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1 Introduction

In many contests, one competitor has an initial advantage over her rivals.

For instance, an incumbent firm possesses more knowledge about a new task

when it is related to their previous work. In a contest for job promotion or

an employee of the month award, a worker with a good reputation has an

advantage over her competitors. Most representatives favor companies from

their own district in public procurement.

In recent literature, these initial advantages are often modeled as deter-

ministic head starts in all-pay contests (see, e.g., Konrad, 2002, 2004, Kaplan

et al., 2003, Kirkegaard, 2012, and Siegel, 2013). In the above mentioned ap-

plications, however, a contestant is typically not perfectly informed about the

size of the head start of a rival. For instance, a lobbyist might know that the

politician who he tries to influence comes from the same district as another

lobbyist. Yet, he can only guess by how much this lowers his prospects in

the contest.

This paper provides a two-player contest model which captures asym-

metric information about a head start. More precisely, the size of the head

start is drawn from a commonly known probability distribution, but only

the player with the head start knows the realization.1 Each player submits a

non-negative bid and pays costs equal to her bid. The player with the higher

score realization, i.e., sum of the bid and the head start, receives a prize.

I fully characterize the unique Bayesian Nash equilibrium distributions

over scores for generic strictly increasing and continuous distributions of the

head start in Proposition 1. In general, the support of the scoring distribution

of the uninformed player is a union of disjoint intervals. The “gaps” in her

support are intervals on which a bid results in a negative expected profit for

all bidding strategies of the informed player. Both players randomize their

scores uniformly on the remaining intervals.

In the following, I analyze the value of private information about the

head start. For this purpose, I compare the ex-ante (before the player with

1For a very interesting new approach to two-sided asymmetric information about abil-
ities in all-pay contests, see Pérez-Castrillo and Wettstein (2012).
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the head start learns the size) equilibrium payoff to the ex-ante equilibrium

payoff if both players learn the size of the head start (public information)—

the difference is the ex-ante informational rent. Proposition 2 shows that

the informed player generates no ex-ante informational rent if her head dis-

tribution is strictly stochastically dominated a uniform distribution. If the

head start distribution is not weakly stochastically dominated by the same

uniform distribution, the informed player generates an informational rent.

Based on this result, I analyze which “types” benefit most from having

private information in the latter case. To do so, I derive the ex-interim

informational rent, i.e., the value of private information after the informed

player knows her type in Proposition 3. It turns out that a lower head

start leads to a weakly higher ex-interim informational rent. Intuitively, a

high probability of facing stronger types scares the uninformed player who

therefore abstrains from bidding with positive probability. Thus, the weaker

types of the informed player get a higher payoff than in the public information

case, since their probability to win with a bid of zero increases.

In contrast to the result for an uncertain head start, Proposition 4 shows

that for an uncertain valuation, the “stronger” player always gets an infor-

mational rent. Hence, the paper derives a qualitative difference in the in-

formation value of a technological advantage (lower marginal cost or higher

valuation) versus an incumbency advantage based on previous work or rep-

utation (higher head start). For different realizations of the head start, all

types of the stronger player value an increase in winning probability equally,

while the value of an increase in winning probability differs across types for

different valuations. This leads to a different equilibrium bidding behavior

of the weaker player which, in turn, yields a qualitatively different result for

the informational rents.

The informational rents quantify the gains of hiding or acquiring infor-

mation in the current setting with one-sided private information. Moreover,

in future work, the present game might be embedded as a subgame of a

two-sided information acquisition game. The closed-form solutions for the

informational rents are particularly useful for this approach, since they spec-

ify (continuation) payoffs for one subgame following an initial information

acquisition stage uniquely.
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2 The Model

I consider a model with two risk-neutral players i = 1, 2 who have a common

valuation v for an object; v is henceforth normalized to 1. Player 1 enjoys

a head start which is a realization of a random variable Θ with a commonly

known, continuous cumulative distribution function (cdf) H. The cdf H is

strictly increasing on its support [θ, θ̄], where 0 ≤ θ < 1 and H(0) = 0.

