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Abstract

We consider a market with sequential consumer search in which �rms can distin-

guish potential customers visiting for the �rst time from returning visitors. We show

that �rms often have an incentive to make it costly for its visitors to return after

investigating rivals, either by making an �exploding o¤er�(which permits no return

once the consumer leaves) or by o¤ering a �buy-now discount� (which makes the

price paid by �rst-time visitors lower than that for returning visitors). Prices often

increase when return costs are arti�cially increased in this manner, and this harms

consumers and market performance. If �rms cannot commit to their buy-later price

the outcome depends on whether there is an intrinsic cost of returning to a �rm: if

the intrinsic return cost is zero, it is often an equilibrium for �rms not to o¤er any

buy-now discount; if the return cost is positive, �rms are forced to make exploding

o¤ers.

Keywords: Consumer search, oligopoly, price discrimination, high-pressure selling,
exploding o¤ers, buy-now discounts, costly recall.

1 Introduction

In markets in which consumers sequentially search through available options, it is common

for a consumer to return to buy from a previously sampled seller only after investigat-

ing other sellers.1 In some circumstances, a seller may be able to distinguish potential

�This paper replaces an earlier paper titled �Conditioning prices on search behavior�. We are grateful

to Simon Anderson, Marco Haan, Bruno Jullien, Preston McAfee, Meg Meyer, Andrew Rhodes, David

Sappington, Chris Wilson and Asher Wolinsky, and to the Economic and Social Research Council (UK)

and the British Academy for funding assistance.
1De los Santos (2008) presents a rare empirical study of consumer search behaviour prior to making a

purchase, using data from online book purchases. De los Santos (2008, section 4) �nds that three-quarters

of consumers search only one retailer before making their purchase. Of the remaining consumers who
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customers who come to the store for the �rst time from those who have returned after

a previous visit. A sales assistant may tell from a potential customer�s questions or de-

meanor whether she has paid a previous visit or not, or may simply recognize her face.

In online markets, a retailer using tracking software may be able to tell if a visitor has

visited the site before. Sometimes� as with job o¤ers, tailored �nancial products, medical

insurance, or home improvements� a consumer needs to interact with a seller to discuss

speci�c requirements, and this process reveals the consumer�s identity. In these situations

where sellers can distinguish new from returning visitors, we argue that �rms often have

an incentive to discriminate against returning visitors, either by using so-called �exploding

o¤ers�, which force the consumer to buy immediately or not at all, or by using �buy-now

discounts�, which o¤er �rst-time visitors a lower price than return visitors.

Because they are often used somewhat informally or furtively, it is hard to produce

evidence of exploding o¤ers or buy-now discounts in consumer markets. One of the authors

encountered an in-home salesman of �nancial products, and when he said he wished to

think about the o¤er and get back to the salesman, the salesman claimed it was his last

day in his current job. The use of buy-now discounts is plausible in retailing situations

where sales people have authority to o¤er discretionary discounts. For instance, one can

imagine a sales assistant in an electronics store o¤ering a customer a 10% discount if the

sale is made immediately (e.g., before the assistant �leaves for the day�). When searching

for air-tickets online, a consumer may �nd a quote on one website, go on to investigate a

rival seller, only to return to the original website to �nd the price has mysteriously risen.

One of the most notorious examples of high-pressure selling involves time-share vacation

homes, where potential customers are lured (often with promise of a gift) to listen to a

lengthy presentation about the properties, and then told they must buy immediately or

not at all (or o¤ered a discount o¤ the list price if they sign immediately).

There are potentially two broad reasons why a �rm may wish to make it costly, or

impossible, for its �rst-time visitors to return. First, there is a strategic reason, which is to

deter a potential consumer from going on to investigate rival� and perhaps superior� o¤ers.

