Optimal coverage in basic and supplementary health insurance

Jan Boone

TILEC, Tilburg University

July 1, 2013

Jan Boone Basic and supplementary insurance

・ロト ・回ト ・ヨト ・ヨト

イロン イヨン イヨン イヨン

Basic and supplementary insurance

- Many countries offer a combination of basic and supplementary insurance
 - the Netherlands: basic mandatory insurance and supplementary voluntary insurance on the private market
 - also Obama care has similar features with the essential health care package
- some treatments are covered by basic insurance others not
- latter can be covered by supplemenary insurance
- question is: which treatments should be covered by basic and which by supplementary insurance?
 - recent discussion in the Netherlands: treatment for Pompe, Fabry: high cost per qaly gained
 - treatments to quit smoking, glasses, dentist?

Basic and supplementary insurance (cont.)

- not answered in the health economic literature
- literature features an unhelpful divide:
 - moral hazard and adverse selection
 - cost effectiveness (CE)
- basic insurance should cover treatments that are highly cost effective, that suffer from adverse selection, do not suffer from moral hazard?
- redistribution: basic insurance should cover treatments mainly used by low income and/or high risk people?

Contribution

- standard model: people buy health insurance because they are risk averse
 - co-payments vary with severity of moral hazard for a treatment
 - basic insurance should cover treatments with biggest adverse selection problems
 - adverse selection leads to inefficiency in the private supplementary market
 - to reduce these inefficiencies such treatmemts should be covered by mandatory basic insurance
 - CE plays no role in determining priority for treatments to be covered

Contribution (cont.)

- introduce a model with access to care problems: people buy health insurance to be able to access care when they need it
 - CE determines which treatments should be covered by suppl. insurance
 - co-payments are the same for all treatments in a contract
 - treatments that can be paid out of pocket should not be insured
 - conditions are derived under which basic insurance should cover treatments that are predominantly used by low income/high risk people
 - we find this redistribution result for a planner maximizing total welfare (no equity concerns)

Three systems

- most OECD countries feature a combination of public and private health insurance
- public system addresses imperfections in private insurance market
- Roughly speaking: three systems
 - private and public insurance are substitutes: Australia, Ireland, Spain, The Netherlands before 2006 [Colombo and Tapay, 2004]
 - private insurance is bought in addition to public insurance to get shorter waiting lists, broader choice of providers and treatments: Austria, Denmark and Finland [Mossialos and Thomson, 2004]

(日) (同) (三) (三)

Three systems (cont.)

- private insurance is bought to cover treatment for conditions that are not covered by public insurance (physiotherapy, dental care) or to finance co-payment in public system: The Netherlands (after 2006), France, Luxembourg
- we focus on third system
- assume universal public coverage for basic insurance package
- fixed budget to finance public system
- not all treatments can be paid by public system: some treatments covered by private insurance
- simplify: for each condition there is only one treatment
- two questions:
 - should a treatment be insured at all?
 - if so, how (public vs private insurance)

(日) (同) (王) (王)

Cost effectiveness

- goal of CE analysis is to maximize the health gain from a given budget [Drummond et al., 2005; Gold et al., 1996]
- rank treatments in terms of life years gained per euro spent
- life years can be quality adjusted (qaly)
- cover the treatments with the highest scores until the budget is spent
- is usually done in the context of public insurance: basic insurance should cover the most cost effective treatments
- other treatments covered by private insurance or not at all [Smith, 2007]

イロト イポト イヨト イヨト

Cost effectiveness (cont.)

- no redistribution considerations unless explicitly added to objective function
- no adverse selection nor moral hazard

Adverse selection

- with second degree price discrimination, market leads to under-insurance of low risk types [Rothschild and Stiglitz, 1976]
- insured know more about their expected costs than insurers, hence insurers try to separate types
- high risk types get efficient insurance
- this analysis has not been done at the treatment level; does not directly address our question
- straightforward to show: basic insurance should cover treatments where adverse selection problems are worst
- CE plays no role at all

(日) (同) (三) (三)