Player 1 observes the realization, while player 2 only knows the distribution

H of the random variable Θ, where H(θ) = P(Θ ≤ θ).

Both players simultaneously submit bids bi ∈ R0
+ and pay costs c(bi) = bi.

A mixed strategy of player 1 assigns a probability distribution over bids to

each possible draw from H. I denote a pure strategy of player 1 by b1(θ).

Given b1(θ), player 2 perceives player 1’s bid as a random variable b1(Θ). A

mixed strategy of player 2 is a probability distribution over bids.

The score realization of a player consists of the realization of the head

start (which is always zero for player 2) plus the realization of the bid. The

player with the higher score realization wins the object; ties are broken in

favor of player 1.2 Given the strategy of player i, her score is a random

variable Si with a distribution which I denote by Fi, where Fi(s) = P(Si ≤ s).

Taking the strategy of the other player as given, I denote the expected payoff

of a bid by Π1(θ, b1) and Π2(b2).

3 The Equilibrium

As a benchmark, I briefly review the two-player equilibrium in the absence of

uncertainty which is first established in Konrad (2002), Lemma 1. It contains

the equilibrium without a head start as a special case.

Lemma 1. Assume player 1 has a deterministic head start of θ ∈ [0, 1).

In the unique Nash equilibrium distribution over scores, player 2 places an

atom of size θ at 0 and player 1 places an atom of size θ at θ. Both players

randomize uniformly with density 1 on (θ, 1]. The expected payoff of player

1 is θ; the expected payoff of player 2 is 0.

2The set of equilibria does not depend on the tie-breaking rule.
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In the following, I discuss how results differ if the size of the head start

is private information. To do so, I construct the generically unique Bayesian

Nash equilibrium scoring distributions F1 and F2 of the game. Moreover, I

derive a corresponding bidding strategy for player 1; player 2 randomizes his

bid according to F2.

Proposition 1. There exists a Bayesian Nash equilibrium such that

F1(s) = min{H(s), s} and F2(s) =
∫ 1

0
1{H(y)<y}dy+

∫ s
0
1{H(y)≥y}dy. An equi-

librium strategy of player 1 is b1(θ) = max{H(θ)− θ, 0}.
If H(θ) = θ on a set of measure zero, the equilibrium cdf’s F1 and F2 are

unique.

Proof. The existence proof proceeds in two steps. I first show that b1(θ)

induces the scoring distribution F1. In a second step, I show that no player

wants to deviate from the derived strategy.

Step 1: Since H is continuous and strictly increasing on its support, it is also

invertible on its support. Thus, I obtain

F1(s) = P(S1 ≤ s) = P(Θ + b1(Θ) ≤ s) = P(max{H(Θ),Θ} ≤ s)

= P({Θ ≤ s} ∩ {Θ ≤ H−1(s)}) = P(Θ ≤ min{s,H−1(s)})

=

H(s) if s ≤ H−1(s)

H(H−1(s)) = s if s > H−1(s)

= min{H(s), s} .

Step 2: (i) For any two scores s, s′ such that s > s′, F2(s)− F2(s
′) ≤ s− s′.

Hence,

Π1(θ, b1) = F2(θ + b1)− b1 ≤ F2(θ) = Π1(θ, 0),

i.e., it is a best response to bid zero for each type θ of player 1.

Assume H(θ) > θ and θ′ ∈ [θ,H(θ)]. Then H(θ′) ≥ H(θ) ≥ θ′. As

H(θ′) ≥ θ′ for all θ′ ∈ [θ,H(θ)], I obtain F2(H(θ)) − F2(θ) = H(θ) − θ.

Hence, Π1(θ,H(θ)− θ) = Π1(θ, 0), i.e., it is a best response to bid H(θ)− θ
if H(θ) > θ.
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(ii) By continuity of F1, I obtain Π2(b2) = F1(b2)− b2. Inserting F1, I obtain

Π2(b2) = 0 whenever F1(b2) = b2 and Π2(b2) < 0 otherwise. Thus, any bid

contained in the randomization of player 2 is a best response.

