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Abstract

This paper introduces a virtually efficient mechanism in a setting with se-
quentially arriving agents who hold informative signals about future types.
To reveal the information the principal organises betting on future type re-
ports. An agent’s betting reward depends on how accurately the prior up-
dated on his report predicts the type reports observed in the following pe-
riod. The mechanism satisfies participation constraints and generates no
deficit after any reported history.
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1 Introduction

This study is motivated by a number of practical applications of dynamic mecha-
nism design, where the principal lacks information about the future type distri-
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butions. In industrial regulation, pollution control or auctions such information
is necessary to evaluate the intertemporal trade-offs, but often unavailable to the
principal. Due to Mezzetti (2004), we know that full revelation of future-related
information is achieved by delaying incentive payments until the resolution of all
uncertainty. However in practice there may be obstacles to delaying payments in
mechanisms that run for a long time. Gershkov and Moldovanu (2009) are the
first to study the problem of principal’s learning under this timing constraint.1

They look at a setting where the present agents’ payoff types are informative
of the future, therefore the prinipal can make inferences from the current type
reports. In this paper we take a different approach and suppose that the infor-
mation about the future is independent of agents’ own preferences. We show by
means of an example that revelation is non-trivial also in this case. By construct-
ing a mechanism with verification we prove that dynamic efficiency can virtually
be achieved, if transfers are delayed just until the next cohort’s arrival.

Formally we consider a discrete time, finite horizon setting and agents who ar-
rive sequentially in cohorts and live for two periods.2 A member of cohort t de-
rives utility from allocation at t; in period t + 1 he receives monetary transfers,
and his total utility is the sum of both components. As standard in this litera-
ture, the agent has parametrizable private information composing his type. The
type here has two independent components: (i) a one-dimensional preference pa-
rameter, referred to as the payoff type, and (ii) a multidimensional signal drawn
from the future payoff type distribution, referred to as the hyperbelief type.3 The

1Dynamic populations have also been extensively studied in the literature often referred to
as online mechanism design: see the seminal works by Lavi and Nisan (2004) and Parkes and
Singh (2003). However their approach is non-Bayesian, and therefore the problem of principal’s
learning does not emerge.

2The population is thus dynamic with static private information, similarly to Lavi and Nisan
(2004) and Parkes and Singh (2003). Another strand of literature studies persistent population
with dynamic types: Athey and Segal (2013), Bergemann and Välimäki (2010). Cavallo et al.
(2009) study the general setting with arbitrary dynamic population and dynamic types.

3The term hyperbelief comes from hyperdistribution, a term borrowed from the theory of con-
jugate priors used in the present analysis (see Raiffa and Schleifer (1961)). It should not be con-
fused with higher-order belief as it describes the probabilistic view of the future environment,
and not of other agents’ beliefs.
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payoff type pins down the agents’ own utility function, while the hyperbelief type
reflects his information about the future.

The parametric class of payoff-type distributions is fixed, however the exact dis-
tribution is unknown. Let pt be the probability distribution with an unknown
parameter αt and Φt be a class of (hyper-)distributions over the possible values
of αt. A hyperbelief type is then draw from a future pt which leads to an updated
φt ∈ Φt. We assume that the class Φt is conjugate to pt, meaning that all updated
hyperdistributions belong to the same class. Conjugate classes have been found
for most standard distributions (Raiffa and Schleifer, 1961).

The delayed verification mechanism introduced here features a two-part transfer
that work towards elicitation of both components of type.4 Firstly, to elicit the
payoff type we introduce a Vickrey-Clarke-Groves transfer (1961; 1971; 1973).
The VCG transfer equals the externality imposed by the agent’s payoff-type re-
port on the current and the future generations, where the future welfare is taken
in expectation conditional on the entire history of reported hyperbeliefs. To this
end, we follow the existing literature on dynamic implementation, such as Berge-
mann and Välimäki (2010); Pavan et al. (2010).5

The second part of transfer, novel to dynamic implementation, is the scoring
reward used for the verification of signals. It is a function of agent’s report of
hyperbelief type (signal) and the next cohort’s type reports. More precisely, the
agent receives a (negative) transfer equal to the log-likelihood of the profile of
type reports in the following period, where the likelihood is evaluated according
to the distribution updated conditionally on his report. Reporting hyperbelief to
the mechanism is thus similar to placing a bet on the next period type reports.
Given that signals and payoff-types are drawn independently, matching the em-
pirical distribution of payoff types is equivalent to matching the empirical distri-

4Parkes and Singh (2003) use the term delayed mechanism to describe a mechanism, where
all the payments are made in the last period (see Friedman and Parkes, 2003). Note that this is
not the case here: the transfers are made with only one period delay.

5In a setting with persistent population and dynamic types, Athey and Segal (2013) design a
dynamic extension of the expected externality mechanism d’Aspremont et al. (2004) satisfying
the exact budget balance, unlike the VCG.
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bution of signals. The expected value of such scoring transfer is maximized when
the hyperbelief types are reported truthfully. In static implementation mutual
verification of reports has been used in the literature stemming from Crémer and
McLean, 1985.6

The mechanism with delayed verification features linear combination of the VCG
and scoring transfers. This yields virtual efficiency in the following sense. For
any given value ε > 0, the principal can scale up the scoring transfer such that
truthful revelation of payoff and hyperbelief types is an ε−equilibrium. In other
words, no agent can gain at least ε in deviation from truth-telling. Moreover all
small deviations are in the neighborhood of truth-telling, thus the present con-
cept is stronger than ε−equilibrium. The impossibility of exact implementation
in this setting is due to the fact that belief report marginally interferes with the
externality payment.

Finally, we show that the budget of bets can be exactly balanced without change
to incentives. Assume that each cohort includes at least two participants, and
define an arbitrary derangement of the set of players in the cohort. The derange-
ment defines cycles of payments between the agents in a cohort, such that the
agents pay their betting rewards to each other, and the exact budget balance in
bets is achieved in every period. The resulting transfer, the balanced scoring
transfer, satisfies the individual rationality constraint. The intuition for this is
that the ex ante distribution of signals is the same for all agents; therefore, the
expected difference in betting rewards is zero. It follows that the entire balanced
mechanism that comprises the VCG and the balanced scoring transfers requires
no external funding at any period of time (generates no deficit after any history)
and satisfies the participation constraint.

The rest of the paper is organized as follows. Section 2 considers the allocation
of pollution permits in a simple setting with two periods. In this example the

6Crémer and McLean (1985, 1988) were the first to design a mechanism with mutual report
verification in a static setting. Their mechanism punishes for reports that appear contradictory
given the known correlation between types, and thus reveals the types perfectly. McAfee and
Reny (1992) provide an extension of the Crémer-McLean mechanism to continuous type spaces.
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comparison of reports within one period (as in Crémer and McLean, 1985) fails
to produce truthtelling as a unique and undominated equilibrium; therefore de-
layed verification is introduced. Section 3 presents a more general setting with
an arbitrary, although finite number of periods. Section 4 presents the delayed
verification mechanism. Two subsections (4.1 and 4.2) study the two components
of the delayed-verification transfer: the VCG and the scoring payment. In 4.1 we
show that the VCG transfer induces the revelation of payoff-type, if the current
and the future hyperbelief-types are truthfully reported (Lemma 1). In 4.2 we
show that the scoring transfer alone ensures that hyperbelief types are truth-
fully reported, if the future payoff-type reports are truthful (Lemma 2). Finally
in 4.3 we show that both transfers can be combined to achieve truthful revelation
of the entire type in an ε−equilibrium (Proposition 1). A mechanism with exactly
balanced scoring transfer can be constructed to satisfy the ex ante participation
constraint and no deficit in transfers after any history of reports (Proposition 2).
A summary of notation is given in the Appendix.

