xik− xik−1

)(
1−

Lik(p)
Lim(p)

) n

∑
i=ik

qi,

where in the last inequality, I use

µk (xk− xk−1)

(
1− Lk(p)

Lim(p)

) n

∑
i=k

qi ≥ 0

when k = i j, j > m, since in this case Lk(p)
Lim(p) ≤ 1, and

µk (xk− xk−1)

(
1− Lk(p)

Lim(p)

) n

∑
i=k

qi ≥ (xk− xk−1)

(
1− Lk(p)

Lim(p)

) n

∑
i=k

qi

when k = i j, j < m, since in this case Lk(p)
Lim(p) ≥ 1. It remains to observe that

c
Lim(p)

+
m−1

∑
k=1

(
xik− xik−1

)(
1−

Lik(p)
Lim(p)

) n

∑
i=ik

qi =
m−1

∑
k=1

(xik−xik−1)
n

∑
i=ik

qi+λim(xim−xim−1)
n

∑
i=im

qi =Eq [ŝ] .

Hence, for all s ∈S , we have Eq [s]≥ Eq [ŝ].

In particular, if c̄m−1 < c≤ c̄m, then an optimal contract is given by

s∗(p) =
m−1

∑
k=1

sik +
c− c̄m−1

(xim− xim−1)Lim(p)∑
n
i=im qi

sim,
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with the corresponding agency rent

Eq [s∗(p)] =
c

Lim(p)
+

m−1

∑
k=1

(
xik− xik−1

)(
1−

Lik(p)
Lim(p)

) n

∑
i=ik

qi.

The optimal contract s∗(p) was constructed using the ordering Li1(p)≥ Li2(p)≥ . . .≥ Lin(p).

From the single-peaked property of L(p) (Lemma 2), it follows that one can choose an ordering

in such a way that each set {i1, . . . , ik} is in fact a segment of the form { f , f + 1, . . . ,g} with

1≤ f ≤ g≤ n. In the following, I show that this implies a capped bonus contract, and I derive the

values of the thresholds. There are two possibilities for the optimal contract s∗(p).

Case 1: {i1, . . . , im−1}= { f , . . . ,g}, im = f −1; that is, the m-th largest value of L(p) is added

to the left of already ordered values. In this case, we have s∗(p) = λ f−1s f−1 +∑
g
k= f sk, φ1(p) =

λ f−1x f−2 +(1−λ f−1)x f−1, and φ2(p) = xg−φ1(p).

Case 2: {i1, . . . , im−1}= { f , . . . ,g}, im = g+1; that is, the m-th largest value of L(p) is added to

the right of already ordered values. In this case, we have s∗(p)=∑
g
k= f sk+λg+1sg+1, φ1(p)= x f−1,

and φ2(p) = λg+1xg+1 +(1−λ f+1)xg−φ1(p), which completes the proof. �

A.5 Proof of Corollary 1

The results follow directly from the construction of optimal contracts in the proof of Proposition

1. In the first case, we have L1(p) ≥ ·· · ≥ Ln(p) and we are in Case 2, described at the end of

the proof of Proposition 1, with f = 1. Thus, φ1(p) = x0 = 0 and s∗i (p) = min{xi,φ2(p)}, i ∈ Ω.

In the second case, we have the opposite ordering Ln(p) ≥ ·· · ≥ L1(p), which arises in the case

of a monotone likelihood ratio l(p), and we are in Case 1, described at the end of the proof of

Proposition 1, with g = n. Thus, φ2(p) = xn−φ1(p) and s∗i (p) = max{0,xi−φ1(p)}, i ∈Ω. �

A.6 Proof of Proposition 2

The explicit formula for the agency rent was derived as part of the proof of Proposition 1. From this

representation, it is clear that the agency rent function is continuous on (c̄m−1, c̄m], as the function
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is linear on (c̄m−1, c̄m]. In particular, it is differentiable on (c̄m−1, c̄m) with slope 1
Lim(p) . To show

continuity on [0,π], it remains to verify that

lim
c↘c̄m−1

Eq [s∗(p)] = Eq [s∗(p)]
∣∣
c=c̄m−1

.

