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Abstract

For a bilateral trade model with a privately informed buyer we characterize trading

rules which are implementable via a mechanism with ex post renegotiation. Let R(v)

be the seller’s ex ante expected payoff if she could commit to a price of v, and let

R̃ be the least concave majorant of R. We show that any non-decreasing trading

rule can be implemented subject to two constraints. First, on any interval on which

R(v) < R̃(v) the rule must be constant. Second, it must be equal to 1 above p∗,

the highest maximizer of R. These rules are implemented by a direct revelation

mechanism in which the buyer systematically understates his value.
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1 Introduction

Suppose that two or more parties, some of whom have private information, use

a mechanism, or contract, to govern their relationship. It may be that, after the

mechanism has delivered an outcome, the parties would each, given the information

revealed to them by the play of the mechanism, prefer to have a different outcome.

That is, the mechanism may not be renegotiation-proof. It has been argued by many

authors that renegotiation-proofness is a robustness property that it is desirable for

a mechanism to possess. Various notions of renegotiation-proofness have been pro-

posed. In the incomplete information case, much of the literature concerns interim

renegotiation, i.e., the parties have an opportunity to renegotiate before they play the

mechanism. For example, Holmström and Myerson (1983) define a decision rule (or

mechanism) M as durable if, given any type profile, and any alternative mechanism

M̃ , the players would not vote unanimously to replace M by M̃ if a neutral third

party were to propose it to them (see also Crawford (1985), Palfrey and Srivastava

(1991) and Lagunoff (1995)). Ex post renegotiation has been studied by Green and

Laffont (1987), Forges (1994), and Neeman and Pavlov (2007). In these contributions

the concepts employed are variations on the principle that a mechanism is (ex post)

renegotiation-proof if, for any outcome x of the mechanism and any alternative out-

come y, the players would not vote unanimously for y in preference to x if a neutral

third party were to propose it to them. Such definitions of renegotiation-proofness

have the merit that, if a given mechanism satisfies it, the mechanism is robust against

all possible alternative outcomes. However, it also has the drawback that the implied

renegotiation process does not have a non-cooperative character. Under an alterna-

tive modeling of this process, a renegotiation proposal would be made by one of the

parties to the mechanism, or, more generally, the players would play an exogenously

given non-cooperative bargaining game after the mechanism is completed.

The latter notion of renegotiation is closer to the one used for the complete in-

formation case (Maskin and Moore (1999), Segal and Whinston (2002)), in which,

for any inefficient outcome of the mechanism, there is a single renegotiation outcome,
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which can be predicted by the players. It also corresponds to the approach used in the

literature on contract renegotiation (e.g. Dewatripont and Maskin (1990)) in which a

trading opportunity is repeated a number of times and the focus is on comparing the

outcomes of long-term contracts, sequences of short-term contracts, and long-term

contracts which can be renegotiated (i.e., the parties are committed for one period,

but in the second period there is an opportunity to change the contract).

In this paper we study mechanism design with renegotiation as modeled in the

above fashion, applied to a single period model with incomplete information. Specif-

ically, we consider a bilateral trading model with one-sided asymmetric information

(the seller’s cost is common knowledge, but the buyer’s value is private information).

First they play a mechanism in which the buyer sends a message to the seller, re-

sulting in some trade and payment. Then, if some of the good remains unsold, the

seller makes a take-it-or-leave-it price demand to the buyer for the remaining stock.

Of course, the seller’s demand at the renegotiation stage will depend on what she has

learned from the mechanism, so we cannot confine attention to equilibria of direct

revelation mechanisms in which the buyer tells the truth, since the seller, knowing the

truth, would subsequently extract all the remaining surplus, and this in turn would

give the buyer an incentive to understate his value.

We provide a characterization of the implementable outcome functions (that is,

functions mapping the buyer’s type to expected quantity of trade, taking renegotiation

into account). Let p∗ be the price which the seller would demand in the absence of

any mechanism. Then, for any mechanism and any equilibrium, types above p∗ must

have expected quantity of trade equal to 1 (i.e. the maximum possible). Secondly,

for any mechanism, in any pure strategy equilibrium, the outcome function can take

at most two values, i.e., low types trade q ≤ 1 in expectation, while high types trade

1 (note that, as usual, outcome functions must be monotonic).

On the other hand, it is natural to expect randomization since the buyer will want

to hide his type from the seller, and it turns out that much more can be achieved using

mixed strategy equilibria. Define a function R on the buyer’s types by letting R(p)

be the seller’s expected payoff if she can commit (before learning anything about the
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buyer’s type) to a take-it-or-leave-it price of p. Let R̃ be the least concave function

lying above R, i.e. R̃ is the least concave majorant of R. Then on any interval on

which R̃ > R, bunching must take place. On the other hand, any non-decreasing

quantity schedule which satisfies this condition and is equal to 1 above p∗ can be

achieved.

For any right-continuous quantity schedule Q which satisfies these conditions there

is a simple mechanism which implements it. Note first that Q has the properties of

a cumulative distribution function of a random variable taking values in the type

set. In the mechanism the buyer announces his type. The contracted quantity after

message ṽ is simply Q(ṽ), and the contracted per-unit price is E(v|v ≤ ṽ), where the

expectation is taken with respect to Q (not the measure which describes the seller’s

belief about the buyer’s type). In equilibrium a type ṽ randomizes over all types up

to ṽ, so that the seller, given announcement ṽ, has a posterior belief distributed over

types ṽ and above. The distribution of the seller’s renegotiation demands is given by

Q conditional on v ≥ ṽ.

Section 2 sets out the model. Section 3 analyzes a version of the model with finitely

many types. Section 4 extends the results for the finite model to the continuum case,

and section 5 concludes. The majority of proofs are in the Appendix.

2 The Model

There are two players, a buyer (B) and a seller (S). They may trade up to one unit

of a divisible good. The seller’s cost of production, c ≥ 0, is commonly known, but

the buyer’s value v is privately known to the buyer, and distributed on the interval

V = [v, v], where c < v, according to a distribution F . Both players are risk-neutral

and have quasi-linear utility for money. If S produces and trades a quantity q ≤ 1 of

the good for price p, then S’s payoff is p − cq and B’s payoff is vq − p. The seller’s

expected profit function is denoted by R(p) = (p− c)(1−F (p)). This is S’s expected

payoff, given F , if she commits to price p.

The players use a mechanism to determine how much to trade and at what price.
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A mechanism is a set of messages M and a pair of functions q : M → ℘([0, 1]) and

t : M → ℘(<), where, for any set X, ℘(X) is the set of random variables taking

values in X. B chooses a message m ∈ M . When message m is sent, q(m) is the

contracted quantity to be supplied by S and t(m) is the contracted payment to be

paid by B to S. This allows the possibility that quantity and payment are random

after a given message.

Renegotiation

We assume, however, that the two parties are not able to commit to the outcome

of the mechanism. Specifically, if the outcome of the mechanism gives quantity q < 1,

it is common knowledge that this outcome is inefficient. In such a situation, we would

expect the parties, if they can, to try to negotiate a Pareto-superior outcome. We

consider perhaps the simplest bargaining game, in which S makes a single take-it-or-

leave it demand. More specifically, the following sequence of events takes place. S

observes the outcome of the mechanism (M, q, t) and the message m which B sent.

(That is, we restrict attention to direct, as opposed to mediated, communication).

If q = 1 then the game is over. If q < 1 then S demands a new pair (q′, t′) and B

either accepts or rejects it. If B accepts, then they trade q′ and B pays t′ to S (and

they ignore the mechanism outcome). If B rejects, then the mechanism outcome is

implemented, i.e. they trade q and B pays t.

We will assume that B accepts the renegotiation demand if he is indifferent. It is

easy to see that S must demand q′ = 1 and that the demand will be accepted by all

types v ≥ v′ for some threshold value v′. Equivalently, we can assume that S produces

q and transfers it for payment t (as stipulated by the outcome of the mechanism),

but then makes a take-it-or-leave-it unit price demand p for the remaining quantity

1 − q, which will be accepted by all types v ≥ p. S’s payoff is then t − cq if the

demand is rejected and t + (1− q)p− c if it is accepted, while type v of B gets payoff

vq − t if v < p and v − t − (1 − q)p if v ≥ p. If, as will turn out to be the case, the

buyer’s type is not fully revealed by the play of the mechanism, then the outcome

of the post-mechanism bargaining need not be efficient since the bargaining game is
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one of incomplete information. This corresponds to a situation in which, whatever

mechanism the parties play, there will always be time to renegotiate after it ends,

but from that point there is only a finite amount of time in which to reach agreement

(hence there may be unrealized gains).