2 Illustration: Two-period pollution control.

Delayed verification in a nonrepeated setup is illustrated in a simple model of
pollution control. Suppose an area accommodates n firms that use a hazardous
input Y for their production in period 1. A firm’s cost of production decreases in
its usage of Y:

C (yi; θi) =
1

θiyi
,

where yi > 0 is the amount of Y used by firm i = 1, 2, ...n and θi is a technology
parameter privately known to the firm. The regulator’s task is to allocate usage
permits to firms (y1, y2, ..yn) such that the total cost of production and environ-
mental damage are minimized.
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The environmental damage in period 2 is linear in the total use of Y and equals:

θd
∑
i

yi,

where θd is the damage per unit of Y used (θd is the type of environment at t = 2).
We assume that θd is a Bernoulli random variable: it takes value D > 0 with
probability α or value 0 with probability 1 − α. Denote p (θd;α) the respective
probability distribution function:

p (θd;α) =

α, θd = D

1− α, θd = 0
.

Contrary to the common assumption in mechanism design, we consider the high
damage probability α unknown. Each firm i observes an informative signal,

xi ∈ {0, D} ,

drawn independently from distribution p (θd;α). Note that any such draw is in-
formative of α. Let X = (x1, x2, ..xn) denote the vector of observed signals. X

represents all the information available at t = 1 about the damage at t = 2.

The efficient allocation of permits in period 1 minimizes the expected total cost to
all agents (we assume no discounting between periods), provided the information
X:

min
(y1,y2,..yn)

ˆ
[0,1]

(∑
i

1

θiyi
+ αD

∑
i

yi

)
φ (α |X ) dα, (1)

where the probability measure φ (α |X ) is the Bayes-updated hyperprior φ0 (α)

given X:

φ (α|X) =
Pr [X|α]φ0 (α)´

[0,1]
Pr [X|α̃]φ0 (α̃) dα̃

, (2)
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Figure 1: The principal’s initial hyperbelief φ0(α) = β(α; 1, 1), the data X =(
θLd , θ

L
d , θ

H
d

)
, and the updated hyperbelief φ(α|X) = β(α;h + 1, l + 1) = αh(1−α)l

B(2,3)
=

α(1−α)2

B(2,3)
.

where Pr [X|α] =
∏

i p (xi|α).

Suppose that the prior φ0 (α) is uniform over the interval [0, 1] of the possible val-
ues of α. Since the uniform distribution belongs to the class of Beta distributions,
conjugate to the Bernoulli class, the update φ (α|X) is also a Beta distribution.7 If
h = # {xi = D} denotes the number of firms with a high signal, and l = # {xi = 0}
the number of firms with a low signal, then the updated probability (2) becomes:

φ (α|X) =
αh (1− α)l β (α; 1, 1)´

[0,1]
α̃h (1− α̃)l β (α̃; 1, 1) dα̃

= β (α; 1 + h, 1 + l) (3)

Note that h and l are sufficient statistics for data X. Given the updated prior,
the efficient allocation of permits that solves the minimization problem (1) is the
following:

f ∗i (θ,X) =

√
2 + h+ l

θiD (1 + h)
, (4)

for all i = 1, 2, ...n.

The difficulty in implementing the efficient allocation f ∗ is that there is no guar-
7The uniform distribution, or β(α; 1, 1), has the maximal entropy within the class of Beta

distributions, and thus is the least informed prior within that class.
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antee that firms will reveal the signals about the future truthfully (i.e. the num-
bers h and l may not represent the actual number of high and low signals re-
ceived). This implies that the mechanism has to be incentive-compatible not
only with regard to the elicitation of cost parameters, but also of the signals. As
a possible solution to this problem we first discuss an application of the idea of
Crémer and McLean (1985) as the mutual verification of firms’ reports in the first
period (immediately). In the second step we show that welfare is improved by de-
laying verification to the second period when the damage realizes. In Sections 3
and 4 we extend the result to a repeated setting.

Immediate Verification Crémer and McLean (1985) induce truthfulness by
rewarding similarity and punishing divergence in the agents’ reports. Consider
a direct mechanism, where each firm reports its technology parameter θi and the
signal about future damage xi. The principal updates her prior φ0 on the firms’
information X = (xi)i∈N and assigns the efficient allocation f ∗. With logarithmic
scoring, we have the following two-part transfer to firm i:

τi

(
θ̂i, X̂

)
= −E

[
θd

∣∣∣X̂ ]× f ∗i (θ̂i, X̂)︸ ︷︷ ︸
externality

+ λ× ln
∏
j 6=i

Pr [x̂j |x̂i ]︸ ︷︷ ︸
scoring

, (5)

where X̂ = (x̂i)i∈N denotes the reported values, and Pr [x̂j |x̂i ] is calculated as
follows. If x̂j = D, Pr [x̂j |x̂i ] =

´
[0,1]

αφ (α|x̂i) dα and if x̂j = 0, Pr [x̂j |x̂i ] =´
[0,1]

(1− α)φ (α|x̂i) dα.

The transfer consists of two parts that provide distinct incentives. The external-
ity transfer induces the truthful revelation of the technology parameter, whereas
the scoring transfer rewards similarity in reports.

Claim 1. For any λ > 0 reporting no damage (D = 0) irrespectively of the true
signal is an equilibrium in the immediate verification mechanism. This
equilibrium Pareto dominates the truthful revelation of signals.
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(See proof in the Appendix) The claim says that the firms will be prone to report
low damages x̂i = 0 even if their true signal is high x̂i = D. As a result of
this manipulation, the regulator would underestimate the probability of a high
damage and assign larger permits yi in the first period, such that the firms will
save production costs creating higher-than-efficient pollution.

Delayed Verification The mechanism with delayed verification provides in-
centives for truthful revelation of signals. The change is made to the scoring
transfer. Now, instead of rewarding similarity in firms’ reports, the mechanism
rewards similarity between reports and the realized damage. The mechanism as-
signs the following transfers after the environmental uncertainty resolves. If the
realized damage is high, θd = D, then firm i will receive the following two-part
transfer:

τi

(
θ̂i, X̂;D

)
= −D × f ∗i

(
θ̂i, X̂

)
︸ ︷︷ ︸

externality

+ λ× ln

ˆ
[0,1]

αφ (α|x̂i) dα︸ ︷︷ ︸
scoring

, (6)

If the realized damage is low, θd = 0, the transfer amounts to:

τi

(
θ̂i, X̂; 0

)
= 0× f ∗i

(
θ̂i, X̂

)
︸ ︷︷ ︸

externality

+ λ× ln

ˆ
[0,1]

(1− α)φ (α|x̂i) dα︸ ︷︷ ︸
scoring

. (7)

The scoring transfer is the “betting reward” that the firm gets for correctly pre-
dicting the realized damage. Observe that

´
[0,1]

αφ (α|x̂i) dα and´
[0,1]

(1− α)φ (α|x̂i) dα are the conditional likelihoods of, respectively, D and 0

given i’s reported signal xi. Lemma 2 in the main text states, for a more gen-
eral case, that the maximization of the scoring transfer induces truthful report
of signals.

Claim 2. Maximization of the delayed verification scoring transfer yields truth-
ful revelation of signal as a strict optimum.
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When signals are reported truthfully, the externality (VCG) transfer represents
the actual change in the social welfare due to the firm’s use of hazardous input
Y. Since the firm pays the amount of the environmental damage its production
has caused, its objective is aligned with the principal’s program of total wel-
fare maximization, and therefore it is optimal to report the true cost parameter
θi. Observe that hyperbelief report x̂i also enters the VCG transfer through the
update of principal’s prior φ (α|X) used to estimate the future externality. In set-
tings with continuous types, this leads to small deviations from truth-telling. In
an attempt to marginally change the prior the agent slightly misreports. Signif-
icant deviations can be precluded by scaling up the scoring transfer. The proof
of Proposition 1 demonstrates that for any given level of precision one can find
λ ∈ R to scale up the scoring transfer and preclude deviations from truth-telling.
This result implies the virtual implementation of the efficient rule f ∗.

