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1. Introduction

Economic outcomes depend not only on market processes but also on
political processes. Economists have therefore a long-standing interest in
political decision making. Political decisions are often made through voting
procedures. It is interesting to investigate which voting procedures perform
well in the sense of helping to achieve some measure of economic welfare.
One methodology that can be used to address this question is the theory of
mechanism design. In this paper we consider the design of voting rules from
the perspective of the theory of mechanism design.

Our starting point is a classic result on voting rules, due to Alan Gibbard
[11] and Mark Satterthwaite [15]. According to this result the only dominant
strategy voting rules for three or more alternatives are dictatorial voting
rules. Gibbard and Satterthwaite assumed the number of alternatives to
be finite. Preferences were modeled as complete and transitive orders of
the set of alternatives. For every voter the range of relevant preferences
was taken to be the set of all possible preferences over the alternatives (the
full domain assumption). Gibbard and Satterthwaite then asked whether
it is possible to construct a game form1 that determines which alternative
is chosen as a function of the strategies chosen by the voters, such that
each voter has a dominant strategy whatever this voter’s preferences are. A
dominant strategy was defined to be a strategy that is always a best reply to
each of the other voters’ strategy combinations. Gibbard and Satterthwaite
showed that the only game forms that offer each voter for all preferences a
dominant strategy are game forms that leave the choice of the outcome to
just one individual, the dictator.2

The interest in dominant strategy game forms is motivated by the fact
a dominant strategy is a prediction of a rational voter’s behavior that does
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1We use the terms game form and mechanism synonymously.
2The literature that builds on Gibbard and Satterthwaite’s seminal work is voluminous.

For a recent survey see Barberà [1].
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not require any assumption about the voter’s beliefs about the other voters’
strategy choices. If a voter does not have a dominant strategy, then that
voter’s optimal choice depends on her beliefs about other voters’ behavior.
These beliefs in turn may be derived from beliefs about other voters’ pref-
erences. It seems attractive to bypass such beliefs, and to construct a game
form in which a prediction can be made that is independent of beliefs.

On closer inspection, this argument can be seen to consist of two parts:

(A) The design of a good game form for voting should not be
based on specific assumptions about voters’ beliefs about each
other.
(B) A good game form for voting should allow us to predict
rational voters’ choices without making specific assumptions
about these voters’ beliefs about each other.3

These two parts are logically independent. Part (A) seems more convinc-
ing: often voting schemes are constructed long before the precise context in
which they will be used is known. It seems wise not to make any special as-
sumptions about agents’ knowledge about each other. Part (B) can perhaps
be motivated by the idea that game forms in which voters’ behavior can
be uniquely predicted independent of their beliefs are simpler than game
forms in which each voter’s optimal choice depends on the voter’s beliefs
about other voters, but this point seems less compelling. The implicit idea
of simplicity is just one of several conceivable notions of simplicity.

In this paper we present an investigation of the theory of voting rules
that is based on the first part of the two part argument described above,
but not on the second part. In other words, we examine game forms for
voting without making assumptions about voters’ beliefs about each other,
but we do not restrict attention to game forms for which voters’ equilibrium
strategies are independent of voters’ beliefs. Using the terminology of game
theory, the fact that we do not make any assumptions about voters’ beliefs
about each other is reflected by the fact that we analyze any proposed game
form for all possible type spaces. For each type space we look for a Bayesian
equilibrium of the given game form for that type space.4 However, we do
not require each voter’s choice, for given preference of that voter, to be the
same for all type spaces.

Our main finding is that a mechanism designer who evaluates voting rules
using the Pareto criterion, or a utilitarian welfare function, can improve
on dictatorial mechanisms, even when not making any assumption abut
voters’ beliefs about each other. The fact that this result is true even if the
mechanism designer only relies on the Pareto criterion appears paradoxical.

3Blin and Satterthwaite [2] emphasize the interpretation of the Gibbard Satterthwaite
theorem as a result about voting procedures in which each voter’s choice depends only on
their preferences, and not on their beliefs about others’ preferences.

4For the definitions of type space and Bayesian equilibrium see Fudenberg and Tirole
[10, pp. 213-215].
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How can one achieve a Pareto improvement on dictatorship? To explain, we
need to describe the set-up of our paper in more detail.

In order to be able to use the notion of Bayesian equilibrium we use a
framework that is slightly different from the framework that Gibbard and
Satterthwaite used. We model voters’ attitudes towards risk, adopting the
assumption that voters evaluate risky prospects according to von Neumann
Morgenstern utility theory. It then seems natural to allow voting rules to
map profiles of von Neumann Morgenstern utility functions into probabil-
ity distributions over outcomes. The first question that arises is whether a
version of Gibbard and Satterthwaite’s theorem holds for the setting just de-
scribed. This question has been answered affirmatively by Aanund Hylland
in 1980 in the unpublished [12]. When voters have von Neumann Morgen-
stern utilities, and lotteries are allowed as outcomes, then the only game
forms that offer each agent always a dominant strategy, and that pick an
alternative if it is unanimously preferred by all agents, are random dicta-
torships.5 In random dictatorships each voter gets to be dictator with a
probability pi that is independent of all preferences. If voter i is dictator,
then the outcome that voter i ranks highest is chosen.

We can now state the two main results of this paper. Both results address
whether there are game forms such that for all finite type spaces, there is at
least one Bayesian equilibrium of the game form that yields all voters’ types
the same expected utility, and in some type spaces, for some voters’ types,
strictly higher expected utility than random dictatorship. Obviously, the
answer to this question can be positive only when each voter’s probability
of being dictator is strictly less than one. In our first main result we show
that in this case the answer to our question is indeed positive, provided that
we consider interim expected utility, that is, each voter’s expected utility
is calculated when that voter’s type is known, but the other voters’ types
are not yet known.6 If an ex post perspective is adopted instead, that is, if
voters’ expected utility is considered conditional on the vector of all voters’
types, then no voting game form Pareto improves on random dictatorship.
Indeed, there is no game form that increases the sum of players’ expected
utilities. This is our second main result. Our first main result thus indicates
that a robust analysis of voting schemes can lead to more positive results
if the requirement that voters’ optimal strategies are independent of their
beliefs is abandoned. Our second main result shows that such positive results
are only available for some specific welfare criteria and not for others.

Our approach is related to Bergemann and Morris’ [4] work on robust
mechanism design. As we do, they consider Bayesian equilibria of mech-
anisms on all type spaces. Bergemann and Morris seek conditions under
which the Bayesian implementability of a social choice correspondence on

5This result is Theorem 1* in Hylland [12]. It is also Theorem 1 in Dutta et. al. [8]
(see also [9]) where an alternative proof is provided. Another proof is in Nandeibam [14].

