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Abstract

There are a number of domains where agents must collectively form a
network in the face of the following trade-oftf: each agent receives benefits
from the direct links it forms to others, but these links expose it to the risk
of being hit by a cascading failure that might spread over multi-step paths.
Financial contagion, epidemic disease, and the exposure of covert organiza-
tions to discovery are all settings in which such issues have been articulated.

Here we formulate the problem in terms of strategic network formation,
and provide asymptotically tight bounds on the welfare of both optimal and
stable networks. We find that socially optimal networks are, in a precise
sense, situated just beyond a phase transition in the behavior of the cas-
cading failures, and that stable graphs lie slightly further beyond this phase
transition, at a point where most of the available welfare has been lost. Our
analysis enables us to explore such issues as the trade-offs between clus-
tered and anonymous market structures, and it exposes a fundamental sense
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in which very small amounts of “over-linking” in networks with contagious
risk can have strong consequences for the welfare of the participants.

1 Introduction

Social networks have particular features that distinguish them from biological and
physical networks as a class, and which are important for the propagation of net-
worked agents’ behaviors. Two kinds of models have been used to shed light
on the structure of social networks. Probabilistic models, such as small-world
models [23, 26] and preferential attachment [8], posit a few simple rules describ-
ing the probabilistic formation of links. The application of such models to social
phenomena presumes that the networks are exogenous from the point-of-view of
the phenomena being studied. Strategic models, on the other hand, presume that
network formation and agents’ behaviors are closely connected. This paper con-
tributes to the study of this second kind of network formation. Recent surveys of
endogenous, or strategic, network formation include [25] and the relevant chapters
of [19].

A common approach in the strategic network formation literature (e.g. the
connections model [20]) assumes that links are costly for an agent to form or
maintain, and that benefits come from the indirect access to others that the network
provides, as measured by distances [13, 15, 20], component sizes [7], or point-to-
point connectivity [6]. There are many instances, however, in which this cost-
benefit trade-off is inverted. Benefits come from direct links, while the cost is
that of exposure to a failure that propagates through the network. In financial
markets, benefits come from transacting with others, but counterparty risk, the
risk to an agent that its partners cannot complete their side of a transaction, is
increased to the extent that the partners are exposed to the failures of their other
partners. The possibility exists that a single agent’s failure can cause his partners
to fail, and so on, leading to a cascade of financial collapse [1, 2, 12, 18]. Even
when cascades do not happen, the fear of cascades can lead to market behavior
that is costly for all agents, such as happened with the capital markets shutdown
in the financial crisis of Fall 2008. Epidemiology provides still other examples
of this inverted cost-benefit structure, wherein the pattern of social contacts has
significant implications for the spread of disease. This is demonstrated in a model
of HIV transmission in a structured population in [21], while [14] demonstrates
the importance of network structure for the construction of containment strategies
for a smallpox bioterror event; an analogous cost-benefit structure is also present
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in needle-sharing practices among intravenous drug users [9]. Additionally, [17]
observes that clandestine organizations are subject to the risk of being exposed
and compromised, and that this risk may be mitigated or magnified by the network
structure of agent contacts.

In our model, individuals first construct a social network. In this network,
each node fails spontaneously with a small probability g. After this initial phase of
spontaneous node failures, each edge transmits the failure with a small probability
p. We can think of the set of edges that transmit failure as a random subgraph of
the social network, and now the nodes which fail are all those in a component of
the random subgraph containing a node which has spontaneously failed. Classical
results on Bernoulli random graphs can be viewed as statements about random
subgraphs of a complete network, and one of the technical contributions of this
paper lies in generalizing this point of view from complete graphs to arbitrary
graphs of given minimal degree.

We examine networks that are optimal with respect to a Rawlsian social wel-
fare criterion as well as networks that are stable in a sense different from (but
closely related to) the stability concepts in [20] and [16]. In addition to the prob-
abilities p and ¢, we use two other parameters: a and b, which measure the value
of a direct link and the cost of failure. We are interested in a region of the model’s
parameter space where there is a tension between the desire for more direct links
and the fear of failure. We have two kinds of results. Our general results provide
welfare upper-bounds for optimal and stable networks, and we see that for small
p and ¢ any stable network has small welfare. Specific results for the case where
p = q describe the structure of optimal and stable networks, and demonstrate that
the upper bounds are approximately achievable by forming cliques of appropri-
ate size. Consequently, for small p = ¢, the welfare-loss from stable networks is
large. Further results for the p = ¢ case describe the welfare cost to constructing
optimal networks when agents are anonymous; the social planner can choose the
degree of an individual node but not the agents at the other end of its edges. We
also show that the welfare cost of anonymity is large.

Our formulation of the payoffs is intended to capture the basic trade-off in a
simple way, using very few parameters. Links confer benefits that scale linearly
in the degree, and failures spread through direct probabilistic contagion across
edges. One can imagine more complex models for both of these aspects of the
payoff, with more complex notions of the way in which a node’s links increase
its payoff, and more complex mechanisms for the spread of failures. For exam-
ple, Amini et al [5] extend the traditional graph contagion framework to better
model financial networks, studying contagion in random networks with inhomo-
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geneous degrees and an arbitrary distribution of weights on edges. Extending our
analysis of strategic network formation to models with this greater level of com-
plexity is an interesting direction for further analysis. Here we will see that the
present model already exhibits rich behavior, and suggests avenues for pursuing
such generalizations.

2 The Model

In this paper, we develop a model to capture the underlying trade-off between
the benefit of link formation and the problem of contagious risk, using simple
definitions for the payoffs arising from these underlying processes. The model is
formulated as follows. To begin with, we have a set 1V of n agents, and agents can
choose to form bilateral relationships with one another, resulting in an undirected
graph G = (V, E/). An agent receives a payoff of ¢ > 0 from each relationship
in which it takes part. Once the network is formed, a random process creates
cascading failures as follows. First nodes fail independently with probability g,
and then failed nodes have a probability of p of causing their neighbors to fail
as well, with the failure potentially continuing to spread from these newly failed
nodes. In more detail:

¢ First, each agent randomly experiences a failure, independently with prob-
ability ¢ > 0. We refer to these as the roof failures in the graph.

e Next, we declare each edge of GG to be live independently with probability p
and blocked with probability 1 — p. We think of the live edges as those that
transmit failure, and the blocked edges as those that do not transmit failure.
Any node that can reach a root failure using a path consisting entirely of
live edges is declared to fail also.

If an agent fails, it loses any benefit from the links it forms, and instead it pays
a cost of b > 0. We assume that there is an upper bound A on the number of
links any one node is able to form. Much of the interesting behavior in this model
turns out to take place in graphs where the average degree is close to 1/p. As a
result, we want to have A larger than 1/p, but not so large that any single node
can dominate the structure of the graph. In particular, we assume that A = ¢*/p
for a constant c* > 1.

Letting d; denote the degree of node 7 in (5, and ¢; denote the probability that
it fails (taken over the random choices of root failures and live edges), we can
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write ¢’s expected payoff as
T, = adz(l — QZSZ) — ngSZ = adi — (ad, + b)gZSZ

We employ a Rawlsian notion of welfare. In particular, we measure the “qual-
ity” of a graph via its minimum welfare (henceforth abbreviated min-welfare), the
minimum payoff of any node in the graph. A socially optimal graph is one that
maximizes this quantity. This notion of welfare is convenient for our analysis,
and well-founded in principles of distributive justice [24]. Min-welfare satisfies
criteria of anonymity and the weak Pareto principle.

One could study strategic network formation by defining a non-cooperative
game whose outcomes are graphs. However, in such non-cooperative models,
small details of the specification of the game will determine the precise structure
of equilibrium networks. To capture the notion that it takes two nodes to agree
on the formation of a link, but any node can unilaterally withdraw from its links,
network theorists, following [16, 20], identified stable networks as a class of net-
works that we could expect to be equilibrium outcomes of any interesting network
formation game.

We say that a graph is stable if (1) no node can strictly increase its payoff by
deleting all its incident links (hence removing itself from the network), and (ii)
there is no pair of nodes (i, j) such that (7, j) is not an edge of (, but both 7 and
j would have higher payoffs, with at least one of them strictly higher, if (i, j)
were added to GG. Our definition of stability similar to the notion of pairwise Nash
stability [19], which modifies (i) to allow a node to drop any subset of its incident
links. Thus, any pairwise Nash stable graph is also stable under our definition, and
so our upper bounds on the welfare of all stable graphs also apply to all pairwise
Nash stable graphs.

When we consider the structures of socially optimal and stable graphs, much
of the interesting behavior emerges in a natural range of the parameters a, b, p,
and ¢ motivated by the following considerations. Suppose we had just two nodes
¢ and 7, and suppose that 7 is deciding whether to link to j. If 7 forms the link,
it receives a benefit of a but there is a probability of pg that 5 will fail and that
this failure will spread to :. We want 7 to be willing to form the link to 5 under
these conditions, and so we assume a > bgp. Otherwise no links will form. On
the other hand, suppose that 7 knew that 7 were going to fail, so that the only thing
protecting ¢ from failure is the transmission probability p. Under these conditions
we do not want ¢ to form the link to 7, so we assume a < bp. Otherwise there
will be no strategic component to the analysis. Analogously, suppose that ¢ knew
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that any failure at 7 would definitely spread to ¢, so that the only thing protecting
¢ from failure is the chance 1 — g that ;7 does not fail. Under these conditions we
also do not want 7 to form the link to j, so we assume a < bq.

In our analysis, we focus on the range of parameters in which these bounds
hold by arbitrarily large constant factors. That is, we consider the case in which
p and ¢ are small, the quantity a exceeds bgp by a large amount, and in turn that
min(bp, bg) exceeds a by a large amount. Our assumption is that for a small
constant 4 > (0, we have

6 tbgp < a < d min(bp, bg).

For ease of future reference, we call this Assumption P(¢) and refer to § as the
key separation parameter in our model. Finally, we consider the case in which the
number of nodes n is arbitrarily large compared to these other quantities (and/or
their reciprocals).

3 An Upper Bound on the Optimal Min-Welfare

We begin by establishing an upper bound on the min-welfare of any graph. Min-
welfare is directly related to degree and we will see that critical graphs are those
in which the average degree is close to 1/p, and thus the average direct benefit

from links is close to a/p. Suppose that the min-welfare in a graph G exceeds
(1+¢)a (14 ¢)

can reach many others along live-edge paths with reas]gnable probability, then this
node experiences a large probability of failure, and hence has a sharply reduced
payoff, which will ultimately contradict our assumption that G has large min-
welfare.

Now, how do we show that some node has a reasonably high chance of reach-
ing many others on live-edge paths? There is a connection to the basic random
graph model G(n,p), in which an edge is inserted between each pair among n
nodes independently with probability p. We can think of G(n, p) equivalently as
the model in which one starts with an n-node clique and, declares each edge to be
live independently with probability p, and then considers the live-edge subgraph.
The challenge in our case is that our graphs G are not necessarily cliques, or even
close to being cliques, and relatively little is known about adapting results from
G(n, p) to the case of arbitrary underlying base graphs [3]. Fortunately, however,

. If there is a node that

. Then all node degrees must be at least
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we are able to prove a result that is strong enough for our purposes, adapting tech-
niques for analyzing connected components in G(n, p) to the setting of live-edge
subgraphs of arbitrary underlying graphs.