Next we extend the idea of delayed verification to a finitely repeated setting.
In that framework, the example of pollution control corresponds to the last two
stages of the mechanism.

3 The General Model

Consider a dynamic system with finite sequence of opening periods {1, 2, .., T} ≡
T, where T ≥ 2. The set of participants entering at period t is called cohort t and
denoted by Nt, each cohort includes at least two members. Let N t = ∪

s≤t
Ns denote

the set of participants arriving at time t or earlier.8

The principal chooses an allocation from a time-invariant space Y of alternatives;
Y is a compact subset of a metric space. yt ∈ Y is the decision taken by the
principal at t ∈ T. The history of allocations up to t is denoted yt.

8The generalization to setting where the agents live for more than two periods is straightfor-
ward, as long as the payoff type is persistent.
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Utilities Agent i ∈ Nt derives utility ui from the allocation history yt at t and
receives monetary transfer at t + 1. The agent’s utility function is known up to
parameter θi ∈ Θt, where θi (also denoted xi0) is i’s private information referred
to as i’s payoff type.

ui : Yt ×Θt → R+. (8)

The utility functions ui are strictly concave and Lipschitz-continuous in yt for all
t, i ∈ Nt. Additionally, I assume that non-participation yields zero utility to any
agent i ∈ N .

Note that the utility functions are "observationally measurable"9 in the sense
that the utility does not depend on any variables unobserved by the agent. In
particular, the utility is invariant in the future allocations and other agents’
types.

Types The payoff-type θi ≡ xi0 of agent i ∈ Nt is a random draw from a compact
set Θt ⊆ R, t ∈ T. The corresponding probability distribution function pt (·;αt)
over Θt belongs to a given parametric class Pt; parameters αt are serially uncor-
related. The class of priors conjugate to Pt is denoted Φt ⊂ ∆ (At), where At is
the set of possible values of parameter αt. Let φ0

t ∈ Φt denote the initial prior,
common to agents N1 and the principal. φ0 =

∏
t∈T
φ0
t is the joint prior over the

space of possible values (α1, α2, ..αT ) before the start of the game:

φ0 : ×
t∈T
At → R+. (9)

To distinguish the elements of Φt from the elements of Pt we refer to φt ∈ Φt as
hyperbeliefs and to its parameters as hyperparameters. In the example of Section
2, Pt is the Bernoulli class, Φt is the conjugate Beta class and (1, 1) are the initial
hyperparameters (Beta(1, 1) is the uniform distribution over the interval [0, 1]).

9As in Athey and Segal (2013)
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Information Next to his own payoff type θi the agent holds private informa-
tion about the future payoff-type distributions φt. For every t and i ∈ Nt we
define xik as i’s signal about cohort Nt+k. xik is a random draw from distribution
pt+k (·;αt+k). Agent i’s entire private information, or type, is summarized in the
vector xi:

xi =


xi0 ≡ θi

xi1
...

xiT−t




payoff-type

hyperbelief-type
(10)

where for all i ∈ Nt:

xi ∈
T−t
×
k=0

Θt+k. (11)

LetXt = (xi)i∈Nt
denote the (matrix of) signals of cohortNt andX t = (X1, X2, ...Xt)

the history of signals up to period t. In the following, we refer to X t as the infor-
mation available at t, even though X t cannot be observed entirely by any single
agent at t. X t comprises X t−1, the information that is public at t,10 as well as |Nt|
pieces of private information.

Sequential Updating The hyperbeliefs are updated upon the arrival of new
information. In a given period t ∈ T, types xi0 of the members of Nt and their
signals xik about the future types are drawn. Given the hyperprior φs (αs|X t−1),
s > t, from the previous period11 and the new data Xt, the updated hyperprior is
derived by the Bayes rule as follows:12

10In Lemma 3 we argue that the history of reports should be made public.
11If t = 0 we have φs (αs|Ø) = φ0 (αs) for all s > 0.
12The first equality in (12) holds due to the mutual independence of parameters.
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φs
(
αs|X t

)
= φs

(
αs|Xt,s−t, X

t−1
)

=
Pr [Xt,s−t|αs, X t−1]φs (αs|X t−1)´

As
Pr [Xt,s−t|α̃s, X t−1]φs (α̃s|X t−1) dα̃s

, (12)

where

Xt,s−t =
(
x1,s−t, x2,s−t, ..x|Nt|,s−t

)
(13)

is the profile of the signals of received by cohort t about the payoff-types at s, and

Pr
[
Xt,s−t|αs, X t−1

]
= Pr [Xt,s−t|αs] =

∏
i∈Nt

ps (xi,s−t;αs) (14)

is the probability of such signal profile conditional on parameter value αs.

It is easy to check that the update defined by Equation (12) is a probability mea-
sure. Moreover, by the conjugate prior property the updated hyperdistribution
φs (αs|X t) given by Equation (12) belongs to the same class as φs (αs|X t−1), for
any t ∈ T.

For s ≤ t, the hyperprior is transferred from the previous period: φs (αs|X t) =

φs (αs|Xs).13 Finally, the joint hyperprior writes:

φ
(
α|X t

)
=
∏
s∈T

φs
(
αs|X t

)
(15)

Efficiency The social welfare is defined as the sum14 of all the agents’ utilities:

W
(
XT , yT

)
=
∑
t∈T

∑
i∈Nt

ui
(
yt, xi0

)
(16)

13The implementation problem at t does not require the hyperbelief over αt to be updated.
14The discount factors δt can be subsumed in the utility functions ui, i ∈ Nt.
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A dynamic choice rule f = (f1, f2, ..fT ) is a finite sequence of functions ft mapping
the information available up to t into the set of allocations Y. A dynamic choice
rule f is dynamically efficient if for all t ∈ T and X t:

ft
(
X t
)
∈ arg max

yt∈Y

{
E
[
W
(
XT , yT

) ∣∣X t
]}

(17)

Observe that efficiency requires that expectation be conditional on the entire
information available at t, including the information which is private.

We can reformulate the problem to derive a notion of efficiency that is more oper-
ational for our purpose of designing transfers. The choice rule f is dynamically
efficient if it solves the stochastic optimal control problem, where the allocation
yt is the control variable and X t, yt−1 is the state with a stochastic component.
The law of motion of the stochastic component xik of state is given by:

xik ∼ pt+k (·;αt+k)

(LM)

Provided the optimal control formalism, we can use the standard techniques to
solve the dynamic problem (Bellman, 1966). Write the Bellman function as fol-
lows:

Jt
(
X t, yt−1

)
= max

yt∈Y

{∑
i∈Nt

ui
(
yt, xi0

)
+ E

[
Jt+1

(
X t+1, yt

) ∣∣X t
]}

, (18)

subject to (LM) and the terminal condition JT+1

(
XT+1, yT

)
= 0, further (TC).

The Bellman function is interpreted as the maximal future value of the mech-
anism from time t on, given the past decisions and information. The value at
t includes the known utilities of cohort Nt, and the future cohorts’ utilities in
expectation over their types.

By the Bellman principle we maximize (18) with respect to the control variable
yt, conditional on the information available at t, X t. The only relevant uncer-
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tainty at this stage is the uncertainty about Xt+1; all the subsequent payoff-type
uncertainty is contained in the Bellman value at t+ 1.

The expected value of the Bellman function:15

E
[
Jt+1

(
X t+1, yt

) ∣∣X t
]

=

ˆ
A

(ˆ
Xt+1

Jt+1

(
X t+1, yt

)
Pr
[
Xt+1|α̃, X t

]
dXt+1

)
φ
(
α̃|X t

)
dα̃

(19)

The following definition of efficiency is then equivalent to the one introduced
previously.