The uniqueness proof is relegated to the appendix. It relies on a sequence

of lemmas that are now commonplace in uniqueness proofs for static game

theory with a continuous state space.

Before I proceed with the intuition for Proposition 1, I state two corollar-

ies that are helpful in building this intuition. They refer to cases in which the

head start distribution and the uniform distribution on [0, 1] can be ranked

according to first-order stochastic dominance.

Corollary 1. Assume H(θ) > θ for all θ ∈ (0, 1). The unique Bayesian

Nash equilibrium cdf’s are Fi(s) = min{s, 1} for i = 1, 2.

Corollary 2. Assume H(θ) < θ for all θ ∈ (0, 1). The unique Bayesian

Nash equilibrium cdf’s are F1(s) = H(s) and F2(s) = 1 for all s ≥ 0, i.e.,

both players always bid 0.

In Corollary 1, the head start distribution is stochastically dominated by

the uniform distribution, i.e., a high head start is relatively unlikely. In this

case, the equilibrium scoring distributions are identical to the case without a

head start (see Lemma 1 for θ = 0). Intuitively, player 2 does not see player

1’s head start as a sufficient thread to change his strategy.

On the other hand, Corollary 2 considers cases in which high head start

values are very likely. For player 2, it is not even profitable to choose a

positive bid if every type of player 1 bids 0, since his expected disadvantage

through the head start is too high. Hence, he chooses the most cautious

strategy, i.e., a bid of zero. Player 1 also bids zero and wins the contest with

probability one.

The more general statement in Proposition 1 also includes cases in which

the head start distribution and the uniform distribution on [0, 1] cannot be
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Figure 1: The left panel shows an example of a head start distribution in the
solid line and the uniform distribution on [0, 1] in the dotted line. The right
panel shows the unique equilibrium scoring distributions F1 (lower solid line)
and F2 (upper solid line) for the head start distribution in the left panel.

ranked in terms of first-order stochastic dominance. For an illustration of

the equilibrium in such a case, see Figure 1.

The uninformed player randomizes on all intervals for which he makes

a positive profit if the informed player bids zero independently of her type.

On the remaining intervals, the uninformed player does not bid with positive

probability, because any bid would lead to an expected loss for all strategies

of the informed player.

Some remarks about the uniform distribution on [0, 1] are in order, since

it appears in the genericity condition for uniqueness in Proposition 1 and it

separates Corollary 1 from Corollary 2. In particular, the bidding behavior

of player 2 exhibits a bid bifurcation at H(θ) = θ, i.e., a qualitative change

in behavior.3 As an illustration, consider the family of distribution functions

Hε(θ) = (1 + ε)θ. For any ε < 0, player 2 bids zero with probability 1. For

any ε > 0, however, player 2 randomizes his bid uniformly over the unit

interval. Therefore, the payoff of player 1 is not continuous in her head start

distribution.

If the head start distribution is the uniform distribution on [0, 1], the

equilibrium is no longer unique. For instance, in one equilibrium each type

of player 1 bids zero and player 2 randomizes uniformly on [0, 1]. In a sec-

3For other results about bid bifurcation in all-pay auctions, see Noussair and Silver
(2006) and Parreiras and Rubinchik (2010).
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ond equilibrium, each type of player 1 bids zero and player 2 bids zero with

probability 1. This multiplicity occurs because the equilibrium scoring dis-

tribution of player 1 does not contain positive bids. Otherwise, the second

equilibrium would be ruled out, because each type of player 1 would prefer to

lower her bid, since she would still win with probability one at a lower cost.

A similar intuition holds whenever H(θ) = θ on a set of positive measure.

In the next step, I compare the ex-ante difference in expected payoffs for

the equilibria I have obtained under private information to the benchmark

of public information. Throughout this analysis, I assume that under public

information both players observe the realization of player 1’s head start. I

refer to the ex-ante difference in expected equilibrium payoffs as the ex-ante

informational rent.