Equilibrium

The mechanism and the post-mechanism bargaining together define a game of

incomplete information. In this game buyer type v ∈ V has strategy µv, which is

a distribution over M (as noted above, we assume that he accepts a renegotiation

demand p if and only if p ≤ v). A strategy for the buyer is a function µ = {µv}v∈V .

The seller’s strategy is a function r : M → ℘(V ). That is, r(m) is a mixed strategy

over renegotiation demands p in V . This assumes that the mixed strategy depends

only on the message, not on the realized values of q and t. A strategy profile is

therefore a pair (µ, r).

An equilibrium of a mechanism (M, q, t) is a perfect Bayesian equilibrium of the

game defined by the mechanism and the succeeding bargaining stage. For each m ∈
M , a belief for S is a function Gm : V → [0, 1], where Gm(v̂) is the probability that

S attaches, after message m, to the event v ≤ v̂. An equilibrium then consists of

a strategy profile (µ, r) and a system of beliefs G = {Gm}m∈M such that (i) where

appropriate, the beliefs are updated from F using Bayes’ rule given µ, (ii) for each

v ∈ V , message strategy µv is optimal for buyer type v if the seller uses strategy r,

and (iii) for every m ∈ M , renegotiation strategy r(m) is optimal for the seller given

belief Gm.

Given message m ∈ M , v ∈ V and strategy profile (µ, r), let q̄(v,m, r) be the

expected quantity traded if S uses strategy r, message m is sent and renegotiation

demands less than or equal to v are accepted. That is, letting I(r(m), v) be a random

variable which is equal to 1 if r(m) ≤ v and equal to zero if r(m) > v, q̄(v, m, r) is the

expectation of q(m) + [1 − q(m)]I(r(m), v). Let q̄(v, µ, r) be the expected quantity

for type v. So q̄(v, µ, r) = Eq̄(v, m, r), where the expectation is taken over m ∈ M

using µv.
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We will be interested primarily in the ways that expected trade quantity may vary

with the buyer’s type.

Definition 1: A function Q : V → [0, 1] is an implementable quantity schedule given

F if there exists a mechanism (M, q, t) and an equilibrium (µ, r,G) of the mechanism

such that, for all v ∈ V , Q(v) = q̄(v, µ, r).

The profit-maximizing mechanism for the seller is simply a take-it-or-leave-it price

offer p∗ (there might be more than one). This offer implements the following quantity

schedule: Q(v) = 0 for v < p∗, and Q(v) = 1 for v ≥ p∗. But there are several reasons

why we may be interested in implementing other quantity schedules. Firstly, as in

the hold-up literature, there may be a prior investment stage. Suppose, for example,

that the buyer first chooses a level of costly unverifiable investment and that higher

investment will lead, on average, to a higher value for the buyer. It can be shown that

in that case the optimal quantity schedule for the seller (taking into account the need

to give investment incentives to the buyer) can be strictly increasing over a range of

type values. Secondly, consider a case in which the seller is a division of a bigger firm.

The division wants to maximize profits but the headquarters imposes constraints; in

particular, a constraint that everybody must be served with some probability, perhaps

increasing in willingness-to-pay. It may be, for example, that if consumers are shut

out of the market then they are less likely to buy in other markets served by the firm,

or in the same market in the future. Alternatively, it may be that there are learning

effects: the firm may want to serve low-value customers because they may discover a

taste for the good and then become high-value types in the future. If consumers and

firm divisions have a one-period perspective but the headquarters takes long-term

considerations into account then the headquarters may want to impose an increasing

quantity schedule on the division.

3 A Model with Finitely Many Types

In the following we will characterize the implementable quantity schedules in a
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sequence of finite approximations of the model set out above. We will then use those

finite quantity schedules to approximate the implementable quantity schedule in the

continuum model.

For n = 1, 2..., let Vn = {v0 = v, v1, ..., vn = v} ⊂ V be a finite type set and Fn be a

probability distribution on Vn, i.e. Fn(vi) = pr[v < vi]. Let the associated probability

function be fn, i.e., fn(vi) = Fn(vi+1)−Fn(vi). We denote by Rn the seller’s expected

profit function given Fn and by vn∗ the highest price demand that maximizes Rn. So,

Rn(vi) = (vi − c)(1− Fn(vi)) and vn∗ = max{v ∈ Vn | Rn(v) ≥ Rn(v′) ∀ v′ ∈ Vn}.
If renegotiation were not possible, we could apply the Revelation Principle and

restrict attention to truthful equilibria of direct revelation mechanisms. We cannot

do that in the current model: the buyer will not truthfully reveal his type because

the seller would then extract all the surplus at the renegotiation stage.

Fix Vn and Fn and take an arbitrary equilibrium (µ, r,G) of an arbitrary mecha-

nism (M, q, t). (To ease notation, we will refer to a strategy of type vi as µi rather

than µvi
). After any message m renegotiation demands which are not equal to any

type’s value (i.e. not in Vn) are clearly sub-optimal for S. Therefore, without loss of

generality, we assume that r(m) is a distribution on Vn.

Our first Lemma shows that, as in the no-renegotiation case, expected quantity

must be monotonically non-decreasing in type.

Lemma 1 (Monotonicity) (i) Given any message mi which is optimal for vi and

any message mj which is optimal for vj > vi, (a) q̄(vi,mi, r) ≤ q̄(vj,mj, r); (b)

q̄(vi,mi, r) ≤ q̄(vj−1, mj, r).

(ii) If vj > vi, q̄(vj, µ, r) ≥ q̄(vi, µ, r).

Lemma 1(i)(b) follows from the fact that if type vj gets a renegotiation offer of vj

he is indifferent between accepting and rejecting, so accepting only offers of vj−1 or

less is an optimal strategy for him.

Let M̂ be the set of messages which have strictly positive probability under µ.

Suppose that message m ∈ M̂ has been sent and the resulting quantity is less than 1.

An optimal renegotiation demand p for the seller must maximize (p− c)[1−Gm(p)].
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She can obtain a strictly positive value for this by demanding v, so any vi which she

demands with strictly positive probability must satisfy 1−Gm(vi) > 0, i.e. some types

vi or higher must send m. If vi does not send m in equilibrium then S’s posterior

probability of vi, gm(vi), is zero, so S would do strictly better by making a higher

demand than vi. This establishes

Lemma 2 For any m ∈ M̂ , and any vi ∈ Vn, if prob[r(m) = vi] > 0 then

µi(m) > 0.

Suppose that, for some vi and m ∈ M̂ , q̄(vi,m, r) < 1 and that no types above

vi send m. But then, by Lemma 2, the renegotiation demand after m must be vi or

less, so vi will trade for sure if he sends m, which contradicts q̄(vi,m, r) < 1. Hence

Lemma 3 For m ∈ M̂ , if q̄(vi,m, r) < 1 then there exists k > i such that

µk(m) > 0.

In equilibrium a given type vi may randomize over several messages, but each

message, taking renegotiation into account, must lead to the same expected trade

quantity. To see this, assume that vi < vn, that vi sends both mi and m′
i with strictly

positive probability, and that q̄(vi, mi, r) > q̄(vi,m
′
i, r). (If vi = vn then clearly trade

quantity equals 1 for sure after any message). In that case, by Lemma 3, there is a

higher type who also sends m′
i. Let vk be the lowest such type. If vk were to send m′

i

and then accept only renegotiation demands strictly less than vk, he would get the

same expected quantity as vi gets after m′
i, since, by Lemma 2, there are no renego-

tiation demands between vi and vk after m′
i. That is, q̄(vk−1,m

′
i, r) = q̄(vi,m

′
i, r), so

q̄(vk−1,m
′
i, r) < q̄(vi, mi, r), which, since vk > vi, contradicts monotonicity (Lemma

1(i)(b)). Hence

Lemma 4 q̄(vi,mi, r) = q̄(vi,m
′
i, r) for all mi,m

′
i such that µi(mi) > 0 and

µi(m
′
i) > 0.

