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Abstract

We provide a unified approach to imperfect (monopolistic, Bertrand and Cournot)

competition equilibria with demand functions derived from symmetric preferences over

a large but finite number of goods. The equilibrium markups depend on the Mor-

ishima Elasticity of Substitution/Complementarity between goods, and can be de-

rived directly from the utility functions and ranked unambiguously. We characterize

the endogenous market structures, their dependence on market size, income and firms’

productivity and compare them with the optimal allocations. Finally, we apply our

results to the case of preferences such as Generalized Leontief, Generalized linear and

Generalized quadratic that we introduce in the literature on imperfect competition.
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Most of the modern theory of imperfect competition in markets with prod-
uct differentiation is based on a few specific microfoundations of the demand
side. Models of monopolistic competition are typically based on an additively
separable direct utility as in Dixit and Stiglitz (1977) or on quasilinear pref-
erences as in Spence (1976) and more recently Melitz and Ottaviano (2008).
As well known, strategic interactions à la Cournot or Bertrand add a competi-
tive element to the equilibrium of monopolistic competition, but their analysis
too has been usually limited to few microfounded examples. The case of addi-
tively separable preferences have been recently reconsidered by Zhelobodko et
al. (2012) and Bertoletti and Epifani (2014), and many results are known for
the quasi-linear case: see Vives (1999, Ch. 6) for a comprehensive treatment.
Other cases analyzed in the literature include those of homothetic preferences
(Benassy, 1996, and Feenstra, 2003) and separable indirect utilities (Bertoletti
and Etro, 2013). Beyond these cases, little is known about how general pref-
erences shape competition and the incentives to enter/exit the market, that is
the endogenous market structures. This is important not only for the partial
equilibrium analysis of markets in industrial organization, but also for general
equilibrium applications to trade and macroeconomics, most of which have been
traditionally based on CES preferences.2

The purpose of this paper is to provide a unified approach to the analysis
of imperfect competition, in its three main forms of monopolistic, Bertrand and
Cournot competition, when consumers are endowed with general preferences
that are symmetric over a large but finite number of differentiated goods. We
first propose a generalized definition of monopolistic competition, and show that
the alleged perceived demand elasticity coincides with the Morishima Elasticity
of Substitution/Complementarity (as defined in Blackorby and Russell, 1981 and
1989), and can be derived directly from the utility function. We then show how
the markups relevant in Bertrand and Cournot symmetric equilibria depend just
on the same elasticities and on the number of varieties actually provided. On
this basis, we characterize the implications of endogenous entry of firms and the
comparative statics of the endogenous market structure in general. To illustrate
our results we discuss the equilibria for a number of preferences, namely the
case of separable direct or indirect utility, Translog preferences and quadratic
direct utility, which have been already used in the literature on monopolistic
or imperfect competition. Moreover, we present preferences that are so far
unexplored in this literature, namely the Generalized Leontief preferences and
theGeneralized linear preferences from the homothetic class (see Diewert, 1971),
and the Generalized quadratic preferences based on a quadratic indirect utility.
Our investigation allows us to shed some light on a number of key issues in

the theory of imperfect competition. In the analysis of monopolistic competition
we emphasize the role of the elasticity of substitution in shaping competition,

2There is a wide empirical literature pointing out that markups are affected by the number
of consumers, their income and productivity shocks. For recent examples, see Campbell and
Hopenhayn (2005) on competition effects in industrial organization, Simonovska (2013) on
pricing to market in trade, and Nekarda and Ramey (2013) on the cyclicality of markups in
macroeconomics.
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and we also provide a new example of (homothetic) preferences that deliver
constant markups for any number of goods, and independently from income,
market population and productivity (because the Morishima elasticity of sub-
stitution is constant as in the CES case). In the analysis of strategic interactions
we show that Bertrand and Cournot markups are always higher than under mo-
nopolistic competition, and can be either decreasing or increasing in the number
of firms competing in the market; as far as we know, we also provide the first
computable example of Bertrand and Cournot equilibria with prices increasing
in the number of competitors. As a consequence, endogenous market structures
are characterized by a number of firms and an equilibrium markup that are in-
creasing while moving from monopolistic competition to Bertrand and Cournot
competition.
We fully characterize the comparative statics of the markups under endoge-

nous market structures, stating the conditions on preferences under which there
is neutrality or there are competitive effects with respect to changes in three key
parameters: 1) the number of consumers, which represents market size in trade
models or labor force in macroeconomics, 2) the individual income of consumers,
whose changes correspond to cross-country income differences in trade and de-
mand shocks in macroeconomics, and 3) the marginal cost, whose reduction
corresponds to globalization in trade and a productivity boost in macroeco-
nomics. The results are simple under monopolistic competition: the neutral-
ity of population on markups holds not only with CES preferences (Krugman,
1980) but also under any additive indirect utility (Bertoletti and Etro, 2013);
the neutrality of income holds under any additive direct utility (see Zhelobodko
et al., 2012 and Bertoletti and Etro, 2014) and even with Generalized quadratic
preferences; and the neutrality of the marginal cost holds under homothetic pref-
erences, so that changes in productivity are translated proportionally on prices
and do not affect the number of firms (see Bilbiie et al., 2012, for macroeco-
nomic applications). Additional competitive effect emerge under Bertrand and
Cournot competition. Finally, we characterize the optimal allocations and com-
pare them with the endogenous market structures. For instance, excess entry
occurs always with Translog, Generalized Leontief preferences and in the case
of Generalized quadratic preferences. However, with Generalized linear prefer-
ences monopolistic competition generates insufficient (excess) entry if and only
if markups are increasing (decreasing) in the number of firms, and efficiency
when they are independent from the number of firms.
The paper is organized as follows: Section 1 describes the general model

for a given number of firms and Section 2 illustrates it in examples, Section 3
endogenizes the number of firms, Section 4 discusses optimality and Section 5
concludes. Technical details are left to the Appendix.

1 A General Model

Consider a market populated by L identical consumers with income/endowment
E > 0 to be spent on a number of differentiated goods, with price pj for variety
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j whose individual consumption is given by xj . We assume that the potential
(arbitrarily large) number of varieties, N , is given, and that preferences over
them are symmetric. However, only a number n < N of varieties are actually
provided in the market, and preferences can be represented equivalently by
symmetric direct or indirect utility functions as:

Un = Un (x) or V n = V n (s) , (1)

where si = pi/E, i = 1, ...n are the normalized prices. Notice that, as in
an example by Feenstra (2003), utility functions (1) are naturally indexed by
the number n, and can be endogenously derived from the underlying preferences
(kept fixed) imposing thatN−n varieties have a price so high that their demands
are nil.3 To satisfy standard conditions, it is assumed that Un (·) is increasing
and concave, that V n (·) is decreasing and convex for any n, and that both are
(at least twice-) differentiable.
The inverse and direct (Marshallian) demand systems are immediately pro-

vided by the following FOCs for utility maximization and Roy identities:4

s(x) = −DU
n (x)

µn (x)
, x(s) =

DV n (s)

µn (s)
, (2)

where

µn (x) = −
n�

j=1

Unj (x)xj =
n�

j=1

V nj (s) sj = µn (s) , (3)

is (minus) the marginal utility of income times E, and suffices denote partial
derivatives. In Appendix A we show that symmetry of preferences implies that
the derivatives:

Uni (x) = hn(xi,x) and V ni (s) = gn(si, s) (4)

are also symmetric with respect to x and s, respectively for given xi and si.
It follows that µn is symmetric too and that the inverse and direct demand
functions:

si(xi,x) = −
hn(xi,x)

µn (x)
, xi(si, s) =

gn(si, s)

µn (s)
, (5)

i = 1, ..., n, are symmetric with respect to their second (vector) arguments.
Suppose now that each variety is sold by a firm producing with constant

marginal cost c > 0 and fixed cost F > 0. Accordingly, the profits of firm i can
be written as:

πi = (pi − c)xiL− F. (6)

3Formally, let U and V to represent the preferences over the N varieties, and suppose that
N − n of them are not available because the corresponding producers have not entered the
market. Then Un (x) = U (x,0ι) and V n(s) = V (s,so (s) ι), where ι is the unit vector of
dimension N − n and so (s) is the choke-off price of the unavailable varieties, which possibly
depends on the price of those actually provided. See the Appendix for examples of these
derivations.

4Throughout this paper we assume that x(s) as well as s (x) behave well, and in particular
are unique. For the sake of simplicity, we omit the index n.
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The equilibrium market structure depends on the form of competition, and we
will examine (generalized) monopolistic competition, Bertrand competition and
Cournot competition. First we will focus on equilibrium pricing and production
decisions for a given number of varieties/firms, and then we will characterize
the endogenous market structures.