The limit on the left is given by

c̄m−1

Lim(p)
+

m−1

∑
k=1

(
xik− xik−1

)(
1−

Lik(p)
Lim(p)

) n

∑
i=ik

qi.

Using the explicit formula for c̄m−1 from Proposition 1, we therefore have

lim
c↘c̄m−1

Eq [s∗(p)] =
1

Lim(p)

m−1

∑
k=1

(xik− xik−1)Lik(p)
n

∑
i=ik

qi +
m−1

∑
k=1

(
xik− xik−1

)(
1−

Lik(p)
Lim(p)

) n

∑
i=ik

qi

=
m−1

∑
k=1

(
xik− xik−1

) n

∑
i=ik

qi = Eq [s∗(p)]
∣∣
c=c̄m−1

.

As a result, the agency rent function is continuous and piecewise linear. Since the slopes are

nondecreasing, the agency rent function is (weakly) convex. �

A.7 Proof of Proposition 3

The proof proceeds by guessing a technology in P1 and verifying that it is the unique minimum

agency rent technology in P1. Define the technology p1 ∈P1 as follows: p1
0 = q0− π

x1
, p1

1 =

q1+
π

x1
, and for i ∈ {2, . . . ,n}, p1

i = qi. By Proposition 2, the agency rent function for entrepreneur

p1 is linear:

Eq
[
s∗
(

p1)]= (1−q0)x1

π
c.

In particular, the agency rent function is linear with slope (1−q0)x1
π

. For all entrepreneurs p ∈P1,

the agency rent function is (weakly) convex with slope 1
L1(p) at c = 0 (i.e., the right derivative).

Hence, in order to show that for all p ∈P1 \
{

p1}, we have Eq[s∗ (p)] > Eq
[
s∗
(

p1)] for all
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c ∈ (0,π], it is sufficient to show that for all p ∈P1 \
{

p1}, we have

1
L1(p)

>
(1−q0)x1

π
.

Since for all p ∈P1, we have L1(p) ≥ ·· · ≥ Ln(p) ≥ 0, and since L1
(

p1) > L2
(

p1) = · · · =
Ln
(

p1)= 0, for each p∈P1\
{

p1}, there exists a j ∈ {2, . . . ,n} such that L j(p)> 0. In particular,

π =
n

∑
k=1

(xk− xk−1)Lk(p)
n

∑
i=k

qi > x1L1(p)
n

∑
i=1

qi = x1L1(p)(1−q0),

which completes the proof. �

A.8 Proof of Proposition 4

I study the agency rent function specified in Proposition 2 and use the following definitions:

D j (p) := (x j − x j−1)∑
n
i= j(pi− qi) and Q j := (x j − x j−1)∑

n
i= j qi. Consider again the permuta-

tion {i1, . . . , in} of the set {1, . . . ,n} from Proposition 1. The proof of Proposition 1 implies that

the agency rent function has the following coordinates:

(0,0),(Di1 (p) ,Qi1) ,(Di1 (p)+Di2 (p) ,Qi1 +Qi2) , . . . ,(Di1 (p)+ · · ·+Din (p) ,Qi1 + · · ·+Qin) .

Since for all p ∈Pn, the cumulative likelihood ratio L(p) is nondecreasing, we get the follow-

ing coordinates of the agency rent function:

(0,0),(Dn (p) ,Qn) ,(Dn (p)+Dn−1 (p) ,Qn +Qn−1) , . . . ,(Dn (p)+ · · ·+D1 (p) ,Qn + · · ·+Q1) .

In particular, each technology p ∈Pn takes on the same values at the cutoffs c̄ j = ∑
j
k=1 Dik(p),

j ∈ {1, . . . ,n}.