We begin with this part of the analysis, as follows.

3.1) Forall € > 0 there exist constants o, 3 > 0 such that the following holds.
Let H be a graph in which each node has degree at least v > j Construct

p
a random subgraph of H by declaring each edge to be “live” with probability p.
Then for every node © € V, the number of nodes reachable from i on live-edge
paths is at least ar with probability at least 5.

Proof. Let ¢ be any node in //. We now describe a method for exploring the live
edges outward from ¢, based on Karp’s analysis of random subgraphs of the bidi-
rected complete graph [22] and Alon and Spencer’s analysis of infinite branching
processes [4]. We first take all the nodes (if any) that ¢ can reach via live edges and
put them in a queue. We then repeatedly delete a node j from the queue and add to
the queue all the nodes (if any) that j can reach via live edges, other than the ones
already “discovered” (added to the queue) in previous iterations. Notice, crucially,
that the outcome of the random live/blocked decision for each edge (7, j') is only
examined once in this process, when one of nodes ; or ;' first comes to the front
of the queue. Thus, we can assume that the live/blocked status of (7, ;) is first
determined at that moment.

For a small constant o« > 0, we say that this process succeeds if at least ar
nodes are added to the queue before the queue ever becomes empty. If the process
succeeds with probability at least /3, for a constant 5 > 0, then our result follows.

Let (); be the number of nodes in the queue at the end of iteration ¢, where we
define )y = 1 to indicate that ¢ starts in the queue. We have

Q= Q1 — 1+ X4,

where the ”-1” is because we delete a node j; from the queue in iteration ¢ (with
j1 = 1), and X, is a random variable equal to the number of not-yet-discovered
nodes that j; can reach via live edges. (This is where it is useful to assume that
the live/blocked status of edges from j; to not-yet-discovered nodes is only de-
termined when j; reaches the front of the queue.) Unrolling this recurrence, we

have .
u=1

7
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We are interested in showing that the probability of ¢); > 0 for all ¢ from 1 until at
least ar nodes have been discovered (added to the queue); in this case, the search
for nodes using live-edge paths continues successfully for a sufficient number of
steps, as required.

The expectation of X, prior to the point at which at least ar nodes have been
discovered, can be determined as follows. The node j; has degree at least r in H,
and at most ar nodes have been discovered by the process thus far, so there are at
least (1 — a)r edges emanating from j; leading to not-yet-discovered nodes. We

2
choose « small enough that (1 — a)r > ; since each of these edges is live

with probability p, we have E [X;] > 1 + /2. Thus, until ar nodes have been
discovered, we can think of the queue length as a random walk on the integers
with positive drift; as a result, there is a positive probability that the walk never
returns to 0, which is the result we want.

We can briefly verify this in more detail for our particular case as follows. Let
S, = Ztuzl X,; by the Chernoff Bound, we have

2

Pr(S, <t] <Pr[S; < (1 —¢/4)E[S]] < e 27",

[N

&2

Now, the sum ) ";°, e~ Tt converges; we choose t, large enough that Do, €

1. For p sufficiently small, there is a positive probability that X, the number of

nodes ¢ can reach directly via live edges, is at least (. It then follows that S; > ¢

for all ¢ < t,. Finally, for all ¢ we have Pr[S; <t | X; > t] < Pr[S; <t] <
2

1e2 . .
e 2 16t; summing over { we obtain

2
le
—2T6t

D Pr[S, <t Xy >t < 1. n

t=0

Next, we simply want to argue that if a node can reach many other nodes via
live-edge paths with reasonably large probability, then it has a large probability
of failing and hence a negative payoff. To do this, we first state a simple lemma
about the union of many independent events, and then we use this to draw the
resulting conclusion for a node’s payoff.

3.2) Consider a collection of independent events &1, . . . , £, each of probability
p > 0. Then the probability of their union is at least min(%, %np)

<
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1
2
3
4
5
6
7
8 Proof. If p > 5 then the result follows immediately. Otherwise, if np < 2, then
9
we have
10
11 n n
12 PrilJ&] = D opPrig]=) Prignéy)
13 =1 i=1 i’
14 o
15 _ _ 2
L w ()
17 1
18 > np — =(np)?
19 2 X
20 — _
i~ = np(l—5np)
22 2
23 = 3 1p-
24
25 Otherwise, we can choose a subset S of k& < n of the events such that % <kp<1.
26
7 We have
28
29 Pril & = D Prigl- > Prigné]
30 = jes jj'es
31 3
32 = kp— 2
33 P <2>p
34 1
35 > kp— 5 (kp)?
36 2
37 _ 1
28 = kp(l = Skp)
39 S 2 1 1
40 > . ===
A1 3 2 3
42 u
43
44 Now, for a node ¢, let the set of nodes it can reach on live-edge paths in G be
45 called its live component, and let r;(() be a random variable denoting the size of
46 i’s live component.
47
48 3.3) For all vo,v1 > O there exist a,0 > 0 such that when p,q < « and
gg Assumption P (0) holds, we have the following. If G is a graph with a node i for
51 which ;(G) > LR probability at least o, then the payoff of node i satisfies
52
53 7i(G) < —bq. (We note that the right-hand side is the payoff i would receive if it
54 had no links).
55
56
57 9
58
59
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Proof. If i can reach at least v;p~! nodes on live-edge paths, then by (3.2), the
probability that it fails is at least min (3, 2, p~"¢). Removing the conditioning on
this event, the probability it fails is at least ¢; > min(37, 37071p~"q). We also
have d; < A = ¢*p~L.

If QZSZ Z %’}/0, then

1
m < ad;—by; < ac'pTt — gb%

1 1
S 0bc* — gb’}/() = b(éc* — g’}/())

where the last line is less than —bq for ¢ sufficiently small and g < %70.
If ¢; > 24971p ¢, then defining v = 27971, we have

o < ad; — bo;
< ac'p™h — ybgp™!
= ac'p™ = (yap~t = 1)bg — by
< 6c*b — (ppt = 1)bg — bg.

This last line is less than —bq provided that 1 4 dc¢* — yp~* < 0, which holds
provided that p is sufficiently small relative to 0. m

Finally, combining (3.1) with (3.3), we get an immediate consequence for
the payoffs when all nodes have large degrees. The upper bound on min-welfare
follows directly from this.

3.4) Foralle > 0, there exist o, 6 > 0 such that when p, ¢ < « and Assumption

1
P () holds, we have the following. If each node has degree at least (1+ 5), then
p

for each node i we have ; < —bq.

Proof.  For each node i € V, (3.1) implies that we have r;(G) > e with

probability at least g, It then follows from (3.3) that 7; < —bg. =
3.5) Foralle > 0, there exist o, 6 > 0 such that when p, ¢ < « and Assumption
(1+¢)a

P(6) holds, no graph can have min-welfare greater than
p

10
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Proof. Choose o, 0 > 0 as in(3.4), and suppose by way of contradiction that there
1
is a graph with min-welfare greater than ﬂ. It follows that every node ¢ has
p
. But then by (3.4) we have m; < —bq, contradicting the
1
(tea
p

1+¢
degree greater than +

assumption that the min-welfare is greater than

4 Super-Critical Payoffs and Anonymous Markets

We now show that the upper bound in Section 3 can essentially be achieved, in
an asymptotic sense, and also consider some of the structural implications of this
fact.

To begin with, it is instructive to think about the analysis in Section 3 in terms
of the random graph G(k,r).! One of the central facts about G(k,r) is that in
a small window around probability » = 1/k, the expected size of the largest
connected component jumps from a constant value to a constant fraction of k.
This is the basic phase transition for G(k, r), and (3.1) in Section 3 is a reflection
of this phase transition for an arbitrary underlying graph.

In order for a graph to achieve super-critical payoffs — those of the form
(1+¢)a
p
live components are likely to be large, proportional to 1/p. For this to be possible,
it must cross the phase transition by little enough that these large components do
not eliminate the payoff of the nodes. We now show how to do this, constructing
a family of graphs built from disjoint cliques that achieve min-welfare of the form
(1+¢)a

P

for some € > 0 — it must lie on the side of the phase transition where the

Some Basic Facts about G(k,r). We begin by carefully stating some quantita-
tive results about the phase transition in G(k, ) in a form that will be useful for
the analysis.

@.1) Let C; denote the component containing node i in G(k,r). If we fix some

!'Since n and p are basic parameters in our model, we adopt the different variable names k and
r in discussing G(k, ). Also, in keeping with standard terminology, we will often refer informally
to G(k,r) as “arandom graph,” as though it is a single graph rather than a distribution over graphs.

11
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other node j and look at the event j € C;, then we have

1 1
Pr|j = —-E|[C]] — .
tjeCl=7 Bl -
Proof.
k
PrjeC] = Y Pr[|C|=s]-Pr[j € Ci||C|=s]
s=1
k
_ nglPrHCﬂ:S]
s=1
T
= (5= DPrlici| = o
s=1
1 1
= —.E[llc)-=
RG] -;
|

Thus, looking at the probability a node belongs to ’s component is equivalent to
looking at the expected size of i’s component.

The following pair of standard results describe the contrasting behavior of
component sizes on opposite sides of r = 1/k.

@.2) Fix x < 1, and consider the component of a given node i in G(k, ), where
kr = x. Then for k sufficiently large, we have the following:

(i) The probability that i’s component exceeds size c decreases exponentially
inc.

(ii) Consequently, the expected size of i’s component is bounded by a constant
¢ = c(x), independent of k, and the maximum size of any component in the
graph is thus O(log k).

@.3) There is an increasing function 0 : [1,00] — [0, 1] that is continuously
differentiable on (1,00) and continuously differentiable from the right at v = 1,
with 0(1) = 0 and 0'(1) a positive real number, such that the following holds. Fix
x > land ¢ > 0, and consider G(k,r), where kr = x. Then for k = k(x,¢)
sufficiently large, we have the following:

12
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(i) With probability 1 — exp(—k), there is a component of size between (1 —
e)0(x)k and (1 + €)0(x)k.

(ii) Conditioned on not belonging to the giant component in (i), the probabil-
ity that a node 1@ belongs to a component of size greater than c decreases
exponentially in c.

(iii) Consequently, the expected size of i’s component is between (1 — £)%0(x)?k
and (1 + €)*0(x)*k + ¢ for a constant ¢ = ¢(z).

Point (iii) follows from (i) and (ii) by considering that with probability (1+¢)0(x),
node ¢ belongs to a component of size (1 £ ¢)¢(x)k, and with the remaining
probability ¢ belongs to a component of expected size at most c.

A Family of Graphs with Super-Critical Payoffs. For parameters k£ and s,
let F, (k) denote the disjoint union of s cliques of size k. We will show that

1
F <ﬂ>, for arbitrary s > 1 and a small constant v > 0, achieves super-
p

critical node payoffs.

For our construction, we will focus on the special case p = ¢. A nice feature
of this special case is that we can represent the spread of failures in Fj (k) in the
following equivalent way. We imagine a single “failure node” :* associated with
each clique, and attached to each real node in the clique, resulting in a clique on
k + 1 nodes. There is a transmission probability p on the edges from ¢* to each
node in its clique, as there is on all other edges. In this view, a node ¢ fails if it
is in the same live-edge component as ¢*; in other words, the probability ¢ fails
is the probability it belongs to the same component as a given fixed node ¢* in
G(k + 1,7). By (4.1) we know this is

1 1

- ENC -
o1 BlGl =0

where C; denotes the live-edge component of 2.