6The notions of interim and ex post efficiency are due to Holmström and Myerson [13].
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all type spaces implies dominant strategy implementability (or, more gener-
ally, implementability in ex post equilibria). The conditions that they find
apply to separable environments the prime example of which are environ-
ments in which each agent’s utility depends on some physical allocation, and
this agent’s monetary transfer. Bergemann and Morris point out [4, Sec-
tion 6.3] that in non-separable environments, such as environments without
transferrable payoffs considered by Gibbard and Satterthwaite, dominant
strategy implementability may be a stronger requirement than Bayesian im-
plementability on all type spaces.7 Bergemann and Morris do not consider
the problem of comparing different mechanisms from an efficiency or welfare
point of view. Such comparisons are a focus in our work.

The approach of this paper are also closely related to Smith [16] who is
concerned with the problem of designing a mechanism for public goods. Like
we do in this paper, Smith considers the performance of different mechanisms
on all type spaces. He focuses on an ex post perspective, and demonstrates
that a mechanism designer can improve efficiency using a more flexible mech-
anism than a dominant strategy mechanism. In our paper, by contrast, when
considering the ex post perspective, we find that no mechanism can improve
on dominant strategy mechanisms.

The spirit of our work in this paper is also related to Börgers [5] who
showed in the Gibbard-Satterthwaite framework the existence of mecha-
nisms for which the outcomes that result if all players chose a strategy from
their sets of undominated strategies are Pareto efficient, and in a sense de-
fined in that paper less biased than the outcomes of dictatorship. The set
of undominated strategies is equal to the set of expected utility maximizing
strategies that a rational agent might choose if one considers all possible be-
liefs. Thus, implicitly, [5] considered implementation on all type spaces with
belief-dependent strategies, and contrasted this with Gibbard and Satterth-
waite’s dominant strategy requirement. However, Börgers used a framework
in which agents’ preferences were modeled using ordinal preferences rather
than von Neumann Morgenstern utilities. Moreover, his approach can be
considered an implementation approach, as he considered all undominated
strategies, whereas our approach here is a mechanism design approach in
the sense that we study for every type space some equilibrium, but not all
Bayesian equilibria. We leave the further exploration of the implementation
approach in our framework to future research.

Below, in Section 2, we explain the model and the definitions used in this
paper. In Section 3 we explain the welfare criteria that we use to evaluate
different game forms. In Section 4 we adapt Hylland’s theorem on random
dictatorship to our setting. In Section 5 we present our two main results.

7The discussion paper version [3] of Bergemann and Morris [4] includes a general char-
acterization of Bayesian implementability on all type spaces, however we do not make use
of this characterization.
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Section 6 concludes. The proof of the second of the main results is in an
Appendix.

2. The Voting Problem

There are two agents: i ∈ {1, 2}.8 The agents have to choose one alter-
native from a finite set A of alternatives. We assume that A has at least
three elements. The set of all probability distributions over A is ∆(A),
where for δ ∈ ∆(A) we denote by δ(a) ∈ [0, 1] the probability that δ as-
signs to alternative a. The two agents are commonly known to be expected
utility maximizers. We denote agent i’s von Neumann Morgenstern util-
ity function by ui : A → R. We assume that each agent’s von Neumann
Morgenstern utility function is normalized such that mina∈A ui(a) = 0 and
maxa∈A ui(a) = 1. We also assume that a 6= b⇒ ui(a) 6= ui(b), i.e., there are
no indifferences. We define the expected utility for probability distributions
δ ∈ ∆(A) by ui(δ) =

∑
a∈A ui(a) · δ(a).

A mechanism designer has a ranking of the alternatives in A that may
depend on the agents’ utility functions. We shall be more specific about
the designer’s objectives later. The mechanism designer does not know
the agents’ utility functions, nor does she know what the agents believe
about each other. To implement an outcome that potentially depends on
the agents’ utility functions the mechanism designer asks the agents to play
a game form.

Definition 1. A game form G = (S1, S2, x) consists of:

(i) a non-empty finite strategy set Si for each agent i ∈ {1, 2};
We define: S ≡ S1 × S2.

(ii) an outcome function x : S → ∆(A).

To make the exposition in this paper easier, we require in Definition 1
that the strategy sets are finite. However, our results will also hold when
game forms are allowed to have infinite strategy sets.

Once the mechanism designer has announced a game form, the two agents
choose simultaneously and independently their strategies. Because the agents
don’t necessarily know each others’ utility functions or beliefs, this game may
be a game of incomplete information. A hypothesis about the agents’ utility
functions and their beliefs about each other can be described by specifying
a type space.

Definition 2. A type space T = (T1, T2, π1, π2, u1, u2) consists for each
i ∈ {1, 2} of:

(i) a nonempty, finite set Ti of types;

We write ∆(Ti) for the set of all probability distributions over Ti.

8We restrict attention to only two agents for simplicity. We conjecture, but have not
yet proven, that all our arguments extend to the case of more than two agents.
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(ii) a belief function πi : Ti → ∆(Tj) (where j 6= i);

(iii) a utility function ui : Ti ×A→ [0, 1].

We write πi(ti)[tj ] for the probability that type i assigns to player j being
type tj (where j 6= i). We write ui(ti)[a] for the utility that ui(ti) assigns
to a.9 The utility function satisfies for both i ∈ {1, 2} and all ti ∈ Ti the
assumptions introduced earlier:

(a) min
a∈A

ui(ti)[a] = 0 and max
a∈A

ui(ti)[a] = 1;

(b) ui(ti)[a] 6= ui(ti)[b] whenever a 6= b.

In this definitions beliefs are purely subjective. There may or may not be
a common prior for a particular type space. Different agents’ beliefs may
be incompatible with each other in the sense that one agent may attach
probability one to an event to which another agent attaches probability
zero. Observe also that we assume type spaces to be finite. We thus avoid
technical difficulties associated with infinite type spaces.

We assume that the mechanism designer has no knowledge of the agents’
utility functions or their beliefs. Therefore, the mechanism designer regards
all type spaces as possible descriptions of the environment in which agents
find themselves. We denote the set of all type spaces by Υ.

The mechanism designer proposes to agents how they might play the
game. He might propose to agents to randomize. For i = 1, 2 we denote by
∆(Si) the set of all probability distributions on Si. For the agents to accept
the mechanism designer’s proposal, he must propose a Bayesian equilibrium.
Because the mechanism designer does not know the true type space, he has
to propose a Bayesian equilibrium for every type space.