The next Lemma is the key to characterizing the implementable outcome func-
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tions. Suppose that vi is a point at which the expected quantity function is strictly

increasing, i.e. equilibrium expected quantity for vi is strictly greater than for vi−1.

Then, for any type vj below vi, and any message mj which is sent in equilibrium by

vj, S must demand vi with strictly positive probability after message mj and, there-

fore, type vi must send mj with positive probability. That is, type vi must send all

messages sent by lower types.

To see this, take vj < vi and mj such that µj(mj) > 0 and assume that S does

not demand vi after mj. Suppose first that, after mj, S makes no demand above

vi−1 and let vk < vi be the highest value v such that pr[r(mj) = v] > 0. Then, by

Lemma 2, µk(mj) > 0, i.e. vk sends mj. After sending mj, vk will certainly accept

the renegotiation demand, so q̄(vk,mj, r) = 1. However, since type vi−1 ≥ vk and vi−1

has expected quantity strictly below 1, this either violates monotonicity (Lemma 1)

or else violates Lemma 4.

Therefore, S must make some demand above vi−1 (and, hence, above vi) with

strictly positive probability after mj. Let vk′ be the lowest such demand, and let vl

be the highest type strictly below vi which sends mj. Then, after mj, there are no

renegotiation demands between vl and vk′ , so, if vk′ sends mj and accepts renegotiation

demands only if strictly below vk′ (an optimal strategy for him), his expected quantity

is the same as vl would get, i.e. q̄(vk′−1, mj, r) = q̄(vl, mj, r). But vl ≤ vi−1 < vi < vk′

and q̄(vi−1, µ, r) < q̄(vi, µ, r), so monotonicity is violated. Thus, we have

Lemma 5 Suppose q̄(vi, µ, r) > q̄(vi−1, µ, r). Then, for all j < i and all mj such

that µj(mj) > 0, prob[r(mj) = vi] > 0 and µi(mj) > 0.

Lemma 5 implies that there must be some bunching of types; that is, some types

must, taking renegotiation into account, trade the same amount as other types. This

is immediate in the case in which the seller uses a pure strategy - in fact, in that

case, the types must be grouped into at most two intervals. Suppose that, for some

equilibrium (µ, r,G) in which r is pure, the function q̄(v, µ, r) has a jump at vi > v

and another jump at vj > vi. Then, after any message m sent by v, Lemma 5 implies

that prob[r(m) = vi] > 0 and prob[r(m) = vj] > 0, which contradicts the fact that r
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is pure. Therefore, the quantity schedule must be a step function with at most two

values: quantity is equal to q̂ ≤ 1 up to some critical type, and equal to 1 for all

higher types.

Theorem 1 In any equilibrium (µ, r,G) of any mechanism (M, q, t) for the finite

type set Vn with prior Fn, if r is a pure strategy then, for some q̂ ≤ 1 and vk ≤ vn∗,

q̄(v, µ, r) takes the form q̄(vi, µ, r) = q̂ for vi < vk; q̄(vi, µ, r) = 1 for vi ≥ vk.

Our aim is to characterize the implementable schedules in the case in which S may

use a mixed strategy. It turns out that in this case too, bunching must take place.

We show below that all types above vn∗ (the highest optimal renegotiation demand

when the belief is Fn) must trade quantity 1. But for lower types too there may be

bunching, depending on the shape of the profit function Rn.

To show this, we take a vi which is a jump point of the quantity schedule, i.e.

q̄(vi, µ, r) > q̄(vi−1, µ, r), and we consider the renegotiation demand decision of S

after message m in the support of the strategy of some arbitrary type vj < vi. By

Lemma 5, it is optimal for S to demand vi rather than vi−k, for any k such that

1 ≤ k ≤ i, and it is also optimal for S to demand vi rather than vi+l, for any l such

that 1 ≤ l ≤ n− i. Fix such a pair (k, l). Then we obtain the following inequalities.

(vi − c)[1−Gm(vi)] ≥ (vi−k − c)[1−Gm(vi−k)],

and

(vi − c)[1−Gm(vi)] ≥ (vi+l − c)[1−Gm(vi+l)].

Rearranging we get

(vi − vi−k)[1−Gm(vi)] ≥ (vi−k − c)[Gm(vi)−Gm(vi−k)] (1)

and

(vi − c)[Gm(vi+l)−Gm(vi)] ≥ (vi+l − vi)[1−Gm(vi+l)] (2)

Using (1) we can write
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1−Gm(vi+l) = 1−Gm(vi)− [Gm(vi+l)−Gm(vi)]

≥
(

vi−k − c

vi − vi−k

)
[Gm(vi)−Gm(vi−k)]− [Gm(vi+l)−Gm(vi)].

Then, replacing 1−Gm(vi+l) in (2), we obtain

(vi − c)[Gm(vi+l)−Gm(vi)] ≥ (vi−k − c)(vi+l − vi)

vi − vi−k

[Gm(vi)−Gm(vi−k)]

−(vi+l − vi)[G
m(vi+l)−Gm(vi)].

This expression simplifies to

Gm(vi+l)−Gm(vi) ≥ (vi−k − c)(vi+l − vi)

(vi+l − c)(vi − vi−k)
[Gm(vi)−Gm(vi−k)] ,

which, together with Bayes’ Rule, implies that

Fn(vi)− Fn(vi−k)

Fn(vi+l)− Fn(vi)
≤ pr(m|vi ≤ v < vi+l)

pr(m|vi−k ≤ v < vi)

(vi+l − c)(vi − vi−k)

(vi−k − c)(vi+l − vi)
. (3)

Denote by Γ(i− k, i− 1) the set of all messages sent with strictly positive probability

by types vj, with i− k ≤ j ≤ i− 1. There must exist at least one message (say m′)

in Γ(i− k, i− 1) such that

pr(m′|vi ≤ v < vi+l) ≤ pr(m′|vi−k ≤ v < vi).

Otherwise, by summing over all messages in Γ(i− k, i− 1) we obtain

∑

m∈Γ(i−k,i−1)

pr(m|vi ≤ v < vi+l) >
∑

m∈Γ(i−k,i−1)

pr(m|vi−k ≤ v < vi) = 1,

a contradiction. Hence, since (3) is true for any message in Γ(i−k, i−1), and therefore

for m′, we have

Lemma 6 Take any vi which is a jump point of q̄(v, µ, r) for some equilibrium
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(µ, r) of some mechanism. Then, for all k, l such that 1 ≤ k ≤ i, 1 ≤ l ≤ n− i,

Fn(vi+l)− Fn(vi)

vi+l − vi

≥ (vi−k − c)

(vi+l − c)

Fn(vi)− Fn(vi−k)

(vi − vi−k)
(4)

or, equivalently,
Rn(vi+l)−Rn(vi)

vi+l − vi

≤ Rn(vi)−Rn(vi−k)

vi − vi−k

. (5)

Furthermore, if vi is an optimal renegotiation demand after each message sent with

strictly positive probability by an arbitrary type vj < vi, then (4) and (5) hold.

Lemma 6 places restrictions on the set of points at which the quantity schedule

can jump. Note that if (5) is satisfied for vi, then the following inequality must be

satisfied for all k, l such that 1 ≤ k ≤ i, 1 ≤ l ≤ n− i

Rn(vi) ≥ vi+l − vi

vi+l − vi−k

Rn(vi−k) +
vi − vi−k

vi+l − vi−k

Rn(vi+l), (6)

i.e., for any pair (v′, v′′) of points in Vn such that v′ < vi < v′′, the chord between

(v′, Rn(v′)) and (v′′, Rn(v′′)) must lie below the graph of Rn at vi. It follows that we

can characterize the points at which the schedule cannot jump in terms of the least

concave majorant of Rn, i.e., the least concave function that lies above Rn. Define

C(Rn) as the set of all concave functions f : Vn → < such that f ≥ Rn. Define R̃n

by R̃n(vi) := inf{f(vi) | f ∈ C(Rn)}. Clearly R̃n ≥ Rn and it is straightforward to

show that R̃n is concave, hence the least concave majorant of Rn. The set of values

of vi such that R̃n(vi) > Rn(vi), if non-empty, consists of a collection of intervals

{va(k), va(k)+1, ..., vb(k)}k′
k=1. The next Lemma shows that the quantity schedule must

be flat on any such interval.