With p = ¢, we define o to be the ratio a/bp = a/bq; by assumption P(¢), we
have o < 4, and we assume as usual that ¢ and p are sufficiently small. We let the
number of nodes k in each clique be (1 + ) /p for a small value v > 0 that we
determine below.

First, (4.3)(iii) implies that the probability ¢; that ¢ fails satisfies

(1—e0)0(1+7)* < < (1+)0(1+7)*

13
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for a constant ¢ that goes to 0 with p. Thus, the payoff to a node 7 is

mo> L) <6+M> (14 20)0(1 +~)?

P P
- w — (L4 o(L+ 7)1+ 20)0(1 +7)?
> M —200(1 + v)?
P
— M —200(1 + 7)2
P
= b(o(1+7) —20(1+7)?).
Now, let
ho(x) = ox — 20(x)?,
so that
T > bho(1 + 7).
We have

hi(x) =0 — 40(x)0' (x).

Since A(1) = 0 and ¢'(1) is a positive real number, we have (1) = o, and hence
the function ho(x) is strictly increasing over the interval x € [1,wy| for a constant
wo depending on ¢. Since ho(1) = o, we have hg(wy) = o(1 + oq) for a constant
oo > 0 depending on o.

Returning to the lower bound on 7;, we choose v = wy — 1, and so

1
i 2 bha(un) = = o{1 4+ 00) = “EE,

Consequently, the payoff to each node exceeds 4 by a multiplicative factor greater
p

than 1 that depends on o.

Comparison to an Anonymous Structure. The construction above achieves
super-critical payoffs by allowing nodes to cluster into communities of an ap-
propriate size, and thus to insulate themselves from failures originating in other
communities. Drawing on a market motivation, it is interesting to ask whether
super-critical payoffs can be achieved through structures that are based instead
on anonymous interaction, where nodes can specify the number of partners they

14
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want to connect to, but have no control over who these partners are — the partners
are chosen uniformly at random from the population. As we now show, in fact,
anonymous interaction structures are not able to yield super-critical payoffs.

To define these anonymous structures precisely, we use the configuration model
for random graphs [10, 11, 27]. Each of the n nodes is assigned & “half-edges”;
these half-edges are then matched up uniformly at random into pairs, with each
matching pair of half-edges forming an edge in the resulting random graph. Note
that the pairing may cause two edges to go between the same pair of nodes, or for a
node to form an edge that loops to itself; we remove these parallel edges and self-
loops to obtain the final graph. Failures then propagate in this graph according to
our model, spreading from root failures along live-edge paths.

With high probability, the local neighborhood of a node in this random graph
will have a particularly simple structure, as follows. For node 7, define B(i, ¢) to
be the ball of radius ¢ centered at 4, i.e. the induced subgraph of G on the set of all
nodes reachable from ¢ in ¢ or fewer hops. For fixed integers k, ¢ and any node 7,
the probability that B(3, ¢) is a tree of depth ¢ and degree k (i.e. one whose internal
nodes all have degree k& and whose leaves are all at distance ¢ from the root) tends
tolasn — oo.

For our analysis, we will therefore connect the propagation of failures in the
configuration model to a related, simpler model based on an infinite k-regular tree.
In particular, let B(k,r) denote the distribution over trees obtained by starting
with an infinite k-regular tree and including each edge in the random tree with
probability . We now have a pair of results analogous to (4.2) and (4.3).

@.4) Let x < 1, and consider a tree generated from B(k,r) where kr = x.

(i) The probability that the tree’s size exceeds size c decreases exponentially in
C.

(ii) The expected size of the tree is bounded by a constant ¢ = c(x).

@.5) There is an increasing function T : [1,00] — [0, 1] that is continuously
differentiable on (1,00) and continuously differentiable from the right at v = 1,
with 7(1) = 0 and 7'(1) a positive real number, such that the following holds.
Consider a tree generated from B(k,r), and let 1. (k) be the probability that it
has an infinite node set.

(i) If kr > 1, then ¢, (k) > 7(kr).

15
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(ii) For all integers cy,c1 > 1 and k > cocy /1, we have
(k) >1— (1 =1 (co/r))" >1—(1—7(c))"".

(iii) Conditioned on not having an infinite node set, the probability that the tree’s
size exceeds c decreases exponentially in c. Its expected size is thus bounded
by a constant ¢ = c(x).

Proof. Part (iii) of the claim is a standard result; parts (i) and (ii) are formulated
in ways that are adapted to our present purposes, and we give proofs of them here.
First we prove (1). The probability that the tree is infinite is the unique solution
to 2 = 1 — (1 — pz)* in the interval (0, 1). Define 7 to be the unique solution to
7 =1 — 7?7 in the interval (0, 1). Writing fo(v) = (1 — pv)* and f;(v) = ™Y,
we have
Jolv) = (1= po)* = (1= pv)*? < e = [i(v).

Thus, the curve y = 1 — fy(v) lies above the curve y = 1 — f1(v) on the interval
(0,1), and so y = 1 — fy(v) intersects the line y = v to the right of where
y = 1— f1(v) intersects it. It follows that z > 7, and hence we can take 7 = 7(x)
as our function.

. . coC .
To prove (ii), consider k' = L subtrees of the root in the complete k-ary
r

tree (before edges are randomly included), and group them into ¢; blocks of “

subtrees each. For any block, if we consider just the root and the subtrees inra
single block, the probability that the resulting random tree is infinite is at least
¥, (co/r) (since the root has this degree in the restricted tree, and the nodes in the
subtrees have degree k > ¢q/r). The tree is infinite if it is infinite in any of the
blocks, and so the probability it is infinite is at least

1= (1 =y (co/r)" > 1= (1=7(c0))"
where the latter inequality follows directly from (i). m

We now want to show that when each node forms % links in the anonymous
1+
structure, for any & = —5, the node payoffs can be at most a/p as n — oc.

Clearly this is true for 5 < 0, so we consider the case of an arbitrary 5 > 0.
When the random graph G is sampled using the configuration model, for any
node ¢ the probability that the ball B(7,¢) is a tree of degree k and depth ¢ is

16
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1 —o(1) asn — oco. Applying 4.5(i), the probability that i belongs to a live path
of length ¢ is at least 7(1 + 3) — o(1); for n sufficiently large, this probability is at
least 7(1 + 3/2). In the event that 7 belongs to a live path of length ¢, it fails with
probability at least 1 — (1 — ¢)¢. By taking ¢ large enough, we may assume that
7(1+ 5/2)(1 = (1 — q)*) > 7(1 + 3/3) and thus node 1 fails with probability at
least 7(1 + 5/3).

Thus, if n is sufficiently large we have

TERT ) g
- ba(1+5)<1—7<1+§>>—bf<1+§>,

hi(r)=c(1+3x)(1—7(1+2x)—7(1+2),
so that 7r; < bhi(8/3). By (4.5)(ii), we know that for y > 4, we have
Ty) > 1— (1 =7@)¥* >1- (1-7(2)""

‘We can thus choose w; > 4 such that

Let

T(y) > 1 '

14y
for all y > wy. If 1 + x > w,, we have

1 1+«
h1($)§0(1+3$)<2+x> R < 0,

1 1
provided o < 3 Now, if 0 < 3 SUPye[L1] 7'(y), then we have the following for
all x € [0,w; — 1]:
i(x) = 30(l—=7(1+2x))—(0c+3cx+1)7(1+x)
< 30—-7(1+z) <0.

Thus, for all x € [0,w; — 1], we have hy(z) < hi1(0) = o. Since we also have
hi(x) < 0 for x > w; — 1, it follows that h;(x) < ¢ for all x > 0.

1+6

p

1
links. Since m; < 4 when nodes form at most k£ < — links, it follows that for any
p p

c .. a . . .
constant ¢, if nodes form — links then 7; < — provided n is sufficiently large as a
p p

Thus, for any 3 > 0, we have ; < bo = — when each node forms &k =

e

function of c.

17
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Clustered vs. Anonymous Markets. It is instructive to consider why a union
of disjoint cliques was able to achieve qualitatively higher payoffs than an anony-
mous interaction pattern. In particular, the nodes in the cliques we constructed are
linking at a degree beyond the phase transition point, whereas attempting to do
this in the anonymous structure has negative effects on the payoft.

A quantitative way to think about the contrast is to observe that in the union
of cliques, the failure probability of a node ¢ was approximately controlled by a
conjunction of two events: ¢ belonging to the giant component of the clique, and
the “failure node” ¢* also belonging to the giant component of the clique. As a
result, the failure probability involves a term of the form #(x)?, and this has a
derivative of 0 at z = 1 — hence, it is safe to increase x a bit past 1 without
blowing up the failure probability. On the other hand, in the anonymous structure,
once ¢ belongs to the giant component, it fails with overwhelming probability;
thus, ¢’s failure probability involves a term of the form 7(x), which has a strictly
positive derivative at x = 1, and this makes it unprofitable to increase x even
arbitrarily little past 1. This is the fundamental difference between the behavior
of the two kinds of structures in the region just past the phase transition.

5 Upper Bound on the Min-Welfare of Any Stable
Network

We now show that any stable graph must have small min-welfare. (We defer
the proof that stable graphs exist to the next section.) To upper-bound the min-
welfare, we proceed as follows. Recall that we assumed that A is an upper bound
on the number of links any one node is able to form. So nodes of degree A cannot
form further edges. We first show, in (5.1), that if two nodes ¢ and ; are not
connected by an edge, and neither is at the maximum degree A, then at least one
of them must have a large failure probability — this is what dissuades the other
from forming the link.

It follows that in a stable network, all low-degree nodes of low failure proba-
bility must form a clique, since any unlinked pair of them would have an incentive
to connect. If the number of nodes n is sufficiently large, we can then find a node
¢ that is far from this clique. Hence node ¢, and every node within a large number
of steps of ¢, must have large degrees; we can thus apply an analogue of (3.1) to
show ¢ has a large failure probability, and this will conclude the proof.

(5.1) Suppose Assumption P(§) holds. Let G be a stable graph, and let i and j

18
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be two nodes of G such that (i, j) is not an edge of G, and the degrees of i and j

1-9
are each strictly less than . Then we have max(¢;, ¢;) > ﬁ?.

Proof. Since the degrees of 7 and j are each strictly less than A, at least one of
i or j does not have a strictly higher payoff if the edge (7, 7) is included; let us
assume it is node 7. Thus, if G’ denotes the graph G with the edge (7, j) included,
then we have 7;(G’) < m;(G).

We imagine evaluating failure in G’ by first making all random root failure
decisions and all random live/blocked decisions in (, then determining which
additional nodes fail, and finally deciding whether the edge (4, 7) is live or blocked
and determining further failures. Let ®;((') be the event that ¢ fails in GG before
(¢,7) is examined, and let F;;(G) be the event that (¢, j) is live and j fails in G.

Then CI)Z(G/) = CI)Z(G) U .FZJ(G), SO
Pr[®(G)] < Pr{®i(G)] + Pr[F;(G)].
Since Pr [F;;(G)] = p¢;, we have
9i(G") — ¢ilG) < pg;(G).

