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1 Introduction

In many contests, one competitor has an initial advantage over her rivals.
For instance, an incumbent firm possesses more knowledge about a new task
when it is related to their previous work. In a contest for job promotion or
an employee of the month award, a worker with a good reputation has an
advantage over her competitors. Most representatives favor companies from
their own district in public procurement.

In recent literature, these initial advantages are often modeled as deter-
ministic head starts in all-pay contests (see, e.g., Konrad, 2002, 2004, Kaplan
et al., 2003, Kirkegaard, 2012, and Siegel, 2013). In the above mentioned ap-
plications, however, a contestant is typically not perfectly informed about the
size of the head start of a rival. For instance, a lobbyist might know that the
politician who he tries to influence comes from the same district as another
lobbyist. Yet, he can only guess by how much this lowers his prospects in
the contest.

This paper provides a two-player contest model which captures asym-
metric information about a head start. More precisely, the size of the head
start is drawn from a commonly known probability distribution, but only
the player with the head start knows the realization.! Each player submits a
non-negative bid and pays costs equal to her bid. The player with the higher
score realization, i.e., sum of the bid and the head start, receives a prize.

I fully characterize the unique Bayesian Nash equilibrium distributions
over scores for generic strictly increasing and continuous distributions of the
head start in Proposition 1. In general, the support of the scoring distribution
of the uninformed player is a union of disjoint intervals. The “gaps” in her
support are intervals on which a bid results in a negative expected profit for
all bidding strategies of the informed player. Both players randomize their
scores uniformly on the remaining intervals.

In the following, I analyze the value of private information about the

head start. For this purpose, I compare the ex-ante (before the player with

'For a very interesting new approach to two-sided asymmetric information about abil-
ities in all-pay contests, see Pérez-Castrillo and Wettstein (2012).



the head start learns the size) equilibrium payoff to the ex-ante equilibrium
payoff if both players learn the size of the head start (public information)—
the difference is the ex-ante informational rent. Proposition 2 shows that
the informed player generates no ex-ante informational rent if her head dis-
tribution is strictly stochastically dominated a uniform distribution. If the
head start distribution is not weakly stochastically dominated by the same
uniform distribution, the informed player generates an informational rent.

Based on this result, I analyze which “types” benefit most from having
private information in the latter case. To do so, I derive the ez-interim
informational rent, i.e., the value of private information after the informed
player knows her type in Proposition 3. It turns out that a lower head
start leads to a weakly higher ex-interim informational rent. Intuitively, a
high probability of facing stronger types scares the uninformed player who
therefore abstrains from bidding with positive probability. Thus, the weaker
types of the informed player get a higher payoff than in the public information
case, since their probability to win with a bid of zero increases.

In contrast to the result for an uncertain head start, Proposition 4 shows
that for an uncertain valuation, the “stronger” player always gets an infor-
mational rent. Hence, the paper derives a qualitative difference in the in-
formation value of a technological advantage (lower marginal cost or higher
valuation) versus an incumbency advantage based on previous work or rep-
utation (higher head start). For different realizations of the head start, all
types of the stronger player value an increase in winning probability equally,
while the value of an increase in winning probability differs across types for
different valuations. This leads to a different equilibrium bidding behavior
of the weaker player which, in turn, yields a qualitatively different result for
the informational rents.

The informational rents quantify the gains of hiding or acquiring infor-
mation in the current setting with one-sided private information. Moreover,
in future work, the present game might be embedded as a subgame of a
two-sided information acquisition game. The closed-form solutions for the
informational rents are particularly useful for this approach, since they spec-
ify (continuation) payoffs for one subgame following an initial information

acquisition stage uniquely.



2 The Model

I consider a model with two risk-neutral players ¢« = 1,2 who have a common
valuation v for an object; v is henceforth normalized to 1. Player 1 enjoys
a head start which is a realization of a random variable © with a commonly
known, continuous cumulative distribution function (cdf) H. The cdf H is
strictly increasing on its support [#,6], where 0 < § < 1 and H(0) = 0.
Player 1 observes the realization, while player 2 only knows the distribution
H of the random variable ©, where H(0) = P(© < 6).