Definition The choice rule f is dynamically efficient, if for all t ∈ T it solves the
maximization problem in Equation (18).

Mechanisms A direct mechanism (f , τ ) is an observationally-measurable map-
ping from types into allocation and transfers. We focus on mechanisms where
transfers can be delayed by one period. That is, cohort Nt receives transfers at
t + 1 (Figure 2). A mechanism virtually imlements social choice function f if for
any ε > 0 truth-telling is an ε−equilibrium, and any profitable deviation that
yields payoff less than ε is in the neighborhood of truth-telling.16

Mechanism (f , τ ) satisfies the participation constraint if for all t ∈ T, i ∈ Nt and
X t−1 the following holds:

E
[
ui
(
f t
(
X t
)
, xj0

)
+ τi

(
X t+1

) ∣∣X t−1
]
≥ 0 (20)

The condition postulates that under “the veil of ignorance”, that is, before the
agent observes his private information xi, but after the observation of history

15Where Pr [Xt+1|α̃, Xt] =
∏

s=t+1,..T

Pr
[
Xt+1,s−(t+1)|α̃s

]
=

∏
s=t+1,..T

∏
i∈Nt+1

ps
(
xi,s−(t+1);αs

)
is de-

fined in Equation (14).
16A strategy profile is an ε−equilibrium, if there is no player and deviation that increases the

player’s payoff by at least ε.
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timet t+1 t+2 t+3

Reports Payments
Xt of Nt to Nt

Reports Payments
Xt+1 of Nt+1 to Nt+1

Reports
Xt+2 of Nt+2

Payments
to Nt+2

Figure 2: The timing of the mechanism.

X t−1 − the participation in the mechanism yield a higher payoff in expectation
than abstention.17

Mechanism (f , τ ) satisfies no deficit, if for all t ∈ T, and all report histories X t+1:∑
i∈Nt

τ i (X
t+1) ≤ 0.

Note that this condition is stronger than the requirement of no deficit after the
final round. It postulates that the payments made at every given point in time
generate no deficit in the principal’s budget.

4 The Delayed Verification Mechanism

The timing is described by the following iterations (t = 1, 2, ..T − 1).

• In period t agent i ∈ Nt reports her information xi = (xi0, xi1, xi2, ..xiT−t).

• The principal merges new data Xt = (xi)i∈Nt
with history X t−1 to obtain X t,

and updates his belief and implements allocation f (X t) at t.

• In period t+ 1 agent i ∈ Nt receives the transfer and leaves the mechanism.
Etc.

17If the participation condition 20 holds for agent i ∈ Nt, one can achieve that his payoff at t+1
is positive as follows. At arrival in t, the agent buys a 0-interest bond from the principal and gets
repayment at t+ 1.
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The delayed verification mechanism (f , τ ) is a pair of efficient dynamic choice
rule f , defined by Equation (18), and transfer system τ , defined as follows:

τi
(
X t+1

)
= τV CGi

(
X t
)

+ λτSc.i

(
X t+1

)
, (21)

for all t ∈ T and i ∈ Nt, where the components are given by Equations (23) and
(26), respectively.

The two-part transfer τi serves to induce truthful revelation of the entire vector
of private information xi and implement the efficient allocation. Essentially it
formalizes the idea voting on preferences, but betting on beliefs (Hanson, 2013).

Next we discuss the construction of both parts of the transfer. Lemmas 1 and 2
state that the respective transfers yield truth-telling when applied separately to
reveal types and hyperbeliefs; Lemma 3 is an auxiliary result on information dis-
closure by the principal. Proposition 1 states the virtual implementation result.
Finally, we describe a way to balance the scoring budget and satisfy the ex-ante
participation constraints, summarizing the result in Proposition 2. As before, all
proofs are given in the Appendix.

4.1 VCG Transfer τV CGi

The Vickrey-Clarke-Groves payment equals the externality, expressed in money,
that the agent’s report imposes on the present and future agents. This trans-
fer aligns the incentives of every agent with the principal’s objective, since the
maximization of his own utility in sum with the VCG transfer is equivalent to
total welfare maximization. Therefore truthful report of payoff type θi = xi0 is
optimal.

To construct the VCG transfer in our environment, we first introduce a family of
choice rules f−i, i ∈ NT , that are efficient with respect to a restricted player set
NT/i. That is, for a given i, f−i maximizes the total welfare net of the utility of
agent i:
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W−i
(
XT , yT

)
=
∑
t∈T

∑
j∈Nt/i

uj
(
yt, xj0

)
(22)

The VCG transfer writes:18

τV CGi

(
X t
)

=
∑
j 6=i

uj
(
f t
(
X t
)
, xj0

)
−
∑
j 6=i

uj
(
f t−i
(
X t
)
, xj0

)
+

+E
[
Jt+1

(
X t+1, f t

(
X t
)) ∣∣X t

]
− E

[
Jt+1

(
X t+1, f t−i

(
X t
)) ∣∣X t

]
, (23)

∀t ∈ T, ∀i ∈ Nt.

Observe that because of independence the payoff-type component xi0 does not
affect the distribution of Xt+1, thus E [Jt+1 (X t+1, yt) |X t ] is invariant in xi0.

We have the following result:

Lemma 1 For arbitrary period t ∈ T, history X t−1, agent i ∈ Nt, and payoff-type
xi0, the expected sum of i’s utility and the VCG transfer (23) conditional on
i’s information at t is maximized if i reveals xi0 truthfully.

The lemma states that the optimal choice of type report by agent i ∈ Nt is to
tell the truth about his payoff type, regardless of the reported history. The proof
demonstrates that given the VCG transfer the agent’s problem becomes equiva-
lent to the total expected welfare maximization. It follows that if the principal
uses the accurate prior, then efficient implementation is achieved.

18Bergemann and Välimäki (2010) construct a similar VCG transfer, however in a setting with
persistent population and dynamic information. In their paper, similarly to the present one, the
VCG transfer generates no deficit and satisfies the participation constraint.
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4.2 Scoring Transfer τSc.i

The scoring transfer induces the truthful revelation of beliefs and is assigned
upon state verification in the following period. To verify the report of agent i
of cohort Nt we use the next cohort’s report Xt+1. To construct the transfer, first
calculate the probability of eventXt+1 implied by i’s information. His information
is composed of the history of reports X t−1 (the history of reports is public) plus
the privately known type xi. The conjugate update with respect to i’s information
is:

φ
(
α|xi, X t−1

)
(24)

thus the implied probability of the event Xt+1 is

Pr
[
Xt+1|xi, X t−1

]
=

ˆ
A

Pr
[
Xt+1|α, xi, X t−1

]
φ
(
α|xi, X t−1

)
dα (25)

The principal assigns the scoring transfer equal to the natural19 logarithm of this
probability:

τSc.i

(
X t+1

)
= ln Pr

[
Xt+1|xi, X t−1

]
(26)

Note that the probability of a given state - report by the next generation, Xt+1,
accounts not only for the distribution of true types and beliefs of the next gener-
ation, as specified by the hyperbelief-types, but also for strategic communication
of Nt+1. The following lemma states that if the next generation is truth-telling,
then the player i who faces the scoring transfer in expectation will report his
belief truthfully.

Lemma 2 Fix t ∈ T, i ∈ Nt and suppose that the next-cohort’s report Xt+1 is
truthful. Then the maximization of E [τ sc.i (x̂i, X

t+1) |xi, X t−1 ], i ∈ Nt induces
a truthful belief-type report: x̂ik = xik, ∀k = 1, ..T − t.

19The choice of logarithm base is arbitrary.
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The proof relies on the assumption of conditional independence of private sig-
nals between cohorts. If the future reports are truthful, an agent’s incentives to
”match" the reported and the true distributions coincide. The shape of the scor-
ing function provides these incentives. The agent will make his best bet given his
information, that is, he will report the true draw from the unknown distribution.