Moral hazard

- optimal coverage at treatment level
 - co-payment for treatment k lower the higher the financial risk and the lower the demand elasticity for k [Zeckhauser, 1970]
 - if one treatment saves costs on another treatment (substitutes), co-payment should be lower; with complements: higher [Goldman and Philipson, 2007]
- public vs private insurance (not at treatment level)
 - if the market can only offer linear contracts, mandatory public insurance can create a two-part tariff which tends to raise welfare [Besley, 1989]
 - role for mandatory public insurance because of Samaritan's dilemma [Coate, 1995]
- again CE plays no role

Standard framework: risk aversion

• mean variance utility: health v, stochastic expenditure x

$$U = v - E(x) - \frac{r}{2}V(x) \tag{1}$$

- set of conditions $K = \{1, 2, ..., \kappa\}$
- for each condition k ∈ K there is exactly one treatment also denoted k
- two types of agents $h, l; \theta_k^i$ probability that type *i* needs treatment *k*

$$\theta_k^{\prime} \le \theta_k^{\,h} \le \frac{1}{2} \tag{2}$$

(日) (同) (三) (三)

• adverse selection: $\theta_k^h/\theta_k^l > 1$

Standard framework: risk aversion (cont.)

- fraction of θ' types: ϕ
- in standard framework: conditions are distributed independently
- in access to care model: an agent can suffer from only one condition (suffering from k and l is redefined as "new" condition "m")
- conditions are contractable by physician and insurer
- severity of condition is not verifiable by physician: patient reports symptoms
- treatment costs δ_k
- patient can be in either of two states, probability state 0 equals ψ_k

Standard framework: risk aversion (cont.)

• if patient is in state 1 (0), benefit equals $v_{1k}(v_{0k}) > 0$ with

$$\begin{aligned} \mathbf{v}_{1k} - \delta_k &> \mathbf{0} \\ \psi_k \mathbf{v}_{0k} + (1 - \psi_k) \mathbf{v}_{1k} - \delta_k &< \mathbf{0} \end{aligned}$$

- use of treatment in state 0 reduces social surplus: moral hazard
- to prevent this, co-payment at least equal to v_{0k} is needed for treatment k
- v_{0k} measures "severity" of moral hazard problem associated with k
- agent can buy suppl. insurance from one private insurer only

イロト 不得 とくほと くほとう ほ

Standard framework: risk aversion (cont.)

- government can enforce that private insurers set co-payments $c_k \ge v_{0k}$ for treatments covered by basic insurance
- if basic insurance covers treatment k, cost for the patient becomes γ_k ∈ [c_k, δ_k⟩
- government budget constraint:

$$\sum_{k\in K} (\phi\theta'_k + (1-\phi)\theta^h_k)(1-\psi_k)(\delta_k - \gamma_k) \le B$$
(3)

Market

- We follow Rothschild and Stiglitz [1976] in defining perfect competition equilibrium in supplementary insurance market:
 - each offered contract makes non-negative profits
 - given the equilibrium contracts, it is not possible to introduce a new contract that makes strictly positive profits
- θ^h agents get suppl. insurance with co-payments equal to v_{0k} for each $k \in K$
- co-payment varies with severity of moral hazard
- θ^{I} gets insurance with higher co-payments to separate her contract from θ^{h}
- this is inefficient since θ^I is risk averse

Government policy

- planner maximizes $\phi U^{l} + (1 \phi)U^{h}$ subject to government budget constraint
- planner should cover treatments with highest θ_k^h/θ_k^l in basic insurance until the budget runs out
- mandatory basic insurance can "solve" adverse selection
- reduces inefficiencies in the suppl. private market
- moral hazard v_{0k} plays no role (on the extensive margin): equally problematic in public and private insurance
- on the intensive margin: higher v_{0k} implies less insurance or equiv. higher co-payment
- CE score v_{1k}/δ_k plays no role (except that it is bigger than 1)

Government policy (cont.)