Definition 3. A Bayesian equilibrium of game form G for every type space
is a pair (σ1, σ2) such that for every i ∈ {1, 2}:

(i) σi is a family of functions (σi(T ))T ∈Υ where for every T ∈ Υ the
function σi(T ) maps the type space Ti corresponding to T into ∆(Si).

We write σi(T , ti) for the mixed strategy assigned to ti ∈ Ti, and σi(T , ti)[si]
for the probability that this mixed strategy assigns to si ∈ Si.

(ii) σi(T , ti) maximizes the expected utility of type ti among all mixed
strategies in ∆(Si), where expected utility for any mixed strategy σi ∈
∆(Si) is:

(1)
∑
tj∈Tj

∑
s1∈S1,s2∈S2

ui(x(s1, s2)) · σi[si] · σj(T , tj)[sj ] · π(ti)[tj ],

where j 6= i.

9Observe that we suppress in the notation the dependence of πi and ui on the type
space T . We are not aware of any confusion that might arise from this simplification of
our notation.
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A restrictive requirement for the Bayesian equilibria that the mechanism
designer proposes, and that is implicit in the work on dominant strategy
mechanism design, is that equilibria be belief independent.

Definition 4. A game form G and a Bayesian equilibrium of G for every

type space, (σ1, σ2), is belief independent if for all i ∈ {1, 2}, T , T̃ ∈ Υ, ti ∈
Ti and t̃i ∈ T̃i such that ui(ti) = ũi(t̃i) we have:

(2) σi(T , ti) = σi(T̃ , t̃i),

where Ti, ui correspond to T and T̃i, ũi correspond to T̃ .

Our main interest in this paper is in relaxing the requirement of belief
independence. We shall, however, not be able to completely dispense with
any link between players’ strategies in different type spaces. The Bayesian
equilibria that we shall investigate need to satisfy a consistency requirement.
This requirement is implied by, but does not imply belief independence.

Definition 5. A Bayesian equilibrium of game form G for every type space,

(σ1, σ2), is consistent if for all type spaces T , T̃ ∈ Υ such that:

(i) for every i ∈ {1, 2}: T̃i ⊆ Ti (where T̃i corresponds to T̃ and Ti
corresponds to T );

(ii) for every i ∈ {1, 2} and every ti ∈ Ti: ũi(ti) = ui(ti) and π̃(ti) =

π(ti) (where ũi, π̃i correspond to T̃ , and ui, πi correspond to T ),

we have for every i ∈ {1, 2} and every ti ∈ Ti:
(iii) σ(T̃ , ti) = σ(T , ti).

Observe that the type ti referred to in item (iii) of Definition 5 has the
same utility function and hierarchy of beliefs in type space T and in type

space T̃ . Therefore, the consistency requirement is implied by the assump-
tion that an agent’s equilibrium choices should only depend on that agent’s
utility function and that agent’s hierarchy of beliefs. This assumption seems
reasonable because the type space, as opposed to the utility function and
the hierarchy of beliefs, is really only a construction by the modeler, and not
necessarily a construction that the agent is aware of. We don’t explicitly for-
mulate the stronger assumption that equilibrium choices should only depend
on agents’ utility functions and hierarchies of beliefs, but instead work with
the weaker consistency requirement, because the consistency requirement is
easier to formulate, and is sufficient for our purposes. We believe that our
results would also go through if we made the more demanding assumption
for equilibria.

3. Welfare

We postulate a mechanism designer who seeks to further the utility of
the agents rather than his own utility. At different points we investigate the
implications of different objectives for the mechanism designer. At times, we
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shall only assume that the mechanism designer seeks to achieve a Pareto ef-
ficient decision. At other points in the paper, we consider the implications of
the assumption that the mechanism designer seeks to maximize the welfare
function: u1(a) + u2(a). Because we have normalized utilities, this corre-
sponds to the “relative utilitarian” welfare function that was axiomatized
by Dhillon [6] and Dhillon and Mertens [7].

When evaluating the utility of the two agents for a realized type combina-
tion (t1, t2) the mechanism designer can either only consider the outcomes
that result from the mixed strategies prescribed for these two types, or she
may consider the expected utilities of these two types, based on the types’
own subjective beliefs. In other words, the mechanism designer may adopt
an ex post or an interim perspective when evaluating agents’ utilities. The
interim perspective respects agents’ own perception of their environment.
From this perspective, the ex post perspective has a paternalistic flavor.
On the other hand, for example when agents’ beliefs are incompatible with
each other, the mechanism designer may be justified in discarding agents’
beliefs, on the basis that at least some of them have to be wrong, as agents
themselves will discover at some point. Thus neither the interim nor the ex
post perspective are clearly preferable. We pursue both perspectives in this
paper.

The considerations of the preceding two paragraphs lead to four possible
formalizations of the mechanism designer’s objectives. We present these in
the four definitions that follow below. None of these definitions attributes a
prior over type spaces in Υ or over types in each type space to the mechanism
designer. Instead, we work with a dominance notion, that is prior free.
Whatever the mechanism designer’s prior is, if he has one, he will never
choose a dominated game form in the sense described in the four definitions
below.10

Definition 6. The game form G with the consistent Bayesian equilibrium
for all type spaces (σ1, σ2) ex post Pareto dominates the game form G̃ with
the consistent Bayesian equilibrium for all type spaces (σ̃1, σ̃2) if for all i ∈
{1, 2}, T ∈ Υ, and (t1, t2) ∈ T1 × T2:∑

s1∈S1,s2∈S2

ui(ti)[x(s1, s2)] · σ1(T , t1)[s1] · σ2(T , t2)[s2] ≥

∑
s1∈S̃1,s2∈S̃2

ui(ti)[x̃(s1, s2)] · σ̃1(T , t1)[s1] · σ̃2(T , t2)[s2],(3)

with strict inequality for at least one i ∈ {1, 2}, T ∈ Υ, and (t1, t2) ∈ T1×T2.
A direct mechanism that is not ex post Pareto dominated will be called ex
post Pareto undominated.

10The two main results of this paper use Definitions 7 and 8. We provide the other
two definitions, and discuss the relations among the concepts introduced in these four
definitions, to give the reader a better understanding of the context of our main results.
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Definition 7. The game form G with the consistent Bayesian equilibrium
for all type spaces (σ1, σ2) ex post utilitarian11 dominates the game form G̃
with the consistent Bayesian equilibrium for all type spaces (σ̃1, σ̃2) if for all
T ∈ Υ, and (t1, t2) ∈ T1 × T2:∑

i∈{1,2}

∑
s1∈S1,s2∈S2

ui(ti)[x(s1, s2)] · σ1(T , t1)[s1] · σ2(T , t2)[s2] ≥

∑
i∈{1,2}

∑
s1∈S̃1,s2∈S̃2

ui(ti)[x̃(s1, s2)] · σ̃1(T , t1)[s1] · σ̃2(T , t2)[s2],(4)

with strict inequality for at least one T ∈ Υ, and (t1, t2) ∈ T1×T2. A direct
mechanism that is not ex post utilitarian dominated will be called ex post
utilitarian undominated.