Both players simultaneously submit bids b; € R(jr and pay costs ¢(b;) = b;.
A mixed strategy of player 1 assigns a probability distribution over bids to
each possible draw from H. T denote a pure strategy of player 1 by b(0).
Given b (0), player 2 perceives player 1’s bid as a random variable b;(0). A
mixed strategy of player 2 is a probability distribution over bids.

The score realization of a player consists of the realization of the head
start (which is always zero for player 2) plus the realization of the bid. The
player with the higher score realization wins the object; ties are broken in
favor of player 1.2 Given the strategy of player 4, her score is a random
variable S; with a distribution which I denote by F;, where Fi(s) = P(S; < s).
Taking the strategy of the other player as given, I denote the expected payoff
of a bid by I1;(6,b,) and II5(by).

3 The Equilibrium

As a benchmark, I briefly review the two-player equilibrium in the absence of
uncertainty which is first established in Konrad (2002), Lemma 1. It contains

the equilibrium without a head start as a special case.

Lemma 1. Assume player 1 has a deterministic head start of 8 € [0,1).
In the unique Nash equilibrium distribution over scores, player 2 places an
atom of size 8 at O and player 1 places an atom of size 6 at 0. Both players
randomize uniformly with density 1 on (0,1]. The expected payoff of player
1 is 0; the expected payoff of player 2 is 0.

2The set of equilibria does not depend on the tie-breaking rule.
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In the following, I discuss how results differ if the size of the head start
is private information. To do so, I construct the generically unique Bayesian
Nash equilibrium scoring distributions F} and F5 of the game. Moreover, I
derive a corresponding bidding strategy for player 1; player 2 randomizes his

bid according to F5.

Proposition 1. There exists a Bayesian Nash equilibrium such that
Fi(s) = min{H(s), s} and Fy(s) = fol Lin()<pydy + 5 Lasedy. An equi-
librium strategy of player 1 is by(6) = max{H (0) — 0,0}.

If H(O) = 0 on a set of measure zero, the equilibrium cdf’s Fy and Fy are

unique.

Proof. The existence proof proceeds in two steps. I first show that b;(6)
induces the scoring distribution Fj. In a second step, I show that no player
wants to deviate from the derived strategy.

Step 1: Since H is continuous and strictly increasing on its support, it is also

invertible on its support. Thus, I obtain

Fi(s) = P(S<s5)=PO+b,(0)<s)=Pmax{H(0),0} <s)

= PH{O<s}N{O© <Hs)}) =PO <min{s, H *(s)})
H(s) if s < H (s
HH(s))=s ifs>H (s
= min{H(s),s}.

)
)

Step 2: (i) For any two scores s, s’ such that s > &, Fy(s) — Fy(s') < s — .
Hence,
I1;(6,b1) = Fo(0 + by) — by < F5(0) =11,(6,0),

i.e., it is a best response to bid zero for each type 6 of player 1.

Assume H(0) > 6 and ¢ € [, H(#)]. Then H(0') > H(#) > 0. As
H(0') > 0 for all &' € [0, H(0)], I obtain Fyr(H(8)) — F»(0) = H(0) — 0.
Hence, I1,(0, H() — 0) = 11,(0,0), i.e., it is a best response to bid H(#) —
it H(0) > 6.



(ii) By continuity of Fy, I obtain II(bs) = Fj(bg) — bo. Inserting Fi, I obtain
[I5(b2) = 0 whenever Fj(by) = by and Il5(by) < 0 otherwise. Thus, any bid
contained in the randomization of player 2 is a best response.

The uniqueness proof is relegated to the appendix. It relies on a sequence
of lemmas that are now commonplace in uniqueness proofs for static game

theory with a continuous state space.
O

Before I proceed with the intuition for Proposition 1, I state two corollar-
ies that are helpful in building this intuition. They refer to cases in which the
head start distribution and the uniform distribution on [0, 1] can be ranked

according to first-order stochastic dominance.

Corollary 1. Assume H(0) > 6 for all 8 € (0,1). The unique Bayesian
Nash equilibrium cdf’s are F;(s) = min{s, 1} fori=1,2.

Corollary 2. Assume H(0) < 6 for all 8 € (0,1). The unique Bayesian
Nash equilibrium cdf’s are Fy(s) = H(s) and Fy(s) =1 for all s > 0, i.e.,
both players always bid 0.