Note that Pn is equal to the set of technologies with a monotone likelihood ratio (see Foot-

note 15). The proof of Lemma 3 shows that this set is compact. Since the mapping Pn 3 p 7→

Eq [s∗(p)] ∈ R+ is continuous, the extreme value theorem applies and an optimal entrepreneur

p∗ ∈Pn exists. The proof proceeds by guessing a technology pn ∈Pn and verifying that it is the
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unique minimum agency rent technology in Pn. To show this, I consider an entrepreneur p ∈Pn,

p 6= pn, and a c ∈ (0,π). I then show that there exists a technology in Pn with a lower agency

rent, which implies that p∗ = pn.

The optimal debt technology pn ∈Pn is the technology with a constant likelihood ratio for all

i < n; that is, it satisfies for all i, j ∈ {0, . . . ,n−1}, li (pn) = l j (pn)< 0, and ln (pn)> 0. Consider

an entrepreneur p ∈Pn, where p 6= pn. Since p 6= pn, there exists a smallest k ∈ {0, . . . ,n− 2}

such that lk(p) < lk+1(p). Consider two variations νk ∈ R and δ k ∈ R that leave the ordering of

the cumulative likelihood ratio unchanged.

1. Variation νk: Reduce pk+1 by a small νk > 0 and increase pk by νk. This variation reduces

the value of the technology by (xk+1− xk)νk.

2. Variation δ k: Reduce pk+1 by a small δ k > 0 and increase pn by δ k. I choose δ k such that

both variations together leave the value of the technology unchanged, that is,

(xk+1− xk)ν
k = (xn− xk+1)δ

k⇔ ν
k =

xn− xk+1

xk+1− xk
δ

k. (10)

Denote the technology with the two variations applied by pk. We can now calculate and com-

pare the thresholds c̄ j for technology p and c̄k
j for technology pk, j ∈Ω. Consider two cases. First,

let k = 0.

1. For j = 1, we have

c̄k
1 =

(
pk

n−qn

)
(xn− xn−1) =

(
(pn−qn)+δ

k
)
(xn− xn−1)> (pn−qn)(xn− xn−1) = c̄1.

2. We can proceed by iteration. Let j ∈ {2, . . . ,n−1}. Assuming c̄k
j−1 > c̄ j−1, we get

c̄k
j = c̄k

j−1 +(xn− j+1− xn− j)

(
n

∑
i=n− j+1

(pi−qi)+δ
k

)

> c̄ j−1 +(xn− j+1− xn− j)
n

∑
i=n− j+1

(pi−qi) = c̄ j.
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Hence, we have c̄k
j > c̄ j for all j ∈ {1, . . . ,n−1}, and therefore the variation has lower agency rents

for all disutilities of effort c ∈ (0,π), since the agency rent functions take on the same values at the

cutoffs.

Next, consider the case where k > 0. Following the same argument as above, I can show that

for all j < n− k, c̄k
j > c̄ j, and for all j ≥ n− k, c̄k

j = c̄ j. We can then proceed by iteration. We

can apply further variations νk−1 and δ k−1 to pk in addition to those applied before (note that

lk−1
(

pk)< lk
(

pk), due to the increase in pk).

1. Variation νk−1: Reduce pk
k by a small νk−1 > 0 and increase pk

k−1 by νk−1. This variation

reduces the expected value of the technology by νk−1(xk− xk−1).

2. Variation δ k−1: Reduce pk
k by a small δ k−1 > 0 and increase pk

n by δ k−1. Choose δ k−1 such

that

(xk− xk−1)ν
k−1 = (xn− xk)δ

k−1⇔ ν
k−1 =

xn− xk

xk− xk−1
δ

k−1.

This variation weakly decreases the agency rent function (strictly for some c). If k = 1, we are

finished. If k > 1, we can then apply the same step again, applying variations νk−2 and δ k−2, and

continue to get to the last variation of p0 and p1. This reduces the agency rent function, as shown

above. Hence, we must have pn = argminp∈Pn Eq [s∗(p)].