Proposition 2. Player 1 generates a strictly positive ex-ante informational

rent if H(θ) < θ for some θ ∈ (0, 1). However, if H(θ) > θ for all θ ∈
(0, 1), player 1 does not obtain an ex-ante informational rent. The ex-ante

informational rent of player 2 is always 0.

Thus, private information about the head start is not always beneficial.

This finding is in contrast to the existing literature on all-pay auctions with

incomplete information in which the stronger player always benefits from

having private information. I give a more detailed explanation for this new

feature after the analysis of the corresponding model with uncertainty about

one valuation.

In the last part of this section, I analyze the gain from having private

information ex-interim, i.e., after player 1 learns her type compared to the

public information case.

Proposition 3. Assume H(θ) = θ on a set of measure zero. Type θ of

player 1 generates an ex-interim informational rent of max{
∫ 1

0
1{H(y)<y}dy+∫ θ

0
1{H(y)≥y}dy − θ, 0}.

In the complete information case, player 2 randomizes uniformly on the

interval (θ, 1), while for private information player 2 only randomizes uni-

formly on a subset of (θ, 1). Moreover, bidding 0 is optimal for each type
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of player 1 in both settings. Thus, the ex-interim informational rent equals

the size of all intervals in (θ, 1) on which player 2 does not randomize under

private information. Hence, the ex-interim informational rent is weakly de-

creasing in the type of player 1 and nonnegative for each type. Intuitively,

the weaker types of player 1 benefit from the cautious bidding of player 2

which is induced by a high probability that player 1 has a relative high type.

Remark 1. Throughout this section, I have normalized the common valua-

tion v to 1 for notational convenience. If one inverts this normalization, the

benchmark for comparison is the uniform distribution on [0, v] with density
1
v

instead of the uniform distribution on [0, 1] with density 1. This does not

change the results qualitatively.

4 Uncertainty About One Valuation

In this section, I contrast the main results of this paper with the correspond-

ing results for an all-pay auction in which player 1 has a higher valuation

than player 2.4 More precisely, player 2 has a valuation of v2. The val-

uation of player 1 is the realization of a random variable V with a com-

monly known, continuous distribution J which is strictly increasing on its

support [v2, v̄1]. As before, players compete in an all-pay auction with costs

c(bi) = bi.
5 No player has a head start. I denote a pure strategy of player 1

by b1(v1) and the score it induces by b1(V ). I denote the scoring distributions

by Gi : R0
+ → [0, 1] and associated density functions by gi.

For the benchmark case in which both players know the realization v1,

Hillman and Samet (1987) obtain the following result:

Lemma 2 (Hillman and Samet, 1987). In the unique Nash equilibrium,

G1(s) = min{ s
v2
, 1} and G2(s) = min{v1−v2

v1
+ s

v1
, 1}. Player 1 obtains a

profit of v1 − v2 and player 2 obtains a profit of 0.

4See, e.g., Amann and Leininger (1996), Moldovanu and Sela (2001), and Kirkegaard
(2012) for results on two-sided incomplete information.

5To determine their best responses, players only care about the relationship between
valuation-cost ratio and winning probability. Hence, a higher valuation of a player is
strategically equivalent to a lower (marginal) cost.
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In the following, I consider the private information case.6

Proposition 4. In any Bayesian Nash equilibrium, G1(s) = min{ s
v2
, 1} and

G2(s) = min{1 −
∫ v2
0

1
J−1( y

v2
)
dy +

∫ s
0

1
J−1( y

v2
)
dy, 1}. The unique equilibrium

strategy of player 1 is b1(v1) = v2J(v1). Player 1 obtains an ex-ante infor-

mational rent and an ex-interim informational rent for each type v1 < v̄1.

The informational rent of player 2 is zero.

Intuitively, player 2 uses a randomization which makes it optimal for each

type v1 of player 1 to bid v2J(v1). Every type v1 < v̄1 makes a strictly higher

ex-interim profit than in the benchmark case of public information. Thus,

differing from the analysis for an uncertain head start, player 1 can always

use her private information to her advantage.