In Corollary 1, the head start distribution is stochastically dominated by
the uniform distribution, i.e., a high head start is relatively unlikely. In this
case, the equilibrium scoring distributions are identical to the case without a
head start (see Lemma 1 for § = 0). Intuitively, player 2 does not see player
1’s head start as a sufficient thread to change his strategy.

On the other hand, Corollary 2 considers cases in which high head start
values are very likely. For player 2, it is not even profitable to choose a
positive bid if every type of player 1 bids 0, since his expected disadvantage
through the head start is too high. Hence, he chooses the most cautious
strategy, i.e., a bid of zero. Player 1 also bids zero and wins the contest with
probability one.

The more general statement in Proposition 1 also includes cases in which

the head start distribution and the uniform distribution on [0, 1] cannot be
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Figure 1: The left panel shows an example of a head start distribution in the
solid line and the uniform distribution on [0, 1] in the dotted line. The right
panel shows the unique equilibrium scoring distributions F (lower solid line)
and Fy (upper solid line) for the head start distribution in the left panel.

ranked in terms of first-order stochastic dominance. For an illustration of
the equilibrium in such a case, see Figure 1.

The uninformed player randomizes on all intervals for which he makes
a positive profit if the informed player bids zero independently of her type.
On the remaining intervals, the uninformed player does not bid with positive
probability, because any bid would lead to an expected loss for all strategies
of the informed player.

Some remarks about the uniform distribution on [0, 1] are in order, since
it appears in the genericity condition for uniqueness in Proposition 1 and it
separates Corollary 1 from Corollary 2. In particular, the bidding behavior
of player 2 exhibits a bid bifurcation at H(0) = 0, i.e., a qualitative change
in behavior.® As an illustration, consider the family of distribution functions
H.(0) = (14 €)f. For any € < 0, player 2 bids zero with probability 1. For
any € > 0, however, player 2 randomizes his bid uniformly over the unit
interval. Therefore, the payoff of player 1 is not continuous in her head start
distribution.

If the head start distribution is the uniform distribution on [0, 1], the
equilibrium is no longer unique. For instance, in one equilibrium each type

of player 1 bids zero and player 2 randomizes uniformly on [0,1]. In a sec-

3For other results about bid bifurcation in all-pay auctions, see Noussair and Silver
(2006) and Parreiras and Rubinchik (2010).



ond equilibrium, each type of player 1 bids zero and player 2 bids zero with
probability 1. This multiplicity occurs because the equilibrium scoring dis-
tribution of player 1 does not contain positive bids. Otherwise, the second
equilibrium would be ruled out, because each type of player 1 would prefer to
lower her bid, since she would still win with probability one at a lower cost.
A similar intuition holds whenever H(0) = 6 on a set of positive measure.
In the next step, I compare the ex-ante difference in expected payoffs for
the equilibria I have obtained under private information to the benchmark
of public information. Throughout this analysis, I assume that under public
information both players observe the realization of player 1’s head start. 1
refer to the ex-ante difference in expected equilibrium payoffs as the ex-ante

informational rent.

Proposition 2. Player 1 generates a strictly positive ex-ante informational
rent if H(0) < 0 for some 0 € (0,1). However, if H() > 0 for all 0 €
(0,1), player 1 does not obtain an ex-ante informational rent. The ex-ante

informational rent of player 2 is always 0.

Thus, private information about the head start is not always beneficial.
This finding is in contrast to the existing literature on all-pay auctions with
incomplete information in which the stronger player always benefits from
having private information. I give a more detailed explanation for this new
feature after the analysis of the corresponding model with uncertainty about
one valuation.

In the last part of this section, I analyze the gain from having private
information ez-interim, i.e., after player 1 learns her type compared to the

public information case.

Proposition 3. Assume H(0) = 0 on a set of measure zero. Type 6 of

player 1 generates an ex-interim informational rent of ma@c{fo1 Limy)<pndy +
0
fo Ln>ydy — 6,0}

In the complete information case, player 2 randomizes uniformly on the
interval (0, 1), while for private information player 2 only randomizes uni-

formly on a subset of (6,1). Moreover, bidding 0 is optimal for each type
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of player 1 in both settings. Thus, the ex-interim informational rent equals
the size of all intervals in (6, 1) on which player 2 does not randomize under
private information. Hence, the ex-interim informational rent is weakly de-
creasing in the type of player 1 and nonnegative for each type. Intuitively,
the weaker types of player 1 benefit from the cautious bidding of player 2
which is induced by a high probability that player 1 has a relative high type.