If a consumer cannot return to a seller once she leaves, this increases the opportunity cost

of onward search, as the consumer then has fewer options remaining relative to situation

in which return is costless.2 Second, the observation that a consumer has come back to a

seller after sampling other options reveals relevant information about a consumer�s tastes,

and this may be a pro�table basis for price discrimination. A seller may wish to charge

a higher price to those consumers who have already investigated other sellers, because

search at least twice, approximately two-thirds buy from the �nal �rm searched and one-third go back

to a �rm searched earlier. De los Santos also �nds that the initial search is non-random, and one �rm

(Amazon.com) was sampled �rst by about two-thirds of all consumers making a purchase.
2Another strategic reason why a seller might try to force immediate sale is to prevent the consumer

having time to evaluate the current product adequately, rather than preventing the evaluation of rival

o¤ers. We discuss this alternative rationale in section 4.
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their decision to return indicates they are unsatis�ed with rival products.3 However, this

incentive is tempered by the fact that returning consumers also do not have a strong taste

for the �rm�s own product, for otherwise they would have purchased immediately instead

of going on to investigate alternative sellers.

Our underlying framework is a sequential search model with horizontally di¤erentiated

products in which consumers search both for price and product �tness, as introduced by

Wolinsky (1986). Each �rm has two sources of demand: consumers who buy its product

on their �rst visit to the �rm (�fresh demand�), and consumers who sample the �rm, go

on to sample rival products, but eventually come back to buy (�returning demand�). In

the standard search model, �rms cannot distinguish between these two groups and so must

treat all visitors equally, while in this paper �rms are able to discriminate between the two

groups. Using this basic market framework, we present two related models.

First, in section 2, we suppose that �rms can employ one of just two return policies:

consumers can freely return after leaving the �rm (and buy at the same price), or exploding

o¤ers are used and �rst-time visitors are forced to buy immediately or never. We derive

the equilibrium price when all �rms use exploding o¤ers, and show that typically it is

higher than the corresponding price with free recall. The use of exploding o¤ers also leads

to ine¢ cient matching between products and consumers. When a �rm uses an exploding

o¤er, this makes those consumers with strong tastes for the �rm�s product more likely to

buy immediately, but it prevents consumers with moderate tastes from returning after they

�nd nothing better elsewhere. We show that �rms wish to use exploding o¤ers when the

density for match utility is increasing, while when this density decreases �rms choose to

allow free recall. In this model, only the strategic reason to make return costly is present,

as by construction �rms make no sales to returning visitors.

Second, in section 3, we assume �rms have a richer set of return policies to choose from,

and rather than simply banning return they can charge returning visitors a higher price;

that is, they can o¤er �rst-time visitors a buy-now discount. Starting from a situation

in which all �rms treat fresh and returning consumers equally, we show under relatively

mild conditions that a �rm has an incentive to o¤er a buy-now discount. Compared to

the case with exploding o¤ers, a �rm has a greater incentive to introduce these �tari¤-

intermediated� search frictions, because of the extra revenue generated from returning

buyers. In the speci�c example of duopoly and a uniform distribution for match utility, we

calculate the equilibrium prices for immediate and returning purchase, and �nd that the

buy-now discount is largest when intrinsic search frictions are small. Because of the extra

search frictions introduced by the buy-now discount, even the discounted buy-now price is

3This contrasts with the substantial literature about how �rms can use the information of consumer

purchase history to re�ne their prices. (See, for instance, Hart and Tirole (1988), Chen (1997), Fudenberg

and Tirole (2000), and Acquisti and Varian (2005).) These models often predict that a �rm will price

low to a customer who previously purchased from a rival (or consumed the outside option in the case of

monopoly), since such a customer has revealed she has only a weak preference for the �rm�s product.
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higher than the non-discriminatory price. As such, this form of price discrimination lowers

both consumer surplus and total welfare.

In section 3.3 we relax the assumption that �rms commit to their buy-later price when

consumers make their �rst visit. The outcome without commitment depends sensitively

on whether or not consumers face an intrinsic (as opposed to arti�cially in�ated) cost of

returning to a previous �rm. If there is no such cost, we show that it is often an equilibrium

for �rms to o¤er uniform prices, i.e., the fact that a consumer has come back to a �rm

after sampling other sellers may give no ex post incentive for a �rm to raise its price. This

implies that the informational incentive to set higher prices to returning customers is often

non-existent, and it is the strategic impact on a consumer�s incentive to buy immediately

which is the dominant factor when a �rm decides to make return costly. However, for

reasons akin to Diamond�s (1971) famous paradox, when consumers do incur a positive

exogenous return cost (no matter how small), the unique credible outcome is that �rms

make exploding o¤ers.

Our paper relates to several strands of the industrial organization literature. It is

complementary to the model of ordered search in Armstrong, Vickers, and Zhou (2009).