Lemma 7 (i) If R̃n(vi) > Rn(vi), then vi cannot be a jump point of the quantity

schedule q̄(v, µ, r); that is, q̄(v, µ, r) is constant on each interval {va(k)−1, va(k), ..., vb(k)}.
(ii) q̄(v, µ, r) = 1 for v ≥ vn∗.

The idea of the proof that equilibrium quantity equals 1 for types vn∗ and higher
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is the following. Suppose that in some equilibrium (µ, r) of some mechanism the

quantity jumps to 1 at vk > vn∗ . Then, after any message sent by a type lower than

vk, one optimal demand is vk, by Lemma 5. Suppose we change the strategies of

types vk and above so that they are all the same (essentially, the ‘average’ strategy of

these types under µ). Then, conditional on v ≥ vk, S’s belief under the new profile µ̃

is a truncation of Fn, which implies that vk is the optimal demand (the least concave

majorant R̃n must be decreasing above vn∗ , and if vk is a jump point, it must be that

Rn = R̃n at vk, so Rn(vk) ≥ Rn(r) for all r ≥ vk). vk remains optimal, under µ̃, after

messages sent by types below vk, since the change does not affect the probability of

acceptance of any demand r ≤ vk, while demands r ≥ vk will only be accepted by

types vk and higher and, conditional on these types, vk is optimal, as just argued.

Therefore vk is optimal regardless of the message sent, hence optimal ex ante. But

this contradicts the assumption that vn∗ is the maximal ex ante optimal demand, so

the quantity schedule must reach 1 at vn∗ or lower.

Lemmas 1 and 7 show that the quantity schedule q must be weakly increasing

and also flat on certain intervals. Can any function satisfying these conditions be

implemented? We show that it can.

Let In ⊆ {1, 2, .., n∗ − 1} be the set of indices of types vi between v1 and vn∗−1

inclusive for which R̃n(vi) > Rn(vi), i.e., the indices {a(k), .., b(k)}k′
k=1. Take any direct

revelation mechanism. Without loss of generality, suppose that the buyer announces

the index of his type rather than the type itself, i.e. we take the message set to be

{0, 1, 2, ..., n} rather than Vn. We show first that, for such a mechanism, it is possible

for the agent to randomize over announcements in such a way that, after receiving

message i < n∗, the seller is indifferent between all renegotiation demands between i

and n∗ inclusive, excluding those in In.

Lemma 8 Given the finite type set Vn with prior Fn, if the message set is

{0, 1, 2, ..., n}, there exists a strategy profile µ and associated belief system such that,

after any message i ≤ n∗, the optimal demands for S are {vj | n∗ ≥ j ≥ i, j /∈ In}.

The details of the proof are in the Appendix, but we explain the main ideas here.
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For simplicity, take c = 0. Suppose first that In is empty, so (6) is satisfied for all

vi < vn∗ . We define strategies in such a way that each type vi ≤ vn∗ randomizes

over all messages i and lower, and types above vn∗ have the same strategy as vn∗ .

This means that, on receiving message i, S has a belief Gi which is distributed on

{vi, vi+1, ..., vn}. We proceed in a recursive fashion. Let µ0(0) = 1, i.e. the lowest

type tells the truth. In order for S to be indifferent, after getting message 0, between

demanding v0 and demanding vj such that v0 < vj ≤ vn∗ , we need

G0(vj) =
vj − v0

vj

for j = 1, 2, .., n∗, which pins down g0(vj) for all vj ≤ vn∗−1. Accordingly, using Bayes’

Rule:
gi(vj)

gi(vk)
=

fn(vj)µj(i)

fn(vk)µk(i)
,

we define µj(0) for 0 < j < n∗ in such a way that the relative conditional probabilities,

g0(vj)/g
0(v0), of these types are as required, and we define µn∗(0) (which is also equal

to µj(0) for all j higher than n∗) so as to ensure that the total conditional probabilities

of types n∗ and higher are as required. This defines µi(0) for all i.

Next we define µ1 by setting µ1(1) = 1 − µ1(0), so that type 1 randomizes over

two messages - his true type and type 0. It turns out that the fact that v1 satisfies (4)

for k = l = 1 ensures that µ1(0) ≤ µ0(0) = 1, so µ1 is a well-defined mixed strategy.

Define µi(1) for i > 1 in an analogous fashion to the above, so that after message

i, S is indifferent between all demands vi, vi+1, ..., vn∗ . The fact that v2 satisfies (4)

for k = l = 1 then implies that µ2(0) ≤ µ1(0) and µ2(1) ≤ µ1(1), so we can define

µ2(2) = 1 − µ2(0) − µ2(1). Proceeding in this way, we can define µi for all i < n∗.

Finally, let µn∗(n
∗) = 1 −∑

i<n∗ µn∗(i). The fact that µn∗(n
∗) ≥ 0 follows, as shown

in the Appendix, from the fact that vn∗ is an ex ante optimal demand for S.

In the case in which In is non-empty, we first consider the associated model in

which every type vi with i ∈ In is dropped and its probability re-assigned to the

nearest type vj below such that j /∈ In. This model satisfies (4) for all vi < vn∗ ,

so the argument just given implies that there exists a strategy profile µ̂ for this
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model under which, after message i < n∗, S is indifferent between all demands vj for

j ∈ {i, i+1, .., n∗}/In. Define µ for the original model so that types in Vn/{vj | j ∈ In}
play according to µ̂ and, for each i ∈ In, type vi plays strategy µ̂τ(i), where vτ(i) is

the nearest type below vi with τ(i) /∈ In, i.e. vτ(i) := maxj /∈In{vj | vj < vi}. Then it

remains true that, after message i < n∗, S is indifferent between all demands vj for

j ∈ {i, i+1, .., n∗}/In since the probabilities of acceptance of these demands have not

altered. Moreover, Lemma 6 implies that demand vj for j ∈ In cannot be optimal.

Implementable Quantity Schedules

Suppose that we want to implement a quantity schedule Q which satisfies the

conditions given in Lemma 7. In particular Q is non-decreasing and takes the value

1 for types vn∗ and higher. We show in Theorem 2 that there is a simple mechanism

which implements Q. Note first that Q has the properties of a cumulative distribution

function of a random variable taking values in Vn. Denote by γQ the associated

measure on Vn, that is γQ(vi) = Q(vi) − Q(vi−1), and let γQ|A denote the measure

conditional on A ⊆ Vn. In the mechanism the buyer announces his type. The

contracted quantity after message vi is simply Q(vi), and the contracted per-unit

price is E(v|v ≤ vi), where the expectation is taken with respect to the measure γQ.

In the equilibrium the distribution of the seller’s renegotiation demands is γQ|{v>vi}.

Theorem 2 Take a finite distribution Fn on Vn. A function Q : Vn → [0, 1] is an

implementable quantity schedule for Fn if and only if it is non-decreasing, constant

on each interval {va(k)−1, va(k), ..., vb(k)} and equal to 1 for vi ≥ vn∗.

Proof The ‘only if’ part has been established by Lemma 1 and Lemma 7. Suppose

first that In is empty, so that (4) is satisfied by all vi with i < n∗. Take a function

Q with the stated properties. We define a mechanism (Mn, q, t) which implements

it. Let Mn = {0, 1, , 2, .., n} (this is equivalent to a revelation mechanism). For all
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i ∈ Mn, let q(i) = Q(vi) and let

t(i) =
i∑

j=0

γQ(vj)vj,

where γQ(v0) = Q(v0). This defines the mechanism.

Let the buyer’s strategy µ and associated beliefs Gi be as given by Lemma 8.

Define the seller’s strategy r as follows. For any i ∈ Mn such that i < n∗,

prob[r(i) ≤ vi] = prob[r(i) > vn∗ ] = 0

and, for i < j ≤ n∗,

prob[r(i) = vj] =
γQ(vj)

1−Q(vi)
.