Remark 1. Throughout this section, I have normalized the common valua-
tion v to 1 for notational convenience. If one inverts this normalization, the
benchmark for comparison is the uniform distribution on [0,v] with density
% instead of the uniform distribution on [0, 1] with density 1. This does not

change the results qualitatively.

4 Uncertainty About One Valuation

In this section, I contrast the main results of this paper with the correspond-
ing results for an all-pay auction in which player 1 has a higher valuation
than player 2.* More precisely, player 2 has a valuation of v,. The val-
uation of player 1 is the realization of a random variable V' with a com-
monly known, continuous distribution J which is strictly increasing on its
support [vg, 71]. As before, players compete in an all-pay auction with costs
c(b;) = b;.> No player has a head start. I denote a pure strategy of player 1
by by (v1) and the score it induces by by (V). I denote the scoring distributions
by G; : R% — [0,1] and associated density functions by g;.

For the benchmark case in which both players know the realization vy,
Hillman and Samet (1987) obtain the following result:

Lemma 2 (Hillman and Samet, 1987). In the unique Nash equilibrium,
Gi(s) = min{>, 1} and Ga(s) = min{* 2 + > 1}. Player 1 obtains a
profit of v1 — vy and player 2 obtains a profit of 0.

4See, e.g., Amann and Leininger (1996), Moldovanu and Sela (2001), and Kirkegaard
(2012) for results on two-sided incomplete information.

5To determine their best responses, players only care about the relationship between
valuation-cost ratio and winning probability. Hence, a higher valuation of a player is
strategically equivalent to a lower (marginal) cost.



In the following, I consider the private information case.b

Proposition 4. In any Bayesian Nash equilibrium, G1(s) = min{;>, 1} and
Ga(s) = min{l — [;* J_+(%)dy + 5 J_+(%)dy, 1}. The unique equilibrium
strategy of player 1 is by(v1) = veJ(v1). Player 1 obtains an ezx-ante infor-
mational rent and an ex-interim informational rent for each type vy < vy.

The informational rent of player 2 is zero.

Intuitively, player 2 uses a randomization which makes it optimal for each
type vy of player 1 to bid vy J(vy). Every type v; < v; makes a strictly higher
ex-interim profit than in the benchmark case of public information. Thus,
differing from the analysis for an uncertain head start, player 1 can always

use her private information to her advantage.

5 Discussion of the Main Results

The main results illustrate the structural differences between incomplete in-
formation about previous work effort which can be used for a new task or a
higher reputation (head start) and a better technology or higher motivation
to win (lower costs or higher valuation). For the latter case, the value of an
increase in winning probability differs for each type of the informed player.
In equilibrium, the uninformed player randomizes with a decreasing density
on a connected support. Thereby, he guarantees a unique bidding strategy
of his rival whose bids are increasing in her valuation. For an uncertain head
start, however, all types of the informed player value an increase in winning
probability equally. Thus, the uninformed player randomizes with the same
density whenever he chooses to randomize with positive density.

However, the uninformed player only randomizes on intervals for which he
makes a positive profit for a zero bid of the informed player, i.e., if H(6) > 6.
Hence, there is a qualitative change in the bidding behavior of the uninformed
player depending on whether the head start distribution lies (slightly) above
or (slightly) below the uniform, i.e., bid bifurcation occurs at the uniform

distribution.

In a recent contribution, Morath and Miinster (2013) prove a similar result for the
case in which H is continuously differentiable and strictly increasing on [0, 71].
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From an empirical point of view, an outside observer would not be able to
tell whether a player had a head start if the head start distribution is domi-
nated by the uniform distribution on [0, 1]. On the other hand, a non-zero bid
of both players entails that the head start distribution is not stochastically
dominated by the uniform distribution. Hence, observing the equilibrium
outcome allows an outside observer to (partially) learn about the informa-
tion structure.

For the case of one-sided asymmetric information, the informational rent
results directly answer question regarding the value of hiding or acquiring in-
formation. In a lobbying contest, for instance, an out-of-state company would
like to know how beneficial it is for her to learn her opponents advantage;
the home company would want to know how much hiding this information is
worth. In (public) procurement, firms are also eager to understand possible
benefits from learning or hiding the size of the advantage an incumbent has.

