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Abstract

In real life strategic interactions decision-makers are likely to entertain
doubts about the degree of optimality of their play. To capture this fea-
ture of real choice-making, we present a model based on the doubts felt by
an agent about how well is playing a game. The doubts are coupled with
(and mutually reinforced by) imperfect discrimination capacity, which we
model by means of similarity relations. These cognitive features, together
with an adaptive learning process guiding agents�choice behavior leads to
doubt-based selection dynamic systems. We introduce the concept of Mixed
Strategy Doubt Equilibrium and study its theoretical relevance.

Keywords: Doubts; Similarity Relations; Adaptive Behaviour;
PsycINFO Classi�cation code: 3040
JEL Classi�cation codes: C72, D70, D78
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1. Introduction
The period preceding the moment when a decision is taken is often per-

vaded with doubts about the consequences associated to the alternatives.
Even experienced decision-makers face doubts in their domain of expertise.
The literature on decision-making under risk (known probabilities) or uncer-
tainty (unknown probabilities), both theoretical and experimental, has de-
voted little attention to doubt as a cognitive mechanism in�uencing choice.
Our paper introduces doubts in a theoretical model of choice with doubts in
strategic environments.
Doubts are commonly related to uncertainty, but doubts and uncertainty

should be distinguished. It can be said that doubts appear mainly as a con-
sequence of uncertainty. While uncertainty is a characteristic of the environ-
ment for the decision maker, doubts are the manner in which uncertainty is
perceived and interpreted by the human mind. Doubts, in the Ramsey-Savage
tradition, were taken into account with the purpose of building a model of ra-
tional choice under uncertainty: "if he (the subject) were doubtful his choice
would not be decided so simply. I propose to lay down axioms and de�nitions
concerning the principles governing choices of this kind" (Ramsey 1928).
For Ramsey the degree of certainty (or doubt) is measured by the subjec-

tive belief about the consequences of a certain action. We, on the other hand,
assume that the agents measure their doubts by observing the choices made
by their fellow agents. That is, the level of doubts that an agent feels depends
on the proportion of people who have adopted her same strategy. We also as-
sume that doubts are strictly decreasing in the proportion of people choosing
her strategy (we shall see below that this is not necessarily conformity).
In our view, the essence of a choice behaviour by doubtful agents is that,

if given the opportunity, they will switch actions. More precisely, the higher
the level of doubts about how good the currently chosen action is, the higher
the probability of switching to a new one. Then, to understand and measure
doubts, for example in an experimental laboratory, the subjects should have
the opportunity to repeat the act of taking a decision from the same choice
set. For this reason, we think that neither the normative approach nor the
psychological (or descriptive) approach to choice under risk and uncertainty1

have yet isolated completely the in�uence of doubts on choices.
Individuals and organizations learn from direct experience and from the

1Such as prospect theory, cumulative prospect theory and support theory, Kahneman
and Tversky 1979, Tversky and Kahneman 1992, Tversky and Kohler 1994.
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experience of others, obtaining sources of information that might be used
to reduce uncertainty.2 This is why economists have understood for a long
time that imitation of common behavior is a widespread human decision-
making strategy.3 Imitation generates in turn adaptive dynamics which can
be modelled by means of several selections dynamics of a di¤erent nature
(deterministic or stochastic). One way of understanding the consequences
of doubts on choices is by studying the long-run outcome of the dynamics
generated by the (action) switching behaviour of the doubtful agents. To
this end, we relate doubts with strategic decisions in a dynamic model in
which doubtful agents interact frequently. Let us think of a game continu-
ously played by two player populations, each of whom chooses from a set of
pure strategies. A player population is composed of many (doubtful) agents
playing pure strategies. Our purpose is to characterize the long-run outcome
of the doubt-based selection dynamics for constant-sum 2�2 games with a
unique equilibrium in mixed strategies. The rest point of the dynamics is
called Mixed Strategy Doubt Equilibrium (MSDE).4

Some of the results of the paper depend on two limiting cases of doubtful
behaviour which could be thought of as simple heuristics5: the doubt-less
mode of play and the doubt-full mode of play. More speci�cally, we study the
relationship between the MSDE and the Mixed Strategy Nash Equilibrium.
The MSDE is not a Nash equilibrium and has the following feature: the
more popular/common a strategy is, the lower its expected payo¤s. This is
a general characteristic of equilibria with decreasing doubt functions. But in
the doubt-full mode of play the MSDE approaches the Nash equilibrium and
it is also asymptotically stable, whereas in the doubt-less mode, the MSDE
is asymptotically unstable. Thus the Nash equilibrium concept requires non-

2See Levitt and March (1988) or Henisz and Delios (2003) for empirical work about
imitation by organizations and for theoretical work on imitation by individuals see Schlag
(1998).

3See e.g. Alchian (1950), Smallwood and Conlisk (1979) or Nelson and Winter (1982).
4In models of selection dynamics, the treatment of observation with noise has usually

led to di¤erent versions of the replicator dynamics (see, for example, Weibull, 1995). The
main departure of the present paper is the way we model that noise by means of similarity
relations (Rubinstein, 1988 and Uriarte, 1999)) with thresholds determined by the level of
doubts. As a consequence, when doubts are strictly decreasing, the derived doubt-based
selection dynamics are not payo¤ monotonic. Only when agents display constant doubts,
the adjusting behavior would lead us to a doubt-based selection dynamics that is closely
related to the replicator dynamics.

5As in Gigerenzer and Todd (1999).
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conformity behaviour or highly skeptical agents.
This paper, by insisting on doubts related with imperfect perception,

highlights the need of more evidence from fuzzier, that is, more realistic,
experimental environments. A related line of research would be in the �eld
of choice theory; that is the study of choice behaviour under doubts to tackle
the problem of choice under uncertainty.

2. A Model of Doubt-based Selection Dy-
namics
2.1 Notation
Consider a noncooperative �nite game G in normal form, with K =

f1; 2; ::::; ng denoting the set of players. For each player k 2 K , let Sk =
f1; 2; ::::;mkg be her �nite set of pure strategies, for some integer mk > 2.
Imagine that there exist n large populations, one for each of the n player

positions in the game. Members of the n populations chosen at random -
one member from each player population- are repeatedly matched to play
the game. In what follows, we shall speak of players when referring to the
game G and we shall speak of agents when referring to the members of the
populations. Each agent is characterized by a pure strategy. From now
on, we shall refer to the agent ki as a member of the player population
k 2 K who plays pure strategy i 2 Sk . Let fki(t) 2 Fki = [0; 1] be the
relative frequency of ki agents at time t, with f(t) being the vector collecting
such probabilities. Time index suppressed, �ki(f) will denote agent ki�s
expected payo¤ given the population state f . Without loss of generality, we
may assume that payo¤s are strictly positive and smaller than one; that is,

�ki(f) 2 �ki = [m;M ], m > 0 and M < 1. Finally, �k(f) =
mkP
i=1

fki(f) �ki(f)

is the average payo¤ in player population k 2 K: To simplify notation, we
shall denote �ki(f) as �ki:

2.2 Doubts
Doubtful behaviour. We assume that the game is played by bound-

edly rational players who have doubts about how well they are playing. More
precisely, every agent of each player population is endowed with a (primitive)
function that we call the �doubt function�. This function, denoted dki; mea-
sures the doubts felt by agent ki about how good is his current strategy
i 2 Sk , available to player population k 2 K = f1; 2; :::; ng, as a response to
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the strategies that the remaining players are using. Each agent ki relates his
doubts to fki 2 Fki, the proportion of individuals, in his player population,
who are equally using his current strategy i 2 Sk.
We shall assume that the agents are endowed with a strictly decreasing

doubt function. That is, an agent�s doubts about how well is playing gradu-
ally decrease when he observes (or is informed of) a gradual increase in the
number of agents from his player population playing the same strategy as the
one he is currently using. The underlying logic of this assumption is a belief
on the part of agents about the collective wisdom of crowds, combined with
the cognitive ease of trusting others relative to thinking through the decision
problem.6

We may distinguish di¤erent degrees of trust on the wisdom of crowds to
calibrate one�s doubts. We shall classify them into two broad groups, each
with a type of doubtful behaviour (for a philosophical approach to doubts,
see section 5, below).
a) The Herding doubts agent (or, in short, the Herding agent): a typical

agent in this group believes in "the wisdom of crowd" and so his doubts are
very sensitive to the level of popularity, fki 2 (0; 1); of his current strategy
i 2 Sk.
b) The Skeptical agent : this type of agent is suspicious about "the wisdom

of crowd" and has high level of doubts for any fki 2 (0; 1).
We formalize these types of doubtful behaviour as follows.