We can explicitly construct the technology pn. Note that it satisfies for i ∈ {0, . . . ,n− 1},

pn
i − qi =

qi
q0

(
pn

0−q0
)

(i.e., for all i, j ∈ {0, . . . ,n− 1}, li (pn) = l j (pn)), and we then have pn
n =

1−∑
n−1
i=0 pn

i , such that only pn
0 needs to be determined by Epn[x]−Eq[x] = π . We have

Epn[x]−Eq[x] = π ⇔
n

∑
i=0

(pn
i −qi)xi = π ⇔

n−1

∑
i=0

qi

q0
(pn

0−q0)xi− xn

n−1

∑
i=0

qi

q0
(pn

0−q0) = π

⇔
pn

0−q0

q0

(
Eq[x]− xn

)
= π ⇔ pn

0−q0 =−
πq0

xn−Eq[x]
< 0.

As a result, we have pn
0−q0 =− πq0

xn−Eq[x]
, for all i ∈ {1, . . . ,n−1}, pn

i −qi =− πqi
xn−Eq[x]

, and

pn
n−qn =−

n−1

∑
i=0

(pn
i −qi) =

n−1

∑
i=0

πqi

xn−Eq[x]
=

π ∑
n−1
i=0 qi

xn−Eq[x]
=

π(1−qn)

xn−Eq[x]
,

which completes the proof. �
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A.9 Proof of Proposition 5

From the proof of Proposition 3, we know that the agency rent function of entrepreneur p1 is

linear. Given the (weak) convexity of the agency rent functions, the investor can only prefer pn

to p1 for some region of disutilities of effort c if the initial slope of the agency rent function of

the entrepreneur pn is lower than the slope of the agency rent function of entrepreneur p1. The

initial slope of the agency rent function for pn is given by 1
L∗(pn) =

1
Ln(pn) =

1
l∗(pn) . The slope of

the agency rent function for p1 is given by 1
L∗(p1)

= 1
l∗(p1)

q1+···+qn
q1

(see Proposition 2 and use p1
1).

Hence, the slope at c = 0 (i.e., the right derivative) of the agency rent function of the optimal equity

entrepreneur p1 is higher than that of the optimal debt entrepreneur pn if

1
l∗ (p1)

q1 + · · ·+qn

q1
>

1
l∗ (pn)

⇔ l∗ (pn)>
q1

q1 + · · ·+qn
l∗
(

p1) . (11)

Further, we know that

Eq
[
s∗
(

p1)]∣∣
c=π

=
n

∑
i=1

qix1 < Eq[x] = Eq [s∗ (pn)]
∣∣
c=π

.

Due to the linearity of Eq
[
s∗
(

p1)] in c and the (weak) convexity of Eq [s∗ (pn)] in c, there exists a

unique crossing point if (11) holds and Eq [s∗ (pn)]> Eq
[
s∗
(

p1)] for all c ∈ (0,π] if (11) does not

hold with a strict inequality. �

A.10 Proof of Lemma 3

For m ∈Ω, consider the set Pm ⊂ [0,1]n+1 such that all p ∈Pm satisfy ∀ j ∈Ω : ∑
j
i=0(pi−qi)≤

0, ∑
n
i=0(pi− qi) = 0, Ep[x]−Eq[x] = π , and l0(p) ≤ ·· · ≤ lm(p) ≥ lm+1(p) ≥ ·· · ≥ ln(p). In

particular, the set Pm is defined by a set of weak inequality constraints. Thus Pm is closed and

P =
⋃

m∈Ω Pm is closed as a finite union of closed sets. The set P is clearly bounded. Hence,

P is compact. �
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A.11 Proof of Lemma 4