For i ≥ n∗, r(i) can be arbitrary since renegotiation is unnecessary after such mes-

sages.

To check that the strategy profile (µ, r) gives expected quantity Q(vj) for each

type vj, note that if type vj ≤ vn sends message i ≤ j her expected volume of trade

is

q(i) + [1− q(i)]prob[r(i) ≤ vj]

= Q(vi) + [1−Q(vi)]
γQ(vi+1) + γQ(vi+2) + ... + γQ(vj)

(1−Q(vi))

= Q(vj).

By Lemma 8, r is optimal given µ, since S, after message i, is indifferent between

all demands in {vi, vi+1, .., vn∗}. It remains to show that µj is optimal for each type

vj given r. Suppose that vj < vn∗ sends message i > j. Then her expected payoff is

vjQ(vi)− t(i). If she sends message j her payoff is vjQ(vj)− t(j). The latter payoff

is higher if t(i)− t(j) ≥ vj(Q(vi)−Q(vj)), i.e., if

i∑

l=j+1

γQ(vl)vl ≥
i∑

l=j+1

γQ(vl)vj,

which is true since vl ≥ vj for all l ≥ j. Therefore sending a message higher than one’s
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type cannot be a profitable deviation. To show that, for any j ∈ Mn with j ≤ n∗, type

vj is indifferent between all messages in {0, 1, 2, ..., j}, note that all these messages

give the same expected volume of trade for vj. Therefore we only need to check that

the expected payments are the same. The expected payment given message i is

t(i) + [1−Q(vi)](prob[r(i) = vi+1]vi+1 + ... + prob[r(i) = vj]vj)

= t(i) + γQ(vi+1)vi+1 + ... + γQ(vj)vj = t(j)

This shows that vj is indifferent between j and all lower messages. Finally, any type

vj > vn∗ gets the same payment and trade volume from any message m as type vn∗

does (since r(m) ≤ vn∗ for all m ∈ Mn), so these types are also indifferent between

all messages. Hence µ is an optimal strategy.

Suppose now that In is non-empty. Take the model in which types vi with i ∈ In

have been dropped and their probability assigned to vτ(i) = maxj /∈In{vj | vj < vi}.
The argument above shows that there is a mechanism (Mn = {0, 1, .., n∗}/In, q, t) and

strategy profile (µ, r) which implement Q on the type space Vn/{vj | j ∈ In}. For the

original model (Vn, Fn), take the same mechanism, the same r, and extend µ so that

for any i ∈ In, µi = µi. Then, as argued in the proof of Lemma 8, r remains optimal.

By the argument above, types vi with i /∈ In are playing optimally and get expected

quantity Q(vi). Furthermore, for any type vi with i ∈ In expected quantity is the

same for all messages m ≤ τ(i), as is expected payment. Therefore µτ(i) is optimal

for vi and vi gets expected quantity Q(vτ(i)) = Q(vi). This completes the proof of the

Theorem.

4 Analysis of the Continuum Model

Now we are in a position to examine the continuum case (V, F ), where V = [v, v]

and F is a distribution on V with continuously differentiable density function f .

Define by R̃ the least concave majorant of R. Set I = {v ∈ V | R(v) < R̃(v)}. I,

if non-empty, is then a union of disjoint open intervals {(ak, bk)}k. We assume that
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there is a finite number of these intervals. Let p∗ be the supremum of the set of

maximizers of R. Define a sequence of finite type spaces Vn = {vn
0 , vn

1 , ..., p∗, ..., vn
2n}

for n = 1, 2, ... by setting vn
i = v + i

2n (v − v) for all i = 0, 1, ..., 2n. Then, Vn ⊂ Vn+1

for all n. Let the distance between two functions f and g on Vn be given by the

supremum norm, i.e. |f − g| = supv∈Vn
|f(v)− g(v)|.

Definition 2 Given (V, F ), a quantity schedule Q on V is defined to be finitely

implementable if there exist, for each n, a distribution Fn on Vn , a mechanism

(Mn, qn, tn), with Mn finite, and a quantity schedule Qn : Vn → [0, 1] such that

(i) Fn converges to F : limn |Fn − F | = 0,

(ii) Qn is implementable by (Mn, qn, tn) given Fn,

(iii) Qn converges to Q: limn |Qn −Q| = 0.

The following theorem is the analogue of Theorem 2 for the continuum model:

Theorem 3 Take a distribution F on V . A right-continuous function Q : V →
[0, 1] is a finitely implementable quantity schedule for F if and only if it is non-

decreasing, constant on each interval (ak, bk) and equal to 1 for v ≥ p∗

Proof The “if” part of the statement follows from Theorem 2 by setting, for

each n, Fn(vn
i ) = F (vn

i ) and Qn(vn
i ) = Q(vn

i ) for vn
i ∈ Vn. First, note that for each

n, Fn is a well defined distribution on Vn. Also, for all v ∈ Vn, Rn(v) = R(v).

Parts (i) and (iii) of the definition are trivially satisfied. By Theorem 2, Qn is

implementable if it is non-decreasing, constant on each interval {vn
a(k), v

n
a(k)+1, ..., v

n
b(k)}

in In = {v ∈ Vn | Rn(v) < R̃n(v)} and equal to 1 above v∗n. By definition, Qn is non-

decreasing. Since, by construction, p∗ ∈ Vn, v∗n = p∗ and so Qn is equal to 1 above

v∗n. Take v ∈ {vn
a(k), v

n
a(k)+1, ..., v

n
b(k)}. We show below that R̃(v) > R(v). V can be

partitioned into a finite number of intervals, namely {(ak, bk)}k, on each of which

R̃ > R, and a finite number of complementary intervals, on each of which R̃ = R.
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Take n sufficiently large that Vn contains elements from each of these intervals. Then

since R̃ > R on the interval {vn
a(k), v

n
a(k)+1, ..., v

n
b(k)}, {vn

a(k), v
n
a(k)+1, ..., v

n
b(k)} ⊆ (ak, bk)

for some k. Therefore Q, and hence Qn, is constant on this interval. To show that

R̃(v) > R(v), note that, since v ∈ {vn
a(k), v

n
a(k)+1, ..., v

n
b(k)}, R̃n(v) > Rn(v) = R(v).

Also, there exist v′, v′′ ∈ Vn and λ ∈ (0, 1) such that v = λv′ + (1− λ)v′′ and

R̃n(v) = λRn(v′) + (1− λ)Rn(v′′).

Hence, if R̃n(v) > R̃(v),

R̃(v) < λRn(v′) + (1− λ)Rn(v′′)

= λR(v′) + (1− λ)R(v′′)

≤ λR̃(v′) + (1− λ)R̃(v′′),

which contradicts concavity of R̃. Therefore R̃(v) ≥ R̃n(v) > Rn(v) = R(v) and so

R̃(v) > R(v).

For the “only if” part assume that Q is finitely implementable, that is, for each n,

there exist a distribution Fn on Vn, a mechanism (Mn, qn, tn), and a quantity schedule

Qn on Vn such that conditions (i), (ii) and (iii) of Definition 2 hold.

(a) Q non-decreasing. Assume that there exist a, b ∈ V with a < b and Q(a) >

Q(b). Since Q is a right-continuous function we can assume, without loss of generality,

that a, b ∈ ⋃
n Vn. Then, from Theorem 2, ∃n̄, such that a, b ∈ Vn and Qn(a) ≤ Qn(b)

for all n ≥ n̄. Then (iii) is in contradiction with Q(a) > Q(b), so Q must be non-

decreasing.

(b) Q constant on each interval (ak, bk) ∈ I. Suppose not. Then there exist

v′, v′′ ∈ (ak, bk) such that v′′ > v′ and Q(v′′) > Q(v′). For v ∈ (ak, bk), let L(v) =

λR(ak) + (1 − λ)R(bk), where λ ∈ (0, 1) is defined by v = λak + (1 − λ)bk. (So

L(v) = R̃(v)). Then there exists ε > 0 such that R(v) < L(v)− ε for all v ∈ [v′, v′′].