The doubt functions. Formally, let us consider the following set of
strictly decreasing and di¤erentiable doubt functions:

D =
n
dki : Fki ! [0; 1] : bfki > efki ) dki( bfki) < dki( efki) o

When an element dki 2 D is interpreted as a doubt function, dki(fki), for
some fki 2 Fki known by the ki agent, measures the doubts (about how well
is playing the game) felt by the agent ki when the proportion of agents in
player population k playing strategy i 2 Sk at time t is fki 2 Fki .
Let m < M , with both m and M in (0; 1). We will be working with the

following types of agents:
- Herding agents: they are endowed with doubt functions in the set Dm �

D such that dki(fki) < m for all fki 2 [0; 1]:
6A similar argument is made in Smallwood and Conlisk (1979).
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- Skeptical agents: they are endowed with doubt functions in the set
DM � D, such that dki(fki) > M , for all fki 2 [0; 1]:
Now, let � 2 (0; m) be small enough so that 1� � 2 (M; 1). Inside these

two types of agents, we should note the following:
1. The Doubt-less agent: this agent is endowed with a function in the

class D� � Dm, such that dki(fki) < � for all fki 2 [0; 1]:When � is su¢ ciently
small, we say that the agent ki is in the doubt-less mode because, whatever
the level of popularity of his current strategy, fki 2 (0; 1), his doubts are
almost zero. The agent endowed with such a function strongly believes in
his current strategy.
2. The Doubt-full agent (or the Cartesian skeptical agent 7): this agent is

endowed with a doubt function in the class D1�� � DM , such that dki(fki) >
1 � � for all fki 2 [0; 1]. Whatever the level of popularity of his current
strategy, fki, his doubts are almost one. Thus, this type of agent is very
suspicious of "the wisdom of crowd" to trust in his current strategy.

An Index for dissatis�ed agents. Doubts accentuate the imperfect
discrimination capacity of the human mind; hence, we shall assume that
agents observe with some noise the expected payo¤s and the popularity at-
tached to the pure strategies available to their player population. We shall
model that imperfection by means of similarity relations (see Rubistein 1988,
Aizpurúa et al, 1993, and Uriarte 1999).
Our adaptive agents are current users of some strategy and, very likely,

past and future user of some others. Inside a player population its mem-
bers are likely to share their experience and information about the game.
This naturally leads to imitation processes which give rise to observational
learning, herding and other forms of convergent behavior.
The �ows of agents among the strategies derive from the level of satisfac-

tion felt with their current strategy. To avoid the use of di¤erent parameters
determining the level of doubts, we will be working with just one type of
doubtful agents: either they are all Herding agents or they are all Skeptical
agents.

7The doubts of the Skeptical agent are not as those of the Herding agent, which are
popularity depending. We can think that individuals might have life experience built-
in doubts which are systematically used as a method for reasoning or as a procedure
for decision-making. Those methodological doubts could also be reinforced by philo-
sophical principles, as advised, for instance, by Hume (2007) and Descartes (2008, and
http://plato.stanford.edu/entries/descartes-epistemology/ ).
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Let

�ki = �ki(�ki; fki; �kj; fkj), i 6= j
denote the proportion of ki strategists who feel dissatis�ed with strategy i
at time t. In the Appendix A we justify and microfound the following choice
of this function via a model of (correlated) similarities relations8 :

�ki =
�ki

�mk
i=1
�ki

=
�ki
�k

Where, for some fki 2 (0; 1), �ki(�ki) = �ki
�ki�dki(fki) is a continuous and strictly

deacreasing function which is used to build similarities on the frequency
space Fki ( a detailed account of �ki and �ki is given in Appendix A). This
function determines the size of the similarity interval in Fki. And the doubt
level, dki(fki), determines the size of the similarity interval on �ki. Thus,
both dki(fki) and �ki(�ki) are the thresholds of their corresponding similarity
interval. Note that no matter the type of agents, - Herding or Skeptical -,
the sign of �ki is positive.
In Appendix A, we show how the agent ki builds a procedural preference

on Fki��ki compatible with a pair of similarity relations ( in the same spirit
of Rubinstein 1988, Aizpurúa et al. 1993 and Uriarte 1999). Given a vector
(�ki; fki) 2 Fki��ki attached to strategy i, the thickness of its corresponding
indi¤erence set is sensitive to both dki(fki) and �ki. The higher the doubts
and/or the smaller the payo¤s, the thicker the indi¤erence set will be; hence,
the higher is the distance from (�ki; fki) to its preferred set and so the more
dissatis�ed the agent ki will feel. It can be seen that the variations of this
distance are captured by the properties of �ki (that is, the variations of �ki
due to changes in �ki and fki). Hence the �ki function could be taken as a
measure of the degree of dissatisfaction of the agent ki with respect to his
current strategy i 2 Sk; �mk

i=1
�ki = �k will the be the total dissatisfaction

level in population k 2 K.
The limit case of the herding agents, the doubt-less agent, would be highly

satis�ed with his current strategy because his doubts are almost zero and
hence the indi¤erence set will be almost a singleton. On the other hand, it
can be seen ( in Appendix A) that the skeptical agent has indi¤erence sets
covering the whole choice space Fki��ki and thus will feel highly dissatis�ed.

8For the de�nition of similarity relation, see Rubinstein (1988). For the de�nitin of
correlated similarity relation, see Aizpurúa et al. (1993).
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And the Cartesian skeptical agent endowed with hyperbolic and universal
doubts, as describe above, will be continuously switching and experimenting
new strategies.

Doubt-Based Selection Dynamics. We assume that time is divided
into discrete periods of length � . In every period, 1 � � is the probability
that the agent does retain his current strategy; thus, � is the probability that
each agent does not retain his current strategy. We make now the following
assumption to build a selection dynamic model9.
When an agent feels dissatis�ed with his current strategy, she will choose

a new strategy with a probability that is equal to the proportion of agents
playing that strategy.
Hence, � �ki

�k
fki will denote the proportion of ki strategists who will choose

a new strategy (that is, the out�ow), and, since a particular strategy is
chosen with a probability that is equal to the proportion of agents playing
that strategy, then

Pmk

j=1
�kj
�k
fkjfki = �

�k
�k
fki is the proportion of agents who

will choose strategy i (that is, the in�ow).
Therefore,

fki(t+ �) = fki(t)� �
�ki
�k
fki + �

�k
�k
fki

As � ! 0; in the limit we get the doubt-based selection dynamic equation:

�
fki = fki

�
�k � �ki
�k

�
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::(1)

To gain some intuition, let us now look at equation (1) in a less compact
way. Let G be a two-population constant-sum game with SI = fU;Dg and
SII = fL;Rg denoting player I and player II�s strategy sets, respectively.
Let x denote the probability of playing U , y the probability of playing L and
I = [(x�; 1� x�) ; (y�; 1� y�)] the Mixed Strategy Nash Equilibrium, with
x� > 0 and y� > 0:
We denote the four doubt functions di 2 D (where i = U;D;L;R). From

(1), the doubt-based selection dynamics for G is represented by the following
system:

9For a justi�cation see, for example, Binmore et al. (1995).
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�
x =

x (1� x)
�U (�D � dD) + �D (�U � dU)

(�UdD � �DdU) � G1(x; y)F1(x; y):::::::::::::::::(2)

�
y =

y (1� y)
�L (�R � dR) + �R (�L � dL)

(�LdR � �RdL) � G2(x; y)F2(x; y)::::::::::::::::::::(3)

Clearly, a stationary point for the doubt-based system (2)-(3), with x� > 0
and y� > 0, requires �UdD = �DdU and �LdR = �RdL. We call this point the
Mixed Strategy Doubt Equilibrium (MSDE).