Lemma A.1 in Appendix A.2 shows that p0 < q0 if p 6= q, and pn ≥ qn. As p0 < q0, there must

exist an index m ∈ {1, . . . ,n} such that pm > qm, and we take m to be the lowest index with this

property. Then, pi ≤ qi for all i ∈ {1, . . . ,m−1}. In particular, li(p)≤ 0 for all i ∈ {1, . . . ,m−1},

lm(p)> 0, and ln(p)≥ 0. From the single-peaked property, we have

min
m≤i≤n

li(p) = min{lm(p), ln(p)} ≥ 0,

and hence pi ≥ qi for all i ∈ {m, . . . ,n}. Finally, if ph = qh for some h ∈ {m+ 1, . . . ,n}, then the

peak of l(p) is between m and h and l(p) is nonincreasing on {h,h+ 1, . . . ,n}. Since lh(p) = 0

and ln(p) ≥ 0, it follows that li(p) = 0 for all i ∈ {h,h+ 1, . . . ,n}, and hence pi = qi for all i ∈

{h,h+1, . . . ,n}. �

A.12 Proof of Lemma 5

This result follows directly from the construction of contracts in Proposition 1 and the assumption

about p in the lemma. If j ∈ {m, . . . ,n} such that for all i ∈ {m, . . . , j}, pi > qi, and for all i ∈

{ j + 1, . . . ,n}, pi = qi, then we have for i ∈ {1, . . . , j}, Li(p) > 0, and for all i > j, Li(p) = 0.

The investor therefore never includes contract tranches corresponding to states exceeding state j,

since these states generate no incentives for the entrepreneur. The investor might use tranches in

all states i ≤ j. If c = π , an optimal contract exhausts the payoff space with positive cumulative

likelihood ratios, that is, for all i ∈Ω, s∗i (p) = min
{

xi,x j
}

. �

A.13 Proof of Proposition 6

Lemma 5 directly implies that for entrepreneur p′, we have for all i ∈ Ω and for all c ∈ [0,π],

s∗i (p′)≤min
{

xi,xm1+ j
}

, and s∗i (p′) = min
{

xi,xm1+ j
}
⇔ c = π . For entrepreneur p′′, we have for

all i ∈Ω and for all c ∈ [0,π], s∗i (p′′)≤min
{

xi,xm2+ j
}

, and s∗i (p′′) = min
{

xi,xm2+ j
}
⇔ c = π .

46



The agency rent functions therefore satisfy

Eq
[
s∗
(

p′
)]∣∣

c=π
= Eq

[
min

{
x,xm1+ j

}]
< Eq

[
min

{
x,xm2+ j

}]
= Eq

[
s∗
(

p′′
)]∣∣

c=π
,

since m1 + j < m2 + j⇔ m1 < m2. Since the agency rent functions are continuous, there exists a

c̃ ∈ [0,π) such that for all c > c̃, Eq [s∗ (p′)]< Eq [s∗ (p′′)]. �

A.14 Proof of Proposition 7

Consider an entrepreneur p′ ∈Pπ1 and p′ /∈P∗
π1

. Hence, there exists an entrepreneur p∗ ∈P∗
π1

,

such that Eq [s∗ (p∗)]< Eq [s∗ (p′)] .

We can then scale the technology p∗ by λ ∈
(

c
π1
,1
]
, that is, define a new technology p̃(λ ) by

p̃(λ ) := q+λ (p∗−q), such that

Ep̃(λ )[x]−Eq[x] = λ
(
Ep∗ [x]−Eq[x]

)
= λπ1 ≤ π1.

Consider the investor’s expected payoff with entrepreneur p̃(λ ) net of I, given by

P(λ ) := Eq[x]+λπ1− c−Eq [s∗ (p̃(λ ))]− I.

We know that

P(1) = Eq[x]+π1− c−Eq [s∗ (p∗)]− I > Eq[x]+π1− c−Eq
[
s∗
(

p′
)]
− I ≥ 0.