5 Discussion of the Main Results

The main results illustrate the structural differences between incomplete in-

formation about previous work effort which can be used for a new task or a

higher reputation (head start) and a better technology or higher motivation

to win (lower costs or higher valuation). For the latter case, the value of an

increase in winning probability differs for each type of the informed player.

In equilibrium, the uninformed player randomizes with a decreasing density

on a connected support. Thereby, he guarantees a unique bidding strategy

of his rival whose bids are increasing in her valuation. For an uncertain head

start, however, all types of the informed player value an increase in winning

probability equally. Thus, the uninformed player randomizes with the same

density whenever he chooses to randomize with positive density.

However, the uninformed player only randomizes on intervals for which he

makes a positive profit for a zero bid of the informed player, i.e., if H(θ) > θ.

Hence, there is a qualitative change in the bidding behavior of the uninformed

player depending on whether the head start distribution lies (slightly) above

or (slightly) below the uniform, i.e., bid bifurcation occurs at the uniform

distribution.

6In a recent contribution, Morath and Münster (2013) prove a similar result for the
case in which H is continuously differentiable and strictly increasing on [0, v̄1].

10



From an empirical point of view, an outside observer would not be able to

tell whether a player had a head start if the head start distribution is domi-

nated by the uniform distribution on [0, 1]. On the other hand, a non-zero bid

of both players entails that the head start distribution is not stochastically

dominated by the uniform distribution. Hence, observing the equilibrium

outcome allows an outside observer to (partially) learn about the informa-

tion structure.

For the case of one-sided asymmetric information, the informational rent

results directly answer question regarding the value of hiding or acquiring in-

formation. In a lobbying contest, for instance, an out-of-state company would

like to know how beneficial it is for her to learn her opponents advantage;

the home company would want to know how much hiding this information is

worth. In (public) procurement, firms are also eager to understand possible

benefits from learning or hiding the size of the advantage an incumbent has.

Moreover, the present game is a first step towards solving larger games

with an additional initial two-sided information acquisition or information

sharing decision. The closed-form solutions in this paper determine the pay-

offs in the subgame after a one-sided information acquisition or sharing de-

cision uniquely.7

6 A Potentially Negative Head Start

This section considers head start distributions whose support contains neg-

ative values. Intuitively, the player who possesses private information might

have an initial disadvantage. For instance, one might think of a procurement

contest in which an incumbent builds upon her innovation from a previous

contest. In this case, a new competitor knows the quality of the incumbent’s

innovation, but the incumbent is not perfectly informed how difficult it is for

the new competitor to replicate the innovation.

As before, let H denote the head start distribution. I assume that H is

strictly increasing on its support (θ, θ̄), where θ < 0. Moreover, the cdf H is

7For the case of uncertain valuations, Kovenock et al. (2010) and Morath and Münster
(2013) model the value of information acquisition and information sharing more explicitly.
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differentiable with a density h for which h(θ) = 1 on a set of measure zero.

This condition is similar, yet slightly stronger than the genericity condition

for the uniqueness part in Proposition 1. Moreover, I now impose it before

the main result, since both the existence and the uniqueness proof rely on

this condition.

If θ̄ ≤ −1, there exists a unique equilibrium in which both players bid zero

for any type. Thus, I henceforth restrict attention to the more interesting

case θ̄ > −1.

Define θ∗ as the solution to −θ +
∫ 1

0
1{H(θ)+y<H(y)}dy = 1. I show in

the appendix that θ∗ is unique. The point θ∗ is crucial for the following

proposition:

Proposition 5. A Bayesian Nash equilibrium exists. In any equilibrium,

F1(s) =


H(s) if s ≤ θ∗ ,

H(θ∗) if θ∗ < s ≤ 0 ,

min{H(θ∗) + s,H(s)} if s > 0 .

and

F2(s) =

0 if s < 0 ,

−θ∗ +
∫ s
0
1{H(θ∗)+y<H(y)}dy if s ≥ 0 .