2.3 Mixed Strategy Nash Equilibrium (MSNE) and
Mixed Strategy Doubt Equilibrium (MSDE)
We should distinguish between the Mixed Strategy Nash Equilibrium

(MSNE) and the Mixed Strategy Doubt Equilibrium (MSDE) for the doubt-
based dynamic system (2)-(3).
1. In a MSNE the requirement is that all strategies in the support of the

equilibrium have equal payo¤s; that is:

�ki (f
�) = �kj (f

�) for all i; j with f �i > 0 and f
�
j > 0 and all k

2. From (2)-(3) we deduce that for a MSDE the requirement is (recall
the assumption dki = d 2 D):

�ki (f
�)

dki (f �i )
=
�kj (f

�)

dkj
�
f �j
� for all i; j with f �i > 0 and f �j > 0 and all k

Note that in this case, the expected payo¤s to the strategies in the support
of the equilibrium need not be equal, as it is required in the MSNE. We have
the following result:

Proposition 1
Suppose that all the agents are endowed with a doubt function dki = d .

Then for all k and all i; j, with 0 < f �kj < f
�
ki < 1, since the doubt functions

are strictly decreasing, d (f �ki) < d
�
f �kj
�
; thus, in order to satisfy the Mixed

Strategy Doubt Equilibrium condition, we must have �ki (f �) < �kj (f �).
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Proof: Direct from the Mixed Strategy Doubt Equilibrium (MSDE) con-
dition.
In words, the more frequent strategies in a MSDE should have lower

expected payo¤s. This situation is clearly distinct from a Nash equilibrium
and is a general feature of the (decreasing) doubt-based dynamic system.10

Relation with the Literature. The major departure of the present
paper is how it is modelled the agents� imperfect observation of expected
payo¤s and popularity attached to his current strategy. Contrary to the
standard approach (cf. chapter 5 of Weibull, 1995), modelling the noisy
observation by means of similarity relations whose thresholds depend on the
level of doubts, we can obtain doubt-based selection dynamics that are not
payo¤monotonic. We show (see section 6, below) that only when doubts are
constant the doubt-based system is just the standard replicator dynamics
multiplied by a positive function.
When doubts are very high, we show that:
i) the MSDE converges to the Mixed Strategy Nash Equilibrium (MSNE).
ii) any interior MSNE is asymptotically stable for the doubt-based selec-

tion dynamics.
These two results together provide a doubt-based justi�cation of the

MSNE. Thus, only the agents who are skeptical �nd their way to the unique
interior Nash equilibrium (Proposition 3). But those who are not skeptical,
such as the herding agents, do not converge to that equilibrium (Proposition
4). These results happen to agree with ordinary ideas, such as skepticism is
a good guide for action or too much trust in the wisdom of crowd is not a
good strategy and neither is conformity.
It seems harder to �nd a microeconomic justi�cation, or a natural inter-

pretation, of the asymptotic stability of the Nash equilibrium in the Matching
Pennies Game obtained with the parameter c used in the adjusted replicator
dynamics (see section 5.2.2 in Weibull, 1995).

3. Doubt-based selection dynamics in con-
stant sum games
In this section we shall explore the relationship between the MSNE and

10We believe that this feature of the equilibria of the doubt-based selection dynamics
system is a relevant and testable implication of our model. We can provide, upon request,
some preliminary evidence to support it.
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MSDE for di¤erent levels of doubts.

3.1 Relationship between a MSNE and a MSDE
Let us recall what game theorists say about a MSNE:
�The point of randomizing is to keep the other player(s) just indi¤erent

between the strategies that the other player is randomizing among. One ran-
domizes to keep one�s rivals guessing and not because of any direct bene�t to
oneself.� (Kreps 1990, p 408).
We shall see below that the doubt-based model seems to capture that state

of players�mutual guessing that characterizes a MSNE. Assume that we are
dealing with 2 � 2 constant sum games having a unique mixed equilibrium
with full support. Consider Player I; how would this player interpret di¤erent
values of (his own probability) x, say 0:2 and 0:6? A rational Player I knows
that Player II is randomizing to keep him indi¤erent between the strategies
he is randomizing among. Therefore, in terms of our model of doubts, x = 0:2
and x = 0:6 would induce in the Player I�s rational mind the same level of
doubts as to which is the best probability distribution, because both of them
get the same expected payo¤. But, for the same reason, Player I�s equilibrium
strategy in the game will induce the same level of doubts as 0:2 or 0:6. In
other words, Player I does not see, in a preference sense, any real di¤erence
between di¤erent probability distributions in the open unit interval (0,1). As
a consequence, he must have (nearly) equal level of doubts at any x in (0,1).
The same will happen to Player II.
The above suggests that we should ask �rst, which are the level of doubts

embedded in the players�mutual guessing that characterizes steady states very
close to the MSNE. This is answered in Proposition 2 below, where we show
that, if all agents are playing in the doubt-full mode, any interior MSNE
coincides with an MSDE ; that is, an MSNE is a Mixed Strategy Doubt-Full
Equilibrium (MSDFE).
The second issue to deal with is the following: how is the MSNE reached?

or,which is the equilibrating process that may lead to the MSNE? This will
be answered in Propositions 4 and 5 below.
Let G be a two-population, two-strategy, constant-sum game with I =

[(x�; 1� x�) ; (y�; 1� y�)], x� > 0, y� > 0, denoting its MSNE.

Proposition 2
1.The (Euclidean) distance between an MSDE and MSNE converges to

12



zero as � goes to zero if every agent plays with a doubt function in the D1��

class; that is, for the doubt-full or Cartesian skeptical agents. Hence, any
MSNE, with (x�; y�) 2 (0; 1)� (0; 1), is an MSDFE.
2.For any interior point of the simplex A = [(x0; 1� x0) ; (y0; 1� y0)] (i.e.

with 0 < x0 < 1 and 0 < y0 < 1) there is a sequence of functions d� 2 D�

such that the (Euclidean) distance between an MSDE and A converges to
zero as � goes to zero. That is, if every agent plays in a doubt-less mode, any
interior point of the simplex can be a MSDLE for some kind of doubt-less
behavior.
Proof: See appendix B
This means that if I = [(x�; 1� x�) ; (y�; 1� y�)] is the MSNE of G, then

it is compatible (in the sense of Proposition 1) with agents playing in any of
the two modes of play, doubt-full or doubt-less.

3.2 Learning to Play a Mixed Strategy Nash Equilib-
rium (MSNE)
We have seen that an MSNE and an MSDE satisfy di¤erent equilibrium

properties and therefore, in general, they do not coincide. However, from
Proposition 2, we know that an MSNE could be converted into an MSDE
when all agents are Cartesian skeptical or play in the doubt-full mode. In
other words, anMSNE could be converted into a rest point of the doubt-based
dynamic system (2)-(3). Hence, now we are ready to answer the question:
how do the boundedly rational player populations learn to coordinate in the
MSNE? Proposition 4, below, shows that an introspective element, such as
doubts, could be crucial for learning to play optimally.
We know that a fully rational player must avoid being guessed by the op-

ponents and that to achieve this he will behave in such a way so as to create
a random sequence of choices. This suggests that a doubt-less mode of play-
ing -that implies almost no strategy switching behavior- would be far from
being an adjusting process leading to the Nash equilibrium. It seems that,
in an equilibrating process, what makes more sense is that players be very
skeptical; that is , that they should behave in the doubt-full mode. In our
deterministic dynamic model, the Cartesian skeptical agents will have a ten-
dency to keep trying new strategies and, thus, generating not a truly random
sequences of choices, but individual processes of trial-and-error adjustments
which could �nd their way to the MSNE. In Proposition 3 below we show
that this is the case: if every agent behaves as if he were constantly with

13



hyperbolic doubts, the agents�adjusting behavior would lead them to the
MSNE and endow the equilibrium with a strong stability property. Propo-
sition 4 below shows that the doubt-less mode of play has just the opposite
consequence.