Note that the game form G with the consistent Bayesian equilibrium for
all type spaces (σ1, σ2) ex post utilitarian dominates game form G̃ with the
consistent Bayesian equilibrium for all type spaces (σ̃1, σ̃2) if the former ex
post Pareto dominates the latter.

Definition 8. The game form G with the consistent Bayesian equilibrium
for all type spaces (σ1, σ2) interim Pareto dominates the game form G̃ with
the consistent Bayesian equilibrium for all type spaces (σ̃1, σ̃2) if for all i, j ∈
{1, 2} with i 6= j, T ∈ Υ, and ti ∈ Ti:∑

tj∈Tj

πi(ti)[tj ]
∑

s1∈S1,s2∈S2

ui(ti)[x(s1, s2)] · σ1(T , t1)[s1] · σ2(T , t2[s2] ≥

∑
tj∈Tj

πi(ti)[tj ]
∑

s1∈S̃1,s2∈S̃2

ui(ti)[x̃(s1, s2)] · σ̃1(T , t1)[s1] · σ̃2(T , t2)[s2],(5)

with strict inequality for at least one i, j ∈ {1, 2} with i 6= j, T ∈ Υ, and
ti ∈ Ti. A direct mechanism that is not interim Pareto dominated will be
called interim Pareto undominated.

Definition 9. The game form G with the consistent Bayesian equilibrium
for all type spaces (σ1, σ2) interim utilitarian dominates the game form G̃
with the consistent Bayesian equilibrium for all type spaces (σ̃1, σ̃2) if for all
T ∈ Υ and (t1, t2) ∈ T1 × T2:∑

i∈{1,2}

∑
tj∈Tj

πi(ti)[tj ]
∑

s1∈S1,s2∈S2

ui(ti)[x(s1, s2)] · σ1(T , t1)[s1] · σ2(T , t2)[s2] ≥

∑
i∈{1,2}

∑
tj∈Tj

πi(ti)[tj ]
∑

s1∈S̃1,s2∈S̃2

ui(ti)[x̃(s1, s2)] · σ̃1(T , t1)[s1] · σ̃2(T , t2)[s2],(6)

with strict inequality for at least one T ∈ Υ and (t1, t2) ∈ T1×T2. A direct
mechanism that is not interim utilitarian dominated will be called interim
utilitarian undominated.

Note that the game form G with the consistent Bayesian equilibrium for
all type spaces (σ1, σ2) interim utilitarian dominates game form G̃ with the

11For simplicity, we use “utilitarian” rather than the more clumsy “relative utilitarian.”
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consistent Bayesian equilibrium for all type spaces (σ̃1, σ̃2) if the former
interim Pareto dominates the latter.

4. Belief Independent Equilibria: Hylland’s Theorem

We begin by restating Hylland’s version of the Gibbard Satterthwaite
theorem in our setting. Hylland’s theorem implies that all game forms and
belief independent equilibria of these game forms that satisfy a unanimity
requirement are random dictatorships. To define unanimity and random
dictatorships we need some notation. If u is a utility function, we denote by
d(u) the element of A that maximizes u.12

Definition 10. A game form G and a Bayesian equilibrium of G for every
type space, (σ1, σ2), satisfy unanimity if for every T ∈ Υ, (t1, t2) ∈ T1 × T2

and every a ∈ A:∑
s1∈S1,s2∈S2

σ1(T , t1)[s1] · σ2(T , t2)[s2] · x(s1, s2)[a] = 1(7)

whenever d(u1(t1)) = d(u2(t2)) = a.

Definition 11. A game form G and a Bayesian equilibrium of G for every
type space, (σ1, σ2), are a random dictatorship if there is some p ∈ [0, 1]
such that for every T ∈ Υ, (t1, t2) ∈ T1 × T2 and every a ∈ A:∑

s1∈S1,s2∈S2

x(s1, s2)[a] · σ1(T , t1)[s1] · σ2(T , t2)[s2] =

=


1 if d(u1(t1)) = a and d(u2(t2)) = a,
p if d(u1(t1)) = a and d(u2(t2)) 6= a,

1− p if d(u1(t1)) 6= a and d(u2(t2)) = a,
0 if d(u1(t1)) 6= a and d(u2(t2)) 6= a.

(8)

The following is implied by Hylland’s theorem.13

Proposition 1. A game form G and a Bayesian equilibrium of G for every
type space, (σ1, σ2), are belief-independent and satisfy unanimity if and only
if they are a random dictatorship.

Proof. The “if-part” is obvious. To prove the “only if-part” we derive from
G and (σ1, σ2) a “cardinal decision scheme” in the sense of Definition 1 in
[8], and show that this cardinal decision scheme has the properties listed in
Theorem 1 in [8] which is a version of Hylland’s theorem. It then follows from
Theorem 1 in [8] that the cardinal decision scheme is a random dictatorship.
This then implies the “only if-part” of our Proposition 1. Denote by U the
set of all utility functions that have the properties that were introduced in

12Recall that we have assumed that there are no indifferences. Therefore, there is a
unique element of A that maximizes u.

13Theorem 1* in Hylland [12]. Hylland’s theorem does not assume that game forms
are finite.
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Definition 2. A cardinal decision scheme is a mapping φ : U2 → ∆(A). We
can derive from G and (σ1, σ2) a cardinal decision scheme by setting for any
(u1, u2) ∈ U2:

(9) φ(u1, u2) =
∑

s1∈S1,s2∈S2

σ1(T , t1)[s1] · σ2(T , t2)[s2] · x(s1, s2),

where we can pick any T ∈ Υ and any (t1, t2) ∈ T1×T2 such that u1(t1) = u1

and u2(t2) = u2. By belief-independence it does not matter which such T
and (t1, t2) ∈ T1 × T2 we choose. Then φ is a cardinal decision scheme as
defined in Definition 1 of [8]. We can complete the proof by showing that
φ has the two properties listed in Theorem 1 of [8]. The first property is
unanimity: If d(u1) = d(u2) = a then φ(u1, u2) = a. This is implied by the
assumption that G and (σ1, σ2) satisfy unanimity. The second is strategy
proofness: If (u1, u2) ∈ U2 and u′1 ∈ U , then u1(φ(u1, u2)) ≥ u1(φ(u′1, u2))
and the same condition also holds for agent 2. To prove this for agent 1 we
pick T ∈ Υ, t1, t