As an auxiliary result, we observe that the transfer given by (26) is information-
optimal in the following sense. Suppose the designer can choose how much in-
formation about past reports to reveal to the arriving agents. It turns out that
disclosing all past information increases the ex ante expectation of the scoring

transfer. Consider the reduction of past information X t−1 ∈ Xt−1 =
t
×
s=1

T−s
×
k=0

Θs+k

as an orthogonal projection on space ×
s∈S

×
k∈K(s)

Θs of types for some S ⊆ {1, 2, ..t}

and K (s) ⊆ {1, 2, ..T − t}. The reduction subsumes cases such as no disclosure
about the past (S and K (S) are empty) or the disclosure of only the previous
generation’s report. Then we have the following lemma.

Lemma 3 For all S and K (S), the unconditional expectation of the reduced-
information transfer is lower than the unconditional expectation of the full-
information transfer:

Eτ sc.i
(
xi, projS,K(S)

(
X t−1

))
≤ Eτ sc.i

(
xi, X

t−1
)

(27)

Furthermore, if the projection projS,K(S) is different from identity then the
inequality is strict.

To obtain the result we note that both sides of Equation (27) coincide with the
Shannon measure of entropy20 of probability distributions
Pr
[
Xt+1|xi, projS,K(S) (X t−1)

]
and Pr [Xt+1|xi, X t−1], respectively. The established

properties of Shannon entropy with regard to conditional distributions produce
the result. (See Appendix)

20with natural logarithm used as base.
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4.3 Main results

The main result of this paper is that by making transfers conditional on reports
of two sequential generations, the principal can reconcile dynamic efficiency with
the agents’ incentive to misrepresent their information. This is achieved by the
delayed verification mechanism. The following proposition states the result.

Proposition 1 For any ε > 0 there exists λ ∈ R+ such that truth-telling is
an ε−equilibrium of the delayed verification mechanism. Moreover, any
profitable deviation that yields payoff less than ε is in the neighborhood of
truth-telling.21

In this sense, the delayed-verification mechanism virtually implements the effi-
cient choice rule. The appropriate transfer scaling yields truth-telling with arbi-
trary precision. The proof relies on Lemmas 1 and 2, and proceeds by induction
starting at truth-telling at stage T . Note that NT ’s hyperbeliefs are void, and the
Vickrey-Clarke-Groves transfer induce exact truthfulness of payoff types reports.
The compactness of choice set Y and Lipschitz-continuity of the utility functions
are the required assumptions.

The delayed verification mechanism can easily be adjusted to satisfy the partic-
ipation constraints and the no deficit requirement. The change is made to the
scoring transfer. We balance the budget of bets by assigning to each agent i a
random player j of the same cohort and let i pay j’s scoring transfer. Fix an
arbitrary permutation ρ on the set Nt, such that for all i ∈ Nt, ρ (i) 6= i (ρ is a
derangement). The balanced scoring transfer is defined as follows:

τSc.Bi

(
X t+1

)
= τSc.i

(
X t+1

)
− τSc.ρ(i)

(
X t+1

)
(28)

The balanced delayed verification mechanism is a dynamic mechanism (f , τ ),
where the allocation choice rule f = (f1, f2, ..fT ) is efficient:

21A strategy profile is an ε−equilibrium, if there is no player and deviation that increases the
player’s payoff by at least ε.
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ft
(
X t
)
∈ arg max

yt∈Y

{∑
i∈Nt

ui
(
yt, xi0

)
+ E

[
Jt+1

(
X t+1, yt

) ∣∣X t
]}

, (29)

and the transfer system τ is defined by the following. For all t ∈ T and i ∈ Nt:22

τi
(
X t+1

)
= τV CGi

(
X t
)

+ λτSc.Bi

(
X t+1

)
. (30)

In line with the previous literature, the budget of the VCG transfer does not
generate a deficit. This property is inherited by the balanced mechanism.

Proposition 2 The balanced delayed-verification mechanism satisfies the par-
ticipation constraint and generates no deficit.

See proof in the Appendix.

5 Discussion

This paper shows how virtual efficiency can be achieved in a setting with se-
quentially arriving agents that hold independent private values for the allocation
as well as private information about the future distributions of type. Both the
principal and the agents know parametric class of the payoff-type distributions,
however the distribution parameters are unknown. The difference in knowledge
between the principal and the agents is that the latter observe informed signals
about the underlying stochastic environment. Each agent receives a series of
signals, drawn independently from the future type distributions. The signals re-
duce uncertainty about the parameter value. The principal’s objective, achieved
by the present mechanism, is to elicit the signals and update the hyperbelief.

The present information model allows for various degrees of initial uncertainty.
The shape of the hyperdistribution reflects the principal’s guesses about the pa-
rameter, as well as the quality of his information. A high entropy hyperdistri-

22The scoring transfer to the last cohort NT is set to 0.
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bution implies that the principal is uninformed, whereas a low entropy (in the
classic case of mechanism design, degenerate) hyperdistribution corresponds to
a substantial degree of certainty about the model. In this setting the agents hold
additional private knowledge about the hyperdistribution, i.e., their information
is strictly superior to the principal’s.

We have assumed that the quality of information is homogenous across the par-
ticipants and the acquisition of information is costless. As a next step, one could
study the (statistically) efficient handling of information, which may be of dif-
ferent quality. In particular, one could allow for different betting budgets for
different players, so as to provide incentives to those participants who observe
more signals (and thus hold more accurate beliefs) to distinguish themselves
from those with inferior information. Differentiating the betting budget across
participants can be used to stimulate the information acquisition, if the acquisi-
tion is costly.
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A Appendix

A.1 Summary of notation

Agent i’s information is the following:

xi =


xi0 ≡ θi

xi1
...

xiT−t




payoff-type

hyperbelief-type

Bold face refers to multiple variables:
´
A =

´
A1

´
A2
· · ·
´
AT

; dα̃ = dα̃1dα̃2 · · · dα̃T ; Xt =
T−t
Π
k=0

Θt+k ; dXt =
∏
i∈Nt

T−t
Π
k=0

dxik

Xt,s =
(
x1ts−t x2ts−t · · · xi,s−t · · · x|Nt|ts−t

)
, the signals of cohort Nt about

period s, t < s ≤ T , where 1t denotes agent 1 in cohort Nt, 2t agent 2
in cohort Nt etc.

To single out agent i’s payoff-type report we use the following notation:

(
x̂i0, X

t
−i0
)
≡

X1, X2, ..Xt−1,


x1t0 x2t0 · · · x̂i0 · · · x|Nt|t0

x1t1 x2t1 · · · xi1 · · · x|Nt|t1

x1t2 x2t2 · · · xi2 · · · x|Nt|t2

· · · · · · · · · · · · · · · · · ·
x1t(T−t) x2t(T−t) · · · xi(T−t) · · · x|Nt|t(T−t)




A.2 Proof of Claim 1

Recall from Equation (4) that the efficient level of permit :

yi =

√
2 + h+ l

θiD (1 + h)
, (31)
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for all i. Then agent i’s payoff net of the scoring payment is the following:

Ui + τCGi = −
∑
j

1

θjyj
−
∑
j

yj
1 + h

2 + h+ l
D (32)

= −
∑
j

1

θj

√
θjD (1 + h)

2 + h+ l
−
∑
j

√
2 + h+ l

θjD (1 + h)

1 + h

2 + h+ l
D (33)

= −2
∑
j

√
D (1 + h)

θj (2 + h+ l)
, (34)

for each i, where h is the number of low, and l the number of high signals. Equa-
tion (34) implies that all agents benefit from lower h and higher l. In case of
immediate verification we have the following:

τSc.i (x̂i) = ln (Pr [D |x̂i1 ])h−i + ln (Pr [0|x̂i])l−i (35)

= h−i ln Pr [D |x̂i ] + l−i ln Pr [0|x̂i] (36)

where h−i (or l−i) is the number of agents, excluding i, who report high (respec-
tively, low) signal. Since Pr [D |D ] = Pr [0 |0] = 2

3
, and Pr [0 |D ] = Pr [D |0] = 1

3
we

obtain the scoring transfers as follows. If i reports a high signal (D), then:

τSc.i (D) = h−i ln
2

3
+ l ln

1

3
. (37)

If i reports a low signal (0).