Proposition 3
Let G be a two-population, two-strategy, constant-sum game with I� �

[(x�; 1� x�) ; (y�; 1� y�)], any x� > 0 and y� > 0, denoting its MSNE. Then a
point close to I� is asymptotically stable for the doubt-based dynamic system
(2)-(3) if every agent plays in the doubt-full mode of play (that is, if they
are all Cartesian skeptical).
Proof: See appendix B

Proposition 4
Let G be a game as in Proposition 3. For any interior point of the simplex

A = [(x0; 1� x0) ; (y0; 1� y0)] (i.e. with 0 < x0 < 1 and 0 < y0 < 1). If every
agent is in the doubt-less mode of play and if the initial conditions of the
doubt-based dynamic system (2)-(3) are di¤erent from A, there is a sequence
of functions d� 2 D� such that the system diverges to a corner of the simplex.
That is, if every agent plays in a doubt-less mode, any interior point of the
simplex can be a source for some kind of doubt-less behavior.
Proof: See appendix B
One may then ask about how to explain the modes of play of Proposition

3 and 4 would arise. Needless to say, doubts are a subjective feeling and
hence it is di¢ cult to ascertain the precise reason why they may arise in each
particular case. Proposition 3 suggests that the origin of high level of doubts
(i.e of being skeptical) lies in the fact that every agent seems to be aware
that the proportion with which each available strategy is being played and
the sequence that the agents, as a player population, are producing is not
random. Cartesian skeptical agents have developed a priori a theory that
make them to be aware and adapted to face this setting. Thus, the hyperbolic
and universal doubts felt by every member of each player population would
be what the context demands. If not by a theory, smart agents would develop
high doubts from the fear of being guessed and exploited by the opponent.
As a consequence, since agents are very unhappy with their current strategies
a high proportion of agents will experiment with new strategies in the next
period. The fear and the doubts of the agents will continue to be high and,
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joint with the choices that exploit the variations both in the payo¤s and in
the strategy proportions, the adjusting behavior would lead the system to
the Mixed Strategy Nash Equilibrium. Once in the equilibrium, payo¤s are
equalized across strategies and the doubt levels continue to be very high and
equal across strategies too. Thus, the doubt-full mode of play advised by the
Cartesian theory of doubts endow the MSNE with strong stability properties.
An interpretation of Proposition 4 is that the extreme sensitivity to the

�opinions�of others, leads play to a situation where players imitate, when-
ever doubtful, the current most fashionable action. This creates a tendency
to diverge in population behavior. In addition, the doubt-less agents are
quite satis�ed with their current strategies and do not feel the need to exper-
iment with new strategies to exploit the di¤erences in payo¤s and strategy
proportions. Hence, a low level of imitation and strategy adjustment takes
place, and the populations diverges very slowly to a situation where initially
popular strategies dominate.

4. Example
Without loss of generality, let us consuder the following class of doubt

functions: dki(fki) = (1� fki)�. Assuming that � 2 (0;1), we would obtain
a large enough subclass of doubt functions in the set D. Note, in particular,
that this class contains the two extreme types of doubt functions mentioned
above: when � is very small, near zero, the doubt parameter characterizing
agent ki, denoted as H = 1

�
, would be very high, for any fki 2 (0; 1). Then

the function will have a graph looking like the one of �gure 2, and we shall
say that the agent is Cartesian skeptical or is in the doubt-full mode of play.
When � is very high, the graph of dki is close to the axes, as in �gure 1, and
so the doubt parameter, H = 1

�
, is very small, for any fki 2 (0; 1). This is

the agent in the doubt-less mode of play .
As in Binmore et al. (1995), we approach equation

�
fki = fki

�
�k � �ki
�k

�
::::::::::::::::::::::::::::::::::::(4)

by means of the equation

fki(t+ �)� fki(t) = �fki

�
�k(t)� �ki(t)

�k(t)

�
::::::::::::::(5)

where the step size � = 0:01. We shall consider, like Binmore et al.(1995),
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that the system has converged on a point when the �rst 15 decimals are
unchanging.

The Penalty Kick Game11

Palacios-Huerta (2003) found that the equilibrium theory predictions are
observed in the professional players�behavior: (i) their choices follow a ran-
dom process and (ii) that the probability that a goal will be scored must be
the same across each player�s strategies and equal to the equilibrium scoring
probability (that is, in the Mixed Strategy Nash Equilibrium each player is
indi¤erent among the available strategies). Palacios-Huerta and Volij (2007)
extend this result by observing that professional players are capable of trans-
ferring their skills from the �eld to the laboratory, a completely unknown
setting for them, and yet behave in a way that is signi�cantly near the Nash
equilibrium.
Palacios-Huerta and Volij (2007), from a sample of 2,717 penalty kicks

collected from European �rst division football (soccer) leagues during the
period 1995-2004, built the following two player (Player I: the kicker and
Player II: goal keeper) two strategy (Left, Right) game.

( y) L R
( x)L 0.60, 0.40 0.95 , 0.05
R 0.90, 0.10 0.70, 0.30

where �I(i; j) denotes the kicker�s probability of scoring when he chooses i
and the goalkeeper chooses j, for i; j 2 fL;Rg :The Mixed Strategy Nash
Equilibrium of this game is: x� = 0:363 64; y� = 0:454 55:
Football matches are continuously played and players�game is based on

the study of the opponents in the �eld and watching their play on TV and
videotapes, so that their behavior in the penalty kicks is collected and ana-
lyzed. Thus, there is a history of play of each player and, hence, an interactive
learning process. Thus, a natural issue is to investigate the type of dynamic
process that may lead to the result found by Palacios-Huerta (2003). The
doubt-based model seems to be a suitable model for this task.
The doubt-based selection dynamic system (2)-(3) corresponding to this

game is the following:

11We avoid on purpose an example based on the ubiquitous Matching Pennies Game.
Proposition 3 is valid for any interior MSNE of a 2� 2 constant-sum game.
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�
x =

x(1� x)((0:95� 0:35y)x� � (0:2y + 0:7)(1� x)�)
2(0:95� 0:35y)(0:2y + 0:7)� (0:95� 0:35y)x� � (0:2y + 0:7)(1� x)�

�
y =

y(1� y)((0:1 + 0:3x)y� � (0:3� 0:25x)(1� y)�)
2(0:1 + 0:3x)(0:3� 0:25x)� (0:1 + 0:3x)y� � (0:3� 0:25x)(1� y)�

The vector �eld de�ning (2)-(3) is

F (x; y) = (
x(1� x)((0:95� 0:35y)x� � (0:2y + 0:7)(1� x)�)

2(0:95� 0:35y)(0:2y + 0:7)� (0:95� 0:35y)x� � (0:2y + 0:7)(1� x)� ;

y(1� y)((0:1 + 0:3x)y� � (0:3� 0:25x)(1� y)�)
2(0:1 + 0:3x)(0:3� 0:25x)� (0:1 + 0:3x)y� � (0:3� 0:25x)(1� y)� )

We compute �rst the derivative DF (x; y) and then evaluate DF (x; y) at
(0:363 64; 0:454 55) to get the following Jacobian matrix:

DF (0:363 64; 0:454 55) =

�
�

1: 581 8�2�0:363 64�
0:146 29(�0:2�0:636 36��0:35�0:363 64�)

0:790 91�0:363 64�
0:592 880:25�0:545 45

�+0:3�0:454 55�
0:209 09�0:454 55�

�
0:418 18�2�0:454 55�

�
It is easy to see that for values of � 2 (0; 0:231 88), all the eigenvalues of

DF (0:363 64; 0:454 55) have negative real parts and the associated determi-
nants are all positive. Thus, the equilibrium (0:363 64; 0:454 55) is a spiral
sink, for those values of �, and, therefore, it is asymptotically stable.

5. Constant doubt-based selection dynamics
The individual choice model that we are going to use in this section is

derived from a choice procedure introduced by Aizpurúa, Ichiishi, Nieto and
Uriarte (1993) in the space of simple lotteries. We consider now the case when
the level of doubts felt is constant, for any value of fki 2 Fki. This means
that society has no in�uence upon the doubt level of the agents. Formally,
Assumption 3

dki(fki) = �k 2 (0; 1)
We assume that the constant level of doubts �k felt by agent ki induces

threshold levels in both expected payo¤s and strategy frequencies and that
these threshold levels are described by means of similarity relations.
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As in the previous case, it is by means of Assumption 3 about the doubt
function that we may de�ne a similarity relation on �ki = (0; 1] and corre-
lated similarity relations on Fki = [0; 1]. Suppose that (�ki; fki) is the vector
of expected payo¤-strategy proportion attached to strategy i at time t.
The similarity relation on �ki; denoted S�ki; is assumed to be of the

di¤erence type and it is de�ned as follows

�kiS�ki�
0
ki , j�ki � �0kij � �k

On Fki, we de�ne now the correlated similarity relations as follows. First,
for all �ki > "k > 0 we build the function �ki : �ki ! (1;1] as follows,