1.1 Generalized monopolistic competition

According to (5), the direct impact of a firm choice on its demand is captured
by the partial derivatives of demand with respect to its first argument:

hn1 (xi,x) and gn1 (si, s),

while the indirect impact operates through the symmetric component of de-
mand, and is analogous to the impact of competitors’ choices. This suggests
the following general definition of monopolistic competition, which extends the
proposal by Dixit and Stiglitz (1977) of neglecting strategic interactions:5

Definition 1: Monopolistic competition characterizes a market structure in
which each firm sets its choice ignoring the indirect impact on demand.

Notice that in many applications this is equivalent to say that each firm
takes as given both the number of competitors n and the value of some sym-
metric choice aggregators (this assumption would be trivially satisfied in any
setting with a continuum of varieties).6 For example, this happens under direct
additivity of preferences (Dixit and Stiglitz, 1977) or indirect additivity (Berto-
letti and Etro, 2013), in which either hn or gn are constant with respect to the
symmetric component, and monopolistic competition can be studied simply by
taking the aggregator µn as given. Also notice that:

xi = hn−1 (−siµn(x (s)),x (s)) = xi (si, s) ,

that is, the partial inverse of hn with respect to its first argument gives the
value of xi, implying that the demand function perceived under monopolistic
competition do not depend on the variable chosen to express the firm’s choice.
According to our definition, the perceived inverse demand elasticity and the

perceived direct demand elasticity in monopolistic competition are given by:

ǫn (x) = −h
n
1 (xi,x)xi
hn (xi,x)

and εn(s) = −sig
n
1 (si, s)

gn (si, s)
, (7)

which are of course one the reciprocal of the other when evaluated at x (s). Stan-
dard profit maximization shows that ǫn and εn determine the optimal pricing
rules under monopolistic competition:

5Notice that hn or gn might be independent respectively from xi and si (given respectively
x and s). This is what happens in the case of homogeneous goods, where hn(

�n
j=1 xj) depends

only on the total quantity consumed. Throughout this paper we assume on the contrary that
hn and gn are monotonic with respect to their first arguments.

6This perspective suggests a possible way of generalizing our definition to the case of
asymmetric preferences: see the cases of Generalized Additivity (Pollak, 1972) and Implicit
Additivity (Hanoch, 1974).
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Proposition 1 In any equilibrium of Generalized monopolistic competition:

pi − c

pi
= ǫn (x) =

1

εn(s)
. (8)

Remarkably, the markup rules (8) would hold even in the case of marginal
costs different across firms: accordingly, this analysis can be directly extended
to the case of firm heterogeneity à la Melitz (2003).7 The explicit solution for
the symmetric equilibrium price in which ǫn (x) = ǫn (xι) and εn(s) = εn(sι),
where ι is the relevant unit vector, can be obtained using the budget constraint
nxs = 1. Notice that (p− c) /p is a continuous, increasing function from [c,∞)
onto [0, 1): thus, a monopolistic competition equilibrium exists if 0 < ǫn(x) < 1
or εn(s) > 1.8

1.2 Perceived demand elasticity: a suggested interpreta-

tion

The interpretations of the monopolistic competition markup and the elastici-
ties in (7) are not immediate. We provide an interpretation in terms of the
(Morishima) Elasticity of Substitution, εij (s), and of the (Morishima) Elastic-
ity of Complementarity, ǫij(x), of the demand systems (2). These correspond
to the elasticities of the price (quantity) ratios si/sj (xi/xj) with respect to the
quantity (price) of good i, j = 1, ..., n, i �= j (Blackorby and Russell, 1981):

ǫij ≡ −
∂(si/sj)

∂xi

xi
(si/sj)

and εij ≡ −
∂(xi/xj)

∂si

si
(xi/xj)

,

and can be directly computed from si/sj = Uni (x) /U
n
j (x) and from xi/xj =

V ni (s) /V
n
j (s). These elasticities capture economically relevant aspects of the

substitutability between goods (see Blackorby and Russell, 1989), which shapes
the demand function of each firm. In our setting, the role of these measures
emerges after rewriting the perceived demand elasticity. By symmetry of pref-
erences, whenever si = sj and xi = xj , we have:

hn1 (xi,x) = Unii(x)− Unij(x) and gn1 (si, s) = V nii (s)− V nij (s),

Therefore, it follows that:

ǫn =
xiU

n
ji

Unj
− xiU

n
ii

Uni
= ǫij and ε

n =
siV

n
ji

V nj
− siV

n
ii

V ni
= εij ,

where we used symmetry again to replace Uni with U
n
j and V

n
i with V nj . Ac-

cordingly, the perceived demand elasticity that is relevant for firms active under
monopolistic competition corresponds to the elasticity of the relative demand
of two goods when their relative price changes (starting from identical prices).

7See Bertoletti and Etro (2013) for an example.
8Sufficient conditions for uniqueness of the equilibrium are obvioulsy ∂εn(s)/∂s ≥ 0 and

∂ǫn (x) /∂x ≤ 0 for any x,s.
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Our result generalizes the role of the constant elasticity of substitution under
CES preferences in shaping monopolistic markups. It also provides a rationale
for the well-known fact that, under direct additivity of preferences (Dixit and
Stiglitz, 1977), the perceived demand elasticity only depends on the individ-
ual consumption of each variety and, in particular, on the (reciprocal of the)
elasticity of its own marginal utility of consumption, which Zhelobodko et al.
(2012) refer to as a “relative love for variety.” The general result also explains
why under indirect additivity (Bertoletti and Etro, 2013) the perceived demand
elasticity of each firm depends only on the price-income ratio of its own good.
In addition, the result that with homothetic preferences the symmetric demand
elasticity only depends on n (Benassy, 1996) follows from the homogeneity prop-
erties of the previous expressions under homotheticity. Of course, the formulas
apply in the more general case of non-additive and non-homothetic preferences,
opening up new scenarios for analysis. Our perspective will also illuminate the
relationship between the elasticities perceived under monopolistic competition
and the demand elasticities relevant under strategic interaction, as shown in
next sections.9

1.3 Cournot competition

Consider a Cournotian equilibrium in our market:

Definition 2: Cournot competition characterizes a market structure in
which each firm sets its production level taking in consideration its total im-
pact on the inverse demand.

The relevant “individual marginal revenue” of firm i, MRi = ∂ {pixi} /∂xi,
can be written as:

MRi =
[Uni (x) + Unii(x)xi]µ

n (x) + Uni (x)xi

�
Uni (x) +

�n
j=1 U

n
ji(x)xj

�

−µn (x)2 /E

= pi(x)



1− si(x)xi +

Unii(x)xi
Uni (x)

−
n�

j=1

Unji(x)xi

Unj (x)
sj(x)xj





= pi(x)



1− si(x)xi −

n�

j �=i

�
Unji(x)xi

Unj (x)
− Unii(x)xi

Uni (x)

�
sj(x)xj





= pi(x)



1− si(x)xi −

n�

j �=i

ǫij(x)sj(x)xj





= pi(x)
n�

j �=i

[1− ǫij(x)] sj(x)xj , (9)

9An exploration of this relationship in the case of direct additivity of preferences is in
Bertoletti and Epifani (2014).
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where ǫij(x) is again the elasticity of complementarity between varieties i and
j. Notice that positive marginal revenues require that “on average” ǫij(x) < 1.
Accordingly, in a Cournot equilibrium we have:

pi(x)− c

pi(x)
= si(x)xi +

n�

j �=i

ǫij(x)sj(x)xj (10)

which provides a general markup rule.
Focusing on the case of a symmetric equilibrium, the markup becomes:

p− c

p
=
1

n
+
n− 1
n

ǫn (x) ,

which exhibits a simple relationship with the pricing rule of the monopolistic
competition equilibrium. Using ǫn (x) = 1/εn(sc) we can express the same rule
in terms of the elasticity of substitution drawn from the indirect utility. This
proves the following result:

Proposition 2 In any symmetric Cournot equilibrium:

pc − c

pc
=
1

n
+
n− 1
n

ǫn (xc) =
1

n
+

n− 1
nεn(sc)

. (11)

In Appendix B we also provide a constructive proof of the second equal-
ity appearing in (11). Notice that 1 > 1

n +
n−1
n ǫn (x) > ǫn (x) if ǫn < 1.