Now,
Wi(G/) = a(d, + 1) - (adz +a—+ b)gbz(G/))
<

so the fact that 7;(G’) < 7;((G) implies that

a(d; + 1) — (ad; + a + b)p:(G') < ad; — (ad; + b)¢;(G)
and hence
(ad; +a +0) (i (G") — ¢i(G)

< )
< (adi + a+b)pp;(G) + agi(G)
< (1 +0c")bpd;(G) + dbpgi(G),

where the last line follows from the fact that @ < dbpand d; + 1 < c*p~L.

Now, if ¢;(G) > bg’ we are done. Otherwise, we have
/4

a < (1+c*)bpp;(G) + éa,

SO
(1 - 8)a < (1+ 8¢ )bpoy(G).
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and hence
(1—-90)a

= e

Following our informal plan above, we note that a stable graph might have
some low-degree nodes, so we require the following direct adaptation of (3.1),
which applies to nodes that are far from all low-degree nodes.

(5.2) Forall € > 0 there exist constants o, 3 > 0 such that the following holds.
1+«

Let H be a graph, and let A be the set of nodes of degree less than . Let 1

1
be a node of distance greater than — from A. Construct a random subgraph of H

by declaring each edge to be “live” with probability p. Then the number of nodes
reachable from i on live-edge paths is at least ap™* with probability at least 3.

Proof.  Consider the node-discovery process described in the proof of (3.1),
starting from the node ¢, and recall that we declare it to succeed if it adds at least

o) .
— nodes to the queue before it ever becomes empty, for the small constant o < 1

p

used there. The event that the process succeeds depends only on the live/blocked
o

decisions for nodes within distance — of ¢, and all such nodes have degrees at least
p

1
j; hence, for this whole time we can apply the argument used in (3.1). m
p

Finally, we conclude the proof strategy outlined at the beginning of the section,
resulting in our upper bound.

(5.3) Letn > A>*2 Forall e > 0 there exist o, 6 > 0 such that when p,q < «
and Assumption P () holds, no stable graph can have min-welfare greater than
ca

p

Proof.  Suppose by way of contradiction that G = (V, I) is a stable graph in
. £a .
which r; > — forallz € V.
p
Let A C V denote the set of all nodes ¢ of GG for which d; < A and ¢; <
(1-20)a

(14 o0c*)bp
that there must be an edge between each pair of nodes in A — in other words, A
induces a clique in G.

. Since any node in A is able to form an additional edge, (5.1) implies
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Let B C V denote the set of all nodes in GG of degree equal to A. For any

, (1—=90)a . ca ,
—(AUB h > ;> —b tion,
i€V — (AU B), we have ¢; > 01 0c0p Since w; > ) y assumption, we
have (18
ca —d)a
— <ad; —b¢i < ady — ——+—
p = it a (1+dc*)p
and hence o,
8 J—
>~ + —->-.
p  (1+dc)p

+ &1

1
For ¢ sufficiently small, the right-hand side of this inequality is at least

for a constant £; > 0 Choosing ¢, = min(s;,c¢* — 1), it follows that all n(?des
1+e¢ 2
P
Now, forany j € A, thereare atmost 1 + A + A2 4. .. F AT < A2 < p
nodes within distance A + 1 of j, and hence within distance A of some node in
A. Hence there is some node ¢ € V at distance greater than A > p~! from A. For

i € V — A have degree at least

this node ¢, (5.2) implies that r; > X with probability at least 7y, for constants

p

Y0,71 > 0. By (3.3), it follows that 7; < —bg, contradicting the assumption that
£

the min-welfare of G is greater than —a. ]
p

6 Existence of Stable Networks

Finally, we show that there exist arbitrarily large stable networks. As with our
constructions in Section 4, we will consider graphs that consist of disjoint cliques

1
— graphs F (k+ 1) with k = it} for an appropriately chosen v > 0.

The challenge is to find a &£ where the union of cliques is stable, and this re-
quires some care for the following reason. Stability requires that no unlinked pair
of nodes wants to form an edge — this can be achieved by making k sufficiently
large that creating a link between two cliques brings about too large an increase
in failure probability to the nodes forming the link. Unfortunately, making % large
also raises the failure probability of each node ¢ based simply on its current set
of edges — so we must not raise % so high that a node ¢ wants to drop all its
existing links. The crux of the problem is thus the following: is there a % that is
large enough to discourage the formation of cross-clique links, but not so large
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that nodes will drop their current links? The main part of our analysis will be to
show that such a £ exists.

As in Section 4, we consider the case in which p = ¢; defining o to be the
ratio a/bp = a/bg, we have o < 9, and we assume ¢ and p are sufficiently small.

1
6.1) Given a,b, p, q as above, there exists ~v > 0 such that with k = ﬂ the

p
union of cliques F, (k + 1) is stable.

Proof. For the analysis of the construction, we will work with the function 6(x)
defined in (4.3), as well as the related function A(z) = (1 — 6(x)?). Observe that
A(1) = 1, since §(1) = 0. Taking derivatives, we have

N(a) = (1— 0(x)?) — 200(2)0/(x),
and hence \'(1) = 1. Thus we have

(6.2) For some constant w > 1, the function \(x) is strictly increasing on the
closed interval [1,w).

As in Section 4, we analyze the failure process by attaching a single “failure
node” ¢* to each clique. The probability ¢; that node : fails is the probability that
i belongs to the same live-edge component as ¢* in the (k 4 2)-node clique where
1™ 1s added to ¢’s clique. The payoff to node : is

7 = ak — (ak + 0)¢;.

If ¢ drops all its edges, it receives a payoff of —bg < 0. If 7 forms an edge to a
node 7 in another clique, it receives an added benefit of @, and incurs an increased
expected loss of at least

(ak +0)pgi(1 — ¢).

There are four terms here; the second and third represent the chance that ;’s failure
(which is ¢; = ¢; by symmetry) spreads to ¢, and the fourth term represents the
fact that this only matters if ¢+ had not already failed in its own clique. In more
detail: the payoff to node 7 before the addition of this edge is ak — (ak + b)¢;, and
afterward it is

a(k +1) — (ak +a +b) (¢ + pps — py;),

so the change in payoff is less than a — (ak + b)pd;(1 — ¢;).
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Now, what is ¢;? By (4.1) and (4.3), we have

10 (1—e1)?0(p(k +2))* < ¢ < (1+e)*0(p(k +2))* + crp

©CoO~NOUTA,WNPE

for a constant €, that goes to zero as p does. By choosing a slightly larger ¢, and
14 using the fact that 0(-) has a bounded first derivative, we have

16 (1—e2)0(1+7)* < ¢ < (1+e2)0(1+7)?,

18 with g5 going to zero as p does.
19 In the expression ¢;(1 — ¢;), provided the upper bound (1 + 5)0(1 +~)? < %,
we have

S:ZS ¢i(1 = &) (1 —e2)0(1 4+ )% (1 — (1 — &)0(1 +7)?)

>
> (1—e)0(1+7)*(1—0(1+7)°).

26 Since ¢ = obp and k = (1 + v)/p, if we write o1 = o(1 + ), then we have
27 ak = o (1 + )b = o,b. Now we have

29 (ak + b)pkei(1 — ¢;)

b(1 4 01)(1+ 7)1 — ¢1)

b(1+ 1) (1+7)(1 — &2)0(1 +7)*(1 — 0(1 + 7))
b(1 + 01)(1 — 2)A(L +7)0(1 +7)?

36 fi(v),

38 where the last line is taken as the definition of f; (7).

39 Observe that f;(0) = 0, and by (6.2), there is an z; < 1 such that the function
40 f1(x) is strictly increasing for x in a closed interval [0, x1].

We also have

W W
NP
AV

w
o1
el

P (ak +0)p; < b1+ 01)(1+ 2)0(1 + )2
A
= fO(V))

where once again the last line is taken as the definition of fy (). We see that fy(x)
49 is also strictly increasing in [0, 1] (and beyond this interval as well).

50 Now, since A\(1) = 1 and A(-) is monotone increasing on [0, z1], for any small
51 enough £, > 0, there is a unique xy < x; such that

1—|—€2
1—52.
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Moreover, fi(x) > fo(x) for all x € (x¢, x1], and the value of xy goes to 0 as &y
goes to 0. Also, we observe that for v € (g, x1], we have

Si(y) > fo(y) = b0(1 4 7).

Now, we choose ¢ small enough that 20 < 6(1 + x;)?. We then choose
g9 small enough (by choosing p small enough) so that fi(xo) = fo(xo) < bo.
Finally, let g(v) = ak = (14 v)bo. Since bo < () < 2bo for all v € (xg, x1], it
follows that fy(xg) < g(xo) but g(x1) < fi(x1). Therefore, since fo(-) and fi(+)
are continuous functions, there exist v*, v** € (xo, z1] for which g(v*) = f1(v*)
and g(v™) > fo(v*"), with y* <™.

We choose any v € [v*,v**] as the value of v we use to define k. With this
value of k, the payoff ¢ receives from keeping all its edges is

7 = ak — (ak + b)p; > g(v) — fo(v) >0,

and hence ; prefers to keep its edges rather than deleting all of them. The change
in payoff ¢ receives from linking to a node j in a different clique is less than

k7Y (ak — (ak + b)pkoi(1 — @)
< k7 (ak — b(1+ 01)(1 — 22)A(1+9)0(1+7)?)
=k (9(v) = 1(7)

<0,

and hence 7 will not form this link. Thus, the graph F (k 4 1) is stable. =

A Stable Graph with Unequal Clique Sizes. We observe that starting with a
set of disjoint cliques F; (k + 1), we can create a different stable graph by adding
one additional clique I' of size ¢ < %k + 1 on a disjoint set of nodes. The size
¢ can be chosen in any way such that the payoffs of nodes in the clique I' each
exceed —bq. In this way, nodes in [" will not want to drop their incident edges.
Moreover, there is still no edge that can form so as to improve the payoffs of both
its endpoints, since any edge involving a node ¢ in [' must have its other end at a
node j in one of the cliques of size & + 1, in which case the argument for (6.1)
shows that 7 would not want to form the link.

In particular, this means that we can take ¢ to be a clique yielding the maximum
possible node payoff over all clique sizes, as in Section 4; this shows how certain
nodes in a stable graph can have higher payoffs than others.
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Abstract

There are a number of domains where agents must collectively form a
network in the face of the following trade-off: each agent receives benefits
from the direct links it forms to others, but these links expose it to the risk
of being hit by a cascading failure that might spread over multi-step paths.
Financial contagion, epidemic disease, the exposure of covert organizations
to discovery, and electrical power networks are all settings in which such
issues have been articulated.

Here we formulate the problem in terms of strategic network formation,
and provide asymptotically tight bounds on the welfare of both optimal and
stable networks. We find that socially optimal networks are, in a precise
sense, situated just beyond a phase transition in the behavior of the cas-
cading failures, and that stable graphs lie slightly further beyond this phase
transition, at a point where most of the available welfare has been lost. Our
analysis enables us to explore such issues as the trade-offs between clus-
tered and anonymous market structures, and it exposes a fundamental sense
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in which very small amounts of “over-linking” in networks with contagious
risk can have strong consequences for the welfare of the participants.