�ki(�ki) =
�ki

�ki � �k
> 1

Then, we can establish the following similarity relation (of the ratio-type)
between fki and other frequencies in Fki, such as f 0ki, given �ki.

fkiSFki(�ki)f
0
ki ,

1

�ki(�ki)
5 fki
f 0ki

5 �ki(�ki)

We call SFki(�ki) a correlated similarity relation because the similarity
on Fki depends on the level of expected payo¤ �ki at period t. For values of
�ki 5 �k the function �ki is not de�ned and we assume that in that case that
SFki(�ki) is the degenerate similarity relation (see Rubinstein (1988)).
Remark:The threshold level in the frequency space is inversely related

to expected payo¤s: @�ki(�ki)
@�ki

< 0. This means that as the expected payo¤s
at stake increases, the discrimination on the frequency space Fki increases.
Assumption
We proceed as in the previous case (for simplicity we shall write �ki

instead of �ki(�ki)). Let the ratio

�ki
�mk
i=1
�ki

=
�ki
�k

denote the proportion of ki strategists who feel dissatis�ed with strategy
i. Note that, everything equal, this function increases with �ki. Hence, an
increase in �ki, due to a decrease in the expected payo¤s �ki, will increase
the proportion of dissatis�ed ki strategists.
As before, � (�ki�1)

�k
fki denotes the proportion of ki strategists who will

choose a new strategy at time t (the out�ow). Since a particular strategy
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is chosen with a probability that is equal to the proportion of agents play-
ing that strategy, then �

Pmk

j=1

�kj
�k
fkjfki = �

�k
�k
fki denotes the proportion of

agents who choose strategy i ; i.e. the in�ow (where �k =
Pmk

j=1 �kjfkj is the
average perception in player population k at time t ).
Therefore

fki(t+ �) = fki(t)� �
�ki
�k
fki + �

�k
�k
fki:::::::::::::::::(6)

Proposition 5
As � ! 0; equation (6) becomes

�
fki = fki

�
�k � �ki
�k

�
::::::::::::::::::::::::::::::::::(7)

1. If for all player position k 2 K = f1; 2; :::; ng ; the strategy set Sk
consists of two elements, i.e. ifmk = 2 then, equation (7) is just the standard
Replicator Dynamics (RD) multiplied by a positive function (i.e. is aggregate
monotonic).
2. If mk > 2; then we obtain a selection dynamics that approximates

the RD, but preserves only the positive sign of the RD (i.e. is weakly payo¤
positive).
Proof: See appendix B

6. Concluding Remarks
In 2 � 2 games with Mixed Strategy Nash Equilibria, the introduction

of agents with doubts coupled with (and mutually reinforced by) imperfect
discrimination capacity, permits a departure from the long-run behavior of
traditional selection dynamic systems. For instance, if we assume that the
feeling of doubts is sensitive to the popularity of a pure strategy, then we
obtain doubt-based selection dynamics that are not payo¤ monotonic. The
main feature of the doubt-based system is that its equilibrium does not re-
quire expected payo¤s to be equalized across strategies. Nevertheless, the
curvature of the decreasing doubt functions has strong implications on the
long run behavior of the system. If agents do not beleive in the wisdom of
crowd, are very skeptical and thus play in the doubt-full mode,- i.e. agents
are endowed with an extremely concave doubt function-, a Mixed Strategy
Nash Equilibrium is a Mixed Strategy Doubt-Full Equilibrium and it is shown
to be asymptotically stable. But stability is lost when agents have herding
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doubts; that is, doubts that are in�uenced by the relative popularity of each
of the pure strategies available to his player role. We have shown this result
when agents are in the doubt-less mode, i.e. when they are endowed with an
extremely convex doubt function. Herding doubts lead to the Mixed Strat-
egy Doubt Equilibrium in which the most popular strategies receive lower
expected payo¤s.
The present behaviorally-based theoretical work could be applicable to

experimental research. Our view is that experiments should be designed to
capture the decision schemes that are actually used by subjects. Two fea-
tures of bounded rationality are, in our view, embedded in those schemes:
doubts and imperfect perception. It is known that similarity judgments are
part of observed decision procedures (see Tversky (1977), Rubinstein (1988)
and Arieli et al. (2009)). We think that feedback on the popularity of di¤er-
ent strategies would be important to consider, as well as less sharply de�ned
payo¤s. However, subjects in experiments usually do not have information
about the proportion of people using each strategy. For example, the only
experiment from those surveyed in chapter 3 of Camerer (2003) in which
agents are given that information is the one carried out by Tang (2001). We
suspect, though, that the highly precise (and, we would argue, unnatural)
form of the feedback given to subjects eliminates the �doubt�considerations
that are important in the build-up of our model. It would be unrealistic to
assume that the agents get the correct numbers. We believe that more evi-
dence, and hopefully, from �fuzzier�(more realistic) environments would be
useful to confront some predictions made in this work. Hence, a translation
of our theoretical model into an experimental design should be our next task.
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Appendices
A. Satis�cing Procedural Preferences based on Simi-

larity Judgements
It is safe to say that doubts are closely related to imperfect discrimination

capacity. Thus, we will assume that agents observe the expected payo¤ and
the popularity attached to their current pure strategy with some noise. We
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model this imperfection by means of an extension of Rubinstein type of
similarity relations (see Rubistein 1988), which we call correlated similarity
relations (see Aizpurúa et al, 1993 and Uriarte 1999).12. Then the agents
would build a procedural preference relation compatible with those similarity
relations, as in Rubinstein (1988).
We proceed as follows, �rst we shall build the correlated similarity rela-

tions and second, we show how the agent may proceed to build his prefence
and decide about the pure strategies.
To be more speci�c, let (�ki, fki) be the vector of expected payo¤-

proportion of agents of player population k attached to strategy i 2 Sk
at time t with fki 2 (0; 1):

I. Correlated Similaritites on �ki and Fki
The doubt function serves to build correlated similarity relations on both

�ki and Fki: Let (�ki; fki) and (�ki; fki) be two vectors in �ki�Fki; with fki
, fki 2 (0; 1).
(a) On the space of expected payo¤s, �ki:
The doubt function dki de�nes correlated similarities of the di¤erence-

type as follows: given fki we say that �ki is similar to �ki; ( formally written
as �kiS�[fki]�ki ), if and only if j�ki � �kij 5 dki(fki) , where j:j stands
for absolute value. Thus, there is one similarity relation on �ki, for each
fki 2 (0; 1)
Then the similarity interval of �ki, given fki is:

[�ki � dki(fki); �ki + dki(fki)]
Note that dki(fki); the doubt level felt by

P
agent ki given the propor-

tion fki; becomes the threshold level in the de�nition of this type of similarity
relation. If fki increases, the threshold, dki(fki); decreases and so the simi-
larity intervals of �ki shrink (giving rise to the vertical cone-shaped form in
�gure 2):This means that when fki increases, the discrimination capacity on
the space of expected payo¤s to strategy i increases (probably because the
accumulated experience with strategy i has increased due to the increased
number of agents from population k currently playing strategy i). When fki
is such that �ki � dki(fki) � m and �ki + dki(fki) � M; the whole set �ki
= [m;N ] is similar to �ki and when fki = 1 only �ki is similar to itself. This

12Rather than being constant, correlated similarities depend on the value of some rele-
vant parameter.
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variations in perception induces a vertical wedge type form, as it can be seen
in �gure 2.
Notice that for a Cartesian skeptical agent, the similarity interval is

[�ki � dki(fki); �ki + dki(fki)] = [m;M ]

That is, since in this case dki 2 DM , then dki(fki) > M for all fki 2 (0; 1),
thus m is similar to M , and hence the similarity on �ki is degenerate (see
Rubistein 1988).
(b) On the strategy frequency space, Fki:
The doubt function dki de�nes correlated similarity relations of the ratio-

type by means of the continuous function �ki : �ki ! R, which is de�ned as
follows: for a given fki 2 (0; 1) and dki,

�ki(�ki) =
�ki

�ki � dki(fki)

The properties of �ki are the following:

(i) given fki and dki, if �ki increases, �ki(�ki) decreases continuously and
thus, the similarity interval shrinks. This means that when the expected
payo¤s at stake increase, the discrimination e¤orts on the frequency space,
Fki, increases (generating a kind of horizontal wedge type form, as it is shown
in �gure 1)
(ii) keeping the function dki, and �ki constant, if the frequency fki in-

creases, then �ki(�ki) decreases and so the similarity intervals of the higher
frequency shrink.
Note that:
1. For the herding agents: dki 2 Dm and the function �ki > 1 is then

used to de�ne on Fki correlated similarity relations of the ratio-type whose
similarity interval for that fki is:

[fki=�ki(:), fki:�ki(:)]

2. For the skeptical agents: dki 2 DM , then �ki < 0 will de�ne a degen-
erate similarity relation (see Rubistein 1988). Thus, when doubts are of a
skeptical nature, the similarity relations on both �ki and Fki are degenerate;
that is, 0 is similar to 1. Formally, on Fki, given a fki 2 (0; 1), the correlated
similarity relation SFki[�ki; fki] will induce the following similarity intervals
for fki:
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[fki=�ki(:), fki=�ki(:)] = [0; 1]

The size of this degenerate similarity interval does not change with �ki;
it remains constant for any value of �ki.