τSc.i (0) = h ln
1

3
+ l−i ln

2

3
. (38)

Thus the profile of reports (θi, 0)i∈N (truthful payoff-type report, but “no damage"
irrespective of the signal) is an equilibrium. In this equilibrium, player i’s payoff
equals:
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Ui + τCGi + λτSc.i = −2
∑
j

√
D (1 + h)

θj (2 + h+ l)
+ λ

(
h−i ln

2

3
+ l ln

1

3

)
(39)

= −2
∑
j

√
D (1 + n)

θj (2 + n)
+ λ

(
(n− 1) ln

2

3

)
(40)

The equilibrium profile (θi, 0)i∈N Pareto dominates the truthful profile (θi, xi)i∈N .
Suppose the expected transfer if the signal is high, xi = D, and player i reports
truthfully:

E
[
τSc.i

(
X̂i

)
|xi = D

]
=
∑
h−i

C
h−i

n−1

(
2

3

)h−i
(

1

3

)n−1−h−i
(
h−i ln

2

3
+ (n− 1− h−i) ln

1

3

)
(41)

=
∑
h−i

C
h−i

n−1

(
2

3

)h−i
(

1

3

)n−1−h−i

(h−i ln 2− (n− 1) ln 3) (42)

= (n− 1)

(
2

3
ln 2− ln 3

)
(43)

Similarly, we can show that the expected transfer if the signal is low, xi = 0

also equals (n− 1)
(

2
3

ln 2− ln 3
)
. Since (n− 1) ln 2

3
> (n− 1)

(
2
3

ln 2− ln 3
)
, player

i’s utility when profile (θi, 0)i∈N is played is greater than his utility in the truth-
telling equilibrium; this holds for all i, thus the distortionary equilibrium Pareto
dominates (for all λ > 0). �

A.3 Proof of Claim 2

Consider the maximization of the expected scoring transfer by agent i. The trans-
fer writes:
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ˆ
[0,1]

(
Pr [D|α̃] τ sc.i

(
x̂i, θ

H
d

)
+ Pr [0|α̃] τ sc.i

(
x̂i, θ

L
d

))
φ (α̃|xi) dα̃ (44)

=

ˆ
[0,1]

(
α̃ln
ˆ

[0,1]

αφ (α|x̂i) dα + (1− α̃) ln
ˆ

[0,1]

(1− α)φ (α|x̂i) dα
)
φ (α̃|xi) dα̃ (45)

=

ˆ
[0,1]

α̃φ (α̃|xi) ln
ˆ

[0,1]

αφ (α|x̂i) dα+

ˆ
[0,1]

(1− α̃)φ (α̃|xi) dα̃ln
ˆ

[0,1]

(1− α)φ (α|x̂i) dα

(46)

Equation (46) boils down to:

plnp̂+ (1− p) ln (1− p̂) , (47)

where p is the probability agent i attaches to the high damage realization, p̂ is
the probability implied by his report x̂i, and (1− p) and (1− p̂) are the respective
complementary probabilities. The first-order condition writes p

p̂
= 1−p

1−p̂ and has
the solution p̂ = p. The second-order condition holds. This implies that the
reported signal is true at the optimum, x̂i = xi. �

A.4 Proof of Lemma 1

The problem of agent i ∈ Nt−1 writes:

max
x̂i0∈Θt

E

ui (f t (x̂i0, X t
−i0
)
, xi0

)
+ τCGi

(
x̂i0, X

t
−i0
)︸ ︷︷ ︸

=:Ui(x̂i0,Xt
−i0)

∣∣xi, X t−1

 , (48)

where
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τCGi
(
X t
)

=
∑
j 6=i

uj
(
f t
(
X t
)
, x̂j0

)
−
∑
j 6=i

uj
(
f t
(
X t
−i
)
, xj0

)
+ (49)

+ E
[
Jt+1

(
X t+1, f t

(
X t
)) ∣∣X t

]
− E

[
Jt+1

(
X t+1, f t

(
X t
−i
)) ∣∣X t

]
(50)

eliminate the components of transfer invariant in θ̂i, the problem becomes equiv-
alent to:

max
x̂i0∈Θi

{
E

[∑
j

uj
(
f t
(
x̂i0, X

t
−i0
)
, xj0

)
+ Jt+1

(
X t+1, f t

(
x̂i0, X

t
−i0
)) ∣∣X t

]}
(51)

Recall that for all X t:

f t
(
X t
)
∈ arg max

yt∈Y

{∑
j

uj (yt;xj0) + E
[
Jt+1

(
X t+1, yt

) ∣∣X t
]}

(52)

Thus

xi0 ∈ arg max
x̂i0∈Θi

{∑
j

uj
(
f t
(
x̂i0, X

t
−i0
)
, xj0

)
+ E

[
Jt+1

(
X t+1, f t

(
x̂i0, X

t
−i0
)) ∣∣X t

]}
(53)

= arg max
x̂i0∈Θi

E
[
Ui
(
x̂i0, X

t
−i0
) ∣∣X t

]
(54)

for all X t and by the law of iterated expectations (X t contains strictly more in-
formation than xi, X

t−1), hence

= arg max
x̂i0∈Θi

E
[
Ui
(
x̂i0, X

t
−i0
) ∣∣xi, X t−1

]
(55)

implying that truthful report x̂i0 = xi0 is the solution to the initial maximization
problem. The strict convexity of the utility finctions yields uniqueness of the
solution. �
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A.5 Proof of Lemma 2

We need to show that:

(xi1, xi2, ..xiT−t) ∈ arg max
(x̂i1,x̂i2,..x̂iT−t)

E
[
τSc.i

(
x̂i, X

t+1
)
|xi, X t

]
(56)

where x̂i = (xi0, x̂i1, x̂i2, ..x̂iT−t). Given that the report Xt+1 is truthful, the expec-
tation of the scoring transfer conditional on the agent’s information is:

E
[
τSc.i

(
x̂i, X

t+1
)
|xi, X t

]
=

ˆ
Xt+1

Pr
[
Xt+1|xi, X t−1

]
ln Pr

[
Xt+1|x̂i, X t−1

]
dXt+1 (57)

The proof relies on the independence of value/signal draws within and between
cohorts,

Pr
[
Xt+1|xi, X t−1

]
=

∏
j∈Nt+1

∏
k=0,1,..T−(t+1)

Pr
[
xjk|x̂i, X t−1

]
, (58)

Pr
[
xjk|x̂i, X t−1

]
= Pr

[
xjk|x̂i,k+1, X

t−1
]
. (59)

Use Equations (58) and (59) to simplify the expected scoring transfer as follows:

EτSc.i

(
xi, X

t+1
)

=

ˆ
Xt+1

Pr
[
Xt+1|xi, X t−1

]
ln Pr

[
Xt+1|x̂i, X t−1

]
dXt+1 (60)

=

ˆ
Xt+1

Pr
[
Xt+1|xi, X t−1

] ∑
j∈Nt+1

∑
k=0,1,..T−(t+1)

ln Pr
[
xjk|x̂i, X t−1

]
dXt+1 (61)

=
∑
j

∑
k

ˆ
Xt+1

Pr
[
Xt+1|xi, X t−1

]
ln Pr

[
xjk|x̂i, X t−1

]
dXt+1 (62)