- standard model is about financial risk, not about access to care
- independently of whether or how treatment k is insured, agent will use it when needed; hence the value v_{1k} of the treatment plays no role in how to insure a treatment
- if third degree price discrimination is allowed in the suppl. market, equilibrium is efficient
- government does not care which treatments are covered by basic insurance (unless redistribution motives are introduced)

Agents face budget constraints

- In the previous model, an agent can afford any treatment she wants without insurance
- but we know that insurance plays an important role in securing access to care [Cohn, 2007; Schoen et al., 2008, 2010; Nyman, 1999]
- \bullet assume an agent has a budget β that she can spend on health care:
 - insurance premium
 - co-payments
 - uninsured treatments
- budgets β and B are small compared to the value of treatments: each agent spends whole budget
- assume agent is risk neutral r = 0

Agents face budget constraints (cont.)

イロト イポト イヨト イヨト

Agents face budget constraints (cont.)

- patient needs at most one treatment k
- assume (first) that government enforces co-payment ck for treatment k in all contracts
- government sets $\gamma_k \in [c_k, \delta_k]$
- if γ_k > c_k, insurance market can offer to cover γ_k − c_k, such that patient needs to pay only c_k in case she needs k
- consider agent ij (β^i, θ^j) who sets aside C^{ij}

$$\begin{aligned} \mathcal{K}_{e}^{ij} &= \{k \in \mathcal{K} | v_{0k} \leq c_{k} \leq C^{ij} < \gamma_{k} \} \\ \mathcal{K}_{i}^{ij} &= \{k \in \mathcal{K} | v_{0k} > c_{k} \leq C^{ij} < \gamma_{k} \} \\ \mathcal{K}_{n}^{ij} &= \{k \in \mathcal{K} | \gamma_{k} \leq C^{ij} \} \end{aligned}$$
(4)

Agents face budget constraints (cont.)

- agent does not have access to treatments with c_k > C^{ij}: high co-payments cause people to forego valuable treatments
 [Schokkaert and van de Voorde, 2011; Pauly, 2008]
- often efficient care consumption is defined as consumption of treatments that an agent would choose "were she paying for the medical care herself" [Cutler and Zeckhauser, 2000]
- not correct in this model: treatments in K^{ij}_e are efficient but not used without insurance

market

- given c_k, γ_k set by the government
- agent ij chooses $\rho_k \in [0,1], C^{ij}$ to maximize

$$\begin{split} V^{ij} &= \beta^{i} + \sum_{k \in \mathcal{K}_{e}^{ij}} \theta^{j}_{k} (1 - \psi_{k}) \rho_{k} (\mathbf{v}_{1k} - \gamma_{k}) + \sum_{k \in \mathcal{K}_{i}^{ij}} \theta^{j}_{k} \rho_{k} (\mathbf{v}_{k} - \gamma_{k}) + \sum_{k \in \mathcal{K}_{n}^{ij}} \theta^{j}_{k} (1 - \psi_{k}) (\mathbf{v}_{1k} - \gamma_{k}) \\ &- \lambda^{ij} \left(\sum_{k \in \mathcal{K}_{e}^{ij}} \theta^{j}_{k} (1 - \psi_{k}) \rho_{k} (\gamma_{k} - c_{k}) + \sum_{k \in \mathcal{K}_{i}^{ij}} \theta^{j}_{k} \rho_{k} (\gamma_{k} - c_{k}) - (\beta^{i} - C^{ij}) \right) \end{split}$$

- once agent decides to set aside C^{ij} , it is optimal to have the same co-payment for each treatment
- in access to care model: co-payment does not vary with treatment k

market (cont.)

- assume government sets $c_k = c$ for each k
- with second degree price discrimination, at most 2 IC constraints are binding: within each income class, θ^h wants to mimic θ^l
- marginal utility of income: $dV^{ij}/d\beta_i = 1 + \lambda^{ij}$

government policy

- assume that no IC constraint is binding
- insurance does not cover treatments with $\delta_k < c$
- treatments with $v_{0k} \leq c < \delta_k$ are ranked on the basis of

$$\frac{F\phi^{l}\theta^{l}_{k}\rho^{ll}_{k}(1+\lambda^{ll})+F(1-\phi^{l})\theta^{h}_{k}\rho^{lh}_{k}(1+\lambda^{lh})+(1-F)\phi^{h}\theta^{l}_{k}\rho^{hl}_{k}(1+\lambda^{hl})+(1-F)(1-\phi^{h})\theta^{h}_{k}\rho^{hh}_{k}(1+\lambda^{hh})}{F\phi^{l}\theta^{l}_{k}\rho^{ll}_{k}+F(1-\phi^{l})\theta^{h}_{k}\rho^{hh}_{k}+(1-F)\phi^{h}\theta^{l}_{k}\rho^{hl}_{k}+(1-F)(1-\phi^{h})\theta^{h}_{k}\rho^{hh}_{k}}$$