II. Procedural Preference on �ki � Fki :
Based on a model developed in Uriarte (1999), we show now how the

above two correlated similarity relations build a (non-complete and non-
transitive) preference-indi¤erence relation de�ned on the space of expected
payo¤s and frequencies, �ki � Fki, attached to pure strategy i 2 Sk. Let us
assume that each agent ki compares pairs of alternatives in �ki�Fki with the
aid of a pair of correlated similarity relations to decide which of the two is
preferred. The agent may de�ne a procedural preference %kion �ki � Fki by
means of the pair of correlated similarities and know his aspiration set U at
each t ( which we identify with the upper contour set of the vector (�ki; fki)
at t , U = U� [ U� [ U�; see �gure 1). That is, given a pair of vectors
(�ki; fki) and (�ki; fki) in �ki � Fki , the vector (�ki; fki) will be declared
to be preferred to (�ki; fki), i.e. (�ki; fki) �ki (�ki; fki); whenever the agent
ki perceives that one of the following three conditions is met. (Note that
since (�ki; fki) is to be preferred, the conditional similarity relation S� on
�ki given fki and the conditional similarity relation SF on Fki given �ki and
fki are to be used):

Condition � : �ki > �ki, and no �kiS�[fki]�ki; while fkiSF [�ki; fki]fki:

In words, �ki is bigger than �ki and, given fki , �ki is perceived to be not
similar to �ki ; while , fki is perceived to be similar to fki. U� in �gure 1 is
the area implied by this condition.

Condition � : fki > fki and no fkiSF [�ki; fki]fki;while �kiS�[fki]�ki:
In words, fki is bigger than fki and, given �ki and fki; fki is perceived

to be not similar to fki; while, given fki; �ki is perceived to be similar to
�ki:U� in Figure 1 is the area implied by this condition.

Condition � : �ki > �ki and no �kiS�ki[fki]�ki; fki > fki and
no fkiSF [�ki; fki]fki.
That is, vector (�ki; fki) is strictly bigger than (�ki; fki) and no similarity

25



is perceived in both instances. U� in �gure 1 is the area implied by this
condition.

Indi¤erence: Whenever both expected payo¤s and strategy propor-
tions are perceived to be similar, then the two vectors will be declared
indi¤erent ; i.e. when �kiS�[fki]�ki, �kiS�[fki]�ki, fkiSF [�ki; fki]fki and
fkiSF [�ki; fki]fki, then (�ki; fki) �ki (�ki; fki).

When none of these four situations takes place, then the two vectors
would be non-comparable (see �gure 1).

The distance to the aspiration set U depends on how thick the indi¤erence
set of (�ki, fki) is. We assume here that agents are preference-satis�cers; that
is, they choose a strategy to reduce the distance from (�ki, fki) to U . The
Herding agent can achieve this by reducing doubts by means of playing more
popular strategies and/or increasing expected payo¤s. The smaller (greater)
that distance the more satis�ed (dissatis�ed) the ki-agent will be with his
current strategy. It can be seen that the properties (i) and (ii) of �ki capture
the changes in the thickness of the indi¤erence sets. Hence, the �ki function
can be thought of as an index of how dissatis�ed the ki-agent is with his
current strategy. Notice that a doubt-less agent�s indi¤erence classes will
consists of almost singletons: � [(�ki, fki)] �= (�ki, fki) conveying the idea
that with almost no doubts about the goodness of the current strategy, the
doubt-less agent feels very satis�ed and, very likely, will not switch to a
di¤erent strategy.
The Skeptical agent will have indi¤erence sets that will cover the entire

choice space because the similarity intervals on both the �ki and Fki spaces
are degenerate. Thus, we will say that the Skeptical agent�s preference re-
lation is degenerate. Thus, for tis type of agent any pair of expected payo¤s
will be similar, as well as any pair of strategy frequencies. Hence, in terms
of preferences, the agent will not perceive real di¤erences between any two
di¤erent vectors in �ki�Fki and he will declare to be indi¤erent among them.
Thus, having the thickest indi¤erence sets that are possible, the upper con-
tour sets (i.e agents�s aspiration set) will appear to be unreachable and the
Skeptical agent will feel highly dissatis�ed.
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Figure 1: Preference-indi¤erence relation compatible with correlated similarities.
Relative to (�ki, fki); U = U�[U�[U� denotes the upper-contour (or aspiration)
set, L = L�[L�[L� the lower contour set and the darker area is the indi¤erence
set.

Place here Figure 1

B. The Index of Dissatis�ed Agents
Given the expected payo¤s and the frequencies attached to each of the

pure strategies of population k, we propose the index of dissatis�ed agents
with pure strategy i to be represented by the agent ki0s dissatisfaction level
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relative to the total dissatisfaction level of population k (or, the agent ki�s
threshold divided by player population k�s threshold on Fki):

�ki = �ki(�ki; fki; �kj; fkj) =
�ki

�mk
i=1
�ki

=
�ki
�k
, i 6= j

To avoid the use of di¤erent doubt parameters, we will only assume that
either they are all herding agents or skeptical ones; no mixed populations
of doubtful agents are allowed. Further, we assume that the herding doubts
agents do perceive the changes in payo¤s and frequencies. But we cannot
assume the same for the skeptical agents. This is so because, as said above,
the skeptical agent has similarity intervals that are degenerate and, as a
consequence, in terms of preferences, he does not distinguish between any
two di¤erent vectors in �ki � Fki. Therefore, the stimulus intensity received
by this agent from any vector (�ki, fki) would be the same and hence the
response probability is the same for each strategy. Furthermore, since a
Cartesian skeptical agent is endowed with universal doubts (see section 5),
he will always be dissatis�ed and continuously experimenting with every
available strategy, no matter the level of payo¤s and popularity attached to
each strategy. For this reason, we may say that this type of agents react in
a "non-standard" way to the changes in the expected payo¤s and strategy
frequencies.
The properties of �ki follow naturally from those of �ki; hence, the prop-

erties of �ki for the herding agent ki are the following:
1. The proportion of dissatis�ed agents with their current pure strategy

i 2 Sk will decrease if expected payo¤s to strategy i 2 Sk, �ki, increase.

@�ki
@�ki

=

@�ki
@�ki

�k � @�ki
@�ki

�ki

�2k
=

�dki(fki)
(�ki�dki(fki))2

(�k � �ki)
�2k

< 0

2. The proportion of dissatis�ed agents with their current pure strategy
i 2 Sk should increase if expected payo¤s to strategy j 2 Sk, �kj, increase.

@�ki
@�kj

=
�@�kj
@�kj

�ki

�2k
=

�dkj(fkj)

(�kj�dkj(fkj))
2 (��ki)

�2k
> 0

3. If agents ki�s doubts decrease, because the popularity of strategy i,
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fki, has increased, the proportion of dissatis�ed should decrease too.

@�ki
@fki

=

@�ki
@fki
�k � @�ki

@fki
�ki

�2k
=

�ki
@dki(fki)

@fki

(�ki�dki(fki))2
(�k � �ki)

�2k
< 0

4. If the popularity of strategy j 2 Sk, fkj, increases, the proportion of
dissatis�ed agents with their current pure strategy i 2 Sk should increase.