An equilibrium strategy of player 1 is

b1(θ) =

max{H(θ)−H(θ∗)− θ, 0} if θ > θ∗

0 if θ ≤ θ∗ .

The shape of the equilibrium distributions in Proposition 5 is similar to

those in Proposition 1. The additional constant H(θ∗) in the cdf F1 illustrates

that the lowest types of player 1 might abstrain from bidding. The profit of

player 2 is now equal to the mass of types of player 1 who choose a negative

score realization. Since any bid of player 2 has to ensure the same payoff as

bidding zero, he only randomizes with positive probability ifH(θ∗)+θ < H(θ)
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instead of θ < H(θ) which ensures a payoff of zero in Proposition 1.

In equilibrium, the types θ ∈ (θ∗, 0) of player 1 make strictly positive ex-

pected profits, while they would make zero profits under public information.

Similarly, any type θ ∈ [0, 1] could ensure the public information payoff θ

with a bid 1 − θ, since Π1(θ, 1 − θ) = F2(1) − (1 − θ) = 1 − (1 − θ) = θ.

Hence, player 1 still generates an ex-ante informational rent from her pri-

vate information and no type of player 1 is worse off by possessing private

information.

7 Appendix

In order to prove uniqueness Proposition 1, I derive a sequence of auxiliary

results that have to hold in any (Bayesian Nash) equilibrium. The proof of

the next lemma is standard in this literature and thus omitted.8

Lemma 3. In any equilibrium, F2 is continuous on R+, i.e., player 2 does

not place an atom at any s > 0.

Lemma 4. If player 2 randomizes with a positive density f2 over an interval

I = [a, b], then f2(s) ≤ 1 almost everywhere on I.

Proof. Assume player 2 randomizes with positive density on I. By optimality

for player 2, every bid b2 ∈ I leads to the same payoff which implies f1(s) = 1

almost everywhere on I. Hence, f2(s) ≤ 1 almost everywhere on I, since

player 1 would strictly prefer to increase his score realization on an interval

(c, d) ⊂ I if f2(s) > 1 for all s ∈ (c, d); this contradicts optimality of player

1’s randomization almost everywhere on I.

Lemma 5. Player 2 obtains a payoff of zero.

Proof. As any bid above 1 leads to a negative payoff for player 2, F2(1) = 1

in any equilibrium. Moreover, player 2 places no mass points above 0 by

Lemma 3 and f2(s) ≤ 1 almost everywhere by Lemma 4. As F2(1) = F2(0)+∫ 1

0
f2(y)dy = 1, player 2 either places a mass point at zero or he randomizes

8All omitted proofs and steps are available from the author upon request.
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uniformly with f2(s) = 1 almost everywhere on the interval [0, 1]. Since all

equilibrium bids yield the same payoff for player 2, he makes a payoff of

Π2(0) = 0.

Proof of Proposition 1. The existence part has already been shown in the

main text. In the following, I prove the uniqueness part:

Case 1: Assume H(θ) < θ. Then, by continuity of H, there exists an

ε > 0 such that player 2 does not bid b2 ∈ [θ, θ + ε], because

Π2(θ) ≤ F1(θ)− θ ≤ H(θ)− θ < 0 .

Since f2(s) ≤ 1 for almost all s ≥ 0 by Lemma 4 and f2(s) = 0 for s ∈ [θ, θ+ε],

I obtain

Π1(θ, 0) = F2(θ) > F2(b1 + θ)− b1 = Π1(b1 + θ)

for all b1 > 0. Hence, player 1 bids 0 if H(θ) < θ.

Case 2: Assume H(θ) > θ. By the zero-profit condition for player 2

(Lemma 5), F1(s) ≤ s for all s ≥ 0. By contradiction, assume there exists

an ε > 0 such that F1(s) < s for all s ∈ [θ, θ + ε). Then F2(s) is constant

for s ∈ [θ, θ + ε). Recall that f2(s) ≤ 1 for almost all s > 0 by Lemma 4.