This follows because R is upper semicontinuous, hence achieves a maximum on [v′, v′′],

but R(v) < R̃(v) = L(v) on [v′, v′′].

20



Since R is left-continuous and upper semicontinuous and Q is right-continuous,

we can assume without loss of generality that {ak, bk, v
′, v′′} ⊂ ⋃

n Vn (if necessary,

take points just below ak and bk respectively and just above v′ and v′′ respectively -

for simplicity we keep the same notation). Therefore there exists n̄ such that for all

n ≥ n̄, Qn(v′′) > Qn(v′) and Rn(v) < Ln(v) for all v ∈ [v′, v′′]
⋂

Vn, where Ln(v) =

λRn(ak) + (1 − λ)Rn(bk). It follows that for all v ∈ [v′, v′′]
⋂

Vn, R̃n(v) > Rn(v), so

that there are no jumps of Qn in this set. Hence Qn(v′′) = Qn(v′), which gives a

contradiction. Therefore Q is constant on (ak, bk).

(c) Q equals 1 for v ≥ p∗. Suppose there exists a > p∗ such that Q(a) < 1. W.l.o.g

(by right-continuity) take a ∈ ⋃
n Vn. Then there exists n̄ such that Qn(a) < 1 for

all n ≥ n̄, so v∗n ≥ a for all n ≥ n̄. Hence maxv̄≥vn≥aRn(vn) ≥ Rn(p∗) for all n ≥ n̄.

Taking limits as n → ∞, supv̄≥v≥aR(v) ≥ R(p∗). R is upper semicontinuous, so

achieves a maximum in [a, v̄], which implies that R(v) ≥ R(p∗) for some v ≥ a > p∗,

which contradicts the definition of p∗. This shows that Q equals 1 for v ≥ p∗ and

completes the proof of the Theorem.

5 Conclusion

In this paper we analyzed the impact of ex-post renegotiation on the set of im-

plementable outcomes in a bilateral trade problem. With full commitment, any in-

creasing trading rule can be implemented via a direct revelation mechanism that is

designed to elicit the truth from privately informed parties. Without commitment

the set of implementable trading rules is restricted as a direct revelation mechanism

cannot fully extract all information from parties. Earlier papers on mechanism de-

sign with renegotiation have shown that informed parties must use mixed strategies

at the revelation stage. In this paper we have shown that parties can gain from de-

signing the mechanism in such a way that the uninformed party also uses a mixed

strategy. Namely, if the uniformed party is restricted to the use of pure strategies,

only very simple trading rules prescribing a low level of trade for low types and the

efficient quantity for high types can be implemented. In contrast, if the uninformed
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party is allowed to use a mixed strategy more general trading rules can be achieved.

Nevertheless, some bunching of types must always occur.

6 Appendix

Proof of Lemma 1. Let t̄(v, m, r) be the expected amount paid, including

renegotiation price, if S uses strategy r, message m is sent, and renegotiation demands

less than or equal to v are accepted. That is, t̄(v, m, r) is the expectation of t(m) +

[1 − q(m)]r(m)I(r(m), v). Let t̄(v, µ, r) be the expected amount paid by type v, i.e.

t̄(v, µ, r) = Et̄(v, m, r).

(i) If vi sends mi and accepts renegotiation demands less than or equal to vi (which

is an optimal strategy for vi), vi gets

viq̄(vi,mi, r)− t̄(vi,mi, r).

If vi sends mj and accepts renegotiation demands less than or equal to vj, vi gets

viq̄(vj,mj, r)− t̄(vj, mj, r).

So

viq̄(vi,mi, r)− t̄(vi,mi, r) ≥ viq̄(vj,mj, r)− t̄(vj,mj, r).

Similarly

vj q̄(vj, mj, r)− t̄(vj,mj, r) ≥ vj q̄(vi, mi, r)− t̄(vi,mi, r).

Hence q̄(vi,mi, r) ≤ q̄(vj,mj, r). This proves (a).

Similarly, since it is also optimal for vj to send mj and accept renegotiation de-

mands less than or equal to vj−1, (b) follows.

(ii) follows from (a) since q̄(vj, µ, r) = Eq̄(vj,m, r).

Proof of Lemma 7. We first show that R̃n is concave. Suppose not. Then, for
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some vk < vi < vl,

R̃n(vi) <
vl − vi

vl − vk

R̃n(vk) +
vi − vk

vl − vk

R̃n(vl).

Hence, by the definition of R̃n, for some concave f ≥ Rn,

f(vi) <
vl − vi

vl − vk

R̃n(vk) +
vi − vk

vl − vk

R̃n(vl).

But R̃n(vk) ≤ f(vk) and R̃n(vl) ≤ f(vl), so

f(vi) <
vl − vi

vl − vk

f(vk) +
vi − vk

vl − vk

f(vl),

which contradicts the concavity of f . Therefore R̃n is concave.

Set v′ = max{v < vi | R̃n(v) = Rn(v)} and v′′ = min{v > vi | R̃n(v) = Rn(v)}.
Then

R̃n(vi) =
v′′ − vi

v′′ − v′
R̃n(v′) +

vi − v′

v′′ − v′
R̃n(v′′). (7)

This follows because, firstly, if R̃n(vi) were strictly smaller than the right-hand side

of (7), this would contradict the concavity of R̃n. If, on the other hand, R̃n(vi) were

strictly larger, then there would exist vj such that v′′ < vj < v′ and such that

R̃n(vj)− R̃n(vj−1)

vj − vj−1

>
R̃n(vj+1)− R̃n(vj)

vj+1 − vj

.

Let R̃ε
n(v) = R̃n(v) if v 6= vj and let R̃ε

n(vj) = R̃n(vj)− ε. Since R̃n(vj) > Rn(vj), for

small enough ε > 0, R̃ε ≥ R̃n and R̃ε is concave, contradicting the assumption that

R̃n is the least concave majorant of Rn.

Since R̃n(vi) > Rn(vi), R̃n(v′) = Rn(v′) and R̃n(v′′) = Rn(v′′), (7) implies that

Rn(vi) <
v′′ − vi

v′′ − v′
Rn(v′) +

vi − v′

v′′ − v′
Rn(v′′).

Hence (6) is violated and vi cannot be a jump point. This proves (i).

It remains to show that q̄(v, µ, r) = 1 for v ≥ vn∗ . Let (Mn, 0, 0) be the mechanism
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with message set Mn and q(m) = t(m) = 0 for all m ∈ Mn.

Claim 1 Suppose that, in some equilibrium (µ, r) of some mechanism (Mn, q, t),

the function q̄(v, µ, r) jumps to 1 at vk > vn∗ , i.e., 1 = q̄(vk, µ, r) > q̄(vk−1, µ, r). In

that case there is a message set M̃n and strategy profile (µ̃, r̃) such that (a) r̃ is a

best response to µ̃ in (M̃n, 0, 0); and (b) prob[r̃(m) = vk] > 0 for all m ∈ M̃n.

Proof of Claim 1 First, note that r is optimal in (Mn, 0, 0) given µ, since the

seller’s updated beliefs would be the same as in (Mn, q, t), and the optimal choice of

renegotiation demand is not affected by the quantity at stake, or price already paid.

Second, denote by Γ(i) the set of all messages in Mn sent with strictly positive

probability by type vi given µ (recall that Γ(j, l) is the set of all messages sent with

strictly positive probability by types between vj and vl). Then, since q̄(v, µ, r) jumps

to 1 at vk, for all i < k, q̄(vi, µ, r) < 1. By Lemma 4, q̄(vi, µ, r) = q̄(vi,m, r)

for all m ∈ Γ(i), which implies q(m) < 1 for all m ∈ Γ(0, k − 1). By Lemma 5,

Γ(0, k − 1) ⊆ Γ(k) and so for all m ∈ Γ(0, k − 1) we must have r(m) ≤ vk.

Let M̃n = Γ(0, k− 1)
⋃

m̂, where m̂ is a message not in Mn. Let r̃(m) = r(m) for

all m ∈ Γ(0, k − 1) and let r̃(m̂) = vk with probability 1.