- basic insurance covers treatments $(\gamma_k = c)$ with the highest ranking until budget B runs out
- Insurers rank treatments k ∈ K_e (not covered by basic insurance) on the basis of their CE score

$$\frac{v_{1k} - \delta_k}{\delta_k - c}$$

イロン 不同 とくほう イロン

Interpretation

- suppl. insurance covers treatments with the highest CE scores till agent's *ij*'s budget runs out
- \bullet basic insurance targets treatments that are mainly used by agents with high λ
- if $C^{ij} = C$ for all ij then basic insurance targets treatments used by agents with low income and/or low health status
- if IC constraints binding, two things change
 - focus of basic insurance on treatments used by θ^h types reinforced
 - suppl. insurance ranking for θ^{I} types distorted to take IC into account

イロン 不同 とくほう イロン

Contrast to CE literature

- CE literature suggests that basic insurance should cover treatments with highest v_k/δ_k
- in access to care model, CE score does play a role, but not like this
- government trying to maximize health should subsidize treatments that are used by people who at the margin buy the most valuable treatments (λ^{ij})
 - as people first cover most valuable treatments, there are decreasing returns
 - people with low income that have to buy "expensive" insurance, have highest return at the margin

Contrast to CE literature (cont.)

- we get redistribution result without introducing it into planner's objective function
- adverse selection θ_k^h/θ_k^l plays a role
- supplementary insurance ranks on the basis of CE score $(v_{1k} \delta_k)/(\delta_k c)$
 - inverse U relation between δ_k and coverage by suppl. insurance
 - no coverage if $\delta_k \leq c$
 - coverage for sure if $\delta_k > c$ close to c
 - coverage falls as δ_k increases
 - treatments with severe moral hazard ($v_{0k} > c$) not covered at all

Example: basic insurance and CE

• second degree price discrimination

•
$$\beta' = 1, \phi' = 0.5, \beta^h = 2, \phi^h = 0.5$$

- no moral hazard ($v_{0k} = 0$ for each k), c = 0
- initially B = 0

• in equilibrium: $\rho_1'' = \rho_1'^h = 1$ and $\rho_2'' = \rho_2'^h = \rho_3'' = \rho_3'^h = 0$ • $\rho_1^{hh} = 1, \rho_2^{hh} = 0.5, \rho_3^{hh} = 0$

Example: basic insurance and CE (cont.)

•
$$\rho_1^{hl} = 1, \rho_2^{hl} = 0, \rho_3^{hl} = 0.5$$

- suppose government has small budget B > 0, what should be covered by basic insurance?
- CE literature: treatment 1
- but covering treatment 2 yields a bigger increase in welfare/health

Example: focus on low risk agent

- agents freely choose co-payment *c*
- both risk types, same income $\beta=2$
- low risk agents have highest λ , basic insurance should focus on them:

•
$$c^h = C^h = 0, \rho_1^h = 1$$

•
$$c' = C' = 1, \rho_2' = 4/30$$

 if government has small budget B > 0, cover 2 by basic insurance

Conclusion

- In an access to care model, CE scores play a role in determining whether and how a treatment should be covered
- basic insurance should cover treatments that are pre-dominantly used by people with the highest health gain per euro spent
- suppl. insurance covers treatments with the highest CE score, corrected for co-payments

イロン イボン イヨン イヨン

Conclusion (cont.)