Accordingly, the assumption ǫn < 1 allows to rank the equilibrium markups
in Cournot and monopolistic competition. This ranking depends on the fact
that Cournotian firms internalize the indirect impact of their production level
on marginal revenues, which is the same as the increase of production by any
competitor: since goods are substitutes, this impact is negative and internaliz-
ing it amounts to reduce production and increase markups. More formally, let
us differentiate

�n
j=1 sj(x)xj = 1 with respect to xi making use of (5). In a

symmetric equilibrium (i �= j) this gives:

1 = −
n�

j=1

∂sj
∂xi

x

s
= ǫn − n

∂sj
∂xi

x

s
.

ǫn < 1 implies that ∂sj/∂xi < 0, i.e., that varieties are gross, q-substitutes
(see e.g. Bertoletti, 2005 on this terminology) in a symmetric equilibrium.

Accordingly, Cournotian firms face an elasticity of the inverse demand ǫn− ∂sj
∂xi

x
s

which is larger than the one perceived by firms in monopolistic competition, and
actually price higher.

1.4 Bertrand competition

In a Bertrand version of our setting firms choose prices:

8



Definition 3: Bertrand competition characterizes a market structure in
which each firm sets its price taking in consideration its total impact on the
direct demand.

Firms correctly perceive the true elasticity of Marshallian direct demands
(5), that is:


∂xi
∂pi

pi
xi

 = −
si

xi (s)

V nii (s)µ
n (s)− V ni (s)

�
V ni (s) +

�n
j=1 V

n
ji(s)sj

�

[µn (s)]2

= −siV
n
ii (s)

V ni (s)
+

si
µn (s)


V ni (s) + V nii (s)si +

n�

j �=i

V nji(s)sj




= −siV
n
ii (s)

V ni (s)
[1− sixi (s)] + sixi (s) +

n�

j �=i

siV
n
ji(s)

V nj (s)
sjxj (s)

= sixi (s) +
n�

j �=i

�
siV

n
ji(s)

V nj (s)
− siV

n
ii (s)

V ni (s)

�
sjxj (s)

= sixi (s) +
n�

j �=i

εij(s)sjxj (s)

= 1 +
n�

j �=i

[εij(s)− 1] sjxj (s) , (12)

where εij(s) is the elasticity of substitution between varieties i and j. Notice
that to satisfy the FOCs for profit maximization it is necessary that “on average”
εij(s) > 1. In a symmetric Bertrand equilibrium:

p− c

p
=

n

1 + (n− 1) εn(s) .

Again using ǫn (x) = 1/εn(sc), or inverting the inverse demand system (5) under
symmetry (see Appendix B), we prove the following result:

Proposition 3 In any symmetric Bertrand equilibrium:

pb − c

pb
=

n

1 + (n− 1) εn(sb) =
nǫn(xb)

ǫn(xb) + n− 1 . (13)

Notice that [1 + (n− 1) εn(s)] /n > εn(s) if εn > 1. Thus, the assumption
εn > 1 allows us to rank the equilibrium markups in Bertrand and monopolistic
competition. The intuition is again simple and relies on the internalization of
the indirect impact of a price increase on demand under Bertrand competition.
Differentiating

�
j sjxj (s) = 1 with respect to si and making use of (5) yields

that, in a symmetric equilibrium (i �= j):
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1 = −
n�

j=1

∂xj
∂si

s

x
= εn − n

∂xj
∂si

s

x
.

εn > 1 implies that
∂xj
∂si

> 0, i.e. that varieties are gross, p-substitutes (again
see e.g. Bertoletti, 2005). Accordingly, Bertrand firms perceive the true Mar-

shallian elasticity ǫn− ∂xj
∂si

s
x which is smaller than the one perceived by firms in

monopolistic competition, and actually price higher.
Notice also that the Bertrand markup is always below the Cournotian one,

in line with the general result due to Vives (1985). Therefore, we can summarize
the ranking of markups as follows:

Corollary 4 Assume εn > 1 (ǫn < 1) everywhere: then for any Cournot equi-
librium markup there exists a lower Bertrand equilibrium markup which in turn
is larger than a generalized monopolistic competition equilibrium markup.

2 Old and New Examples

In this section we review known particular cases of our general model, and
propose some new applications.10

2.1 Dixit-Stiglitz preferences

Dixit and Stigliz (1977) adopted direct additivity, that is:

Un (x) =
n�

j=1

u(xj), (14)

with u′′(x) < 0 < u′(x) for x > 0. Such a functional form does not actually
change with n (provided that u (0) = 0), and implies that Unji = 0: the elasticity
of complementarity is then ǫij = −xiu′′ (xi) /u′(xi) = ǫ (xi), which does not
depend on the number of competitors. The imperfect competition symmetric
equilibria can be derived as:

p =
c

1− ǫ (x)
, pb =

�
ǫ
�
xb
�
+ (n− 1)

�
c

(n− 1)(1− ǫ (xb))
and pc =

nc

(n− 1)(1− ǫ (xc))
.

(15)
The monopolistic competition markup can be decreasing or increasing in the
number of firms, and in the latter case also the Cournot and Bertrand markups
can be increasing for a large enough number of firms (see Bertoletti et al., 2008).

10Extending our definition of generalized monopolistic competition to settings with outside
commodity (that is with indirect utility function as Ṽ (s0, V n(s)), where s0 is the price-
income ratio of the outside good) is straightforward: for an example with indirect additivity
see Bertoletti and Etro (2013). On quasilinear preferences see Vives (1999) and Anderson et
al. (2012).
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2.2 Indirectly additive preferences

Bertoletti and Etro (2013) have assumed indirect additivity, that is:

V n (s) =
n�

j=1

v(sj), (16)

with v′′(s) > 0 > v′(s). Such a functional form again does not change with n (if
v = 0 for the varieties that are not available) and implies V nji = 0: the elasticity
of substitution is εij = −siv′′(si)/v′(si) = ε(si), which again does not depend
on the number of firms. The three symmetric equilibria can be derived as:

p =
ε(s)c

ε(s)− 1 , pb =

�
1 + (n− 1)ε(sb)

�
c

(n− 1)(ε(sb)− 1) and pc =
nε(sc)c

(n− 1)(ε(sc)− 1) .
(17)

Markups are independent from the number of firms under monopolistic compe-
tition and decreasing with respect to n under strategic interactions.

2.3 Homothetic preferences

Benassy (1996) discussed some instances of homothetic preferences: in that
case, since ǫij and εij are homogeneous of degree zero under homotheticity, the
symmetric equilibrium markups must be a function of the number of varieties
alone.11

2.3.1 Translog preferences

Feenstra (2003) has shown that symmetric Translog preferences imply:

V n(s) = exp−a0 −
1

n

n�

j=1

log sj −
1

2

n�

k=1

n�

j=1

akj log sk log sj , (18)

where a0 = α0 + 1/ (2γn) − 1/ (2γN), akj = γ/n > 0 for k, j = 1, ..., n, k �= j
and ajj = −γ(n− 1)/n, with γ > 0. Applying the Roy identity we can express
the individual demand of good i as:

xi =


 1

npi
− γ

log pi
pi

+
γ

n

n�

j=1

log pj
pi


E.

In a symmetric equilibrium we have εn = 1 + γn, and the three equilibria can
be derived as follows:

p =

�
1 +

1

γn

�
c, pb =

�
1 +

1

γ(n− 1)

�
c and pc =

1 + γn

γ(n− 1)c. (19)

Markups are decreasing in the number of goods and would become negligible
when n→ N if the number of potential varieties N is large.

11 It is worth noticing that the classes of directly additive, indirectly additive or homothetic
preferences have only a common member, given by the CES preferences.
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2.3.2 Generalized Leontief preferences

Another member of the class of so-called flexible functional forms (see Varian,
1992, Ch. 12.10) is given by the (homothetic) Generalized Leontief preferences,
originally presented in Diewert (1971) and unexplored in the analysis of imper-
fect competition. Over a set of N potential goods, these preferences can be
represented by the following indirect utility function:

V =
�√
s
′
B
√
s
�−1

, (20)

where
√
s is the vector of the square roots of the normalized prices, and B is a

N ×N matrix whose elements, to achieve symmetry (and to satisfy regularity
assumptions), are bkj = b > 0 and bjj = b < 0 for k, j = 1, ..., N , k �= j.
It can be shown (see Appendix C) that, under the normalizations b = 1 and
b = − (N − 2), we have:

V n =




n�

k=1

n�

j=1

akj
√
sksj



−1

, (21)

where

aii = a =
− (N − 1) (n− 2)

n− 1 , aij = a =
N − 1
n− 1 .