Since
(

c
π1
,1
]
3 λ 7→ P(λ ) is continuous, there exists a λ̂ < 1 such that

P
(

λ̂

)
= Eq[x]+ λ̂π1− c−Eq

[
s∗
(

p̃
(

λ̂

))]
− I > Eq[x]+π1− c−Eq

[
s∗
(

p′
)]
− I.

Set p′′ := p̃
(

λ̂

)
, which has an expected value of effort of π2 := λ̂π1 < π1, and the investor prefers

entrepreneur p′′ to entrepreneur p′. �
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B Productivity of Effort and Equivalent Models

I first construct technologies to be a direct function of the expected value of effort. Consider the

set of entrepreneurs P satisfying Assumptions 1, 3, and 4, with π > 0. The expected value of

effort π imposes a constraint on the mean of an entrepreneur’s technology p ∈P; that is, I require

Ep[x]−Eq[x] = π . In particular, a technology p∈P is not an explicit function of the parameter π .

I therefore construct entrepreneurs’ technologies to be a direct function of π . For each technology

p, define the basic technology p̂ := q+ p−q
π

, which satisfies Ep̂[x]−Eq[x] = 1 by construction.20

In other words, a basic technology preserves the shape and is scaled to a unit expected value of

effort. Define the set of basic technologies as follows:

P̂ :=
{

q+
p−q

π

∣∣∣∣p ∈P

}
.

I can write the original set P by rescaling the basic technologies as follows:

P =
{

q+π (p̂−q)
∣∣p̂ ∈ P̂

}
.

Every technology p ∈P can therefore be written as p = q+π (p̂−q), where p̂ ∈ P̂ is a basic

technology. The basic technology determines the shape of the technology, and the parameter π

determines the expected value of effort.

Using this parameterization of technologies, I next study how changes in the disutility of effort

and the expected value of effort jointly affect agency rents.

Proposition 8. Consider an entrepreneur p ∈P . Consider two sets of parameters (c1,π1) and

(c2,π2), where c1,c2 > 0. Then

π1

c1
=

π2

c2
⇔ Eq [s∗(p)]

∣∣
(c,π)=(c1,π1)

= Eq [s∗(p)]
∣∣
(c,π)=(c2,π2)

.

Proof. I study the agency rent functions specified in Proposition 2 and use the following defini-

tions: D j (p) := (x j− x j−1)∑
n
i= j(pi−qi) and Q j := (x j− x j−1)∑

n
i= j qi. Consider the permutation

{i1, . . . , in} of the set {1, . . . ,n} from Proposition 2. The proof of Proposition 1 implies that the
20A basic technology might not be a probability distribution, since for some i ∈Ω, we might have p̂i < 0 or p̂i > 1.
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agency rent function has the following coordinates:

(0,0),(Di1 (p) ,Qi1) ,(Di1 (p)+Di2 (p) ,Qi1 +Qi2) , . . . ,(Di1 (p)+ · · ·+Din (p) ,Qi1 + · · ·+Qin) .

We know that we can write p = q+π(p̂− q), where p̂ ∈ P̂ is a basic technology. We have

c ∈ [c̄ j−1, c̄ j] is equivalent to

j−1

∑
l=1

Dil (p)≤ c≤
j

∑
l=1

Dil (p)⇔
j−1

∑
l=1

Dil (q+π (p̂−q)))≤ c≤
j

∑
l=1

Dil (q+π (p̂−q))

⇔ π

j−1

∑
l=1

Dil (p̂)≤ c≤ π

j

∑
l=1

Dil (p̂)⇔
j−1

∑
l=1

Dil (p̂)≤ c
π
≤

j

∑
l=1

Dil (p̂) .