1 Introduction

Social networks have particular features that distinguish them from biological and
physical networks as a class, and which are important for the propagation of net-
worked agents’ behaviors. Two kinds of models have been used to shed light on
the structure of social networks. Probabilistic models, such as small-world mod-
els [27, 30] and preferential attachment [10], posit a few simple rules describing
the probabilistic formation of links. The application of such models to social
phenomena presumes that the networks are exogenous from the point-of-view of
the phenomena being studied. Strategic models, on the other hand, presume that
network formation and agents’ behaviors are closely connected. This paper con-
tributes to the study of this second kind of network formation. Recent surveys of
endogenous, or strategic, network formation include [29] and the relevant chapters
of [22].

A common approach in the strategic network formation literature (e.g. the
connections model [23]) assumes that links are costly for an agent to form or
maintain, and that benefits come from the indirect access to others that the network
provides, as measured by distances [15, 18, 23], component sizes [9], or point-to-
point connectivity [6]. There are many instances, however, in which this cost-
benefit trade-off is inverted. Benefits come from direct links, while the cost is
that of exposure to a failure that propagates through the network. In financial
markets, benefits come from transacting with others, but counterparty risk, the
risk to an agent that its partners cannot complete their side of a transaction, is
increased to the extent that the partners are exposed to the failures of their other
partners. The possibility exists that a single agent’s failure can cause his partners
to fail, and so on, leading to a cascade of financial collapse [1, 2, 14, 21]. Even
when cascades do not happen, the fear of cascades can lead to market behavior
that is costly for all agents, such as happened with the capital markets shutdown
in the financial crisis of Fall 2008. Epidemiology provides still other examples
of this inverted cost-benefit structure, wherein the pattern of social contacts has
significant implications for the spread of disease. This is demonstrated in a model
of HIV transmission in a structured population in [24], while [17] demonstrates
the importance of network structure for the construction of containment strategies
for a smallpox bioterror event; an analogous cost-benefit structure is also present
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in needle-sharing practices among intravenous drug users [11]. Additionally, [20]
observes that clandestine organizations are subject to the risk of being exposed and
compromised, and that this risk may be mitigated or magnified by the network
structure of agent contacts. Asavathiratham et al [7, 8] use a similar model for
analyzing cascading failures in power grids.

In our model, individuals first construct a social network. In this network,
each node fails spontaneously with a small probability q. After this initial phase of
spontaneous node failures, each edge transmits the failure with a small probability
p. We can think of the set of edges that transmit failure as a random subgraph of
the social network, and now the nodes which fail are all those in a component of
the random subgraph containing a node which has spontaneously failed. Classical
results on Bernoulli random graphs can be viewed as statements about random
subgraphs of a complete network, and one of the technical contributions of this
paper lies in generalizing this point of view from complete graphs to arbitrary
graphs.

We examine networks that are optimal with respect to a Rawlsian social wel-
fare criterion as well as networks that are stable in a sense different from (but
closely related to) the stability concepts in [23] and [19]. In addition to the prob-
abilities p and ¢, we use two other parameters: a and b, which measure the value
of a direct link and the cost of failure. We are interested in a region of the model’s
parameter space where there is a tension between the desire for more direct links
and the fear of failure. We have two kinds of results. Our general results provide
welfare upper bounds for optimal and stable networks, and we see that for small
p and ¢ any stable network has small welfare. Specific results for the case where
p = q describe the structure of optimal and stable networks, and demonstrate that
the upper bounds are approximately achievable by forming cliques of appropri-
ate size. Consequently, for small p = ¢, the welfare-loss from stable networks is
large: stable networks have significantly smaller welfare than the maximum pos-
sible. Further results for the p = ¢ case describe the welfare cost to constructing
optimal networks when agents are anonymous; the social planner can choose the
degree of an individual node but not the agents at the other end of its edges. We
also show that the welfare cost of anonymity is large.

Our formulation of the payoffs is intended to capture the basic trade-off in a
simple way, using very few parameters. Links confer benefits that scale linearly
in the degree, and failures spread through direct probabilistic contagion across
edges. One can imagine more complex models for both of these aspects of the
payoff, with more complex notions of the way in which a node’s links increase
its payoff, and more complex mechanisms for the spread of failures. For exam-
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ple, Amini et al [5] extend the traditional graph contagion framework to better
model financial networks, studying contagion in random networks with inhomo-
geneous degrees and an arbitrary distribution of weights on edges. Extending our
analysis of strategic network formation to models with this greater level of com-
plexity is an interesting direction for further analysis. Here we will see that the
present model already exhibits rich behavior, and suggests avenues for pursuing
such generalizations.

2 The Model

In this paper, we develop a model to capture the underlying trade-off between
the benefit of link formation and the problem of contagious risk, using simple
definitions for the payoffs arising from these underlying processes. The model is
formulated as follows. To begin with, we have a set V' of n agents, and agents can
choose to form bilateral relationships with one another, resulting in an undirected
graph G = (V, E). An agent receives a payoff of a > 0 from each relationship
in which it takes part. Once the network is formed, a random process creates
cascading failures as follows. First, nodes fail independently with probability g,
and then failed nodes have a probability of p of causing their neighbors to fail
as well, with the failure potentially continuing to spread from these newly failed
nodes. In more detail:

e First, each agent randomly experiences a failure, independently with prob-
ability ¢ > 0. We refer to these as the root failures in the graph.

e Next, we declare each edge of G to be active independently with probabil-
ity p and blocked with probability 1 — p. We think of the active edges as
those that transmit failure, and the blocked edges as those that do not trans-
mit failure. Any node that can reach a root failure using a path consisting
entirely of active edges is declared to fail also.

If an agent fails, it loses any benefit from the links it forms, and instead it pays a
cost of b > 0. We assume that there is an upper bound A on the number of links
a node is able to form. Much of the interesting behavior in this model turns out
to take place in graphs where the average degree is close to 1/p. As a result, we
want to have A larger than 1/p, but not so large that any single node can dominate
the structure of the graph. In particular, we assume that A = ¢*/p for a constant
> 1.
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Letting d; denote the degree of node 7 in (G, and ¢; denote the probability that
it fails (taken over the random choices of root failures and active edges), we can
write ¢’s expected payoff as

We employ a Rawlsian notion of welfare. In particular, we measure the “qual-
ity” of a graph via its minimum welfare (henceforth abbreviated min-welfare), the
minimum payoff of any node in the graph. A socially optimal graph is one that
maximizes this quantity. This notion of welfare is convenient for our analysis, and
well-founded in principles of fairness (knows as distributive justice [28]). Min-
welfare satisfies criteria of anonymity and the weak Pareto principle.

One could study strategic network formation by defining a non-cooperative
game whose outcomes are graphs. However, in such non-cooperative models,
small details of the specification of the game will determine the precise structure
of equilibrium networks. To avoid this problem and capture the notion that it
takes two nodes to agree on the formation of a link, but any node can unilaterally
withdraw from its links, network theorists, following [19, 23], identified stable
networks as a class of networks that we could expect to be equilibrium outcomes
of any interesting network formation game.

We say that a graph is stable if (1) no node can strictly increase its payoff by
deleting all its incident links (hence removing itself from the network), and (ii)
there is no pair of nodes (i, j) such that (¢, j) is not an edge of GG, but both 7 and j
would have higher payoffs, with at least one of them strictly higher, if (i, j) were
added to G.

Our definition of stability is similar to the notion of pairwise Nash stability
[22], which modifies (i) to allow a node to drop any subset of its incident links.
In the settings that motivate our model, we can view our definition of stability
as capturing strategic settings in which nodes have the ability to withdraw from
the system, but not to selectively break bilateral agreements with certain nodes
while keeping others operational. In the context of the paper’s technical content,
we can think about the relation between our notion of stability and the pairwise
Nash notion as follows. Any pairwise Nash stable graph is also stable under our
definition, and because of this all the results in the paper carry over to the case of
pairwise Nash stability except for the result of Section 6 — proving the existence
of a stable network. In particular, the large gap between the achievable min-
welfare in optimal and stable networks continues to hold as is if we use pairwise
Nash stability as our underlying notion. The networks we construct in Section 6,
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on the other hand, are only shown to be stable under our definition, and it is an
open question to show that pairwise Nash stable networks exist.

When we consider the structures of socially optimal and stable graphs, much
of the interesting behavior emerges in a natural range of the parameters a, b, p,
and ¢ motivated by the following considerations. Suppose we have just two nodes
¢ and 7, and suppose that ¢ is deciding whether to link to j. If ¢ forms the link,
it receives a benefit of a but there is a probability of pq that j will fail and that
this failure will spread to 7. We want ¢ to be willing to form the link to j under
these conditions, and so we assume a > bgp. Otherwise no links will form. On
the other hand, suppose that < knew that j were going to fail, so that the only thing
protecting ¢+ from failure is the transmission probability p. Under these conditions
we do not want ¢ to form the link to j, so we assume a < bp. Otherwise nodes
will want to form as many links as possible. Analogously, suppose that ¢ knew
that any failure at 7 would definitely spread to ¢, so that the only thing protecting
1 from failure is the chance 1 — ¢ that 7 does not fail. Under these conditions we
also do not want ¢ to form the link to j, so we assume a < bq.

In our analysis, we focus on the range of parameters in which these bounds
hold by arbitrarily large constant factors. That is, we consider the case in which
p and ¢ are small, the quantity a exceeds bgp by a large amount, and in turn that
min(bp, bq) exceeds a by a large amount. Our assumption is that for a small
constant 6 > 0, we have

8 'bgp < a < 6 min(bp, bq).

For ease of future reference, we call this Assumption P(0) and refer to ¢ as the
key separation parameter in our model. Finally, we consider the case in which the
number of nodes 7 is arbitrarily large compared to these other quantities (and/or
their reciprocals).

In what follows, Sections 3 and 5 give general upper bounds on the min-
welfare for optimal and stable graphs respectively. Sections 4 and 6 give con-
structions of networks establishing the existence of certain properties: large min-
welfare for optimal graphs in the former section, and the existence of stable graphs
in the latter section. For these constructions in Sections 4 and 6, we employ the
additional assumption that p = ¢ (whereas for Sections 3 and 5 we allow arbi-
trary p and ¢). One consequence of combining the construction in Section 4 with
the upper bound in Section 3 is that when p = ¢, the ratio between the welfare
achievable in optimal and stable graphs diverges as J goes to zero.
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3 An Upper Bound on the Optimal Min-Welfare

We begin by establishing an upper bound on the min-welfare of any graph. Min-
welfare is directly related to degree and we will see that critical graphs are those in
which the average degree is close to 1/p, and thus the average direct benefit from
(1+¢)a
P

. If there is a node that can reach

links is close to a/p. Suppose that the min-welfare in a graph G exceeds
(1+¢)

many others along active-edge paths with ]r)easonable probability, then this node
experiences a large probability of failure, and hence has a sharply reduced payoff,
which will ultimately contradict our assumption that GG has large min-welfare.

Now, how do we show that some node has a reasonably high chance of reach-
ing many others on active-edge paths? There is a connection to the basic random
graph model G(n,p), in which an edge is inserted between each pair among n
nodes independently with probability p. We can think of G(n, p) equivalently as
the model in which one starts with an n-node clique and declares each edge to be
active independently with probability p, and then considers the active-edge sub-
graph. The challenge in our case is that our graphs GG are not necessarily cliques,
or even close to being cliques, and relatively little is known about adapting re-
sults from G(n, p) to the case of arbitrary underlying base graphs [3]. Fortunately,
however, we are able to prove a result that is strong enough for our purposes,
adapting techniques for analyzing connected components in G(n, p) to the setting
of active-edge subgraphs of arbitrary underlying graphs.