Accordingly, we obtain the following demand for good i:

xi =
a− a+ a

�n
k=1

�
sk
si�n

k=1

�n
j=1 akj

√
sksj

.

Since the perceived demand elasticity is:

εn =

a
2

�n
k=1

�
sk
si

a− a+ a
�n
k=1

�
sk
si

,

in a symmetric equilibrium we have:

εn =
na

2 (a− a+ na)
=
n

2
(22)

This allows us to directly compute the three symmetric equilibria:

p =
nc

n− 2 , pb =
(2 + n2 − n)c

2 + n2 − 3n and pc =
n2c

n2 − 3n+ 2 . (23)

Again, the markups decrease with the number of varieties and would become
negligible when n→ N if N is large.
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2.3.3 Generalized linear preferences

We now consider another type of homothetic preferences that has not been ex-
ploited in the analysis of imperfect competition. This is represented by the
following utility function (see Diewert, 1971, who associated it with Allen, Mc-
Fadden and Samuelson):

U =
√
x
′
B
√
x, (24)

where the elements of the N × N matrix B are bij = b > 0 and bii = b,
i, j = 1, ..., n, i �= j . Without loss of generality, we normalize b = 1. Notice
that U is concave, homogeneous of degree 1, and strictly monotonic if also b > 0.
If only n < N varieties are actually available it reduces to:

Un(x) =
n�

i=1

n�

j=1

bij
√
xixj , (25)

whose functional form once again does not depend on n. Notice that utility
becomes U = nx(n − 1 + b) in the case of a symmetric consumption, which
requires n−1 > −b. Computation shows that µn (x) = −Un (x) by homogeneity,
and:

hn (xi,x) = b− 1 + 1√
xi

n�

j=1

√
xj, and hn1 (xi,x) = −

x
−3/2
i

2

n�

j=1

√
xj .

Restricting attention to the case in which h > 0 (which always holds if b > 0),
we obtain:

ǫn (xi,x) =

�n
j=1

√
xj

2
�n
j=1 bij

√
xj
.

Notice that in a symmetric equilibrium:

ǫn =
n

2 (n− 1 + b)
, (26)

which satisfies ∂ǫn/∂n < 0 iff 1 > b.12 An increase of n produces an anti-
competitive effect if 1 < b, and in any case we have limn→∞ ǫn = 1/2, i.e. the
markup would never become negligible even if n were very large.
In the specification with b = 1 the markup becomes independent from the

number of goods under monopolistic competition, because the Morishima elas-
ticity of substitution is constant for a symmetric consumption. While CES
preferences are the only separable preferences that induce constant markups,
our result shows that there are other non-separable preferences that induce the
same result.13 As usual, we can also derive the full set of imperfect competition
equilibria:

p = 2c, pb =
(2n− 1)c
n− 1 and pc =

2nc

n− 1 . (27)

12Here ǫn < 1 requires that n > 2(1− b).
13A generalization of (25) as Un =

�n
i1=1

· · ·
�n
im=1

(xi1 · · · xim)
1/m with m ≤ n would

lead, under monopolistic competition, to the constant markup (p− c)/c = 1− 1/m.
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The general case provides interesting results, with markups that can increase
in the number of firms not only under monopolistic competition, but also with
strategic interactions. Under monopolistic competition the general markup is:

p− c

p
=

n

2 (n− 1 + b)
, (28)

which is increasing in the number of firms if and only if b > 1. Strategic inter-
actions add a competition effect, that however does not necessarily compensate
the anti-competitive effect inheritated through ǫn. Indeed, under Cournot and
Bertrand competition we can compute:

pc − c

pc
=
n2 + n− 2 + 2b
2n2 − 2n+ n2b

and
pb − c

pb
=

n2

2n2 − 3n+ 2 + 2 (n− 1) b , (29)

which might be both increasing in the number of firms if this is large enough.14

As far as we know, this is the first computable example of Bertrand and Cournot
equilibria with prices increasing with the number of firms. Notice, however, that
profits remain decreasing in the number of firms, which will allow us to analyze
endogenous market structures later on.

2.4 Quadratic direct utility

We now move to the general field of non-homothetic preferences that are also
non-separable. Let us consider the following utility function:

Un (x) = α
n�

j=1

xj −
γ

2

n�

j=1

x2j −
η

2




n�

j=1

xj



2

, (30)

where α, γ, η > 0: this corresponds to the non-linear part of the utility function
used in Ottaviano and Thisse (1999) and later popularized by Melitz and Otta-
viano (2008).15 The functional form of Un (x) does not change with changes in
the number n of available varieties, and its derivatives are given by hn (xi,x) =
α − γxi − η

�n
j=1 xj . Accordingly, the demand function perceived under mo-

nopolistic competition is the usual linear demand with hn1 (xi,x) = −γ. It is
easy to show that Un (x) is concave, and we restrict our attention to the case
in which hn (xi,x) > 0 for any i = 1, ..., n, and so it is also strictly monotonic.

14Under Cournot competition the markup is increasing if and only if:

(2n+ 1)
�
n2 − n+ nb

�
>
�
n2 + n− 2 + 2b

�
[n− 1 + b] ,

which simplifies to (b− 2)n2 > 4n (b− 1) + 2b2 − 4b+ 2. Under Bertrand competition if:

2n
�
2n2 − 3n+ 2 + 2 (n− 1) b

�
> n2 [4n− 3 + 2b] ,

that is n (2b− 3) > 4 (b− 1). For instance, for b = 3 the price is increasing in the number of
firms if n > 4 +

√
24 under Cournot competition and n > 8/3 under Bertrand competition.

15See also Vives (1999, Ch. 6).
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The inverse demand function for variety i is given by:

si =
α− γxi − η

�n
j=1 xj

α
�n
j=1 xj − γ

�n
j=1 x

2
j − η

��n
j=1 xj

�2 ,

with perceived demand elasticity:

ǫn (xi,x) =
γxi

hn (xi,x)
.

In the symmetric equilibrium we obtain:

ǫn(x) =
γx

α− γx− nηx
, (31)

with ∂ǫn/∂n, ∂ǫn/∂x > 0, limx→0 ǫ
n(x) = 0 and limx→α/(2γ+nη) ǫ

n(x) = 1.16

Therefore we have:
p =

c

1− ǫn(x)
= m(x,n)c, (32)

wherem = hn (x) /(α−2γx−nηx),m(0, n) = 1 and ∂ lnm/∂ lnx > ∂ lnm/∂ lnn >
0. Since a monopolistic competition equilibrium is then characterized by:

E

n
= m(x, n)xc, (33)

we can be sure that such an equilibrium does exist and it is unique. Notice
that (33) implies ∂x/∂E > 0 and ∂x/∂n < 0, and accordingly ∂p/∂E > 0
and ∂p/∂n < 0: a seemingly competitive effect emerges even in the absence of
strategic interactions (and in spite of the fact that ∂m/∂n > 0).17 Similarly, we
get:

pc =
nm(xc, n)c

(n− 1) and pb =

�
nm(xb, n)− 1

�
c

(n− 1) . (34)

under Cournot and Bertrand competition.

2.5 Generalized quadratic preferences

We finally introduce a last class of preferences that has not been fully explored
(as far as we know) in the literature on imperfect competition, characterized by
a quadratic indirect utility:

V (s) = s′βs−α′s, (35)

16Accordingly, ǫn < 1 requires x < α/(2γ + nη). Incidentally, notice that γ → 0 leads to
marginal cost pricing (as goods tend to become perfect substitutes and monopolistic compe-
tition tends to perfect competition).
17 It is easily proved that:

dm

dn
=
∂m

∂n
+
∂m

∂x

∂x

∂n
< 0

iff ∂ lnm/∂ lnx > ∂ lnm/∂ lnn.
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where β is a N ×N matrix and α a N vector, and N is as usual the given total
number of potential varieties. To achieve symmetry we assume that αj = α > 0,
βij = −b < 0 and βii = β, i, j = 1, ..., n, i �= j. Normalizing β = b (N − 1) > 0,
Appendix D shows that V is convex (β is a positive semidefinite matrix), and
monotonic decreasing in the case αι ≥2βs, to which we restrict our attention.
Moreover, preferences over the n available varieties can be expressed as:

V n(s) =
N − n

nβ

α2

4
+

n�

i=1

n�

j=1

βijsisj −
αN

n

n�

j=1

sj +
N − n

n
β




n�

j=1

sj



2

,(36)

= a0 +
n�

j=1


bs2j − bsj

n�

k �=j

sk − asj


− d




n�

j=1

sj



2

, (37)

where a0 = −N−n
nb

α2

4 , a =
αN
n and d = N−n

n b. The individual demand function
has thus the linear form:

xi =
a− 2bN (si − s)

−µn (s) with a =
αN

n
,

where s =
�n
j=1 sj/n is the average price. It is remarkable that, when we

properly take into account the prices of the unavailable varieties, the direct
demand is perceived as linear in the difference between the own price and the
average price of the available varieties, so reproducing the typical form adopted
in textbook examples of monopolistic competition (see e.g. Vives, 1999, Ch. 6).
Since gn(si, s) = 2bN (si − s) − a, the demand elasticity perceived in mo-

nopolistic competition is given by:

εn (s) =
2bNsi

a− 2bN (si − s)
,

which becomes

εn(s) =
2bns

α
, (38)

in a symmetric equilibrium, after using a = αN/n.18 Notice that εn increases
with ns,19 and we can obtain the three equilibrium markups. Solving for the
symmetric equilibrium prices we have:

p = c+
αE

2bn
, pb =

Φ+ 2

�
Φ2 + 8ncbαE

n−1

4nb
and pc =

nc

(n− 1) +
αE

2bn
. (39)

where Φ ≡ αE + 2ncb. Prices increases in income and decrease in the number
of goods in all cases.