The two papers use the same market model and focus on the same distinction between fresh

and returning demand, but there are two major di¤erences.4 First, Armstrong, Vickers,

and Zhou (2009) suppose that �rms know something about their place in the consumer

search order and can set their price accordingly, while for the most part in this paper we

assume random search whereby �rms do not know where they are in a consumer�s search

process.5 Second, Armstrong, Vickers, and Zhou (2009) assume that �rms cannot directly

distinguish between fresh and returning demand and must treat both sets of consumers

equally, while this ability to distinguish between new and returning visitors lies at the

heart of the current analysis. In Armstrong, Vickers, and Zhou (2009), a �rm which is

more �prominent� is predicted to set a lower price than its less prominent rivals. (If a

�rm is far back in the search order, it knows that any consumer who reaches it must not

care for the products of its rivals, and so this �rm has monopoly power over its consumers

and sets its price accordingly.) This re�ects the informational motive to set high prices to

consumers who have already sampled, and rejected, rival products.

Our analysis is related to models of search with (exogenous) costly recall. Janssen

and Parakhonyak (2010) study the optimal stopping rule when consumers care only about

price and must incur a cost to return to a previous �rm. This stopping rule is signi�cantly

more complicated than when return is costless. When there are more than two �rms, a

consumer�s stopping rule is non-stationary and her reservation surplus level depends on

her previous o¤ers. They show that equilibrium prices do not depend on the recall cost

4A third di¤erence is that the earlier paper relies heavily on an assumption that match utilities are

uniformly distributed, whereas here most of the analysis is more general.
5We discuss the impact of having one �rm more prominent in section 4 below.
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(unlike our model, where prices are sensitive to the endogenously generated recall costs).6

Firms often bene�t from the reduction of consumer search intensity, since this usually

softens price competition. In our model, the buy-now discount or exploding o¤er serves

this purpose. Alternatively, Ellison and Wolitzky (2008) present a model with homogenous

products in which a consumer�s incremental search cost increases with her cumulative

search e¤ort. If a �rm increases its in-store search cost (say, by making its tari¤ harder to

comprehend), this will make further search less attractive. They show that if the exogenous

component of search costs falls, �rms will unilaterally increase their self-determined element

of search costs, with the result that equilibrium prices are unchanged. Though otherwise

very di¤erent, the two models study how search frictions are determined endogenously:

even if intrinsic search frictions are negligible, a market may su¤er from substantial search

frictions� and high prices� in equilibrium.

Our analysis of buy-now discounts is also somewhat related to the emerging literature

on auctions with a �buy now�price (see Reynolds andWooders, 2009, for instance). Online

auctions sometimes o¤er bidders the option to buy the item immediately at a speci�ed price

rather than enter an auction against other bidders. In these situations, a seller has one

item to sell to a number of potential bidders, and so a bidder needs to pay a high buy-now

price in order to induce the seller from going on to search for other bidders by running an

auction, whereas our model involves sellers o¤ering a low buy-now price so as to induce a

buyer from going on to search for other sellers. Common rationales for buy-now prices in

auctions are impatience or risk-aversion on the part of bidders, neither of which is needed

in our framework with costly search.

As far as we know, our paper is the �rst to study the use of exploding o¤ers in consumer

markets. In the alternative setting of matching markets, however, there are a number of

studies in which exploding o¤ers play a role. Exploding o¤ers are often used in specialized

labor markets, such as those for law clerks, sports players, medical sta¤, and student college

allocations. When exploding o¤ers are used, these markets have a tendency to �unravel�,

and employers compete to make earlier and earlier o¤ers. The result can be signi�cant

ine¢ ciency.7 Niederle and Roth (2009) run an experiment to measure the impact of a

policy which bans the use of exploding o¤ers in a laboratory matching market. They

�nd that �rms do tend to use exploding o¤ers when they are permitted to do so, and

the result is that matching occurs ine¢ ciently early and match quality is poor, relative to

6Daughety and Reinganum (1992) make the point that the extent of consumer recall may be endoge-

nously determined by �rms�equilibrium strategies. In their model, the instrument that a �rm can use

to in�uence consumer recall is the length of time that it will hold the good for consumers at the quoted

price. In contrast to our assumption that a consumer can discover a seller�s return policy only after in-

vestigating that seller, Daughety and Reinganum suppose that sellers can announce their recall policies to

the population of consumers before search begins.
7Roth and Xing (1994, page 1001) document some examples of high-pressure job o¤ers. For instance,

in the market for judicial clerkships, some judges use exploding o¤ers which would be withdrawn if they

are not accepted in some very short time, or even during the telephone conversation itself.
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the situation in which exploding o¤ers cannot be used (or when applicants can renege on

previous agreements).