@�ki
@fkj

=
�@�kj
@fkj

�ki

�2k
=

�kj
@dkj(fkj)

@fkj

(�kj�dkj(fkj))
2 (��ki)

�2k
> 0

C. Proofs of propositions
Let

( y) L R
(x)U a11, b11 a12 , b12
D a21, b21 a22, b22

denote the 2�2 constant-sum gameG, and I� � [(x�; 1� x�) ; (y�; 1� y�)] ;with
x� > 0 and y� > 0, the Mixed strategy Nash Equilibrium of G. To get
this equilibrium, we may assume, without loss of generality, that a11 > a21,
b11 < b12, a12 < a22, and b22 < b21. Recall that payo¤s are normalized so
that they take values on [m;M ]. To avoid the use of four di¤erent doubt pa-
rameters, we shall assume that the four doubt functions are the same: dD =
dU = dR = dL = d. The doubt-based selection dynamics (for de�nition (a)
of �ki) are represented by the following system:

�
x =

x (1� x)
�U (�D � dD) + �D (�U � dU)

(�UdD � �DdU) ::::::::::::::::::::::::::::::::::::::::::C:1

=
x (1� x)

�U (�D � dD) + �D (�U � dU)
((a11y + a12(1� y))dD (1� x)� (a21y + a22(1� y))dU (x))

� G1(x; y)F1(x; y)
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�
x =

x (1� x)
�U (�D � dD) + �D (�U � dU)

(�UdD � �DdU) ::::::::::::::::::::::::::::::::::::::::::::C:2

=
x (1� x)

�U (�D � dD) + �D (�U � dU)
((a11y + a12(1� y))dD (1� x)� (a21y + a22(1� y))dU (x))

� G2(x; y)F2(x; y)

Proof of Proposition 2:
1. We must �rst show that a Mixed Strategy Nash Equilibrium (MSNE)

converges to a Mixed Strategy Doubt-Full Equilibrium (MSDFE) as � con-
verges to zero in the class of doubt functions D1�� � DM .
An interior rest point of C.1-C.2, (i.e. a MSDE), satis�es:

(a11y + a12 (1� y)) dD (1� x)� (a21y + a22 (1� y)) dU (x) = 0

(b11x+ b21 (1� x)) dR (1� y)� (b12x+ b22 (1� x)) dL (y) = 0

Then, if di 2 D1�� for i 2 fU;D;L;Rg,

lim
�!0

dU (x)

dD (1� x)
= lim

�!0

dL (y)

dR (1� y)
= 1, for all (x; y) 2 (0; 1)� (0; 1)

Now suppose that we are in the MSNE, (x�; y�) 2 (0; 1) � (0; 1), of G and
that di 2 D1��. Then, the strategies available to each player get the same
expected payo¤; that is a11y�+a12 (1� y�) = a21y�+a22 (1� y�) and b11x�+
b21 (1� x�) = b12x� + b22 (1� x�). Thus,

lim
�!0

(a11y
� + a12 (1� y�)) dD (1� x�)

(a21y� + a22 (1� y�)) dU (x�)
= lim

�!0

(b11x
� + b21 (1� x�)) dR (1� y�)

(b12x� + b22 (1� x�)) dL (y�)
= 1

This, plus continuity, establishes the result.
2. We show that for all (x0; y0) 2 (0; 1) � (0; 1) ; there exists a sequence

of functions d� 2 D� and a �0 low enough that the rest point of C.1-C.2
cannot be any C 6= [(x0; 1� x0) ; (y0; 1� y0)] for any � � �0 and then the
result follows.
An interior rest point of C.1-C.2 must satisfy:

(a11y + a12 (1� y)) dD (1� x)� (a21y + a22 (1� y)) dU (x) = 0

(b11x+ b21 (1� x)) dR (1� y)� (b12x+ b22 (1� x)) dL (y) = 0
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which implies that

(a11y + a12 (1� y))
dD (1� x)
dU (x)

� (a21y + a22 (1� y)) = 0

(b11x+ b21 (1� x))
dR (1� y)
dL (y)

� (b12x+ b22 (1� x)) = 0

Let �rst x0 � 1=2: We construct the doubt functions dU(x) and dD(1� x) in
Dm as follows:

dx
0

ki(fki) =

(
m� (1� fki) if fki � x0

m� (1� fki) (1�fki)
1=�

(1�x0)1=�
if fki > x0

where ki 2 fU;Dg and � > 0: Note that as � approaches 0, the graph of
dx

0
ki function approaches the horizontal axis and the agent is said to be in a
doubt-less mode.
Now, for x > x0

dD (1� x)
dU (x)

=
mx

m (1� x) (1�x)
1=�

(1�x0)1=�

=
x

1� x

�
1� x0
1� x

�1=�

Since 1 � x0 > 1 � x we can make
�
1�x0
1�x
�1=�

as big as we want by choosing a
su¢ ciently small �. Then

x

1� x

�
1� x0
1� x

�1=�
>
(a21y + a22 (1� y))
(a11y + a12 (1� y))

Hence,

(a11y + a12 (1� y))
x

1� x

�
1� x0
1� x

�1=�
� (a21y + a22 (1� y)) > 0

Now, for x < x0

dD (1� x)
dU (x)

=
mx
�

x
1�x0

�1=�
m (1� x) =

x

1� x

�
x

1� x0

�1=�
since x < x0 � 1=2; we have that 1�x0 > x so we can make

�
x

1�x0
�1=�

as small
as we want by choosing a su¢ ciently small �. Then

x

1� x

�
x

1� x0

�1=�
<
(a21y + a22 (1� y))
(a11y + a12 (1� y))
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Hence

(a11y + a12 (1� y))
x

1� x

�
x

1� x0

�1=�
� (a21y + a22 (1� y)) < 0

When x0 > 1=2 let dU(x) and dD(1� x) in D as follows:

dx
0

ki(fki) =

(
m� (1� fki) if fki � x0

m� (1� fki) (1�fki)
1=�

x01=�
if fki > x0

where ki 2 fU;Dg and � > 0: Now, for x > x0

dD (1� x)
dU (x)

=
mx

m (1� x) (1�x)
1=�

x01=�

=
x

1� x

�
x0

1� x

�1=�

Since x > x0 > 1=2; 1� x < 1=2 we can make
�
x0

1�x
�1=�

as big as we want by
choosing a su¢ ciently small �. Then

x

1� x

�
x0

1� x

�1=�
>
(a21y + a22 (1� y))
(a11y + a12 (1� y))

Hence,

(a11y + a12 (1� y))
x

1� x

�
x0

1� x

�1=�
� (a21y + a22 (1� y)) > 0

For x < x0

dD (1� x)
dU (x)

=
mx
�
x
x0

�1=�
m (1� x) =

x

1� x

� x
x0

�1=�
Since x < x0; we can make

�
x
x0

�1=�
as small as we want by choosing a su¢ -

ciently small �. Then

x

1� x

� x
x0

�1=�
<
(a21y + a22 (1� y))
(a11y + a12 (1� y))

Hence

(a11y + a12 (1� y))
x

1� x

� x
x0

�1=�
� (a21y + a22 (1� y)) < 0
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The argument for y is analogous. �
Proof of Proposition 3
Let I� � [(x�; 1� x�) ; (y�; 1� y�)] 2 (0; 1) � (0; 1) be an interior Mixed

Strategy Nash Equilibrium (MSNE) of G. In this equilibrium, expected
payo¤s are equalized across strategies; that is, �U = �D and �L = �R. From
Proposition 2, we also know that an MSNE is a Mixed Strategy Doubt-Full
equilibrium (MSDFE); that is, �UdD(1�x�) = �DdU(x�) and �LdR(1�y�) =
�RdL(y

�). Hence, an interior MSNE is a stationary state of the system C.1-
C.2 if all agents are Cartesian Skeptical.
Thus, F1(x�; y�) = 0 and F2(x�; y�) = 0, where

F1(x; y) = �UdD(1� x)� �DdU(x)
= (a11y + a12(1� y))dD (1� x)� (a21y + a22(1� y))dU (x)

F2(x; y) = �LdR(1� y)� �RdL(y)
= (b11x+ b21(1� x))dR (1� y)� (b12x+ b22(1� x))dL (y)

and

@F1(x; y)

@x
= �U

@dD(1� x)
@x

� �D
@dU(x)

@x
@F1(x; y)

@y
= (a11 � a12) dD(1� x) + (a22 � a21) dU(x)

@F2(x; y)