18Note that a comparison with (31) shows that preferences (36) and (30) are actually dif-
ferent.
19Under our assumptions, εn > 1 then requires ns > α/2b.
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3 Endogenous Market Structures

We now consider the impact of free entry of firms. The symmetric equilibrium
price is implicitly defined as a function of the number of firms by:

p− c

p
=

1

θ(p/E, n)
,

where the function θ(s, n) > 1 depends on the form of competition. In particu-
lar, we have,

θ(s, n) = εn(s) =
1

ǫn (1/sn)

under monopolistic competition,

θ(s, n) =
nεn(s)

εn(s) + n− 1 =
n

1 + ǫn (1/sn) (n− 1)

under Cournot competition, and

θ(s, n) =
1 + (n− 1) εn(s)

n
=
ǫn (1/sn) + (n− 1)

nǫn (1/sn)

under Bertrand competition. The total differentiation of the markup rule pro-
vides:

d ln s

d lnn
=

−ψn
θ − 1 + ψs

,

where we defined ψs ≡ ∂ ln θ/∂ ln s and ψn ≡ ∂ ln θ/∂ lnn as the elasticities of
θ(s, n) with respect to price and number of firms.
In what follows we make two “regularity assumptions”. The first one is that

A ≡ θ − 1 + ψs > 0, which implies that the impact of the number of firms on
prices has a sign opposite to that of its impact on the relevant price elasticity.20

Since the equilibrium profit of each firm, π = EL/nθ(s(n), n) − F , decreases
with respect to n if and only if:

d lnnθ(s(n), n)

dn
= 1 + ψn + ψs

d ln s

d lnn
> 0

⇐⇒ D = [θ − 1] (1 + ψn) + ψs > 0, (40)

our second “regularity assumption” is that D > 0.21 The endogenous-entry
equilibrium conditions can then be expressed as:

p− c

p
=

1

θ(p/E, n)
and n =

EL

Fθ(p/E, n)
. (41)

20Notice that A > 0 will be certainly satisfied if ψs > 0.
21Our assumptions are not independent: given A > 0, D will be positive unless ψn is

negative and “large” (in absolute value).
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Notice that these conditions (41) can be re-arranged to show a positive and
convex relation between the price and the number of firms:

p =
cEL

EL− nF
. (42)

Let us assume that the free-entry equilibrium is unique and well-defined.
The first result we can obtain is a complete ranking of the number of firms
and equilibrium markups emerging in the three forms of competition, as an
immediate consequence of Corollary 4 and the positive relation between price
and number of firms just stated:

Proposition 5 If εn > 1 (ǫn < 1) everywhere, under endogenous market struc-
tures the equilibrium number of firms and markup under Cournot competition
are higher than those under Bertrand competition, which are higher than those
under generalized monopolistic competition.

The total differentiation of the equilibrium system (41) provides the following
elasticities of the equilibrium variables with respect to income E, market size L
and marginal cost c:

d ln p

d lnE
=
ψs − ψn

D
and

d lnn

d lnE
=
θ − 1 + θψs

D
, (43)

d ln p

d lnL
=
−ψn
D

and
d lnn

d lnL
=
θ − 1 + ψs

D
, (44)

d ln p

d ln c
= 1− ψs

D
and

d lnn

d ln c
=
−(θ − 1)ψs

D
. (45)

Let us define neutrality on the market structure of income E, of the market
size L and of the marginal cost c as the property for which a change in one
of these parameters does not affect the equilibrium markup. The comparative
statics in (43)-(45) implies that the market size is neutral on the endogenous
market structure if and only if ψn = 0, income is neutral if and only if ψs = ψn
and the marginal cost is neutral if and only if ψs = 0. The implications for
our examples are immediate under monopolistic competition: 1) the neutrality
of the market size holds not only with CES preferences (Krugman, 1980) but
under any case of indirect additivity (Bertoletti and Etro, 2013): in these cases
a market that is twice as large attracts a double number of firms selling the
same quantity at the same price and generating pure gains from variety; 2)
the neutrality of income holds under direct additivity (see Zhelobodko et al.,
2012 and Bertoletti and Etro, 2014) and even in the case of the Generalized
quadratic preferences: in these cases a double income attracts a double number
of firms; and 3) the neutrality of the marginal cost holds under any homothetic
preferences, so that changes in productivity are translated proportionally on
prices and do not affect the number of firms. The three neutralities hold at the
same time under CES preferences and also in our example of Generalized linear
preferences with equal coefficients (bij = 1).
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Similarly, let us say that an increase of income, market size or productivity
exerts a competition effect if it reduces the markups. Notice that such an effect
is associated in the first two cases with an increase less than proportional of the
number of firms, and in the third case with a reduction of it (a case of so-called
“business destruction”). The next result summarizes the general comparative
statics of the free-entry equilibrium:

Proposition 6 Under endogenous market structures: 1) an increase in the
market size exerts a competition effect if and only if ψn > 0; 2) an increase
in income exerts a competition effect if and only if ψs < ψn; 3) an increase in
productivity exerts a competition effect if and only if ψs > 0.

The implications for the case of monopolistic competition are again particu-
larly tranchant. To exemplify our result, let us consider the case of a quadratic
direct utility, in which none of the mentioned three neutralities holds. From
(31) we can obtain θ = (αs− η)n/γ − 1, which implies:22

ψs =
αsn

αsn− ηn− γ
> ψn =

αsn− ηn

αsn− ηn− γ
> 0.

Accordingly, under free entry an increase in market size or in productivity re-
duces markups, but an increase in income increases prices (and expands the
number of firms more than proportionally).
Similar applications of the first result of Proposition 6 can be done to our

other examples. In particular, market size exerts a competition effect under di-
rect additivity when the elasticity of substitution decreases with consumption,
while an anti-competitive effect arises if the elasticity of substitution is increas-
ing in consumption (see Bertoletti et al., 2008 and Zhelobodko et al., 2012).
A competition effect shows up also in the Translog case, under the General-
ized Leontief preferences and in the case of Generalized quadratic preferences.
Finally, Generalized linear preferences can generate either a competitive or an
anti-competitive effect of the market size.
The second result of Proposition 6 shows that the competitive effect due to

an increase in income arises only if ψn − ψs > 0: clearly, this is a condition
which can be satisfied under several cases. Bertoletti and Etro (2013) obtain
a competition effect of income under indirect additivity with demand elasticity
decreasing with respect to prices (ψn = 0, ψs < 0), but the same happens
under homotheticity (ψs = 0) as long as ψn > 0, which holds in the Translog
and Generalized Leontief preferences cases. Nevertheless, markups increasing in
income are much more in line with the trade evidence on pricing to market (for
instance see Simonovska, 2013) or some macroeconomic evidence on procyclical
markups (Nekarda and Ramey, 2013): a positive relation between income and
markups emerges under indirect additivity with demand elasticity increasing in
the price-income ratio (ψn = 0, ψs > 0).