2 Exploding O¤ers

Our underlying model of the market is based on Wolinsky (1986). (See Anderson and

Renault (1999) for a further development of Wolinsky�s model.) There are n � 2 �rms in
the market, each supplying a horizontally di¤erentiated product at zero production cost.

A consumer�s valuation of product i, ui, is a random draw from some common distribution

with support [0; umax] and with cumulative distribution function F (�) and density f(�).
We suppose that the realization of match utility is independent across consumers and

products. In particular, there are no systematic quality di¤erences across the products.

Each consumer wishes to buy one item, provided an item can be found with a positive

surplus. Both �rms and consumers are assumed to be risk neutral.

Consumers initially have imperfect information about the deals available in the market.

They gather this information through a sequential search process, and by incurring a search

cost s � 0, a consumer can visit a �rm and �nd out its price, its return policy, and match

value.8 In this section, the two return policies available to a �rm are to use an exploding

o¤er or to allow free recall. (If a �rm allows free recall, it sets the same price to �rst-time

visitors and returning visitors.) After sampling one �rm, a consumer can choose to buy at

this �rm immediately or to investigate another �rm. If permitted, she can costlessly return

to a previous �rm after sampling subsequent �rms. To implement an exploding o¤er, �rms

are assumed to be able to distinguish �rst-time visitors from returning customers. We

focus on symmetric situations with random search, so that a consumer is equally likely to

investigate any of the remaining unsampled �rms when they search.

For expositional convenience, we introduce a piece of notation which summarizes the

distribution of match utilities and the extent of search frictions:

V (p) �
Z umax

p

(u� p) dF (u)� s : (1)

Thus, V (p) is the expected surplus of sampling a product if a consumer expects that the

price is p, the cost of sampling the product is s, and this is the only product available.

Note that V (p) is decreasing but p + V (p) is increasing in p. Throughout this paper we

assume that the search cost s is relatively small, so that

V (�p) > 0 ; (2)

where �p is the monopoly price, i.e., �p maximizes p[1� F (p)].9 This condition means that
consumers are willing to sample a product sold even at the monopoly price. In the example

8If the search cost is zero, we require that consumers nevertheless consider products sequentially.
9Under regularity conditions (e.g., F has an increasing hazard rate), �p solves the �rst-order condition

�p = 1�F (�p)
f(�p) uniquely.
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where u is uniformly distributed on [0; 1], which we use for illustration at several points in

the following analysis, condition (2) requires s < 1
8
.

2.1 The free-recall benchmark

If all �rms allow free recall, the situation is as in Wolinsky (1986). For reference later,

in this section we recapitulate part of his analysis. Wolinsky shows that in a symmetric

equilibrium in which all �rms set the same price p0, consumers have a stationary stopping

rule whereby they buy a product immediately if they obtain a match utility u greater

than a threshold a, and if no product yields that level of utility, the consumer samples all

products and buys from the best of the n options provided that one option generates a

positive surplus. Here, the reservation utility a is determined by the formula

V (a) = 0 : (3)

The expression
R umax
a

(u� a) dF (u) in V (a) is just the incremental bene�t of engaging in
one more search if the best current utility is a and the consumer can freely return to this

best o¤er if the next product does not yield higher surplus. So the optimal threshold makes

the consumer indi¤erent between searching on, which incurs the cost s, and purchasing this

product with utility a. Since V (�) is a decreasing function, (3) has a unique solution and
a decreases with s. The search cost condition (2) is therefore equivalent to a > �p.