The agency rent for c ∈ [c̄ j−1, c̄ j], denoted by A(p,π,c), is given by

A(p,π,c) = Qi1 + · · ·+Qi j−1 +
Qi j

Di j (p)

(
c−

j−1

∑
l=1

Dil (p)

)

= Qi1 + · · ·+Qi j−1 +
Qi j

Di j (q+π (p̂−q))

(
c−

j−1

∑
l=1

Dil (q+π (p̂−q))

)

= Qi1 + · · ·+Qi j−1 +
Qi j

πDi j (p̂)

(
c−π

j−1

∑
l=1

Dil (p̂)

)

= Qi1 + · · ·+Qi j−1 +
Qi j

Di j (p̂)

(
c
π
−

j−1

∑
l=1

Dil (p̂)

)
= A

(
p̂,1,

c
π

)
.

Hence, the agency rent function can be written as a function of c
π

. The agency rent function of

the basic technology is increasing, which implies the equivalence. �

Proposition 8 shows that the agency rent function depends only on the productivity of effort.

In particular, I can interpret the comparative statics with respect to the expected value of effort or

the disutility of effort as changes in entrepreneurs’ productivity of effort.

Corollary 3. Consider two entrepreneurs p′, p′′ ∈P . Consider two sets of parameters (c1,π1)

and (c2,π2), where c1,c2 > 0 and π1
c1

= π2
c2

. Then the following two inequalities are equivalent:

(i) Eq [s∗ (p′)]
∣∣
(c,π)=(c1,π1)

> Eq [s∗ (p′′)]
∣∣
(c,π)=(c1,π1)

,
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(ii) Eq [s∗ (p′)]
∣∣
(c,π)=(c2,π2)

> Eq [s∗ (p′′)]
∣∣
(c,π)=(c2,π2)

.

Corollary 3 shows that all models with different disutilities and expected values of effort but

the same productivity of effort generate the same ranking of entrepreneurs in terms of agency rents.

C Risk-Averse Entrepreneurs

In this section, I discuss the case of risk-averse entrepreneurs. I assume that entrepreneurs’ utility

from a contractual payoff si is measured by a utility function u : R 7→ R, where u is increasing,

(strictly) concave, and differentiable, with u(0) = 0, u′(0) ∈ (0,∞), and limy→∞ u′(y) = 0. In

particular, if the investor offers a contract s to an entrepreneur p ∈P , and the entrepreneur exerts

effort, the entrepreneur’s expected utility is given by Ep[u(s)]− c.

Consider an arbitrary entrepreneur p ∈ P . An optimal incentive compatible contract that

satisfies the entrepreneur’s limited liability, denoted by s∗(p), satisfies

s∗(p) ∈ argmax
s

Ep [x− s] s.t. Ep[u(s)]− c≥ Eq[u(s)], Ep[u(s)]− c≥ 0, ∀i ∈Ω : si ≥ 0.

As in the limited liability benchmark discussed in Section 3, the incentive constraint implies

the participation constraint, and the incentive constraint binds. Since the investor has to give the

entrepreneur at least zero in all states and a positive amount in some states to satisfy the incentive

constraint, we have

Ep [u(s∗(p))]− c = Eq [u(s∗(p))]> 0.

In particular, the entrepreneur earns an agency rent equal to Eq [u(s∗(p))]> 0. I rewrite the incen-

tive constraint as

Ep[u(s)]− c≥ Eq[u(s)]⇔
n

∑
i=0

piu(si)− c≥
n

∑
i=0

qiu(si)⇔
n

∑
i=0

(pi−qi)u(si)≥ c.

The investor’s optimization problem can then be written as

max
s
−

n

∑
i=0

pisi s.t.
n

∑
i=0

(pi−qi)u(si)≥ c, ∀i ∈Ω : si ≥ 0.
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The necessary and sufficient conditions for an optimal contract s∗(p) are as follows (see

Léonard and Van Long, 1992):

1. ∑
n
i=0(pi−qi)u(s∗i (p))− c≥ 0, µ ≥ 0, and µ (∑n

i=0(pi−qi)u(s∗i (p))− c) = 0.