′
1 ∈ T1 and t2 ∈ T2 such that u1(t1) = u1, u1(t′1) = u′1, and

u2(t2) = u2. Moreover, π1(t1) and π1(t′1) place probability 1 on t2. Then
the fact that σ1 and σ2 are Bayesian equilibria of G for the type space T
implies: ∑

s1∈S1,s2∈S2

(u1(x(s1, s2)) · σ1(T , t1)[s1] · σ2(T , t2)[s2]) ≥

∑
s1∈S1,s2∈S2

(
u1(x(s1, s2)) · σ1(T , t′1)[s1] · σ2(T , t2)[s2]

)
(10)

By the definition of φ, this is equivalent to: u1(φ(u1, u2) ≥ u1(φ(u′1, u2)),
that is, strategy proofness. The proof of strategy proofness for agent 2 is
analogous. �

From now on, when we refer to random dictatorship, we shall mean a
specific game form G, and a specific equilibrium (σ1, σ2) of G for every type
space.

Definition 12. The following game form G and equilibrium (σ1, σ2) of G
for every type space will be referred to as p-random dictatorship:

(i) S1 = S2 = A;
(ii)

x(s1, s2)[a] =


1 if s1 = s2 = a;
p if s1 = a and s2 6= a;

1− p if s1 6= a and s2 = a;
0 if s1 6= a and s2 6= a;

(iii) σi(T , ti)[d(ui(ti))] = 1 for all i ∈ {1, 2}, T ∈ Υ, and ti ∈ Ti.

It is immediate that (σ1, σ2) is a Bayesian equilibrium of G for every type
space, and that G and this equilibrium are a random dictatorship. There
are other game forms and equilibria that are random dictatorships, but it
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is without loss of generality to only consider the one described in Definition
12.

5. Game Forms that Dominate Random Dictatorship

We can now present the two main results of this paper. The first result
examines interim Pareto dominance, while the second result concerns ex
post utilitarian dominance. The first result says that for every p ∈ [0, 1] such
that p 6= 0 and p 6= 1 there are a game form, and a Bayesian equilibrium of
this game form for every type space, that interim Pareto dominate random
dictatorship when the probability of agent 1 being dictator is p. We refer to
the game form as p-random dictatorship with compromise.

Definition 13. The following game form is called a p-random dictatorship
with compromise.

(i) for every i ∈ {1, 2}:
Si = 2A ×A,

where 2A is the set of all non-empty subsets of A;

(ii) If s1 = (A1, a1), s2 = (A2, a2), and A1 ∩ A2 = ∅, then:

x(s1, s2)[a] =


1 if a1 = a2 = a;
p if a1 = a and a2 6= a;

1− p if a1 6= a and a2 = a;
0 if a1 6= a and a2 6= a;

(iii) If s1 = (A1, a1), s2 = (A2, a2), and A1 ∩A2 6= ∅, then there is some
a ∈ A1 ∩ A2 such that

x(s1, s2)[a] = 1.

In words, this game form offers each agent i the opportunity to nominate
one preferred alternative, ai, and also a set Ai of “acceptable” alternatives.
If there is exactly one alternative that both voters include in their set of
acceptable alternatives, then that alternative is chosen with probability 1.
If there is more than one alternative that both voters include in their set
of alternatives, then one of those alternatives is chosen with probability 1.
Otherwise, the mechanism reverts to random dictatorship. We refer to this
game form as random dictatorship with compromise because it offers agents
the opportunity to compromise on a mutually acceptable alternative in place
of random dictatorship.

One Bayesian equilibrium of this game form is that both agents always
choose ai to be their most preferred alternative, and set Ai = {ai}. In this
equilibrium, the possibility of a compromise is not used by either agent. This
is an equilibrium because neither agent can unilaterally force a compromise.
Any deviation that unilaterally alters the set of acceptable alternatives has
no effect. However, the next proposition shows that p-random dictatorship
with compromise also has a Bayesian equilibrium for all type spaces that
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interim Pareto dominates random dictatorship. We also show that this
equilibrium respects unanimity, to clarify that our result does indeed result
from weakening the dominance requirement, and not weakening any other
property listed in Proposition 1.

Proposition 2. For all p ∈ [0, 1] such that p 6= 0 and p 6= 1, p-random dic-
tatorship with compromise has a consistent equilibrium for all type spaces
(σ1, σ2) that interim Pareto dominates p-random dictatorship and that re-
spects unanimity.

Interim Pareto dominance implies interim utilitarian dominance. There-
fore, Proposition 2 also shows that p-random dictatorship with compromise
has an equilibrium that interim utilitarian dominates p-random dictatorship.
The main difficulty in the proof below is not so much showing interim Pareto
dominance, but proving the existence of a consistent equilibrium. The ar-
gument in the proof below can be used to show the existence of consistent
Bayesian equilibria for all type spaces of arbitrary finite games.

Proof. We construct the equilibrium (σ1, σ2). To ensure that the equilibrium
satisfies unanimity we require each type’s strategy to always include the
alternative ranked top by that type in the set of acceptable alternatives.
This restriction of the strategy space is innocuous, because any strategy
that does not include the top ranked alternative in the set of acceptable
alternatives is weakly dominated by a strategy that does include the top
ranked alternative. Moreover, this restriction does indeed imply that if
both agents rank the same alternative at the top, then that alternative is
chosen with probability 1.

We now proceed inductively. We begin by considering type spaces T
where for every i ∈ {1, 2} the set Ti has exactly one element. In such type
spaces it is common belief among the agents that agent i has utility function
ui(ti). We distinguish two cases. The first is that there is some alternative
a ∈ A such that for both i we have:

(11) ui(a) > pui(d(u1(t1))) + (1− p)ui(d(u2(t2))).

Observe that the assumption p 6= 0 and p 6= 1 implies that some such type
spaces exist. For such type spaces the strategies are:

(12) σi(T , ti) = ({d(ui(ti)), a}, d(ui(ti)))

for i ∈ {1, 2}. Note that these strategies constitute a Nash equilibrium of
the complete information game in which agents’ preferences are common
knowledge, and that the outcome a strictly Pareto-dominates the outcome
under random dictatorship. For all other type spaces with just a single
element for each player the strategies are:

(13) σi(T , ti) = ({d(ui(ti))}, d(ui(ti)))
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Note that these strategies constitute a Nash equilibrium of the complete
information game in which agents’ preferences are common knowledge, and
that the outcome is exactly the same as under random dictatorship.