Moreover, the present game is a first step towards solving larger games
with an additional initial two-sided information acquisition or information
sharing decision. The closed-form solutions in this paper determine the pay-
offs in the subgame after a one-sided information acquisition or sharing de-

cision uniquely.”

6 A Potentially Negative Head Start

This section considers head start distributions whose support contains neg-
ative values. Intuitively, the player who possesses private information might
have an initial disadvantage. For instance, one might think of a procurement
contest in which an incumbent builds upon her innovation from a previous
contest. In this case, a new competitor knows the quality of the incumbent’s
innovation, but the incumbent is not perfectly informed how difficult it is for
the new competitor to replicate the innovation.

As before, let H denote the head start distribution. I assume that H is
strictly increasing on its support (6, 8), where § < 0. Moreover, the cdf H is

"For the case of uncertain valuations, Kovenock et al. (2010) and Morath and Miinster
(2013) model the value of information acquisition and information sharing more explicitly.
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differentiable with a density h for which h(6) = 1 on a set of measure zero.
This condition is similar, yet slightly stronger than the genericity condition
for the uniqueness part in Proposition 1. Moreover, I now impose it before
the main result, since both the existence and the uniqueness proof rely on
this condition.

If § < —1, there exists a unique equilibrium in which both players bid zero
for any type. Thus, I henceforth restrict attention to the more interesting
case 0 > —1.

Define 6* as the solution to —@ + fol 1no)+y<m@ndy = 1. I show in
the appendix that 6* is unique. The point 6* is crucial for the following

proposition:

Proposition 5. A Bayesian Nash equilibrium ezists. In any equilibrium,

H(s) if s < 6%,
Fi(s) = < H(6) if0* < s5<0,
min{H(0*) +s,H(s)} ifs>0.

and

0 if s <0,

FQ(S) =
—0" + [o Linr)ry<nmydy  if s > 0.

An equilibrium strateqy of player 1 is

max{H(0) — H(0*) — 0,0} if6 > ¢*
0 ifo < 6" .

51(9) =

The shape of the equilibrium distributions in Proposition 5 is similar to
those in Proposition 1. The additional constant H (6*) in the cdf F} illustrates
that the lowest types of player 1 might abstrain from bidding. The profit of
player 2 is now equal to the mass of types of player 1 who choose a negative
score realization. Since any bid of player 2 has to ensure the same payoff as
bidding zero, he only randomizes with positive probability if H(60*)+60 < H(0)

12



instead of # < H(6) which ensures a payoff of zero in Proposition 1.

In equilibrium, the types 6 € (6*,0) of player 1 make strictly positive ex-
pected profits, while they would make zero profits under public information.
Similarly, any type 6 € [0,1] could ensure the public information payoff ¢
with a bid 1 — 6, since I1;(6,1 —0) = F5(1) — (1 —6) =1— (1 —6) = 0.
Hence, player 1 still generates an ex-ante informational rent from her pri-
vate information and no type of player 1 is worse off by possessing private

information.

7 Appendix

In order to prove uniqueness Proposition 1, I derive a sequence of auxiliary
results that have to hold in any (Bayesian Nash) equilibrium. The proof of

the next lemma is standard in this literature and thus omitted.®

Lemma 3. In any equilibrium, Fy is continuous on Ry, i.e., player 2 does

not place an atom at any s > 0.

Lemma 4. If player 2 randomizes with a positive density fo over an interval

I =a,b], then fs(s) <1 almost everywhere on I.

Proof. Assume player 2 randomizes with positive density on I. By optimality
for player 2, every bid by € I leads to the same payoff which implies f;(s) =1
almost everywhere on I. Hence, fa(s) < 1 almost everywhere on I, since
player 1 would strictly prefer to increase his score realization on an interval
(e,d) C Iif fo(s) > 1 for all s € (¢, d); this contradicts optimality of player

1’s randomization almost everywhere on I. O]
Lemma 5. Player 2 obtains a payoff of zero.