We begin with adapting random graph techniques to apply to a random sub-
graph of an arbitrary graph.

Then all node degrees must be at least

(3.1) Forall € > 0 there exist constants «, 3 > 0 such that the following holds.
Let H be a graph in which each node has degree at least v > j. Construct a

D
random subgraph of H by declaring each edge to be “active” with probability p.
Then for every node v € V, the number of nodes reachable from i on active-edge
paths is at least ar with probability at least 3.

Proof. Let 7 be any node in /. We analyze the process of breadth-first search
over the active edges, based on Karp’s analysis of random subgraphs of the bidi-
rected complete graph [26] and Alon and Spencer’s analysis of infinite branching
processes [4]. We first take all the nodes (if any) that ¢ can reach via active edges
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and put them in a queue. We then repeatedly delete a node j from the queue and
add to the queue all the nodes (if any) that j can reach via active edges, other than
the ones already “discovered” (added to the queue) in previous iterations. Notice,
crucially, that the outcome of the random active/blocked decision for each edge
(7,7) is only examined once in this process, when one of nodes j or j’ first comes
to the front of the queue. Thus, we can assume that the active/blocked status of
(7,7) is first determined at that moment.

For a small constant o > 0, we say that this process succeeds if at least ar
nodes are added to the queue before the queue ever becomes empty. If the process
succeeds with probability at least 3, for a constant 5 > 0, then our result follows.

Let (); be the number of nodes in the queue at the end of iteration ¢, where we
define )y = 1 to indicate that  starts in the queue. We have

Qr=Qi1 — 1+ X,

where the ”-1” is because we delete a node j; from the queue in iteration ¢ (with
J1 = 1), and X, is a random variable equal to the number of not-yet-discovered
nodes that j; can reach via active edges. (This is where it is useful to assume
that the active/blocked status of edges from j, to not-yet-discovered nodes is only
determined when j, reaches the front of the queue.) Unrolling this recurrence, we

have .
u=1

We are interested in showing that with probability at least (3, we have ); > 0 for
all ¢ from 1 until at least ar. If this is true, the search for nodes using active-edge
paths continues successfully until at least ar nodes have been discovered (added
to the queue), as required.

The expectation of X;, prior to the point at which at least ar nodes have been
discovered, can be determined as follows. The node j; has degree at least r in H,
and at most ar nodes have been discovered by the process thus far, so there are
at least (1 — a)r edges emanating from j; leading to not-yet-discovered nodes.

14+¢/2

is active with probability p, we have E [X;] > 1 + £/2. Thus, until ar nodes
have been discovered, we can think of the queue length as a random walk on the
integers with positive drift; as a result, there is a positive probability that the walk
never returns to 0, which is the result we want.

We choose « small enough that (1 — a)r > ; since each of these edges
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We can briefly verify this in more detail for our particular case as follows. Let
S, = 2221 X.,; by the Chernoff Bound, we have

2

Pr[S, <t] <PrlS, < (1—¢/4E[S)]] <e 2",

Now, the sum ) ;°, e ~376! converges; let us choose ¢, large enough that

For p sufficiently small, there is a positive probability that X, the number of nodes
1 can reach directly via active edges, is at least ¢y. It then follows that S; > ¢ for

52
all t < t,. Finally, for all £ we have Pr[S, <t | X; > t,] < Pr[S, <t] < e 27!
(as X7 > tg is negatively correlated with .S; < t); summing over ¢ we obtain

D Pr[Si <t Xy >t < 1. n

t=0

Next, we simply want to argue that if a node can reach many other nodes via
active-edge paths with reasonably large probability, then it has a large probability
of failing and hence a negative payoff. To do this, we first state a simple lemma
about the union of many independent events, and then we use this to draw the
resulting conclusion for a node’s payoff.

(3.2) Consider a collection of independent events &1, . . . , £, each of probability
p > 0. Then the probability of their union is at least min(% % np).

Proof. If p > 1 then the result follows immediately. If p < 3 and np < 2, then
we have

Pr [Ogj] > ZPr ZPrS NEjl
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Finally, if p < % and np < %, we can choose a subset S of & < n of the events
such that 2 < kp < 1. We have

Pr [U Sj] > Y Prig]- ) Prl§né]
jeS

jes jjes
k
= kp— 2
. (2)p
1 2
> /fp—i(kp)
1
= k‘p(l—§kp)
2 1 1
A== -
- 3 2 3

Now, for a node 1, let the set of nodes it can reach on active-edge paths in G be
called its active component, and let 1;(G) be a random variable denoting the size
of 7’s active component. We are ready to prove that if a node’s active component
r;(G) is large with sufficiently high probability, than the node must have negative
payoff.

(3.3) For all vo,v1 > O there exist a,0 > 0 such that when p,q < « and
Assumption P(8) holds, we have the following. If G is a graph with a node i for

which r;(G) > M ith probability at least 7, then the payoff of node i satisfies
p

m:(G) < —bq. (We note that the right-hand side is the payoff i would receive if it
had no links).

Proof. 1f i can reach at least v;p~! nodes on active-edge paths, then by (3.2), the
probability that it fails is at least min(, 27,p~"¢). Removing the conditioning on
this event, the probability it fails is at least ¢; > min(57o, 270710 'q). We also
have d; < A = c*p~ L.

If ¢; > 370, then

1
m < ad;—bg; <ac’pt — gb%

IN

1 1
dbc* — gb% =b(dc* — 570)

10
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where the last line is less than —bq for ¢ sufficiently small and g < %70.
If ¢; > 27971p~ "¢, then defining 72 = 2791, we have

ad; — bo;

ac* pt — yabgp~!

pl (@ —72¢" " byg).
P (8bg — yac" )
p (6 — 72t )bg.

Uy

IAINA

A\

Now if § < %720*_1, then 6 — yoc* ™! < —%720*_1, and so we have
T < p (06— 7 by
1

< p‘IC*(—yQC*_I)bq
1 1

= —Zyp lbg.
27217 q

Finally, if p < %72, then we have
|
M < —57P bg < —bq

as required. m

Finally, combining (3.1) with (3.3), we get an immediate consequence for the
payoffs when all nodes have large degrees.

(3.4) Forall e > 0, there exist a, 6 > 0 such that when p, q¢ < « and Assumption

1
P(0) holds, we have the following. If each node has degree at least (1+ €>, then
p
for each node i we have m; < —bq.

Proof.  For each node i € V, (3.1) implies that we have r;(G) > N with

probability at least vy, It then follows from (3.3) that 7; < —bg. m
The upper bound on min-welfare follows directly from the above claims.

(3.5) Forall e > 0, there exist a, 6 > 0 such that when p, q < « and Assumption
(1+¢)a

P(0) holds, no graph can have min-welfare greater than
p

11
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1
2
3
4
5
6
7
8 Proof. Choose o, 0 > 0 as in(3.4), and suppose by way of contradiction that there
9 1+¢)a
10 is a graph with min-welfare greater than —) It follows that every node 7 has
1 1+¢ Y
ig degree greater than . But then by (3.4) we have m; < —bgq, contradicting the

p
14 ) i ) 1+¢€)a
15 assumption that the min-welfare is greater than u |

p

16
17
8 4 Super-Critical Payoffs and Anonymous Market Struc-
20 tures
21
gg We consider networks formed under two rules: Non-anonymous market forma-
24 tion, wherein individuals are assigned links to particular other individuals, and
25 anonymous market formation, wherein the market designer chooses the degree of
26 each market participant, but the requisite number of links are formed at random.
% In this section, we will consider how the optimal networks differ under the two
29 regimes.
30 We now show that the upper bound in Section 3 can essentially be achieved,
31 in an asymptotic sense, and also consider some of the structural implications of
32 :
33 this fact.
34 To begin with, it is instructive to think about the analysis in Section 3 in terms
35 of the random graph G(k,r).! One of the central facts about G(k,r) is that in
36 a small window around probability » = 1/k, the expected size of the largest
g; connected component jumps from a constant value to a constant fraction of k.
39 This is the basic phase transition for G(k, ), and (3.1) in Section 3 is a reflection
40 of this phase transition for an arbitrary underlying graph.
41 . 14+¢)a .
42 In order for a graph to achieve payoffs of the form ( ) for some € > 0, it
jj must lie on the side of the phase transition where the active components are likely
45 to be large, proportional to 1/p. For this to be possible, it must cross the phase
46 transition by little enough that these large components do not eliminate the payoff
47 of the nodes. We say that a graph achieves super-critical payoffs if the payoft is at
48 14+¢)a . . L
49 least u for some £ > 0, and construct a family of graphs built from disjoint
50 p
51 I'Since n and p are basic parameters in our model, we adopt the different variable names k and
52 r in discussing G(k, ). Also, in keeping with standard terminology, we will often refer informally
gj to G(k,r) as “arandom graph,” as though it is a single graph rather than a distribution over graphs.
55
56
57 12
58
59
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cliques that achieves super-critical payoffs.

Some Basic Facts about G(k,7). We begin by carefully stating some quantita-
tive results about the phase transition in G(k,r) in a form that will be useful for
the analysis.

@.1) Let C; denote the component containing node i in G(k,r). If we fix some

other node j and look at the event j € C;, then we have

Prije = B[C] -

Proof.
k
Pr[j€Ci] = Y Pr[|Ci|=s]-Pr[j€C;||Ci| =5
s=1
k
= S el =
s=1
1 k
= EZs—lPr |Ci| = s]
o :
- %ZSPr Cil = 5] = Y _Pr(|Ci| = s])
s=1 s=1
1
= —.RElC.I -
- EllG]
| |

Thus, the probability a node belongs to 7’s component is essentially proportional
to the expected size of i’s component.

The following pair of standard results describe the well-known contrasting
behavior of component sizes on opposite sides of » = 1/k (see Chapter 5 of
[25]): a random graph with expected degree less than 2 consists of many small
components, while above expected degree 2 a large fraction of the nodes all belong
to a single giant component.

13
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@.2) Fixx < 1, and consider the component of a given node i in G(k,r), where
kr = x. Then for k sufficiently large, we have the following:

(i) The probability that i’s component exceeds size c decreases exponentially
in c.

(ii) Consequently, the expected size of i’s component is bounded by a constant
¢ = c(x), independent of k, and the maximum size of any component in the
graph is O(log k) with high probability.

@.3) There is an increasing function 6 : [1,00] — |0, 1] that is continuously
differentiable on (1,00) and continuously differentiable from the right at v = 1,
with 0(1) = 0 and 0'(1) a positive real number, such that the following holds. Fix
x > 1land e > 0, and consider G(k,r), where kr = x. Then for k = k(x,¢)
sufficiently large, we have the following:

(i) With probability 1 — exp(—k), there is a component of size between (1 —
£)0(x)k and (1 + €)0(x)k.

(ii) Conditioned on not belonging to the giant component in (i), the probabil-
ity that a node i belongs to a component of size greater than c decreases
exponentially in c.

(iii) Consequently, the expected size of i’s component is between (1—¢)*(0(x))*k
and (1 + €)*(0(z))*k + c for a constant ¢ = ¢(x).