Now suppose we had constructed the equilibrium for all type spaces T in
which T1 and T2 have at most n elements. We first extend the construction
to all type spaces T in which T1 has at most n + 1 elements and T2 has at
most n elements. Then we extend the construction to all type spaces T in
which T1 has at most n+ 1 elements and T2 has at most n+ 1 elements.

Suppose first that we are considering a type space T in which T1 has at
most n+1 elements and T2 has at most n elements. Consider all type spaces

T̃ that are contained in T , i.e. for which conditions (i) and (ii) of Definition
5 hold, and such that at least for one agent the type set has fewer elements
than in T . For such type spaces we define or for every i ∈ {1, 2} and every

ti ∈ T̃i:

(14) σi (T , ti) = σi

(
T̃ , ti

)
.

By the inductive hypothesis the right hand side of this equation has already
been defined. Observe that this is well-defined. If a type ti of player i is

contained in player i’s type set in two different type spaces T̃ and T̂ that
are contained in T in the sense of Definition 5, then the intersection of these
type spaces is also a type space, and by consistency the same strategy is

assigned to type ti in T̃ and in T̂ .

If the previous step defines the equilibrium strategy for all types in T , then
the inductive step is completed. Otherwise, it remains to define strategies
for types ti that are not contained in any type set of a type space that is a
subspace of T . We consider the strategic game in which each such type is a
separate player, and expected utilities are calculated keeping the strategies
of types that have already been dealt with in the previous paragraph fixed,
and using each type’s subjective beliefs to calculate that type’s expected
payoff. This strategic game has a Nash equilibrium in mixed strategies. We
define for each type ti that still has to be dealt with the strategy σi(T , ti)
to be type ti’s equilibrium strategy.

By construction these strategies satisfy the consistency requirement. Also,
they are by construction interim Bayesian equilibria: For types in typesets
that correspond to a smaller type space the Bayesian equilibrium property
carries over from the smaller type space. For all other types, their choices
maximize expected utility by construction.

We extend the construction to all type spaces T in which T1 has at most
n + 1 elements and T2 has at most n + 1 elements in the same way as we
extend it to all type spaces T in which T1 has at most n + 1 elements and
T2 has at most n elements.

To conclude the proof we note that this equilibrium interim Pareto dom-
inates random dictatorship. First, we note that no type can have lower
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expected utility than under random dictatorship. This is because each type
can guarantee themselves an outcome that is at least as good as the random
dictatorship outcome by choosing Ai = {d(ui(ti))}. Second, each type’s
expected utility is increased on type spaces in which each player’s type set
has just a single element, and for which inequality (11) holds. �

Proposition 2 indicates that Pareto improvements on random dictatorship
are possible if we focus on interim expected utilities of all types. However,
interim expected utilities are determined by types’ subjective beliefs, and
these subjective beliefs may be wrong. For example, a player may expect
that another player is of a certain type even though this player is of a
different type. It is therefore interesting to consider instead ex post expected
utility. We find in this case a negative result.

Proposition 3. For all p ∈ [0, 1], there is no game form G that has a consis-
tent equilibrium for all type spaces (σ1, σ2) that ex post utilitarian dominates
p-random dictatorship.

Because ex post utilitarian dominance implies ex post Pareto dominance,
this result implies that there are no game form and equilibrium for all type
spaces that ex post Pareto dominate p-random dictatorship. The proof of
Proposition 3 is in the appendix. It is an indirect proof. We postulate the
existence of a mechanism that ex post utilitarian dominates p-random dic-
tatorship. We first show that such a mechanism cannot Pareto-dominate
p-random dictatorship. Then we find a type pair such that one player is
better off, and another player is better off under the postulated dominat-
ing mechanism than under p-random dictatorship. We then add types of
the player who is better off, and use incentive compatibility arguments to
show that we can make the increase in this player’s utility arbitrarily small,
while the utility loss of the other player remains bounded away from zero.
This then contradicts utilitarian dominance. When we add types to the
type space, but assume that for the existing types the strategy remains un-
changed, we make use of the consistency assumption. We introduced this
assumption to make precisely this argument in the proof of Proposition 3
possible.

6. Conclusion

Gibbard and Satterthwaite’s theorem, and Hylland’s version of this the-
orem in a cardinal utility setting, are central results of voting theory. We
have argued that the insistence of the theorem on unique, belief indepen-
dent strategy choices may be overly restrictive if a mechanism designer is
considered who is primarily concerned either with Pareto improvements or
with utilitarian welfare. Such a mechanism designer can find voting schemes
that are superior to random dictatorship if agents’ choices are allowed to de-
pend on their beliefs. Whatever those beliefs are, the outcomes will be at
least as good as under random dictatorship, and sometimes better. Such
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an improvement is only possible if agents’ subjective beliefs are accepted,
and an interim perspective is adopted. From an ex post perspective, such
unambiguous improvements are not possible.

An important problem left open by our paper is the characterization of
voting rules than are not dominated in one of the senses considered in this
paper. In Smith [16] the analogous question is investigated for public goods
mechanisms. Smith’s work shows the subtleties of this problem. Another
important step is the investigation of robust implementation as opposed
to robust mechanism design. Implementation, unlike mechanism design,
considers all equilibria of a given game form. One might ask whether there
are mechanisms such that all equilibria on all type spaces dominate random
dictatorship. We leave this question for future research.
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Appendix

Proof of Proposition 3. Step 1: We show for every game form G and every equilib-
rium of G for all type spaces, (σ1, σ2), if G and (σ1, σ2) ex post utilitarian dominate
p-random dictatorship, then:

(15)
∑

s1∈S1,s2∈S2

x(s1, s2)[a] · σ1(T , t1)[s1] · σ2(T , t2)[s2] ≤ 1− p

for all T ∈ Υ, every (t1, t2) ∈ T1 × T2, and every a ∈ A such that a 6= d(u1(t1)),
and

(16)
∑

s1∈S1,s2∈S2

x(s1, s2)[a] · σ1(T , t1)[s1] · σ2(T , t2)[s2] ≤ p

for all T ∈ Υ, every (t1, t2) ∈ T1 × T2, and every a ∈ A such that a 6= d(u2(t2)).
That is, any alternative that is not agent 1’s preferred alternative can be chosen
with a probability of at most 1−p, and any alternative that is not agent 2’s preferred
alternative can be chosen with a probability of at most p. We prove this statement
only for agent 1. The proof for agent 2 is analogous.