Proof. As any bid above 1 leads to a negative payoff for player 2, Fy(1) =1
in any equilibrium. Moreover, player 2 places no mass points above 0 by
Lemma 3 and f5(s) < 1 almost everywhere by Lemma 4. As F5(1) = F5(0)+

fol fa(y)dy = 1, player 2 either places a mass point at zero or he randomizes

8 All omitted proofs and steps are available from the author upon request.
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uniformly with f5(s) = 1 almost everywhere on the interval [0, 1]. Since all
equilibrium bids yield the same payoff for player 2, he makes a payoff of
[1,(0) = 0. O

Proof of Proposition 1. The existence part has already been shown in the
main text. In the following, I prove the uniqueness part:

Case 1: Assume H(#) < 6. Then, by continuity of H, there exists an
e > 0 such that player 2 does not bid by € [0, 6 + €], because

I1,(0) < Fy(0) — 0 < H(0) —0 < 0.

Since fa(s) < 1 for almost all s > 0 by Lemma 4 and f5(s) = 0 for s € [0, 0+¢€],
I obtain
Hl(H,O) = FQ(@) > FQ(bl + 9) — b1 = Hl(bl + ‘9)

for all b; > 0. Hence, player 1 bids 0 if H(6) < .

Case 2: Assume H(0) > 6. By the zero-profit condition for player 2
(Lemma 5), Fi(s) < s for all s > 0. By contradiction, assume there exists
an € > 0 such that Fi(s) < s for all s € [0,0 + €). Then Fy(s) is constant
for s € [0,0 4 €). Recall that fo(s) < 1 for almost all s > 0 by Lemma 4.
Hence, if player 1 has a head start §' < 0, she does not choose a score above

0, because
0,(6,0 —0") = F5(0) — (0 —0') > Fo(0+¢) — (0+ec—0) =T11,(6',0 — 0" +¢) .

for all € > 0. Hence, F1(0) = H(f) > 6 which contradicts Fi(s) < s for all
s€0,0+e).

Since H(6) = 0 on a set of measure zero, the bidding strategy in this case
has no impact on the scoring distribution. Hence, the scoring distribution of
player 1 is unique.

Whenever the score of player 1 for some type ¢ < 6” is above 6”, then
fa(s) = 1 for almost all s € (”,60'+b;) to ensure optimality for player 1. This
condition is satisfied whenever H(0) > 6 = F;(0). Together with f>(f) =0
whenever H () < 0, this uniquely determines the distribution of player 2. [
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Proof of Proposition 2. If H(0) > 6 for all § € (0,1), player 2 randomizes
uniformly on (0,1) by Corollary 1. Thus, the expected payoff for player 1
is equal to the size of her head start 6 for all 8, which equals the payoff in
Lemma 1.

Note that I can use the results of Lemmas 3-5 and Case 1 in the uniqueness
proof of Proposition 1 for this proof, since the proofs do not use the condition
H(0) = 6 on a set of measure zero. Player 2 places no atom at 1 by Lemma 3
and never bids above 1, since this would lead to a negative payoff. Hence, for
all 6, player 1 can ensure her public information payoff of 6 by bidding 1 — 6.
If H(#) < 0 on some interval (a,b), player 2 does not bid on the interval
(a,b). In combination with Lemma 4 and F»(1) = 1, I obtain Fy(s) > s for
all s € (a,b). Hence, for any 6 € (a,b), a bid of 0 yields player 1 a payoff
which is strictly higher than her payoff under public information. Hence,
player 1 obtains an ex-ante informational rent.

The result for player 2 follows immediately from Lemma 1 and Lemma 5.
O

Proof of Proposition 3: Since Fj is continuous and fo(s) < 1 for almost all
s, a bid of zero is optimal for any type 6 of player 1. Hence, it suffices to
compare the payoff of type 6 from bidding 0 to the payoff of type # under

complete information (see Lemma 1). For any type 6 € (0,1), I obtain
1 0

I1,(0,0) — 0 = F5(0) — 0 = / Liry)<pndy —l—/ Ligy>pdy — 0.