2. For all i ∈Ω: −pi +µ(pi−qi)u′(s∗i (p))≤ 0 and s∗i (p)≥ 0.

3. For all i ∈Ω: s∗i (p)(−pi +µ(pi−qi)u′(s∗i (p))) = 0.

I first show that µ > 0 and ∑
n
i=0(pi− qi)u(s∗i (p)) = c. Assume that this is not the case, then

µ = 0, and we have for all i ∈ Ω, s∗i (p)pi = 0. In particular, for all i ∈ Ω with pi ≥ qi, we have

pi > 0, which implies s∗i (p) = 0, a contradiction, since the contract would not satisfy the incentive

constraint otherwise.

I next show that pi ≤ qi implies s∗i (p) = 0. Assume that this is not the case, then there exists an

i ∈Ω with pi ≤ qi and s∗i (p)> 0. In particular, this implies −pi +µ(pi−qi)u′(s∗i (p)) = 0⇔ pi =

µ(pi− qi)u′(s∗i (p)). If pi < qi, then this implies pi < 0, since u′ > 0, a contradiction. If pi = qi,

this implies that pi = qi = 0, a contradiction.

Hence, consider states i ∈Ω with pi > qi. We get the following result:

Lemma C.1. Let i ∈ Ω with pi > qi. If u′(0) ≤ pi
µ(pi−qi)

, then s∗i (p) = 0. If u′(0) > pi
µ(pi−qi)

, then

s∗i (p) = (u′)−1
(

pi
µ(pi−qi)

)
> 0.

Proof. To show this, let s∗i (p)> 0. We then have

−pi +µ(pi−qi)u′(s∗i (p)) = 0⇔ u′(s∗i (p)) =
pi

µ(pi−qi)
.

If pi
µ(pi−qi)

< u′(0), then we have

s∗i (p) =
(
u′
)−1
(

pi

µ(pi−qi)

)
> 0.

If pi
µ(pi−qi)

≥ u′(0), we must therefore have s∗i (p) = 0.

It remains to show that if pi
µ(pi−qi)

< u′(0), we have s∗i (p)> 0. Assume that this is not the case,
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and there exists an i ∈Ω with pi
µ(pi−qi)

< u′(0) and s∗i (p) = 0. We must then have

−pi +µ(pi−qi)u′(0)≤ 0⇔ u′(0)≤ pi

µ(pi−qi)
,

a contradiction. �

We then get the following characterization of the optimal contract:

Lemma C.2. Let s∗i (p)> 0 and s∗j(p)> 0. We then have s∗i (p)> s∗j(p)⇔ pi−qi
qi

>
p j−q j

q j
.

Proof. We have

s∗i (p)> s∗j(p)⇔
(
u′
)−1
(

pi

µ(pi−qi)

)
>
(
u′
)−1
(

p j

µ(p j−q j)

)
⇔ pi

µ(pi−qi)
<

p j

µ(p j−q j)

⇔ qi +(pi−qi)

pi−qi
<

q j +(p j−q j)

p j−q j
⇔ pi−qi

qi
>

p j−q j

q j
,

since we must have pi > qi and p j > q j. �

In particular, the investor rewards the entrepreneur only in states with a positive likelihood

ratio. Further, the investor rewards the entrepreneur more in a state with a higher likelihood ratio.

In the risk-neutral limited liability benchmark discussed in Section 3, the investor rewards the

entrepreneur only in the state with the maximum likelihood ratio.

This result shows that, if contracts also have to satisfy the monotonicity constraints from As-

sumptions 6 and 7, the general insight from Section 5 also applies in the case of risk aversion. If

an entrepreneur has a high impact in low states of the world, the investor rewards the entrepreneur

most in these states in the limited liability benchmark. Introducing monotonicity constraints forces

the investor to reward the entrepreneur at least the same amount in higher states as well. If an

entrepreneur has a high impact on the project in high states of the world, the investor rewards

the entrepreneur most in these states in the limited liability benchmark. Introducing monotonicity

constraints might force the investor to reward the entrepreneur in lower states as well.
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