Hence, if player 1 has a head start θ′ ≤ θ, she does not choose a score above

θ, because

Π1(θ
′, θ− θ′) = F2(θ)− (θ− θ′) > F2(θ+ ε)− (θ+ ε− θ′) = Π1(θ

′, θ− θ′+ ε) .

for all ε > 0. Hence, F1(θ) = H(θ) > θ which contradicts F1(s) < s for all

s ∈ [θ, θ + ε).

Since H(θ) = θ on a set of measure zero, the bidding strategy in this case

has no impact on the scoring distribution. Hence, the scoring distribution of

player 1 is unique.

Whenever the score of player 1 for some type θ′ ≤ θ′′ is above θ′′, then

f2(s) = 1 for almost all s ∈ (θ′′, θ′+b1) to ensure optimality for player 1. This

condition is satisfied whenever H(θ) > θ = F1(θ). Together with f2(θ) = 0

whenever H(θ) < θ, this uniquely determines the distribution of player 2.
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Proof of Proposition 2. If H(θ) > θ for all θ ∈ (0, 1), player 2 randomizes

uniformly on (0, 1) by Corollary 1. Thus, the expected payoff for player 1

is equal to the size of her head start θ for all θ, which equals the payoff in

Lemma 1.

Note that I can use the results of Lemmas 3-5 and Case 1 in the uniqueness

proof of Proposition 1 for this proof, since the proofs do not use the condition

H(θ) = θ on a set of measure zero. Player 2 places no atom at 1 by Lemma 3

and never bids above 1, since this would lead to a negative payoff. Hence, for

all θ, player 1 can ensure her public information payoff of θ by bidding 1− θ.
If H(θ) < θ on some interval (a, b), player 2 does not bid on the interval

(a, b). In combination with Lemma 4 and F2(1) = 1, I obtain F2(s) > s for

all s ∈ (a, b). Hence, for any θ ∈ (a, b), a bid of 0 yields player 1 a payoff

which is strictly higher than her payoff under public information. Hence,

player 1 obtains an ex-ante informational rent.

The result for player 2 follows immediately from Lemma 1 and Lemma 5.

Proof of Proposition 3: Since F2 is continuous and f2(s) ≤ 1 for almost all

s, a bid of zero is optimal for any type θ of player 1. Hence, it suffices to

compare the payoff of type θ from bidding 0 to the payoff of type θ under

complete information (see Lemma 1). For any type θ ∈ (0, 1), I obtain

Π1(θ, 0)− θ = F2(θ)− θ =

∫ 1

0

1{H(y)<y}dy +

∫ θ

0

1{H(y)≥y}dy − θ .

The formula in Proposition 3 follows, since the payoff of types θ ≥ 1 is 1 in

any equilibrium.

Proof of Proposition 4. Since J is invertible on its support, for all s ∈ (0, v2),

the bidding strategy b1(v1) = v2J(v1) leads to the score distribution

G1(s) = P(b1(V ) ≤ s) = P(V ≤ b−11 (s)) = J(b−11 (s)) = J(J−1(
s

v2
)) =

s

v2
.

The next step establishes uniqueness of player 1’s optimal bidding strat-

egy. Player 2 never bids above v2 in equilibrium, since this would entail a
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negative payoff. Thus, player 1 can guarantee herself a payoff of v1 − v2

by bidding v2. A similar argument to that in the proof of Lemma 3 shows

that G1 and G2 are continuous with G1(0) = 0. A similar argument to that

in the proof Lemma 4 with reversed player roles entails g1(s) ≤ 1
v2

almost

everywhere. As player 1 places no mass point and G1(v2) = 1, this implies

G1(v2) =
∫ v2
0
g1(s)ds = 1. Thus, G1(s) = min{ s

v2
, 1}. To obtain uniqueness

of the strategy of player 1, it remains to show that her bid is increasing in

her valuation in any equilibrium. This, however, is straightforward, since a

higher bid entails the same additional cost for each type, but increases the

winning probability and thereby the gain of a type with a higher valuation.