The proof is indirect. Suppose there were some type space T ∗, some (t∗1, t
∗
2) ∈

T ∗1 × T ∗2 , and some alternative a∗ ∈ A such that a∗ 6= d(u1(t∗1)), and yet:

(17)
∑

s1∈S1,s2∈S2

x(s1, s2)[a∗] · σ1(T ∗, t∗1)[s1] · σ2(T ∗, t∗2)[s2] > 1− p.

We now construct a new type space, T̂ , and show that in this type space there is a
vector of types such that the outcome prescribed by the equilibrium (σ1, σ2) yields
lower ex post utilitarian welfare than p-random dictatorship. This contradicts the
assumption that G and (σ1, σ2) ex post utilitarian dominate p-random dictatorship.

The type sets in T̂ are given by: T̂1 = T ∗1 , and T̂2 = T ∗2 ∪ {t2(1), . . . , t2(K)}
where K ∈ N is large enough. We define later how large K needs to be. The types

that are contained in T ∗1 or T ∗2 have the same utility function and beliefs in T̂ as
in T . For types t2 ∈ {t2(1), t2(2), . . . t2(K)} the beliefs are given by:

(18) π2(t2(k))[t∗1] = 1.

The utility function of types t2 ∈ {t2(1), t2(2), . . . t2(K)} is:

(19) u2(t2(k))[a] =


1 if a = a∗;

k
K if a = d(u1(t∗1));

0 otherwise.

This concludes the construction of T̂ .14 By the consistency of the Bayesian equi-
librium (σ1, σ2), for all types in T1 and T2, σ1 and σ2 have to prescribe the same

strategies for T̂ as for T ∗. For types t2 ∈ {t2(1), t2(2), . . . t2(K)} the strategy

σ2(T̂ , t2) must be a best response to σ1(T̂ , t∗1).

14The construction violates our earlier assumption that there are no indifferences. The
construction and the argument that follows below can easily be modified to comply with
this assumption by assigning the bottom ranked alternatives almost the same, but not
exactly the same utility.
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We denote for every k ∈ {0, 1, 2, . . . ,K} by v2(k) the expected utility of type
t2(k) in the game form G if equilibrium (σ1, σ2) is played. By standard incen-
tive compatibility arguments v2(k) is increasing in k. Observe that, for k ∈
{1, 2, . . . ,K}, the difference v2(k) − v2(k − 1) cannot be more than 1/K because,
by adopting type t2(k)’s strategy, type t2(k− 1) can always get within 1/K of type
t2(k)’s expected utility. We also denote for k ∈ {0, 1, 2, . . . ,K} by r2(k) the equi-
librium expected utility of type t2(k) under random dictatorship. It is immediate
that r2(k) is increasing in k, and that r2(k)− r2(k − 1) = 1/K for k = 1, 2, . . . ,K.

Now consider the difference: v2(k) − r2(k). The observations of the previous
paragraph imply that as k increases the change in the absolute value of this dif-
ference, |(v2(k) − r2(k)) − (v2(k − 1) − r2(k − 1))|, is at most 1/K. Note that by
choosing K large enough, we can make the step size of changes of this difference
arbitrarily small. Observe that v2(0) > r2(0) because, by the assumption of the
indirect proof, in the game form G, type t2(k) has a strategy that implies that
alternative a∗ is chosen with a probability larger than 1− p, so that in equilibrium
type t2(0) must obtain alternative a∗ with at least that probability. By contrast,
under random dictatorship, alternative a∗ is chosen with probability 1 − p only.
On the other hand, v2(K) ≤ r2(K), because random dictatorship yields for agent
t2(K) at least one of his top alternatives with probability 1. What we have said
so far implies that we can find some k ∈ {0, 1, 2, ...,K} such that v2(k) − r2(k) is
strictly positive but arbitrarily close to zero, provided we choose K large enough.

Next we note that v2(k) > r2(k) implies that

(20)
∑

s1∈S1

x(s1, s2)[a∗] · σ1(T̂ , t∗1)[s1] > 1− p

for every pure strategy s2 ∈ S2 in the support of σ2(T̂ , t2(k)). This is because

v2(k) > r2(k) implies that every strategy in the support of σ2(T̂ , t2(k)) must yield
strictly higher expected utility for type t2(k) than p-random dictatorship would
give to this type. Moreover, the only way in which type t2(k) can be better off
under G and (σ1, σ2) than under p-random dictatorship, where d(u1(t∗1)) and a∗

are chosen with probabilities p and 1− p respectively, is by raising the probability
of a∗ above 1− p.

Next, we denote for every k ∈ {0, 1, 2, . . . ,K} by v1(k) the expected utility of
type t∗1 when he encounters type t2(k), and we denote by r1(k) the expected utility
under p-random dictatorship of type t∗1 when he encounters type t2(k). We first
observe that whenever v2(k) > r2(k) we must have: v1(k) < r1(k). This is because
p-random dictatorship would give d(u1(t∗1)) and a∗ with probability p and 1 − p.
By contrast, the game form G gives in equilibrium a∗ with a probability that is
larger than 1− p. Therefore, the outcome will be worse than random dictatorship
for player 1. Now consider all pure strategies of player 2 that, matched with type
t∗1’s equilibrium strategy, yield a probability of a∗ of more than 1− p. As observed
before, v2(k) > r2(k) implies that type t2(k) can only play such strategies with
positive support. Against each of these strategies player 1 obtains a maximum
utility strictly lower than r1(k). Therefore, there is ` > 0 such that v2(k) > r2(k)
implies: v1(k) < r1(k)− `.

Now choose K large enough so that we can find a type t2(k) for whom v2(k) >
r2(k), but v2(k) < r2(k) + `. We then have: v1(k) < r1(k) − `, and therefore,
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adding the last two inequalities: v1(k)+v2(k) < r1(k)+vr(k). This contradicts the
hypothesis that G and (σ1, σ2) ex post utilitarian dominate p-random dictatorship.

S tep 2: We now complete the proof by showing that no game form G and
equilibrium (σ1, σ2) of G for all type spaces that has have the properties described
in Step 1 can ex post utilitarian dominate p-random dictatorship. The proof is
indirect. Suppose there were some game form G and some equilibrium (σ1, σ2) of
G for all type spaces that have the properties described in Step 1 and that ex post
utilitarian dominate p-random dictatorship. Then there must be some type space
T ∗∗ and some (t∗∗1 , t

∗∗
2 ) ∈ T ∗∗1 × T ∗∗2 such that:∑

i∈{1,2}

∑
s1∈S1,s2∈S2

ui(t
∗∗
i )[x(s1, s2)] · σ1(T ∗∗, t∗∗1 )[s1] · σ2(T ∗∗, t∗∗2 )[s2] >

pu1(d(u1(t∗∗1 ))) + (1− p)u2(d(u2(t∗∗2 )))(21)

We now construct a new type space, T̃ , and show that in this type space there
is a vector of types such the outcome prescribed by the equilibrium (σ1, σ2) yields
lower utilitarian welfare than p-random dictatorship. This contradicts the assump-
tion that G and (σ1, σ2) ex post utilitarian dominate p-random dictatorship. The
construction and the argument below are very similar to, but not identical to, the
argument in Step 1.