Point (iii) follows from (i) and (ii) by considering that with probability (1+¢)6(z),
node 7 belongs to a component of size (1 £ ¢)0(x)k, and with the remaining
probability ¢ belongs to a component of expected size at most c.

A Family of Graphs with Super-Critical Payoffs. For parameters £ and s, let
F, (k) denote the disjoint union of s cliques of size k.

1
4.4) When p = q, the graph F (ﬂ) for arbitrary s > 1 and a small
p

constant vy > 0, achieves super-critical node payoffs.

14
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Proof. A useful feature of the special case p = ¢ is that we can represent the
spread of failures in Fy (k) in the following equivalent way. We imagine a single
“failure node” ¢* associated with each clique, and attached to each real node in the
clique, resulting in a clique on £ + 1 nodes. There is a transmission probability p
on the edges from ¢* to each node in its clique, as there is on all other edges. In
this view, a node ¢ fails if it is in the same active-edge component as ¢*; in other
words, the probability ¢ fails is the probability it belongs to the same component
as a given fixed node i* in G(k + 1,7). By (4.1) we know this probability is
1 1
ir1 BlGl -4
where C; denotes the active-edge component of 4.
With p = ¢, we define o to be the ratio a/bp = a/bg; by assumption P (), we
have o < 9, and we assume as usual that ) and p are sufficiently small. We let the
number of nodes £ in each clique be (1 + ) /p for a small value 7 > 0 that we

determine below.
First, (4.3)(iii) implies that the probability ¢; that ¢ fails satisfies

(1 —0)(O(1 +7))* < ¢ < (1+e0)(O(1 +7))*

for a constant ¢, that goes to 0 with p. Thus, the payoff to a node i is

. zﬂﬁiﬁ—(mﬂgfﬂ)u+wwu+wf

p
_ ﬂ%;ﬁ-wu+au+7»0+aMWl+ﬂV
> G“Tﬂ) — 2b(0(1 4+ 7))?
_ w —2b(0(1 + 7))’
= b[o(1+7) —2(6(1+7))°].

Now, let
ho(x) = ox —2(6(x))?,
so that
mi > bho(1 4 7).
We have

hy(z) = o — 40(x)0' (x).

15
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Since #(1) = 0 and ¢'(1) is a positive real number, we have k(1) = o, and hence
the function hy(z) is strictly increasing over the interval x € [1, wy| for a constant
wy depending on . Since ho(1) = o, we have hy(wg) = o(1 + o) for a constant
0o > 0 depending on o.
Returning to the lower bound on 7;, we choose v = wy — 1, and so
a(l+ op)

T 2 bho(?ﬂo) = o'ﬁp : U(1—|—00) = T

Consequently, the payoff to each node exceeds a4 by a multiplicative factor greater
p

than 1 that dependsono. m

Comparison to an Anonymous Structure. The construction above achieves
super-critical payoffs by allowing nodes to cluster into communities of an ap-
propriate size, and thus to insulate themselves from failures originating in other
communities. Drawing on a market motivation, it is interesting to ask whether
super-critical payoffs can be achieved through structures that are based instead
on anonymous interaction, where nodes can specify the number of partners they
want to connect to, but have no control over who these partners are — the partners
are chosen uniformly at random from the population. As we now show, in fact,
anonymous interaction structures are not able to yield super-critical payoffs.

To define these anonymous structures precisely, we use the configuration model
for random graphs [12, 13, 31]. Each of the n nodes is assigned %k “half-edges”;
these half-edges are then matched up uniformly at random into pairs, with each
matching pair of half-edges forming an edge in the resulting random graph. Note
that the pairing may cause two edges to go between the same pair of nodes, or for a
node to form an edge that loops to itself; we remove these parallel edges and self-
loops to obtain the final graph. Failures then propagate in this graph according to
our model, spreading from root failures along active-edge paths.

With high probability, the local neighborhood of a node in this random graph
will have a particularly simple structure, as follows. For node 4, define B(i,¢) to
be the ball of radius ¢ centered at ¢, i.e. the induced subgraph of GG on the set of all
nodes reachable from ¢ in ¢ or fewer hops. For fixed integers k, ¢ and any node 7,
the probability that B(i, ¢) is a tree of depth ¢ and degree k (i.e. one whose internal
nodes all have degree k£ and whose leaves are all at distance ¢ from the root) tends
to1lasn — oo.

For our analysis, we will therefore connect the propagation of failures in the
configuration model to a related, simpler model based on an infinite k-regular tree.

16
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In particular, let 5(k,r) denote the distribution over trees obtained by starting
with an infinite k-regular tree and including each edge in the random tree with
probability . We can think of the resulting tree as the outcome of a branching
process with branching factor rk, and use this to get a pair of results analogous to
(4.2) and (4.3) (see Chapter 2 of [16]).

@.5) Let x < 1, and consider a tree generated from B(k,r) where kr = .

(i) The probability that the tree’s size exceeds size c decreases exponentially in
c.

(ii) The expected size of the tree is bounded by a constant ¢ = c(x).

@.6) There is an increasing function T : [1,00] — [0, 1] that is continuously
differentiable on (1, 00) and continuously differentiable from the right at v = 1,
with 7(1) = 0 and 7'(1) a positive real number, such that the following holds.
Consider a tree generated from B(k,r), and let 1, (k) be the probability that it
has an infinite node set.

(i) If kr > 1, then ¢, (k) > 7(kr).

(ii) For all integers co,c1 > 1 and k > cocy /1, we have
Pr(k) >1— (1 =1 (co/r))™ >1— (1 —7(co))"".

(iii) Conditioned on not having an infinite node set, the probability that the tree’s
size exceeds c decreases exponentially in c. Its conditional expected size is
thus bounded by a constant ¢ = ¢(x).

Proof. Part (iii) of the claim is a standard result; parts (i) and (ii) are formulated
in ways that are adapted to our present purposes, and we give proofs of them here.
First we prove (i). The probability that the tree is infinite is the unique solution
to 2 = 1 — (1 — pz)" in the interval (0, 1). Define 7 to be the unique solution to
7 =1 — e ® in the interval (0, 1). Writing fo(v) = (1 — pv)* and f,(v) = e~ %,
we have
fo(v) = (1 = pv)t = (1= po)*" < e = fi(v).

Thus, the curve y = 1 — f(v) lies above the curve y = 1 — f;(v) on the interval
(0,1), and so y = 1 — fo(v) intersects the line y = v to the right of where

17
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y = 1 — fi(v) intersects it. It follows that z > 7, and hence we can take 7 = 7(x)
as our function.

.. . coC )
To prove (ii), consider k' = 2L subtrees of the root in the complete k-ary
r

tree (before edges are randomly included), and group them into c¢; blocks of “©

subtrees each. For any block, if we consider just the root and the subtrees inra
single block, the probability that the resulting random tree is infinite is at least
¥(co/r) (since the root has this degree in the restricted tree, and the nodes in the
subtrees have degree k > ¢/r). The tree is infinite if it is infinite in any of the
blocks, and so the probability it is infinite is at least

1— (1=, (co/r)" >1—(1—7(co))*
where the latter inequality follows directly from (i). m

We now want to show an upper bound on the node payoffs in the anonymous
structure that contrasts with the payoffs achievable in (4.4).

@4.7) When each node forms k links in the anonymous structure, for any k =
1+

p

Proof.  Clearly this is true for 3 < 0, so we consider the case of an arbitrary
6> 0.

When the random graph G is sampled using the configuration model, for any
node i the probability that the ball B(i, () is a tree of degree k and depth ¢ is
1—o0(1) as n — oo. Applying 4.6(i), the probability that i belongs to a active path
of length / is at least 7(1 + ) — o(1); for n sufficiently large, this probability is
at least 7(1 4+ (3/2). In the event that 7 belongs to a active path of length /, it fails
with probability at least 1 — (1 — ¢)°. By taking ¢ large enough, we may assume
that 7(1 + 3/2)(1 — (1 —q)*) > 7(1+ 3/3) and thus node i fails with probability
at least 7(1 4 3/3).

Thus, if n is sufficiently large we have

L )
— bo(1+5) (1—7(1+§))—m(1+§>_

hi(z)=o(1+32)(1—7(1+2)—7(1+a),

, the node payolffs can be at most a/p as n — oc.

Let

18
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so that m; < bh1(3/3). By (4.6)(ii), we know that for y > 4, we have
() 2 1= (1= 7)Y 2 1 (1= )"
We can thus choose w; > 4 such that
T(y) 21— —

forally > wy. If 1 + x > wy, we have

1+z
24 x

hi(z) < o(1 + 3x) (2;3) <0,

1 1
provided o < 3 Now, if 0 < 3 SUPye(Lu] 7'(y), then we have the following for
all z € [0,w; — 1]:

hi(z) = 30(l—=7(142))— (0 +30x+1)7'(1+x)
< 3o—-7'(1+2)<0.

Thus, for all x € [0,w; — 1], we have hq(z) < hy(0) = o. Since we also have

hi(z) < 0 for z > wy — 1, it follows that hy(z) < o for all x > 0.

I+5
p

1
links. Since m; < a when nodes form at most £ < — links, it follows that for any
p p

. c .. a . 1 .
constant ¢, if nodes form — links then 7; < — provided n is sufficiently large as a
p p

Thus, for any 3 > 0, we have m; < bo = — when each node forms k =

SRS

function of c. m

Clustered vs. Anonymous Markets. It is instructive to consider why a union
of disjoint cliques was able to achieve qualitatively higher payoffs than an anony-
mous interaction pattern. In particular, the nodes in the cliques we constructed are
linking at a degree beyond the phase transition point, whereas attempting to do
this in the anonymous structure has negative effects on the payoff.

A quantitative way to think about the contrast is to observe that in the union
of cliques, the failure probability of a node ¢ was approximately controlled by a
conjunction of two events: ¢ belonging to the giant component of the clique, and
the “failure node” ¢* also belonging to the giant component of the clique. As a
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result, the failure probability involves a term of the form (6(z))?, and this has a
derivative of 0 at z = 1 — hence, it is safe to increase x a bit past 1 without
blowing up the failure probability. On the other hand, in the anonymous structure,
once ¢ belongs to the giant component, it fails with overwhelming probability;
thus, 4’s failure probability involves a term of the form 7(x), which has a strictly
positive derivative at x = 1, and this makes it unprofitable to increase x even
arbitrarily little past 1. This is the fundamental difference between the behavior
of the two kinds of structures in the region just past the phase transition.

5 Upper Bound on the Min-Welfare of Any Stable
Network

We now show that any stable graph must have small min-welfare. (We defer the
proof that stable graphs exist to the next section.) To prove an upper bound on the
min-welfare, we proceed as follows. Recall that we assumed that A is an upper
bound on the number of links any one node is able to form. So nodes of degree
A cannot form further edges. We first show, in (5.1), that if two nodes 7 and j
both have degree less then the maximum degree A and are not connected by an
edge, then at least one of them must have a large failure probability — this is what
dissuades the other from forming the link.

It follows that in a stable network, all low-degree nodes of low failure proba-
bility must form a clique, since any unlinked pair of them would have an incentive
to connect. If the number of nodes n is sufficiently large, we can then find a node
¢ that is far from this clique. Hence node ¢, and every node within a large number
of steps of 7, must have a large degree; we can thus apply an analogue of (3.1) to
show ¢ has a large failure probability, and this will conclude the proof.