For any i < k, let µ̃i = µi. For any i ≥ k, define µ̃i as follows. For any message

m ∈ Γ(0, k − 1), let

µ̃i(m) =

∑
j≥k µj(m)fn(vj)∑

j≥k fn(vj)
,

and let

µ̃i(m̂) = 1− ∑

m∈Γ(0,k−1)

µ̃i(m).

This is a well-defined mixed strategy if
∑

m∈Γ(0,k−1) µ̃i(m) ≤ 1, i.e. if

∑

j≥k

∑

m∈Γ(0,k−1)

µj(m)fn(vj) ≤
∑

j≥k

fn(vj),

which is true since
∑

m∈Γ(0,k−1) µj(m) ≤ 1.
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We need to show that r̃ is optimal for the seller given µ̃. Let

G̃m(vi) = prob[v < vi|µ̃,m]

be the seller’s belief given m if the buyer’s strategy is µ̃. Thus,

Gm(vi) =

∑
j<i µj(m)fn(vj)∑

j<i µj(m)fn(vj) +
∑

j≥i µj(m)fn(vj)

and G̃m(vi) is given by the same expression, with µ̃ replacing µ.

Among possible demands r ≥ vk, the optimal demands must solve

max
r

(r − c)[1− G̃m(r|v ≥ vk)],

where G̃m(.|v ≥ vk) is the buyer’s belief about v, given µ̃ and m, conditional on

v ≥ vk (since only such types would accept any such demand).

Moreover, for i ≥ k, j ≥ k, µ̃i = µ̃j, so, conditional on v ≥ vk, the seller’s belief

over the buyer’s types is given by

G̃m(vi|v ≥ k) =

∑
k≤j<i µ̃j(m)fn(vj)∑

k≤j<i µ̃j(m)fn(vj) +
∑

j≥i µ̃j(m)fn(vj)

=
Fn(vi)− Fn(vk)

1− Fn(vk)
.

Hence, among r ≥ vk, the seller maximizes

(r − c)[1− Fn(r)]

1− Fn(vk)
:= Rn(r|vk).

We next show that Rn(vk) ≥ Rn(r) (and so Rn(vk|vk) ≥ Rn(r|vk)) for all r ≥ vk.

To see this, we show that R̃n(vk) ≥ R̃n(r) for all r ≥ vk. The claim then follows from

R̃n(vk) = Rn(vk) (because vk is a jump point) and R̃n(r) ≥ Rn(r) for all r. Assume
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R̃n(vk) < R̃n(vj) for some vj > vk. This implies that

R̃n(vj)− R̃n(vk)

vj − vk

>
R̃n(vk)− R̃n(vn∗)

vk − vn∗
,

which is equivalent to

R̃n(vk) <
vk − vn∗

vj − vn∗
R̃n(vj) +

vj − vk

vj − vn∗
R̃n(vn∗).

This contradicts the concavity of R̃n. Hence, given µ̃, vk is the optimal renegotiation

demand for the seller among all r ≥ vk.

After m̂, the seller knows that v ≥ vk, so, by the preceding argument, vk is optimal,

hence r̃(m̂) is an optimal response to µ̃ after this message.

Given i ≤ k, G̃m(vi) = Gm(vi) since µ̃j(m) = µj(m) for all j < k, and since
∑

j≥k µj(m)fn(vj) =
∑

j≥k µ̃j(m)fn(vj). After message m ∈ Γ(0, k − 1), the seller

chooses the renegotiation demand r to maximize (r − c)[1 − Gm(r)], given buyer

strategy µ, or to maximize (r − c)[1 − G̃m(r)] given µ̃. Therefore, among demands

r ≤ vk, the optimal set is the same in the two cases.

We argued above that r(m) ≤ vk for all m ∈ Γ(0, k−1), and this shows that r̃(m)

is an optimal response to µ̃ for all those m, hence for all messages. This proves (a).

For m ∈ Γ(0, k − 1), prob[r(m) = vk] > 0 by Lemma 5, since q̄(v, µ, r) jumps at

vk. Hence prob[r̃(m) = vk] > 0. Prob[r̃(m̂) = vk] > 0 by definition. This proves (b)

and so proves the Claim.

Therefore, in (M̃n, 0, 0), given µ̃, the seller finds it optimal to demand vk after

every possible message. It follows that in this setting a policy of demanding vk after

receiving any message is weakly better for the seller than a policy of demanding r

after any message, for all r. The seller’s expected payoff from such a policy is

∑

m∈M̃n

∑

i

fn(vi)µ̃i(m)(r − c)[1− G̃m(r)].
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Since

1− G̃m(r) =

∑
vi≥r µ̃i(m)fn(vi)∑

i µ̃i(m)fn(vi)
,

the seller’s expected payoff is

∑

m∈M̃n

(r − c)
∑

vi≥r

µ̃i(m)fn(vi) =
∑

vi≥r

(r − c)
∑

m∈M̃n

µ̃i(m)fn(vi) = (r − c)[1− Fn(r)].

Therefore Rn(vk) = (vk − c)[1 − F (vk)] ≥ (r − c)[1 − Fn(r)] = Rn(r) for all r, in

particular for r = vn∗ , a contradiction.

Proof of Lemma 8. First, consider a prior belief Fn such that In is empty.

Claim 2. Suppose that S’s belief system G satisfies, for each message i ≤ n∗,

(a)

Gi(vj) = 0 if j ≤ i

and

Gi(vj) =
(vj − vi)

(vj − c)
if i < j ≤ n∗

(b) conditional on vi ≥ vn∗ , Gi(v) is a truncation of Fn.

Then, after any message i ∈ {0, 1, ..., n∗} the set of optimal demands for S is

{vi, vi+1, .., vn∗}.

Proof of Claim 2. Suppose that message i has been sent. If S makes demand vj

such that vi < vj ≤ vn∗ she gets (vj−c)[1−Gi(vj)] = vi−c, so S is indifferent between

all offers from vi to vn∗ inclusive. Demanding vj ≤ vi gives (vj−c)[1−Gi(vj)] = vj−c,

and so any demand strictly below vi is suboptimal. Since S’s belief, conditional on

types vn∗ and above, is a truncation of Fn, the argument in the proof of Lemma 7

shows that vn∗ is uniquely optimal among offers of vn∗ and above. This proves the

claim.

Claim 3. There exists a strategy µ and corresponding belief system G such that

27



the hypotheses of Claim 2 hold.

Proof of Claim 3. We define strategies µi so that for each type vi ≤ vn∗ , µi has

support {0, 1, 2, ..., i}. This implies that message i is sent only by types vi and above,

so Gi(vj) = 0 for j ≤ i. In addition, we set µi = µn∗ for all i > n∗, so Gi(v) is a

truncation of Fn conditional on vi ≥ vn∗ . Thirdly, we define µ0, µ1, .., µn∗ recursively

so that the updated beliefs gi(vj) satisfy

gi(vj) =
(vi − c)(vj+1 − vj)

(vj − c)(vj+1 − c)
(8)

for all i, j such that 0 ≤ i ≤ n∗ − 1, j = i, i + 1, i + 2, ..., n∗ − 1 and message i has

strictly positive probability. Since

Gi(vj+1) = Gi(vj) + gi(vj)

we then have, by induction,

Gi(vj) =
(vj − vi)

(vj − c)
(9)

if i < j ≤ n∗, as required.

For any i ∈ {0, 1, 2, ..., n∗}, let µj(i) = 0 for all j < i. Assume for the moment

that µi(i) has been defined for each i ∈ {0, 1, 2, ..., n∗}. Then, for any i ≤ n∗ − 1 and

any k such that i < k < n∗, we let

µk(i) =
µi(i)fn(vi)(vi − c)(vi+1 − c)(vk+1 − vk)

fn(vk)(vk − c)(vk+1 − c)(vi+1 − vi)
, (10)

and we let

µn∗(i) =
µi(i)fn(vi)(vi − c)(vi+1 − c)

[1− Fn(vn∗)](vn∗ − c)(vi+1 − vi)
. (11)

For j > n∗ and i ≤ n∗, we let µj(i) = µn∗(i).