@x
= (b11 � b21) dR(1� y) + (b22 � b12) dL(y)

@F2(x; y)

@y
= �L

@dR(1� y)
@y

� �R
@dL(y)

@y

On the other hand, the Jacobian J(x; y) of the dynamic system C.1-C.2
evaluated at the steady state (x�; y�) is:

J(x�; y�) =

24 G1(x�; y�) @F1(x;y)@x

���
I�

G1(x
�; y�) @F1(x;y)

@y

���
I�

G2(x
�; y�) @F2(x;y)

@x

���
I�

G2(x
�; y�) @F2(x;y)

@y

���
I�

35

33



In an MSNE, �U = �D, �L = �R. If, on the other hand, agents are
playing in a doubt-full mode, (that is, di 2 D1�� for i 2 fU;D;L;Rg with
lim�!�� dU (x) = lim�!�� dD (1� x) = lim�!�� dL (y) = lim�!�� dR (1� y)
and being nearly 1, for all (x; y) 2 (0; 1)� (0; 1); �� > 0 but nearly zero, as in
Proposition 2). Then, writing di (:) = 1, we would also have �UdD = �DdU
and �LdR = �RdL:
Hence, in an MSNE as an MSDFE :

G1(x
�; y�) =

x�(1� x�)
2�U�D � �UdD(1� x�)� �DdU(x�)

=
x�(1� x�)

�U(2�U � dD(1� x�)� dU(x�))

=
x�(1� x�)
2�U(�U � 1)

G2(x
�; y�) =

y�(1� y�)
2�L(�L � 1)

Thus, the elements of the Jacobian matrix are the following:

j11 = G1(x
�; y�)

@F1(x; y)

@x

����
I�

=
x�(1� x�)
2�U(�U � 1)

�
�U
@dD(1� x)

@x
� �U

@dU(x)

@x

�
I�

=
x�(1� x�)
2(�U � 1)

�
@dD(1� x)

@x
� @dU(x)

@x

�
I�

j12 = G1(x
�; y�)

@F1(x; y)

@y

����
I�

=
x�(1� x�)
2�U(�U � 1)

((a11 � a12) dD(1� x�) + (a22 � a21) dU(x�))

j21 = G2(x
�; y�)

@F2(x; y)

@y

����
I�

=
y�(1� y�)
2�L(�L � 1)

((b11 � b21) dR(1� y�) + (b22 � b12) dL(y�))
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j22 = G2(x
�; y�)

@F2(x; y)

@y

����
I�

=
y�(1� y�)
2(�L � 1)

�
@dR(1� y)

@y
� @dL(y)

@y

�
I�

Recall that the real part of the eigenvalues of J(x�; y�) only depends on
the sum of the diagonal terms (the trace of the matrix):

Trace of J(x�; y�) = G1(x
�; y�)

@F1(x; y)

@x

����
I�
+G2(x

�; y�)
@F2(x; y)

@y

����
I�

=
x�(1� x�)
2(�U � 1)

�
@dD(1� x)

@x
� @dU(x)

@x

�
I�

+
y�(1� y�)
2(�L � 1)

�
@dR(1� y)

@y
� @dL(y)

@y

�
I�

Since the expected values �U = a11y�+a12(1�y�) and �L = b11x�+b21(1�
x�) are smaller than 1, both x�(1�x�)

2(�U�1) and
y�(1�y�)
2(�L�1) are negative. The sign of�

@dD(1�x)
@x

� @dU (x)
@x

�
I�
and

�
@dR(1�y)

@y
� @dL(y)

@y

�
I�
is clearly positive (that is,

the signs of the derivatives of dD(1 � x) and dR(1 � y) with respect to x
and y, respectively, are positive and those of dU(x) and dL(y) are negative).
Thus, j11 < 0 and j22 < 0 and so the sign of the trace is negative

sign

�
G1(x

�; y�)
@F1(x; y)

@x

����
I�
+G2(x

�; y�)
@F2(x; y)

@y

����
I�

�
< 0

Without loss of generality, we may assume, for an interior equilibrium,
that a11 > a21, b11 < b12, a12 < a22, and b22 < b21. Then it can be seen that
the sign of j21 � j12 is negative, when the agents are playing in the absent
or doubt-full mode:

j21�j12 =
�
y�(1� y�)
2�L(�L � 1)

((b11 � b12) + (b22 � b21)
�
�
�
x�(1� x�)
2�U(�U � 1)

((a11 � a21) + (a22 � a12))
�
< 0

Thus, the determinant associated to J(x�; y�), Det J(x�; y�) = j11� j22�
j21 � j12 , has a positive sign. Therefore, when every agent is Cartesian
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skeptical, the MSNE, I� � [(x�; 1� x�) ; (y�; 1� y�)], is a sink and therefore
is an asymptotically stable equilibrium.�

Proof of Proposition 4:
Using the same procedure as in Proposition 3, we can easily prove that,

under the doubt-less mode, the MSDLE [(1=2; 1=2) ; (1=2; 1=2)] is a source.
Now, to see the trajectory of initial points di¤erent from [(1=2; 1=2) ; (1=2; 1=2)],
we might use the doubt function constructed for the proof of part 2 of Propo-
sition 2.
Note that the denominators of C.1-C.2 are positive in the doubt-less mode

of play. Hence the sign of
�
x and

�
y depend on the sign of (�UdD � �DdU) and

(�LdR � �RdL), respectively. Now we can proceed as in the proof of part 2
of Proposition 2.
Let �rst x0 � 1=2:We construct the doubt functions dU(x) and dD(1�x)

in Dm as follows:

dx
0

ki(fki) =

(
m� (1� fki) if fki � x0

m� (1� fki) (1�fki)
1=�

(1�x0)1=�
if fki > x0

This means that if x > x0

sign
h
�
x
i
= sign

" 
�U � �D

(1� x)1=�

(1� x0)1=�

!#

Then there is a �
0
low enough such that for all 0 < � � �0, (1� x)1=� = (1� x0)1=�

is su¢ ciently small so that sign
h
�
x
i
> 0 and hence if x(0) > x0, then

limt!1 x(t) = 1.
If on the other hand x < x0

sign
h
�
x
i
= sign

" 
�U

x1=�

(1� x0)1=�
� �D

!#
Since x < x0 � 1=2; we have that 1 � x0 > x so there is a �

0
low enough

such that for all 0 < � � �
0
, x1=�= (1� x0)1=� is su¢ ciently small so that

sign
h
�
x
i
< 0 and hence if x(0) < x0, then limt!1 x(t) = 0.

When x0 > 1=2; we let dU(x) and dD(1� x) in D as follows:

dx
0

ki(fki) =

(
m� (1� fki) if fki � x0

m� (1� fki) (1�fki)
1=�

x01=�
if fki > x0
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This means that if x > x0

sign
h
�
x
i
= sign

" 
�U � �D

(1� x)1=�

x01=�

!#

Since x > x0 > 1=2; 1 � x < 1=2; there is a �
0
low enough such that for

all 0 < � � �
0
, we can make(x0)1=� = (1� x)1=� is su¢ ciently big so that

sign
h
�
x
i
> 0 and hence if x(0) > x0, then limt!1 x(t) = 1.

If on the other hand x < x0

sign
h
�
x
i
= sign

��
�U
x1=�

x01=�
� �D

��
Since x < x0; there is a �

0
low enough such that for all 0 < � � �0, x1=�=x01=�

is su¢ ciently small so that sign
h
�
x
i
< 0 and hence if x(0) < x0, then

limt!1 x(t) = 0. The argument for y is analogous.�

Proof Proposition 5:
(a) Let Sk = f1; 2g be player population k�s strategy set. Without loss of

generality, let us refer to the dynamics of strategy 1: Then, by equation (7),
we have

�
fk1 = fk1�k � �k1�k

=
�k
D(f)

fki[�ki � �k]

where D(f) � �k1(�k2 � �k) + �k2(�k1 � �k) > 0.
Hence, the growth rates

�
fki
fki
equal payo¤ di¤erences [�ki � �k] multiplied

by a (Lipschitz) continuous, positive function �k
D(f)

. This concludes the proof.
(Note that, given �k; a payo¤ di¤erence [�ki��k] will have stronger dynamic
e¤ect if D(f) is low than if it is high; if �k decreases, the dynamic e¤ect of
[�ki � �k] decreases).
(b) Easy.�
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