The next step establishes uniqueness of player 2’s equilibrium distribu-

tion. The optimization problem of player 1 entails

v1G2(b1(v1))− b1(v1) ≥ v1G2(b̂1)− b̂1 (1)

for all v1, b̂1. For the rest of the proof, I denote b1 = b1(v1). From Eq. (1), I

obtain two conditions:

G2(b1)−G2(b̂1)

b1 − b̂1
≥ 1

v1
∀ b̂1 < b1 (2)

and
G2(b1)−G2(b̂1)

b1 − b̂1
≤ 1

v1
∀ b̂1 > b1 . (3)

At the same time,

v̂1G2(b̂1)− b̂1 ≥ v̂1G2(b1)− b1 , (4)

where b̂1 = b1(v̂1). Thus, Eq. (4) implies

1

v̂1
≥ G2(b1)−G2(b̂1)

b1 − b̂1
∀b1 > b̂1 (5)

and
1

v̂1
≤ G2(b1)−G2(b̂1)

b1 − b̂1
∀b1 < b̂1 . (6)
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By continuity of G2, I obtain

lim
b̂1↑b1

G2(b1)−G2(b̂1)

b1 − b̂1
=

1

v1
= lim

b̂1↓b1

G2(b1)−G2(b̂1)

b1 − b̂1
. (7)

The first equation signs follows from (2) and (5), while the second one follows

from (3) and (6). Hence, G2 is differentiable on (0, v2) with the derivative

g2(b1(v1)) = 1
v1

. Thus, on (0, v2), I obtain g2(s) = 1
b−1
1 (s)

= 1
J−1( s

v2
)
. Imposing

the boundary condition G2(v2) = 1, the differential equation yields

G2(s) = 1−
∫ v2

0

1

J−1( y
v2

)
dy +

∫ s

0

1

J−1( y
v2

)
dy

as the unique solution. The second-order condition shows that the bid

b1(v1) = v2J(v1) is indeed the maximizer for all v1 ∈ [v2, v̄1].

Player 1 obtains an informational rent in equilibrium, since bidding

b1(v1) = v2 would yield him the public information payoff v1 − v2, but any

equilibrium bid yields a strictly higher payoff for all types v1 ∈ [v2, v̄1). Player

2 obtains a payoff of 0 under both informational assumptions.

Lemma 6. There exists a unique point θ∗ such that

−θ +

∫ 1

0

1{H(θ)+y<H(y)}dy = 1.

Proof. For θ = −1,

−θ +

∫ 1

0

1{H(θ)+y<H(y)}dy = 1 +

∫ 1

0

1{H(−1)+y<H(y)}dy ≥ 1.

On the other hand, for θ = 0,

−θ +

∫ 1

0

1{H(θ)+y<H(y)}dy =

∫ 1

0

1{H(0)+y<H(y)}dy ≤ 1.

Moreover, −θ is continuous and strictly monotone decreasing and∫ 1

0
1{H(θ)+y<H(y)}dy is weakly monotone decreasing in θ. The assumption
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h(y) = 1 on a set of measure zero implies H(y) − y = H(θ) on a set of

measure zero for all θ. Hence,
∫ 1

0
1{H(θ)+y<H(y)}dy is also continuous. Thus,

−θ+
∫ 1

0
1{H(θ)+y<H(y)}dy is continuous and strictly monotone decreasing. By

the Intermediate Value Theorem, there exists a unique point θ∗ for which

−θ +
∫ 1

0
1{H(θ)+y<H(y)}dy = 1.

Proof of Proposition 5. The existence proof proceeds in three steps. Steps 1

and 2 are almost identical to Steps 1 and 2 of Proposition 1 with H(θ)−H(θ∗)

instead of H(θ) and thus omitted.

Step 3: The function F2 has to be a cdf. Since player 2 never bids above one

in equilibrium, I obtain F2(1) = θ∗ +
∫ 1

0
1{H(θ∗)+y<H(y)}dy = 1. Thus, for θ∗

as defined in the main text, the function F2 is a cdf.

The uniqueness proof is similar to the uniqueness proof of Proposition 1

and thus omitted.
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