We need to show that a strategy with these properties, supposing it exists, satisfies

(8). It is enough to show, for any positive-probability message i, (a) that, for j, k
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such that i ≤ j, k < n∗,

gi(vj)

gi(vk)
= [

(vi − c)(vj+1 − vj)

(vj − c)(vj+1 − c)
][

(vk − c)(vk+1 − c)

(vi − c)(vk+1 − vk)
], (12)

and (b) that
gi(vi)

1−Gi(vn∗)
= [

(vi − c)(vi+1 − vi)

(vi − c)(vi+1 − c)
][
(vn∗ − c)

(vi − c)
]. (13)

(a) would imply that the updated relative probabilities of types {vi, vi+1, .., vn∗−1} are

consistent with (8), and (b) would show that the total updated probability of these

types is as given by (8) and (9).

By Bayes’ rule, for all i ∈ {0, 1, .., n∗} and k such that gi(vk) 6= 0,

gi(vj)

gi(vk)
=

fn(vj)µj(i)

fn(vk)µk(i)
. (14)

From (10),
µj(i)

µk(i)
=

fn(vk)(vj+1 − vj)(vk − c)(vk+1 − c)

fn(vj)(vj − c)(vj+1 − c)(vk+1 − vk)
,

for j, k such that i ≤ j, k < n∗, so that (12) is satisfied.

gi(vi)

1−Gi(vn∗)
=

fn(vi)µi(i)∑
j≥n∗ fn(vj)µj(i)

=
fn(vi)µi(i)

µn∗(i)[1− Fn(vn∗)]
,

so (11) implies (13).

It remains to show that it is possible to define µi(i) for each i ∈ {0, 1, .., n∗} in

such a way that (10) and (11) give a well-defined mixed strategy profile. We do this

by recursion. Let µ0(0) = 1. Then, by (10) and (11), µj(0) is defined for all j.

Let µ1(1) = 1 − µ1(0). From (10) and the fact that (4) holds for i = l = k = 1,

µ1(0) ≤ µ0(0). Hence µ1 is a well-defined mixed strategy over the messages {0, 1}.
Now suppose that, for all j = 0, 1, 2, ..., i where i < n∗ − 1, µj has been defined.

Then µi+1(h) has been defined for all h ≤ i. Let µi+1(i + 1) = 1 − ∑
h≤i µi+1(h). If
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µi(h) = 0, then, by (10), µj(h) = 0 for all j > i. From (10), if, for h ≤ i, µi(h) 6= 0,

µi+1(h)

µi(h)
=

fn(vi)(vi − c)(vi+2 − vi+1)

fn(vi+1)(vi+2 − c)(vi+1 − vi)
,

so, from (4) for k = l = 1, µi+1(h) ≤ µi(h) for all h ≤ i. Hence µi+1(i + 1) ≥ 0 and

so µi+1 is a well-defined mixed strategy. Therefore, by induction, µj is defined for all

j ≤ n∗−1, as is µn∗(j) for all j ≤ n∗−1. Now let µn∗(n
∗) = 1−∑

j≤n∗−1 µn∗(j). This

is well-defined as long as µn∗(j) ≤ µn∗−1(j) for all j ≤ n∗ − 1. But, if µn∗−1(j) 6= 0,

µn∗(j)

µn∗−1(j)
=

fn(vn∗−1)(vn∗−1 − c)

[1− Fn(vn∗)](vn∗ − vn∗−1)
.

By assumption, Rn(r) ≡ (r − c)[1− Fn(r)] is maximized at vn∗ , so

(vn∗ − c)[
∑

k≥n∗
fn(vk)] > (vn∗−1 − c)[

∑

k≥n∗−1

fn(vk)]

i.e.,

fn(vn∗−1)(vn∗−1 − c) < [1− Fn(vn∗)](vn∗ − vn∗−1).

This shows that µ is a well-defined strategy.

If µi−1(h) = µi(h) for all h ≤ i − 1 (this corresponds to a type vi for which (4)

holds with equality for k = l = 1), µi(i) = 0. Therefore, by (10), message i has

zero probability under µ and we can simply define Gi to have the properties given in

Claim 2. This completes the proof of Claim 3.

Now suppose that In is not empty. Consider a model (V̂n, F̂n) in which each type

with an index in In is removed and its probability transferred to the highest type

below it with an index outside In. That is, let V̂n = Vn\{vj|j ∈ In}, let τ : In →
{0, 1, .., n∗ − 1}\In be defined by τ(i) = max{j|vj < vi, j /∈ In}, and define the

probability distribution f̂n (and hence the cumulative F̂n) as follows. For k ∈ τ(In),

f̂n(vk) =
∑

j∈τ−1(k)

fn(vj) + fn(vk),
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and for k /∈ τ(In), f̂n(vk) = fn(vk).

Let R̂n(vk) = (vk − c)[1 − F̂n(vk)] for vk ∈ V̂n. Then, for all vk ∈ V̂n, R̂n(vk) =

Rn(vk) since F̂n(vk) = Fn(vk). Therefore F̂n satisfies (4) since Fn satisfies (4) for all

k /∈ In. Hence, by the previous argument, there exists µ̂ and corresponding beliefs

Ĝ such that, after any message i ∈ {0, 1, ..., n∗}\In, S’s optimal set of demands is

{vk|i ≤ k ≤ n∗, k /∈ In}.
Now consider the original distribution Fn on Vn. Let the message space be

{0, 1, ..., n∗}\In. Define a mixed strategy µ by

µi = µ̂i for all i /∈ In,

µi = µ̂τ(i) for all i ∈ In.

Given message i ∈ {0, 1, ..., n∗}\In, the probability that renegotiation demand vj ∈ V̂n

will be accepted is

1−Gi(vj) =

∑
k≥j µk(i)fn(vk)∑
k≥0 µk(i)fn(vk)

if the mixed strategy is µ and the distribution is Fn, and

1− Ĝi(vj) =

∑
k≥j,k/∈In

µ̂k(i)f̂n(vk)
∑

k≥0,k /∈In
µ̂k(i)f̂n(vk)

if the mixed strategy is µ̂ and the distribution is F̂n. However, for all j /∈ In,

∑

k≥j,k/∈In

µ̂k(i)f̂n(vk) =
∑

k≥j,k∈τ(In)

µ̂k(i)f̂n(vk) +
∑

k≥j,k/∈τ(In),k /∈In

µ̂k(i)f̂n(vk)

=
∑

k≥j,k∈τ(In)

µ̂k(i)[fn(vk) +
∑

l∈τ−1(k)

fn(vl)] +
∑

k≥j,k/∈τ(In),k /∈In

µk(i)fn(vk)

=
∑

k≥j

µk(i)fn(vk).

It follows that, after any message i ∈ {0, 1, .., n∗}\In, S’s expected profit from any

demand vj ∈ V̂n is the same under µ as it would be under µ̂. Therefore, if we can

show that there is no demand vj, with j ∈ In, which gives a strictly higher expected
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profit to S than demands in {vk|i ≤ k ≤ n∗, k /∈ In}, the Lemma is proved.

Consider, therefore, vj /∈ V̂n. Under µ, vj sends all messages sent by vτ(j). Suppose

that, under µ, vj is an optimal renegotiation demand after some message i. Therefore,

for some i such that µτ(j)(i) > 0, vj is at least as good for S as vτ(j).

Let vσ(j) = min{v ∈ V̂n|v > vj}. Let Gi(τ(j), σ(j)) be S’s belief after message

i, given µ, conditional on vτ(j) ≤ v < vσ(j). For all i such that µτ(j)(i) > 0 and all

k, k′ such that vτ(j) ≤ vk < vσ(j) and vτ(j) ≤ vk′ < vσ(j), µk(i) = µk′(i). Therefore

Gi(τ(j), σ(j)) is the same as Fn conditional on vτ(j) ≤ v < vσ(j), hence independent of

i. Moreover, after any i such that µτ(j)(i) > 0, S is indifferent between demands vτ(j)

and vσ(j), so, conditional on v ≥ vτ(j), the probability that v ≥ vσ(j) is independent

of i. Hence the probability that demand vj will be accepted is the same for all such

messages. Therefore vj is optimal after all messages sent by vτ(j). For Fn, vj fails

(4). Hence, by Lemma 6, it cannot be optimal after all messages sent by vτ(j). This

completes the proof of the lemma.
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