(5.1) Suppose Assumption P(6) holds. Let G be a stable graph, and let i and j
be two nodes of G such that (i, j) is not an edge of G, and the degrees of i and j
(1 —=29)a

are each strictly less than A. Then we have max(¢;, ¢;) > m

Proof.  Since the degrees of ¢ and j are each strictly less than A, at least one of
i or j does not have a strictly higher payoftf if the edge (¢, j) is included; let us
assume it is node i. Thus, if G’ denotes the graph G with the edge (¢, j) included,
then we have m;(G") < m;(G).
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We imagine evaluating failure in G’ by first making all random root failure de-
cisions and all random active/blocked decisions in GG, then determining which ad-
ditional nodes fail, and finally deciding whether the edge (i, j) is active or blocked
and determining further failures. Let ®;(G) be the event that ¢ fails in G before
(4, 7) is examined, and let F;;(G) be the event that (7, j) is active and j fails in G.
Then (I)Z(G/) = (I)z(G) U f'ij (G), SO

Pr[®(G")] < Pr([®;(G)] + Pr [F;(G)].
Since Pr [F;;(G)] = p¢p;, we have
9i(G') — $i(G) < pg;(G).

Now,
mi(G') = a(d; + 1) — (ad; + a + b)¢i(G),
<

so the fact that 7;(G") < m;(G) implies that
a(d; +1) — (ad; + a +0)¢;(G') < ad; — (ad; + b)¢i(G)
and hence
< (adi +a+b)(6:i(G') = ¢i(@)) + agi(G)
< (ad; +a+b)pg;(G) + agi(G)
< (1406c)bpg; (G) + obpei(G),

where the last line follows from the fact that a < dbp and d; + 1 < c*p~L.
a
Now, if ¢;(G) > b we are done. Otherwise, we have
D

a < (1+c")bpp;(G) + da,

SO
(1 =d)a < (14 6c")bpg;(G),
and hence (18
—d)a
V= ar s

Following our informal plan above, we note that a stable graph might have
some low-degree nodes, so we require the following direct adaptation of (3.1),
which applies to nodes that are far from all low-degree nodes.
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(5.2) Forall € > 0 there exist constants «, 3 > 0 such that the following holds.

+ée .
. Leti be
p

1
a node of distance greater than — from A. Construct a random subgraph of H by
p

1
Let H be a graph, and let A be the set of nodes of degree less than

declaring each edge to be “active” with probability p. Then the number of nodes
reachable from i on active-edge paths is at least aup~! with probability at least 3.

Proof.  Consider the node-discovery process described in the proof of (3.1),
starting from the node 7, and recall that we declare it to succeed if it adds at least

a .
— nodes to the queue before it ever becomes empty, for the small constant o < 1

p

used there. The event that the process succeeds depends only on the active/blocked
.. i . . (07 .

decisions for nodes within distance — of 7, and all such nodes have degrees at least

p
1
—+ 6; hence, for this whole time we can apply the argument used in (3.1). =
p

Finally, we conclude the proof strategy outlined at the beginning of the section,
resulting in our upper bound.

(5.3) Letn > A®2 Forall € > 0 there exist o, § > 0 such that when p, ¢ < o
and Assumption ‘P(0) holds, no stable graph can have min-welfare greater than
ea

p
Proof.  Suppose by way of contradiction that G = (V, E) is a stable graph in
which 7, > == forall i € V.
p
Let A C V denote the set of all nodes 7 of G for which d; < A and ¢; <
(I=19)a

(14 0c*)bp
that there must be an edge between each pair of nodes in A — in other words, A
induces a clique in G.

Let B C V denote the set of all nodes in GG of degree equal to A. For any

. Since any node in A is able to form an additional edge, (5.1) implies

, (I1=¥98)a . ea ,
eV —-(AUB),weh i > —— S ;> —b tion,
i ( ), we have ¢ 0100 )p ince ) y assumption, we
have -,
%gadi—b@gadi—g
D (14 6c*)p

and hence

d.>£+1;6
Tp (1+68c)p
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+é1

1
For 0 sufficiently small, the right-hand side of this inequality is at least

p
for a constant £; > 0. Choosing € = min(eq,¢* — 1), it follows that all nodes
+ &9

p
Now, forany j € A, there are atmost 1 + A + A2 + ... £ A2 < ABH2 o
nodes within distance A + 1 of j, and hence within distance A of some node in
A. Hence there is some node i € V at distance greater than A > p~! from A. For

1
1 € V — A have degree at least

this node ¢, (5.2) implies that r; > n with probability at least 7, for constants

Y0,71 > 0. By (3.3), it follows that m; < —bq, contradicting the assumption that
the min-welfare of G is greater than g—a. ]

6 Existence of Stable Networks

Finally, we show that there exist arbitrarily large stable networks. As with our
constructions in Section 4, we will consider graphs that consist of disjoint cliques

1
— graphs F (k4 1) with k = i

7 for an appropriately chosen v > 0.

The challenge is to find a k£ where the union of cliques is stable, and this re-
quires some care for the following reason. Stability requires that no unlinked pair
of nodes wants to form an edge — this can be achieved by making k sufficiently
large that creating a link between two cliques brings about too large an increase
in failure probability to the nodes forming the link. Unfortunately, making k large
also raises the failure probability of each node ¢ based simply on its current set
of edges — so we must not raise k£ so high that a node ¢ wants to drop all its
existing links. The crux of the problem is thus the following: is there a % that is
large enough to discourage the formation of cross-clique links, but not so large
that nodes will drop their current links? The main part of our analysis will be to
show that such a k exists.

As in Section 4, we consider the case in which p = ¢; defining o to be the
ratio a/bp = a/bq, we have o < 9, and we assume ¢ and p are sufficiently small.

147
p

, the

6.1) Given a,b,p, q as above, there exists v > 0 such that with k =
union of cliques F (k + 1) is stable.

Proof. For the analysis of the construction, we will work with the function 6(x)
defined in (4.3), as well as the related function A\(z) = z [1 — (6(x))?]. Observe
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that A\(1) = 1, since #(1) = 0. Taking derivatives, we have
N(z) = [1=(0(x))*] — 220(2)0' (),
and hence \'(1) = 1. Thus we have

(6.2) For some constant w > 1, the function \(x) is strictly increasing on the
closed interval [1,w).

As in Section 4, we analyze the failure process by attaching a single “failure
node” ¢* to each clique. The probability ¢; that node : fails is the probability that ¢
belongs to the same active-edge component as i* in the (k + 2)-node clique where
1™ 1s added to 7’s clique. The payoff to node 7 is

m; = ak — (ak + b)¢;.

If © drops all its edges, it receives a payoff of —bg < 0. If 7 forms an edge to a
node 7 in another clique, it receives an added benefit of a, and incurs an increased
expected loss of at least

(ak +D)poi(1 — ¢y).

There are four terms here; the second and third represent the chance that j’s failure
(which is ¢; = ¢; by symmetry) spreads to ¢, and the fourth term represents the
fact that this only matters if ¢ had not already failed in its own clique. In more
detail: the payoff to node i before the addition of this edge is ak — (ak + b)¢;, and
afterward it is

a(k +1) — (ak + a +b)(¢i + poi — pe7),

so the increase in payoff is less than a — (ak + b)po; (1 — ¢;).
Now, what is ¢;? By (4.1) and (4.3), we have

(1 —e)*(0(p(k +2)))* < ¢ < (1+1)*(O(p(k +2)))* +cip

for a constant €, that goes to zero as p does. By choosing a slightly larger <5, and
using the fact that 6(-) has a bounded first derivative, we have

(1= e2)(0(1+7))" < ¢ < (L +e2)(0(1+ 7)),

with €5 going to zero as p does.
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In the expression ¢;(1 — ¢;), provided the upper bound (1 +&5)0(1 + )% < %,
we have

¢i(1 — ¢i) (1 =&)L +7)* [1 = (1 —e2)(0(1 +7)%)]

> 1
> (1= e)(0(1+7)* [1 - (01 + )]
Since a = obp and k = (1 + v)/p, if we write o1 = o(1 + ), then we have
ak = o(1 + )b = o,b. Now we have

(ak + b)pkoi(1 — ¢;)

=b(1+ 01)(1+7)di(1 — ¢)

> (14 01)(1+7)(1 —e2)(0(1 +7))* [1 = (0(1 +7))?]
b1+ 01)(1 — 22) ML+ 7)(0(1 + 7))

fl(,}/)7

where the last line is taken as the definition of f; (7).

Observe that f;(0) = 0, and by (6.2), there is an z; < 1 such that the function
f1(z) is strictly increasing for x in a closed interval [0, z1].

We also have

1=

(ak + b)o; (1 + 01) (1 + e2)(0(1 + 7))>

fo(7),

where once again the last line is taken as the definition of fy(). We see that fy(x)
is also strictly increasing in [0, 1] (and beyond this interval as well).

Now, since A(1) = 1 and \(-) is monotone increasing on [0, z1], for any small
enough £, > 0, there is a unique xy < z; such that

1> IA

1"‘62

)\(1—{—1’0):1 5.
—c2

Moreover, fi(z) > fo(z) for all x € (z0, x1], and the value of z( goes to 0 as &9
goes to 0. Also, we observe that for v € (zg, 1], we have

fi(Y) > fo(v) = b(0(1 4 7))

Now, we choose o small enough that 20 < (6(1 + z;))%. We then choose
g9 small enough (by choosing p small enough) so that fi(xg) = fo(xo) < bo.
Finally, let g(v) = ak = (1+7)bo. Since bo < g(vy) < 2bo for all v € (zg, x1], it
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follows that fy(zo) < g(xo) but g(z1) < fi(z1). Therefore, since fy(-) and fi(+)
are continuous functions, there exist v*,v** € (x¢, z1] for which g(v*) = f1(v*)
and g(7™) > fo(7y™"), with y* <™.

We choose any v € [y*,**] as the value of v we use to define k. With this
value of k, the payoff ¢ receives from keeping all its edges is

T = ak — (ak +b)g; > g(7) — fo(v) >0,

and hence ¢ prefers to keep its edges rather than deleting all of them. The change
in payoff 7 receives from linking to a node j in a different clique is less than

k™! (ak — (ak + b)pke;(1 — ¢;))
<k ak — b(1 4 01)(1 — e2)A(1 +7)(0(1 + 7))?]
=k (g(v) = 1(7))
<0,

and hence 7 will not form this link. Thus, the graph F (k + 1) is stable. m

A Stable Graph with Unequal Clique Sizes. We observe that starting with a
set of disjoint cliques F (k + 1), we can create a different stable graph by adding
one additional clique I' of size ¢ < k£ + 1 on a disjoint set of nodes. The size
¢ can be chosen in any way such that the payoffs of nodes in the clique I' each
exceed —bq. In this way, nodes in I will not want to drop their incident edges.
Moreover, there is still no edge that can form so as to improve the payoffs of both
its endpoints, since any edge involving a node ¢ in I' must have its other end at a
node j in one of the cliques of size k£ + 1, in which case the argument for (6.1)
shows that 7 would not want to form the link.

In particular, this means that we can take ¢ to be a clique yielding the maximum
possible node payoff over all clique sizes, as in Section 4; this shows how certain
nodes in a stable graph can have higher payoffs than others.
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