Before we begin the construction we note that it must be that in equilibrium, at
t∗∗, either d(u1(t∗∗)) is chosen with probability strictly less than p, or d(u2(t∗∗)) is
chosen with probability strictly less than 1− p, or both. Otherwise, the game form
G with the equilibrium (σ1, σ2) could not yield strictly higher utilitarian welfare at
t∗∗ than p-random dictatorship. Without loss of generality, we focus on the case
that d(u1(t∗∗)) is chosen with probability strictly less than p. The other case can
be dealt with by a symmetric argument. Let a∗∗ be the second most preferred
alternative of agent 1 at t∗∗1 .

We now construct T̃ . The type sets are given by: T̃1 = T ∗∗1 , and T̃2 = T ∗∗2 ∪
{t2(1), . . . , t2(K)} where K ∈ N is large enough. We define later how large K needs
to be. The types that are contained in T ∗∗1 or T ∗∗2 have the same utility functions

and beliefs in T̃ as in T ∗∗. For types t2 ∈ {t2(1), t2(2), . . . t2(K)} the beliefs are
given by:

(22) π2(t2(k))[t∗∗1 ] = 1.

The utility function of types t2 ∈ {t2(1), t2(2), . . . t2(K)} is:

(23) u∗2(t2(k))[a] =


1 if a = a∗∗;

k
K if a 6= d(u1(t∗∗1 )) and a 6= a∗∗;

0 if a = d(u1(t∗∗1 )).

This concludes the construction of T̃ .15 By the consistency of the Bayesian equi-
librium (σ1, σ2), for all types in T ∗∗1 and T ∗∗2 , σ1 and σ2 have to prescribe the same

15The construction violates our earlier assumption that there are no indifferences. The
construction and the argument that follows below can easily be modified to comply with
this assumption by assigning to the middle ranked alternatives almost the same, but not
exactly the same utility.
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strategies for T̃ as for T ∗∗. For types t2 ∈ {t2(1), t2(2), . . . t2(K)} the strategy

σ2(T̃ , t2) must be a best response to σ1(T̃ , t∗∗1 ).

We denote for every k ∈ {0, 1, 2, . . . ,K} by v2(k) the equilibrium expected
utility of type t2(k) in the game form G with equilibrium (σ1, σ2). By stan-
dard incentive compatibility arguments v2(k) is increasing in k. Observe that,
for k ∈ {1, 2, . . . ,K}, the difference v2(k) − v2(k − 1) cannot be more than 1/K
because, by adopting type t2(k)’s strategy, type t2(k − 1) can always get within
1/K of type t2(k)’s expected utility. We also denote for k ∈ {0, 1, 2, . . . ,K} by
r2(k) the equilibrium expected utility of type t2(k) under random dictatorship. It
is immediate that r2(k) = 1− p for all k = 1, 2, . . . ,K.

Now consider the difference: v2(k) − r2(k). The observations of the previous
paragraph imply that as k increases the difference increases, and that moreover
it can change by at most 1/K. Note that by choosing K large enough, we can
make the step size of changes of this difference arbitrarily small. Observe next
that v2(0) ≤ r2(0). This is because under G and (σ1, σ2) alternative a∗∗ can be
chosen with a probability of at most 1 − p, by Step 1 of this proof applied to
player 1. Therefore, v2(0) ≤ 1 − p = r2(0). Finally, we show that v2(1) > r2(1).
Observe that v2(1) > 1 − p, because, by assumption, the probability of d(u1(t∗∗1 ))
under G and (σ1, σ2) at (t∗∗1 , t

∗∗
2 ) is strictly less than p. Thus the probability of

all other alternatives together must be strictly more than 1 − p. Type t2(1) can
choose the same strategy as type t∗∗2 , and therefore, if type t2(1) chooses optimally,
v2(1) > 1 − p = r2(1). What we have said so far implies that we can find some
k ∈ {0, 1, 2, ...,K} such that v2(k) − r2(k) is strictly positive but arbitrarily close
to zero, provided we choose K large enough.

Next we note that v2(k) > r2(k) implies that

(24)
∑

s1∈S1

x(s1, s2)[d(u1(t∗∗))] · σ1(T̃ , t∗∗1 )[s1] < p

for every pure strategy s2 ∈ S2 in the support of σ2(T̃ , t2(k)). This is because

every strategy in the support of player 2’s strategy σ2(T̃ , t2(k)) must yield the
same expected utility, and hence strictly higher expected utility than r2(k). But
if such a strategy implements d(u1(t∗∗)) with probability of p or more, then the
remaining probability that is distributed among a∗∗ and all other alternatives, is at
most 1− p. Therefore, player 2’s expected utility from such a strategy is no more
than 1 − p = r2(k), which contradicts our assumption that player 2’s expected
utility is more than r2(k).

Next, we denote for every k ∈ {0, 1, 2, . . . ,K} by v1(k) the expected utility of
type t∗∗1 when he encounters type t2(k), and we denote by r1(k) the expected utility
under random dictatorship of type t∗∗1 when he encounters type t2(k). We first
observe that whenever v2(k) > r2(k) we must have: v1(k) < r1(k). This is because
random dictatorship would give d(u1(t∗1)) and a∗∗ with probability p and 1 − p.
By contrast, the game form G gives in equilibrium d(u1(t∗∗1 )) with a probability
that is less p. Therefore, the outcome will be worse than random dictatorship for
player 1. Now consider all pure strategies of player 2 that, matched with type t∗1’s
equilibrium strategy, yield a probability of d(u1(t∗∗1 )) of strictly less than p. As
observed before, v2(k) > r2(k) implies that type t2(k) can only play such strategies
with positive support. Against each of these strategies player 1 obtains a maximum
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utility strictly lower than r1(k). Therefore, there is ` > 0 such that v2(k) > r2(k)
implies: v1(k) < r1(k)− `.

Now choose K large enough so that we can find a type t2(k) for whom v2(k) >
r2(k), but v2(k) < r2(k) + `. We then have: v1(k) < r1(k) − `, and therefore,
adding the last two inequalities: v1(k)+v2(k) < r1(k)+vr(k). This contradicts the
hypothesis that G and (σ1, σ2) ex post utilitarian dominate p-random dictatorship.
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