=
∑
j

∑
k

ˆ
Xt+1

Pr
[
Xt+1|xi, X t−1

]
ln Pr

[
xjk|x̂i,k+1, X

t−1
]
dXt+1 (63)

Then the first-order condition with respect to x̂i,k+1 writes:
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∂EτSc.i

∂x̂i,k+1

=

ˆ
Xt+1

Pr [Xt+1|xi, X t−1]

Pr [xjk|x̂i,k+1, X t−1]

∂ Pr [xjk|x̂i,k+1, X
t−1]

∂x̂i,k+1

dXt+1 (64)

=

ˆ
Pr [xjk|xi,k+1, X

t−1]

Pr [xjk|x̂i,k+1, X t−1]

∂ Pr [xjk|x̂i,k+1, X
t−1]

∂x̂i,k+1

dxjk = 0

(FOC)

The differentiation of
´

Pr [xjk|x̂i,k+1, X
t−1] dxjk ≡ 1 yields

ˆ
∂ Pr [xjk|x̂i,k+1, X

t−1]

∂x̂i,k+1

dxjk = 0. (65)

Thus x̂i,k+1 ≡ xi,k+1, for k = 0, 1, ..T − (t + 1), satisfy the first order condition (put
differently, x̂i1 = xi1, x̂i2 = xi2, ..x̂iT−t = xiT−t is a critical point). To verify the
second-order condition, we write (FOC) in vector form:

ˆ
Xt+1

Pr [Xt+1|xi, X t−1]

Pr [Xt+1|x̂i, X t−1]
∇x̂i Pr

[
Xt+1|x̂i, X t−1

]
dXt+1 = 0 (66)

where ∇x̂i Pr [·] denotes the gradient of function Pr [·] with respect to variables
x̂i1, x̂i2, ..x̂iT−t (column-vector), and µ = (µjk).

The second order condition of the maximization problem requires that the matrix
∇x̂i(FOC)T is negative semi-definite at the critical point.

∇x̂i(FOC)T =

=
´
Xt+1
− Pr[Xt+1|xi,Xt−1]

(Pr[Xt+1|x̂i,Xt−1])2
∇x̂i Pr [Xt+1|x̂i, X t−1] (∇x̂i Pr [Xt+1|x̂i, X t−1])

T
+

+
Pr [Xt+1|xi, X t−1]

Pr [Xt+1|x̂i, X t−1]
Hx̂i Pr

[
Xt+1|x̂i, X t−1

]
dXt+1, (67)

where Hx̂i Pr [Xt+1|x̂i, X t−1] is the Hessian matrix. We make the following obser-
vations with respect to the components of the integral (67):

1. − Pr[Xt+1|xi,Xt−1]
(Pr[Xt+1|x̂i,Xt−1])2

< 0 (note that in our model the distributions have full
support, thus the inequality here is strict).
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2. ∇x̂i Pr [Xt+1|x̂i, X t−1] (∇x̂i Pr [Xt+1|x̂i, X t−1])
T is positive definite almost surely.

3.
´
Xt+1

Hx̂i Pr [Xt+1|x̂i, X t−1]dXt+1 = 0 due to (65).

4.
Pr[Xt+1|xi,Xt−1]
Pr[Xt+1|x̂i,Xt−1]

is positive and bounded, thus

´
Xt+1

Pr[Xt+1|xi,Xt−1]
Pr[Xt+1|x̂i,Xt−1]

Hx̂i Pr [Xt+1|x̂i, X t−1]dXt+1 ≤
´
Xt+1

c×Hx̂i Pr [Xt+1|x̂i, X t−1]dXt+1 =

0.23

It follows that∇x̂i(FOC)T is negative definite, and thus x̂i1 = xi1, x̂i2 = xi2, ..x̂iT−t =

xiT−t is a strict global maximum. �

A.6 Proof of Lemma 3

Denote the reduction in past information: projS,K(S) (X t−1) = X t−1. This means
that we consider the case when only part of past information is disclosed to the
agent. Compare the transfer with reduced information:

EτSc.i

(
xi, X t−1

)
= E

[
E [ln Pr [Xt+1|xi]]

∣∣∣xi, X t−1
]

(68)

with the unconditional expectation of the scoring transfer with past and present
information content:

EτSc.i

(
xi, X

t−1
)

= E
[
E
[
ln Pr

[
Xt+1|xi, X t−1

]] ∣∣xi, X t−1
]

(69)

The right-hand side of 69 is the negative of the Shannon entropy24 of random
variable Xt+1 conditional on random variables xi and X t−1 that we denote
H (Xt+1|xi, X t−1). Similarly, the right-hand side of Equation 68 is the negative
of the Shannon entropy Xt+1 conditional on xi only, denoted H (Xt+1|xi). This
implies that:

23Here 0 is a matrix of zeros and respectively ≤ and = are componentwise (in-)equalities.
24Here the entropy is defined with the natural number e as the logarithm base. Choosing a

different base does not change our analysis: the constant would cancel out in Equation 70.
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EτSc.i

(
xi, X

t−1
)
− EτSc.i (xi) = H

(
Xt+1|xi, X t−1

)
−H

(
Xt+1|xi, X t−1

)
> 0 (70)

Observe that X t−1 contains information about Xt+1 that is not contained in X t−1

(see Equation 12), therefore the entropy of Xt+1 conditional on X t−1 and xi is
lower than the entropy of Xt+1 conditional on xi and X t−1. This can also be
observed from re-writing 70 in terms of unconditional entropies:

H
(
Xt+1|xi, X t−1

)
−H

(
Xt+1|xi, X t−1

)
=

=
(
H
(
Xt+1, xi, X t−1

)
−H

(
xi, X t−1

))
−
(
H
(
Xt+1, xi, X

t−1
)
−H

(
xi, X

t−1
))
> 0

(71)

The marginal increase in entropy due to the addition of Xt+1 is greater when Xt+1

is added to xi and X t−1 than when Xt+1 is added to xi and X t−1, since the latter
pair has greater informational content. Thus we obtain that:

EτSc.i

(
xi, X

t−1
)
> EτSc.i

(
xi, X t−1

)
(72)

The analysis is equivalent for arbitrary projections projS,K(S) (X t−1) different from
the identity. Using the most information available increases the expected payoff.

�

A.7 Proof of Proposition 1

The proof is by induction. The inductive hypothesis for t = 1, 2, ..T − 1 is the fol-
lowing: If Nt report their types and beliefs truthfully, then Nt−1 report truthfully,
too.

At the last stage t = T the belief-type reports are void, and the payoff-type re-
ports are truthful due to the ex-post VCG transfer. Thus at t = T there is truthful
revelation (trivially for the belief-type), and therefore it suffices to prove the in-
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ductive hypothesis.

Fix t. By Lemma 2 no player i ∈ Nt can increase his scoring transfer by reporting
anything different from the true type xi. Thus the profit can be generated only
in the remaining “welfare” part:

ui
(
f t
(
X t
)
, xi0

)
+ τCGi

(
X t
)

=: wi
(
X t
)

(73)

wi (X
t) is the total welfare change due to i’s report. Lemma 1 states that wi (X t)

is maximized at θi, for any belief report x̂i1, x̂i2, ..x̂iT−t. Thus we restrict attention
to deviations in the belief report only.