- the value of government subsidy is higher in an access to care model
 - in standard model this value is related to income risk caused by adverse selection problems, which may be small compared to moral hazard problems
 - in access to care model, this value is related to the value of treatment itself

References

Timothy Besley. Publicly provided disaster insurance for health and the control of moral hazard. *Journal of Public Economics*, 39(2): 141 – 156, 1989. ISSN 0047-2727. doi: 10.1016/0047-2727(89)90037-6. URL

http://www.sciencedirect.com/science/article/pii/0047272

- Stephen Coate. Altruism, the 's dilemma, and government transfer policy. *American Economic Review*, 85(1):46–57, 1995.
- J. Cohn. Sick: the untold story of America's health care crisis-and the people who pay the price. Harper Perennial, 2007.
- F. Colombo and N. Tapay. Private health insurance in oecd countries: the benefits and costs for individuals and health systems. Working Paper 15, OECD, 2004.

References (cont.)

David M. Cutler and Richard J. Zeckhauser. Chapter 11 the anatomy of health insurance. volume 1, Part A of Handbook of Health Economics, pages 563 - 643. Elsevier, 2000. doi: 10.1016/S1574-0064(00)80170-5. URL http://www.sciencedirect.com/science/article/pii/S1574000

M. Drummond, M. Sculpher, G. Torrance, B. O'Brien, and G. Stoddart. *Methods for the economic evaluation of health care programmes*. Oxford University Press, third edition edition, 2005.

M.R. Gold, J.E. Siegel, L.B. Russell, and M.C. Weinstein. *Cost-effectiveness in health and medicine*. Oxford University Press, 1996.

イロン イボン イヨン イヨン

References (cont.)

Dana Goldman and Tomas J. Philipson. Integrated insurance design in the presence of multiple medical technologies. *American Economic Review*, 97(2):427-432, September 2007. doi: 10.1257/aer.97.2.427. URL http://www.aeaweb.org/articles.php?doi=10.1257/aer.97.2.4

- E. Mossialos and S. Thomson. Voluntary health insurance in the european union. Working paper, World Health Organization, 2004.
- John A. Nyman. The value of health insurance: the access motive. Journal of Health Economics, 18(2):141 - 152, 1999. ISSN 0167-6296. doi: 10.1016/S0167-6296(98)00049-6. URL http://www.sciencedirect.com/science/article/pii/S0167629

References (cont.)

- M.V. Pauly. Adverse selection and moral hazard: implications for health insurance markets. Incentives and choice in health care, chapter 5, pages 103–129. MIT Press, 2008.
- M. Rothschild and J. Stiglitz. Equilibrium in competitive insurance markets: An essay on the economics of imperfect information. *The Quarterly Journal of Economics*, 90(4):629–649, 1976.
- C Schoen, R Osborn, D Squires, M M Doty, R Pierson, and S Applebaum. How Health Insurance Design Affects Access To Care And Costs, By Income, In Eleven Countries. *Health Affairs*, 29(12):1–12, 2010. ISSN 02782715. doi: 10.1377/hlthaff.2010.0862. URL http://content.healthaffairs.org/cgi/content/abstract/hl⁻

イロト 不得 とくほ とくほ とうほう

References (cont.)

- Cathy Schoen, Sara R Collins, Jennifer L Kriss, and Michelle M Doty. How many are underinsured? trends among u.s. adults, 2003 and 2007. *Health affairs (Project Hope)*, 27(4):298–309, 2008. ISSN 1544-5208. doi: 10.1377/hlthaff.27.4.w298. URL http://www.ncbi.nlm.nih.gov/pubmed/18544591.
- Erik Schokkaert and Carine van de Voorde. Chapter 15 user charges. In S. Glied and P. Smith, editors, Oxford Handbook of Health Economics, Oxford Handbook of Health Economics, pages 329 – 353. Oxford University Press, 2011.

イロン 不同 とくほう イロン

References (cont.)

- Peter C. Smith. Chapter 5 provision of a public benefit package alongside private voluntary health insurance. In A.S. Preker, R.M. Scheffler, and M.C. Bassett, editors, *Private voluntary health insurance in development: friend or foe?*, pages 147–167. The World Bank, 2007.
- Richard J. Zeckhauser. Medical insurance: A case study of the tradeoff between risk spreading and appropriate incentives. *Journal of Economic Theory*, 2(1):10–26, 1970. URL http://EconPapers.repec.org/RePEc:eee:jetheo:v:2:y:1970::