22Notice that θ > 1 implies αs > η.
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The third result of Proposition 6 shows that the price sensitivity of demand
elasticity is what matters to determine the translation of marginal costs (includ-
ing taxes or any other cost wedge) on prices: in the (arguably) more realistic
case in which demand is perceived as more rigid when income increases (ψs > 0),
changes in productivity are translated less than proportionally on prices, and
additional costs are undershifted. This is for instance what happens in both of
our quadratic examples.
Moving to the case of oligopolistic competition increases the value of ψn, thus

raising the chances of getting competition effects due to market size or income.
Consider for instance an increase in the market size: even when a larger market
size raises markups under monopolistic competition, strategic interactions may
give rise to a competition effect on the markups, at least when the number of
firms is small. A case in which we can state unambiguous results is the one of
homothetic preferences, since markups depend only on the number of goods:

Corollary 7 Under homotheticity, endogenous market structures generate neu-
trality of productivity, while income and market size exert a competition effect
if and only if ψn > 0.

The case of homothetic preferences is particularly relevant in dynamic (macro-
economic) applications where homotheticity of the consumption index is crucial
for two-stage budgeting. Bilbiie et al. (2012) have indeed adopted homothetic
preferences in a monopolistic competition model with endogenous entry to study
the impact of aggregate shocks. These shocks can be magnified through com-
petition effects in case of demand elasticity increasing with entry, as with the
Translog preferences adopted by Bilbiie et al. (2012) or with the introduction of
strategic interactions à la Bertrand or Cournot as in Etro and Colciago (2010).
To conclude this section with a few examples, let us return to the Feenstra

(2003) example of Translog preferences. Under monopolistic competition we can
solve for the free entry number of goods as:

n =

�
EL

γF
+

�
1

2γ

�2
− 1

2γ
. (46)

This implies that both income and market size affect the market structure:
an increase in EL/F attracts more firms, which reduces markups. Moreover,
an increase of γ reduces product differentiation, thereby decreasing markups
and the equilibrium number of firms. The same happens under Bertrand and
Cournot competition, which yield:

nc =

�
EL(1 + γ)

γF
+

1

4γ2
− 1

2γ
> nb =

�
EL

γF
+

�
1− γ

2γ

�2
− 1− γ

2γ
> n.

Similar competition effects are associated to the case of the Generalized Leontief
preferences for which we obtain:

n =

 
2EL

F
. (47)
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The case of Generalized linear preferences delivers the following equilibrium
under monopolistic competition:

n =
EL

2F
+ 1− b, (48)

which is exactly linear in EL/F only if b = 1 and thus ψn = 0.
Finally, let us consider our examples of non-homothetic and non-separable

preferences. In case of quadratic direct utility the closed form solution is complex
but we have already discussed its comparative statics. Under the Generalized
quadratic preferences the equilibrium number of firm with monopolistic compe-
tition is given by:

n =

αE

��
1 + 8bcL

αF − 1
�

4bc
, (49)

which shows a linear relation with income and a concave one in population.

4 Optimal Market Structures

The optimal organization of production can be reached by a social planner
controlling number of firms, production and prices.23 Such an optimal market
structure can be identified maximizing utility under the resource constraint
EL = ncxL+nF . This is equivalent to the use of the budget and the zero profit
constraints, which can be combined to obtain (42). Let us define U (x;n) =
Un (xι) and equivalently V (s;n) = V n (sι).24 We can now state the social
planner problem as the maximization of:

W (n) = U

!
E

cn
− F

cL
;n

"
or W (n) = V

!
cL

EL− Fn
;n

"
. (50)

Let us define φ (x;n) ≡ Ux (x;n)x/U (x;n) > 0 as the elasticity of the direct
utility with respect to the consumption level and ϕ (x;n) ≡ Un (x;n)n/U (x;n) >
0 as the elasticity of the direct utility with respect to the number of vari-
eties. Notice that φ (x;n) is just the so-called “scale elasticity” of Un at xι.
Differentiating the equality U (E/pn;n) = V (p/E;n) we obtain that φ =
−Vs (s;n) s/V (s;n) is also the elasticity of the “corresponding” indirect util-
ity with respect to the price of each good, and #ϕ = ϕ− φ = Vn (s;n)n/V (s;n)
is the elasticity of the “corresponding” indirect utility with respect to the num-
ber of available varieties. We can now express the conditions for the optimal
provision of goods in the following result:

23On the optimal market structures see the original contribution by Dixit and Stiglitz (1977)
and the extensions in Kuhn and Vives (1999) and more recently Nocco et al. (2014) and
Mrázová and Neary (2014).
24As usual in this literature, we treat n as a continuous variable, and we assume the differ-

entiability of V (s;n) with respect to n.
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Proposition 8 The optimal market structure requires

p∗ = c
ϕ

φ
and n∗ =

EL (1− φ/ϕ)

F
, (51)

where φ is the elasticity of direct utility with respect to the consumption of each
good and ϕ the elasticity of direct utility with respect to the number of varieties.

The rule (51) implies that prices and number of goods provided should be
increasing in ϕ, due to larger benefits from variety, and decreasing in φ, due to
larger benefits of higher consumption of each good. The optimal market struc-
tures under additivity have been characterized by Dixit and Stiglitz (1977) for
direct additivity (ϕ = 1) and Bertoletti and Etro (2013) for indirect additivity
(#ϕ = 1). Under monopolistic competition and additivity free entry is optimal
only under CES preferences (ϕ/φ = θ/(θ − 1)).
Benassy (1996) has suggested that homotheticity can generate both excess

and insufficient free entry. Indeed, notice that under homotheticity the scale of
consumption does not matter for the optimal choice, and normalizing the direct
utility to be homogenous of degree 1 we get φ = 1 and U (x;n) = xUn(ι) =
nt (n)x, with ϕ (n) = 1+χ(n), where χ(n) = d ln t(n)/d lnn it is what Benassy
(1996) called the “taste for variety” embedded into preferences. It follows from
(51), (42) and (41) that a sufficient condition for excess (insufficient) entry under
homothetic preferences is χ(n) < (>)1/(θ(n)− 1).25 Analogously, we can write
V (s;n) = V n(ι)/s = v (n) /s, with #ϕ (n) = d ln v(n)/d lnn, and the sufficient
condition for excess (insufficient) entry becomes #ϕ (n) < (>)1/(θ(n)− 1).
In the case of Translog preferences we actually have:

V (s;n) =
1

s
exp

!
1

2γN
− α0 −

1

2γn

"
,

with

#ϕ (n) = 1

2γn
<
1

γn
=

1

εn − 1 .

This shows that the free-entry equilibrium number of firms under monopolistic
competition (46) is characterized by excess entry, as can be verified comparing
it with the optimal one:

n∗ =

�
EL

2γF
+

�
1

4γ

�2
− 1

4γ
. (52)

A fortiori the number of firms is further away from the optimal one moving to
Bertrand competition and even more when moving to Cournot competition.
In case ofGeneralized Leontief preferences we obtain the following expression

(see Appendix C):

V (s;n) =
n− 1

sn (N − 1) ,

25 In addition, it can be shown that ǫn takes a particular simple expression in the case of
homothetic preferences, given by nUnji(ι)/U

n
i (ι).
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with

#ϕ (n) = 1

n− 1 <
2

n− 2 =
1

εn − 1 ,

showing that again excess entry occurs with imperfect competition. The optimal
number can be computed as:

n∗ =
n√
2
, (53)

where n is given by (47).
Let us move to the Generalized linear preferences, which imply:

U(x;n) = nx(n− 1 + b).

Since

χ (n) =
n

n− 1 + b
<

n

n− 2 + 2b =
ǫn

1− ǫn
,

excess entry occurs under monopolistic competition when the markup is de-
creasing in the number of firms (b < 1) and insufficient entry arises otherwise
(b > 1). Indeed, the optimal number of firms can be computed as:

n∗ = n− 1− b

2
, (54)

where n is given by (48).
In the case of quadratic direct utility we have:

U (x;n) = nx
�
α− x

2
(γ + ηn)

�

and entry is generally inefficient.26 Finally, under Generalized quadratic prefer-
ences we can derive (see Appendix D):

V (s;n) = −N − n

nb

α2

4
− αNs.

whose maximization implies that excess entry arises always under free entry.27

5 Conclusion

We have characterized imperfect competition with demand functions derived
from symmetric preferences, discussing some general results and new exam-
ples. The symmetric equilibrium markups depend on the elasticity of substitu-
tion/complementarity between goods, which corresponds to the demand elas-
ticity perceived by firms under monopolistic competition, and can be derived

26See Ottaviano and Thisse (1999) and Nocco et al. (2014) on a related analysis with
quasilinear preferences.
27 Indeed, the free entry equilibrium implies (p− c)2 = αF

2bL
p, while using the zero profit

constraint n = (p− c)EL/pF , the optimum solves:

max
p

−αpF
4(p− c)bL

− p,

with FOC (p∗ − c)2 = αF
2bL

c
2
. Since p > c/2 it must be that p > p∗.
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directly from the direct or indirect utility function. Our examples show that
a rich set of competitive/anticompetitive effects can arise when the number of
varieties changes, or there is endogenous entry. Notably, in the latter case,
three well-known classes of preferences (namely, directly and indirectly addi-
tive preferences, and homothetic preferences) partially neutralize the impact of
individual income, market size and marginal cost on the equilibrium markups.
In the general case, on the contrary, all these do affect the equilibrium values.
Finally, the free-entry equilibrium can exhibit either excess or insufficient entry
with respect to the optimal market allocation.
Future research could apply this setting to reconsider a number of industrial

organization issues, such as the welfare properties of the different equilibria,
the impact of mergers or the role of market leaders and strategic commitments
with endogenous market structures (see for instance Etro, 2011). It would also
be interesting to introduce endogenous sunk costs to generalize the result by
Sutton (1991) on the non-monotone relation between market size and number
of firms (see also Vives, 2008). Finally, in terms of applications, the framework
we propose could be used to investigate the robustness of the results generated
in trade and macroeconomic models by the standard monopolistic competition
cum CES preferences.28
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Appendix

A: Properties of Symmetric Functions

Let us consider a twice-differentiable function y = f(x):

f : Rn+ −→ R.