If X t is the truthful report profile, let Di (X
t) denote a transformation of X t

that replaces the hyperbelief of agent i by some x̂i1, x̂i2, ..x̂iT−t different from
xi1, xi2, ..xiT−t. Denote the class of such transformations Di and let Dεi consist
of all Di (X

t) that induce a welfare change larger than ε:

Dεi =
{
Di ∈ Di : wi

(
Di

(
X t
))
− wi

(
X t
)
≥ ε
}

(74)

Consider a deviation of player i, where he distorts his hyperbelief. Under the
equilibrium assumption, the profile of reports becomes Di (X

t) =: X̂ t. Since the
choice set Y is compact, the change in the allocation f t (·) is bounded, implying
that ∃c ∈ R: ∥∥∥f t (X t

)
− f t

(
X̂ t
)∥∥∥ < c (75)

By the assumption that the utility functions ui are Lipschitz-continuous in yt, for
all i there exists Ki such that∣∣∣ui (f t (X t

)
;xi0

)
− ui

(
f t
(
X̂ t
)

;xi0

)∣∣∣ < Ki

∥∥∥f t (X t
)
− f t

(
X̂ t
)∥∥∥ (76)

and thus
∣∣∣ui (f t (X t) ;xi0)− ui

(
f t
(
X̂ t
)

;xi0

)∣∣∣ < cKi. Let K := max {Ki}i∈NT /Nt−1 .

The welfare writes:
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wi

(
X̂ t
)

=
∑
j

uj

(
f t
(
X̂ t
)
, xj0

)
−
∑
j 6=i

uj

(
f t−i

(
X̂ t
)
, xj0

)
+

+ E
[
Jt+1

(
X t+1, f t

(
X̂ t
)) ∣∣∣X̂ t

]
− E

[
Jt+1

(
X t+1, f t−i

(
X̂ t
)) ∣∣∣X̂ t

]
. (77)

Recall that the Jt is a weighted sum of the future utilities. By a version of the
Cauchy-Bunyakovsky inequality:

∣∣∣E [Jt+1

(
X t+1, f t

(
X̂ t
)) ∣∣∣X̂ t

]
− E

[
Jt+1

(
X t+1, f t

(
X t
)) ∣∣X t

]∣∣∣ ≤ (78)

≤
ˆ ∣∣∣Pr

[
XT

∣∣∣X̂ t
]
− Pr

[
XT

∣∣X t
]∣∣∣×

×
∑

j∈NT /Nt

∣∣∣ūj (fT (XT
)

;xi0
)
− ūj

(
fT
(
X̂T
)

;xi0

)∣∣∣dXT < (79)

< 2
(∣∣NT

∣∣− ∣∣N t
∣∣) cK, (80)

where ūj
(
yT ;xi0

)
= uj (ys;xi0) for j ∈ Ns. Similarly, for E

[
Jt+1

(
X t+1, f t−i

(
X̂ t
)) ∣∣∣X̂ t

]
we obtain∣∣∣E [Jt+1

(
X t+1, f t−i

(
X̂ t
)) ∣∣∣X̂ t

]
− E

[
Jt+1

(
X t+1, f t−i

(
X t
)) ∣∣X t

]∣∣∣ <
< 2

(∣∣NT
∣∣− ∣∣N t

∣∣) cK. (81)

Summing up differences in the four components we derive that

∣∣∣wi (X̂ t
)
− wi

(
X t
)∣∣∣ < 4 |Nt| cK + 4

(∣∣NT
∣∣− ∣∣N t

∣∣) cK
= 4cK

(∣∣NT
∣∣− ∣∣N t−1

∣∣) . (82)

34



We have shown that the gain that i can achieve by misreporting the hyperbelief is
bounded. Thus

∣∣∣wi (X̂ t
)
− wi (X t)

∣∣∣ is bounded for all X̂ t = Di (X
t) , Di ∈ Dεi . Note

that, on the other hand, for any X̂ t = Di (X
t) , Di ∈ Dεi the (negative) change in

the scoring transfer, EτSc.i

(
X̂ t, Xt+1

)
− EτSc.i (X t+1) is also bounded from above.

Thus we can choose λ such that the (negative) change in the scoring transfer,
EτSc.i

(
X̂ t, Xt+1

)
− EτSc.i (X t+1) is less than −4cK

(∣∣NT
∣∣− |N t−1|

)
/λ for any X̂ t =

Di (X
t) , Di ∈ Dεi , implying that X̂ t is not a profitable deviation. Going through

all xi, i and t choose the maximal λ. The maximum exists, since |NT | is finite.
The inductive hypothesis is proven, hence the proposition. �

A.8 Proof of Proposition 2

Participation constraint

The proof that the balanced mechanism satisfies the participation constraint pro-
ceeds in two steps. At the first step we show that the sum of the agent’s utility
and the VCG transfer is greater or equal to zero. At the second step we show
that the expectation of the balanced scoring transfer equals zero, such that the
entire participation constraint holds.

Step 1. By the construction of the efficient, or welfare-maximizing choice rules
f and f−i (see Equation (18)), it holds for all t, X t and i ∈ Nt:

∑
j

uj
(
f t
(
X t
)
, xj0

)
+ E

[
Jt+1

(
X t+1, f t

(
X t
)) ∣∣X t

]
≥

∑
j 6=i

uj
(
f t−i
(
X t
)
, xj0

)
+ E

[
Jt+1

(
X t+1, f t−i

(
X t
)) ∣∣X t

]
. (83)

Recall the definition of the Groves transfer (Equation (23) in text):

35



τV CGi

(
X t
)

=
∑
j 6=i

uj
(
f t
(
X t
)
, xj0

)
−
∑
j 6=i

uj
(
f t−i
(
X t
)
, xj0

)
+

+E
[
Jt+1

(
X t+1, f t

(
X t
)) ∣∣X t

]
− E

[
Jt+1

(
X t+1, f t−i

(
X t
)) ∣∣X t

]
, (84)

Thus, the inequality (83) is equivalent to:

ui
(
f t
(
X t
)
, xi0

)
+ τV CGi

(
X t
)
≥ 0. (85)

By the law of iterated expectations:

E
[
uj
(
f t
(
X t
)
, xj0

)
+ τCGi

(
X t
) ∣∣X t−1

]
≥ 0. (86)

Step 2. First, observe that:

Pr
[
Xt+1, xj|X t−1

]
=

ˆ
A

Pr
[
Xt+1, xj|α,X t−1

]
φ
(
α|X t−1

)
dα =

=

ˆ
A

Pr
[
Xt+1|α,X t−1

]
Pr
[
xj|α,X t−1

]
φ
(
α|X t−1

)
dα. (87)

Pr
[
xj|X t−1

]
=

ˆ
A

Pr
[
xj|α,X t−1

]
φ
(
α|X t−1

)
dα. (88)

Since the signals and types are drawn independently (from the true α - distribu-
tions), Pr (xj|α,X t−1) both expressions (87) and (88) are invariant in j. Therefore

ln Pr
[
Xt+1, xj|X t−1

]
− ln Pr

[
xj|X t−1

]
= ln Pr

[
Xt+1|xj, X t−1

]
= τSc.j

(
X t+1

)
(89)
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is also invariant in j. This implies that the expectation of the own and the oppo-
nent’s transfer are equal, conditional on the past history X t−1:

E
[
τSc.i

(
X t+1

) ∣∣X t−1
]

= E
[
τSc.ρ(i)

(
X t+1

) ∣∣X t−1
]
. (90)

Thus the expectation of the balanced scoring transfer is zero:

E
[
τSc.Bi

(
X t+1

) ∣∣X t−1
]

= E
[
τSc.i

(
X t+1

)
− τSc.ρ(i)

(
X t+1

) ∣∣X t−1
]

= 0. (91)

We conclude that

E
[
ui
(
f t
(
X t
)
, xj0

)
+ τCGi

(
X t
)

+ τSc.Bi

(
X t+1

) ∣∣X t−1
]
≥ 0, (92)

thus the participation constraint holds. �(PC)

No deficit

From Equation (83) it immediately follows that the Vickrey-Clarke-Groves trans-
fer to each agent is non-positive:

τCGi (X t) ≤ 0

The balanced scoring transfer satisfies
∑

i∈Nt
τSc.Bi (X t+1) = 0 by construction (See

Equation (28)). Therefore, the aggregate no-deficit constraint holds:∑
i∈Nt

τCGi (X t) + τSc.Bi (X t+1) ≤ 0. �(BB)
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