0 0

The formula in Proposition 3 follows, since the payoff of types # > 11is 1 in

any equilibrium. O

Proof of Proposition 4. Since J is invertible on its support, for all s € (0, vs),

the bidding strategy by (vy) = voJ(v;) leads to the score distribution

Gi(s) = P(by(V) < 5) = P(V < by (s)) = J(b7 (s) = J(J (=) = =

V2 V2

The next step establishes uniqueness of player 1’s optimal bidding strat-

egy. Player 2 never bids above vy in equilibrium, since this would entail a
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negative payoff. Thus, player 1 can guarantee herself a payoff of vy — vy
by bidding vs. A similar argument to that in the proof of Lemma 3 shows
that G and G5 are continuous with G1(0) = 0. A similar argument to that
in the proof Lemma 4 with reversed player roles entails g;(s) < % almost
everywhere. As player 1 places no mass point and G1(ve) = 1, this implies
Gi(v2) = [, g1(s)ds = 1. Thus, Gy(s) = min{;>, 1}. To obtain uniqueness
of the strategy of player 1, it remains to show that her bid is increasing in
her valuation in any equilibrium. This, however, is straightforward, since a
higher bid entails the same additional cost for each type, but increases the
winning probability and thereby the gain of a type with a higher valuation.

The next step establishes uniqueness of player 2’s equilibrium distribu-

tion. The optimization problem of player 1 entails

A~

UlGQ(bl(Ul)) — bl(’Ul) Z UlGQ(Bl) — b1 (].)

for all vy, b,. For the rest of the proof, I denote by = by(vy). From Eq. (1), 1

obtain two conditions:

b)) — Ga(b 1.
Galb) = Galb) S 1, (2)
bl — b1 01
and R
Ga(by) — Go(b 1 -
2( 1) ~ 2< 1) < — Vbl > bl . (3)
bl — b1 0
At the same time,
@1G2(61) — by > 01Go(br) — b1, (4)

where by = by(9;). Thus, Eq. (4) implies

Ai Z G2(b1) _ g2(b1) Vbl > 61 (5)
U1 bl - bl

and .
Ai < Gz(bl) — QQ(bl) Vb < 81. (6)
U1 b1 — b1
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By continuity of G, I obtain

G0 =Gall) _ 1 _ Gl =Gt
b1 by by — by U1 b1db by — by

(7)

The first equation signs follows from (2) and (5), while the second one follows
from (3) and (6). Hence, G, is differentiable on (0, v,) with the derivative
g2(b1(v1)) = % Thus, on (0,vs), I obtain gs(s) = b;ll(s) = J,ll(%). Imposing
the boundary condition Go(vy) = 1, the differential equation yields

G2($):1_/002J_+<y_)dy+/osj—+(i>dy

v2 v2

as the unique solution. The second-order condition shows that the bid
bi(v1) = vaJ(v1) is indeed the maximizer for all v; € [vy, T1].

Player 1 obtains an informational rent in equilibrium, since bidding
b1(v1) = ve would yield him the public information payoff v; — vy, but any
equilibrium bid yields a strictly higher payoff for all types vy € [vq, 71). Player
2 obtains a payoff of 0 under both informational assumptions.

[

Lemma 6. There exists a unique point 0* such that

1
—0+ / Lim@o)+y<H(yydy = 1.
0

Proof. For 0 = —1,

1

1
-0+ / Ym@)+y<nydy =1+ / Lim(—1)+y<m@ydy = 1.
0 0

On the other hand, for 6 = 0,

1 1
—0+ / L) +y<nw)dy = / Ln©+y<mydy < 1.
0 0

Moreover, —@ is continuous and strictly monotone decreasing and

fol 1im(6)+y<H(y)dy is weakly monotone decreasing in 6. The assumption
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h(y) = 1 on a set of measure zero implies H(y) —y = H(#) on a set of
measure zero for all §. Hence, fol 1{H(0)+y<H(y)ydYy is also continuous. Thus,
—0+ fol 1H(6)+y<H(y)dy is continuous and strictly monotone decreasing. By

the Intermediate Value Theorem, there exists a unique point #* for which
1
=0+ Jo Lnwyry<nepdy = 1. O

Proof of Proposition 5. The existence proof proceeds in three steps. Steps 1
and 2 are almost identical to Steps 1 and 2 of Proposition 1 with H(0)— H (6*)
instead of H(#) and thus omitted.
Step 3: The function F, has to be a cdf. Since player 2 never bids above one
in equilibrium, I obtain Fy(1) = 6* + fol 1¢m0%)4+y<H(yydy = 1. Thus, for 6*
as defined in the main text, the function F5 is a cdf.

The uniqueness proof is similar to the uniqueness proof of Proposition 1
and thus omitted. O
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