We say that f is symmetric with respect to its arguments x if

f(x) = f(Px), ∀x,∀P, (55)

where P is a permutation matrix. The symmetry of f imposes some symmetry
also on its derivatives. Define:

fi (x) =
∂f (x)

∂xi
and fij (x) =

∂2f (x)

∂xi∂xj
,

i, j = 1, ..., n. Differentiation of (55) with respect to x yields, in matrix notation:

Df(x) = P′Df(Px).

Since P is orthogonal, i.e., P′ = P−1, we obtain:

PDf(x) = Df(Px), ∀x,∀P, (56)

which shows that the gradient of a symmetric scalar function is itself a sym-
metric vector function. Similarly, differentiating (56) with respect to x yields:

PD2f(x) = D2f(Px)P,

i.e.,
PD2f(x)P′ = D2f(Px), ∀x,∀P. (57)
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(56) and (57) imply that:

fi (x) = #g (xi,x−i) ,

where #g, which does not depend on i, is symmetric with respect to x−i.
Indeed, it can be also proved that

fi (x) = g (xi,x) , (58)

where g is symmetric with respect to x. The formal argument for this additional
result was kindly provided by Giuseppe Savaré, of the Department of Mathe-
matics of the University of Pavia. A skecth of the proof follows. First, for each
symmetric function f(x) it holds that

f(x) = #f(Sn (x)), (59)

where #f is unique and well defined and

Snm (x) =
�

0<i1<...<im≤m

m$

k=1

xik , (60)

with m = 1, ..., n. Notice that each of the n functions Snm is symmetric, and
that any x is associated to a specific Sn up to a permutation. Second, since:

Sn−1k (x−i) =
k�

j=0

(−1)jxjiSnk−j (x) ,

where Sn0 = 1, it follows that:

#g (xi,x−i) = %g
�
xi,S

n−1
k (x−i)

�
= g (xi,x) , (61)

where g is symmetric with respect to x.

B: Cournot and Bertrand symmetric equilibria

Let us consider the “primal approach”, based on the inverse demand system
s(x). The Cournot equilibrium is found by direct calculation. To find the
equilibrium under Bertrand competition we must obtain the elasticity of the
direct demand from the inversion of the inverse demand system, which in matrix
notation is implicitly defined by pλ (x)− f (x) = 0, where fi = Uni , i = 1, ..., n
and λ (x) = −µn (x). By the Implicit Function Theorem we have:

BDpx(p) = −λ (x) I, (62)

where I is the relevant identity matrix and

B = pDxλ (x)
′ −Dxf (x) =



p1

∂λ
∂x1

− ∂f1
∂x1

... p1
∂λ
∂xn

− ∂f1
∂xn

... ... ...

pn
∂λ
∂x1

− ∂fn
∂x1

... pn
∂λ
∂xn

− ∂fn
∂xn


 ,
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Dpx(p) =




∂x1
∂p1

... ∂x1
∂pn

... ... ...
∂xn
∂p1

... ∂xn
∂pn


 and − λ (x) I =



−λ ... 0
... ... ...
0 ... −λ


 .

Consider now the symmetric equilibrium where pi = p, xi = x; ∂λ
∂pi

= λi,
∂fi
∂xi

= fii,
∂fi
∂xj

= fij ,
∂xi
∂pi

= xii and
∂xi
∂pj

= xij are all the same (i �= j).

Assuming pλi − fij �= 0, matrix B simplifies to:

B =



pλi − fii ... pλi − fij

... ... ...
pλi − fij ... pµi − fii


 = (pλi − fij)

!
ιι′− fii − fij

pλi − fij
I

"

where ι is the relevant unit vector. Applying the Sherman-Morrison formula29

to invert it, we have:

B−1 =
1

pλi − fij


−pλi − fij

fii − fij
I−

pλi−fij
fii−fij

Iιι′
pλi−fij
fii−fij

I

1− ι′ pλi−fijfii−fij
Iι




=
1

pλi − fij


−pλi − fij

fii − fij
I−

�
pλi−fij
fii−fij

�2

1− npλi−fijfii−fij

1




= − 1

fii − fij

!
I+

pλi − fij
fii − fij − n (pλi − fij)

1

"

(which requires 0 �= fii−fij �= n (pλi − fij)), where 1 is the relevant unit matrix.
Since:

Dpx(pι) = −λB−1 =
λ

fii − fij

!
I+

pλi − fij
fii − fij − n (pλi − fij)

1

"
,

we get immediately:

∂xi
∂pi

=
λ

fii − fij

!
1 +

pλi − fij
fii − fij − n (pλi − fij)

"
, (63)

where λ = nfix/E, pλi =
E
nx

(n−1)fijx+fiix+fi
E = (n−1)fijx+fiix+fi

nx , pλi − fij =
−fijx+fiix+fi

nx , fii − fij − n (pλi − fij) = −fi
x . This proves the second equality

in (13).

29The Sherman-Morrison formula says that:

�
A+ xy′

�
−1

= A−1 − A−1xy′A−1

1 + y′A−1x
,

if A is invertible and 1 + y′A−1x �= 0: see Sherman and Morrison (1950).
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Let us consider the “dual approach”, based on the direct Mashallian demand
system x(s). The Bertrand equilibrium can be found by direct calculation. To
find the Cournot equilibrium we must obtain the elasticity of the inverse demand
from the inversion of the direct demand system, which in matrix notation is
implicitly defined by xµ (s)−g (s) = 0, where we simplify notation with µ (s) =
µn (s). By the Implicit Function Theorem we have:

ADxs(x) = −µ (s) I, (64)

with

A = xDsµ (s)
′ −Dsg (s) =



x1

∂µ
∂s1

− ∂g1
∂s1

... x1
∂µ
∂sn

− ∂g1
∂sn

... ... ...

xn
∂µ
∂s1

− ∂gn
∂s1

... xn
∂µ
∂sn

− ∂gn
∂sn


 ,

Dxs(x) =




∂s1
∂x1

... ∂s1
∂xn

... ... ...
∂sn
∂x1

... ∂sn
∂xn


 and − µ (s) I =



−µ ... 0
... ... ...
0 ... −µ


 .

Consider now the symmetric equilibrium. Assuming xµi − gij �= 0 we get:

A =



xµi − gii ... xµi − gij

... ... ...
xµi − gij ... xµi − gii


 = (xµi − gij)

!
ιι′− gii − gij

xµi − gij
I

"
.

Using the Sherman-Morrison formula we get:

A−1 = − 1

gii − gij

!
I+

xµi − gij
gii − gij − n (xµi − gij)

1

"

which requires gii − gij �= 0 and gii − gij �= n (xµi − gij). Since:

Dxs(x) = −µ (s)A−1 =
µ (s)

gii − gij

!
I+

xµi − gij
gii − gij − n (xµi − gij)

1

"
,

we get immediately:

∂si (x)

∂xi
=

µ (s)

gii − gij

!
1 +

xµi − gij
gii − gij − n (xµi − gij)

"
, (65)

which delivers the second equality in (11).

C: Generalized Leontief preferences

The so-called Generalized Leontief (Diewert, 1971) homothetic expenditure
function corresponding to (20) is given by:

E(p, U) = U
N�

i=1

N�

j=1

bij
√
pipj = U

√
p
′
B
√
p (66)
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where to achieve symmetry it is assumed that bij = b > 0 and bii = b, i, j =
1, ..., n, i �= j, and N is the total number of conceivable varieties, to be kept
constant. Without loss of generality, we can further normalize b = 1. Then:

x(p, U) = DpE(p, U) = U
�
(√p
�−1

B
√
p, (67)

xi(p, U) = U
N�

j=1

bij

 
pj
pi
,

where xi(p, U) is the compensated (Hicksian) demand of variety i and the sym-
bol % denotes vector diagonalization. Notice that b does not enter the Jaco-
bian Dpx(p, U), and thus the regularity conditions it has to satisfy (negative-
semidefiniteness). However, if all prices are the same xi(pι, U) = U [b+ (N − 1)],
which suggests the condition (N − 1) b > −b.
Finally, the value of b may be crucial to account for some variety not being

available for consumption, because not offered within the market. Notice that
using (67) one can write (in matrix form):

E(p, U) = U
√
p
′
B
√
p = p′x, (68)

as it has to be by homogeneity and Shephard’s Lemma. Now, let us partition
the varieties into the set I of varieties actually consumed, i = 1, 2, ..., n, and
the set J of varieties not available, j = n+ 1, n+ 2, ..., N , with pI = [p1,...pn],

pJ = [pn+1,...pN ], B =

!
BII BIJ

BJI BJJ

"
, and similarly. By (67):

xJ = U

�
�)
pJ
�−1 �

BJI BJJ
�√
p = [0] ,

requiring )
pJ = −

�
BJJ
�−1

BJI
)
pI (69)

if BJJ is invertible. However, BJJ can be written as

BJJ = (1− b)

!
1

1− b
1N−n,N−n − IN−n,N−n

"

where I is the relevant identity matrix. Since 1N−n,N−n has eigenvalues (N−n)
and zero, BJJ has eigenvalues (N − n− 1) + b and b − 1, and it will then be
invertible if (N − n− 1) �= −b �= −1. Since

xI = U

�
�)
pI
�−1 �

BII BIJ
� ! )pI)

pJ

"

= U

�
�)
pI
�−1 �

BII BIJ
�
� )

pI

−
�
BJJ
�−1

BJI
)
pI

�
,
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we obtain

En(p, Un) = pI′xI = UnpI′
�
�)
pI
�−1 �

BII BIJ
�
� )

pI

−
�
BJJ
�−1

BJI
)
pI

�

= Un
)
pI

′ �
BII BIJ

�
� )

pI

−
�
BJJ
�−1

BJI
)
pI

�

= Un
�)
pI

′
BII
)
pI −

)
pI

′
BIJ
�
BJJ
�−1

BJI
)
pI
�

= Un
)
pI

′
�
BII −BIJ

�
BJJ
�−1

BJI
�)

pI

= Un
)
pI

′
A
)
pI ,

where A =
�
BII −BIJ

�
BJJ
�−1

BJI
�
is a simmetric matrix and n is the num-

ber of available varieties.
Notice that BIJ = BJI′ = 1n,N−n, where 1n,N−n is a (n,N − n) matrix

with unit entries, and BJJ is a (N − n,N − n) square matrix whose diagonal
elements are equal to b and extradiagonal elements are equal to 1. Since:

BJJ1N−n = [(N − n)− 1 + b]1N−n = λ1N−n

has the obvious solution λ = (N − n− 1) + b, then BJJ has a unit eigenvector
associated to the eigenvalue N − n − 1 + b. Accordingly, its inverse has a unit
eigenvector associated to an eigenvalue given by [(N − n− 1) + b]−1. From this
we can compute:

�
BJJ
�−1

BJI =
1

(N − n− 1) + b
1N−n,n

and

BIJ
�
BJJ
�−1

BJI =
N − n

N − n− 1 + b
1n,n.

Since BII = [1n,n − (1− b) In,n], it follows that:

A = BII −BIJ
�
BJJ
�−1

BJI = [1n,n − (1− b) In,n]−
N − n

N − n− 1 + b
1n,n

=
b− 1

N − n− 1 + b
1n,n − (1− b) In,n.

Accordingly,

aii = a =
(b− 1) [N − n+ b]

N − n− 1 + b
, aij = a =

b− 1
N − n− 1 + b

.

Notice that the final normalization b = −(N − 2) satisfies all our assumptions.
In particular, b < 0, (N − 1) > −b and BJJ is a negative definite matrix.
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D: Generalized quadratic preferences

Consider the following indirect utility function:

V =
N�

i=1

N�

j=1

βijsisj −
N�

j=1

αjsj , (70)

where to achieve symmetry it is assumed that αj = α, βij = β and βii = β,
i, j = 1, ..., n, i �= j, and N is always the total number of potential varieties.
Accordingly, V (s) = s′βs−αs, where s =�N

j=1 sj . Notice that:

β=β1NxN −
�
β − β

�
INxN =

�
β − β

�
�

β�
β − β

�1NxN − INxN
�
:

since 1NxN has eigenvalues N and 0, the eigenvalues of β are then given by
(N − 1)β + β and β −β. Since:

DsV (s) = 2βs−αι D2
sV (s) = 2β,

∂V (sι)

∂si
= 2

N�

j=1

βijs− α = 2s
�
β + (N − 1)β

�
− α,

where ι = 1N , to satisfy the conditions of monotonicity and (quasi-)convexity
of V we assume that α > 0, and that β is a positive semidefinite matrix. In
particular, we assume that (N − 1)β ≥ − β, β > β, β > 0 and restrict attention
to the case in which αι >2βs. We obtain:

x(s) =
DsV (s)

DsV (s)′s
= − αι−2βs

2s′βs−αι′s (71)

with
V (sι) = Ns

*
s
�
(N − 1) β + β

�
− α
+
< 0.

Let us partition the varieties into the set I of varieties actually consumed,
i = 1, 2, ..., n, and the set J of varieties not available, j = n + 1, n + 2, ..., N ,

with sI = [s1,...sn], s
J = [sn+1,...sN ], β =

!
βII βIJ

βJI βJJ

"
, and similarly. Notice

that, by (71), xJ = [0] requires αι=2
�
βJI βJJ

�
s = 2

�
βJIsI + βJJsJ

�
,

implying:

sJ =
α

2

�
βJJ
�−1

ι−
�
βJJ
�−1

βJIsI ,

since βJJ =
�
β − β

� !
β

(β−β)
1(N−n)x(N−n) − I(N−n)x(N−n)

"
is invertible (and

positive definite) under our assumptions. Moreover:

βJJι =
�
β − β

�
�

β�
β − β

� (N − n)− 1
�
ι,
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and thus βJJ has a unit eigenvector associated to the positive eigenvalue β (N − n− 1)+
β. This implies that

�
βJJ
�−1

has a unit eigenvector associated to the positive

eigenvalue 1/
�
β (N − n− 1) + β

�
. Since βJI = β1(N−n)xn we get:

sJ =
�α
2
− βsI

��
βJJ
�−1

ι =
α
2 − βsI

β (N − n− 1) + β
ι > 0. (72)

which identifies the choke-off (normalized) prices of the N − n unproduced va-
rieties as functions of the (normalized) prices of the n varieties actually offered
in market. Using (72) yields:

V n(s) = s′βs−αι′s =
�
sI′ sJ′

� ! βII βIJ

βJI βJJ

" !
sI

sJ

"
− αι′

!
sI

sj

"

=
�
sI′ sJ′

� ! βIIsI + βIJsJ
βJIsI + βJJsJ

"
− αι′

!
sI

sj

"

= sI′βIIsI + sI′βIJsJ + sJ′βJIsI + sJ′βJJsJ−αsI−αsJ

= sI′βIIsI−αsI + 2 (N − n)βsI
α
2 − βsI

β (N − n− 1) + β

+(N − n)

�
α
2 − βsI

�2

β (N − n− 1) + β
−α (N − n)

α
2 − βsI

β (N − n− 1) + β

= sI′βIIsI−αsI +
(n−N)

�
α
2 − βsI

�2

β (N − n− 1) + β

or:

V n(s) = sI′βIIsI +
(n−N)

�
α2

4 + β2sI
2
�
−αsI

�
β − β

�

β (N − n− 1) + β
. (73)

Let us normalize β = −b < 0, β = b (N − 1). Then all our assumptions are
satisfied and we reach the indirect utility:

V n(s) =
n�

i=1

n�

j=1

βijsisj +
N − n

nβ

α2

4
+
N − n

n
βsI

2 − αNsI

n
. (74)

which endogenously depends on the number of provided varieties and their
prices.
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