Given that the other �rms are charging the equilibrium price p0, if �rm i deviates and

charges ~p, its demand is

Q =
1� F (a)n
n(1� F (a)) [1� F (a� p0 + ~p)] +

Z a

p0

F (u)n�1f(u� p0 + ~p)du : (4)

To understand this expression, consider the two sources of �rm i�s demand. Suppose �rm

i is in the kth position in a consumer�s search order. Then to reach the �rm, the consumer

must have sampled, and rejected, k � 1 �rms �rst, which occurs with probability F (a)k�1

(since a consumer will buy immediately if uj � a). If k < n, the consumer will buy

immediately at �rm i if ui � ~p � a� p0, which occurs with probability 1� F (a� p0 + ~p).
If the �rm is in the �nal search position (i.e., k = n), then she will surely buy from �rm

i if ui � ~p � a � p0, since then her surplus ui � ~p is positive and higher than all other

�rms. Since �rm i is equally likely to be in any of the search positions, the �rm�s demand

from this source is [1� F (a� p0 + ~p)]� 1
n
[1 +F (a) +F (a)2+ � � �+F (a)n�1], which yields

the �rst term in (4). The second source of demand comes from the scenario in which the

consumer searches all sellers and does not �nd any product with net surplus greater than

a � p0. This consumer will then buy from the �rm with the greatest net surplus, if this

surplus is positive. The fraction of consumers for whom this happens and then go on to

buy from �rm i is

Pr(max
j 6=i
f0; uj � p0g < ui � ~p < a� p0) =

Z a�p0+~p

~p

F (ui � ~p+ p0)n�1dF (ui) ;
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which equals the second term in (4) by changing variables from ui to u = ui + p0 � ~p.
In equilibrium, �rm i maximizes ~pQ by choosing ~p = p0, and so expression (4) implies

the �rst-order condition for p0 to be the equilibrium price is10

1� F (p0)n
p0

= f(a)
1� F (a)n
1� F (a) � n

Z a

p0

F (u)n�1f 0(u)du : (5)

Assuming a strictly increasing hazard rate for the match utility (i.e., 1 � F is strictly

logconcave), a �nite number of �rms, and condition (2), one can show that in the relevant

interval 0 � p0 � a, expression (5) has a unique solution, and this lies in the range

1� F (a)
f(a)

< p0 < �p : (6)

As the number of �rms becomes in�nite, the equilibrium price converges to p0 =
1�F (a)
f(a)

.

As the search cost tends to its upper bound in (2) (i.e., as a tends to �p), consumers stop

searching whenever they �nd a product with positive surplus and each �rm acts as a

monopolist, so the equilibrium price converges to p0 = �p (which then also equals
1�F (a)
f(a)

).

In the remainder of section 2, we extend this model to allow �rms to use the additional

instrument of exploding o¤ers; that is to say, �rms can require �rst-time visitors to buy

their product immediately or not all. We discuss this issue in two stages: �rst, we analyze

equilibrium prices under an assumption that all �rms use exploding o¤ers, and second, we

discuss when �rms do indeed have an incentive to use this high-pressure sales tactic.

2.2 Equilibrium prices with exploding o¤ers

Suppose now that the n �rms force their �rst-time visitors to buy immediately or not at all.

Suppose consumers anticipate that each �rm sets the same price p. What is a consumer�s

optimal search strategy? As we will show, and as is intuitive, consumers become less choosy

as they run out of options, and their reservation utility for purchasing decreases the more

�rms they have already sampled. Indeed, if they reach the �nal �rm they will have to

accept any o¤er which leaves them non-negative surplus.11

Given the anticipated price p, let am denote a consumer�s utility threshold when she

has 0 � m � n � 1 unsampled products remaining; that is, she will buy if her current
match utility satis�es u � am when she has m options remaining. Therefore, am � p
10Anderson and Renault (1999) show that, if 1� F is logconcave, the equilibrium price is increasing in

the search cost s and decreasing in the number of �rms (see their Proposition 1). (However, Anderson

and Renault assume that all consumers buy one product, i.e., there is no outside option, and this a¤ects

the �rst-order condition for the equilibrium price.) It is a subtle issue in this model whether second-order

conditions are satis�ed in this candidate equilibrium. For discussion, see Proposition B2 in Anderson and

Renault (1999). However, a su¢ cient condition is that the density function f be weakly increasing.
11The stopping rule we derive in the following is discussed further in pages 166-171 in Lippman and

McCall (1976).
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is a consumer�s expected surplus from participating in a no-recall search market with m

products each sold at price p. Clearly, a0 = p. Recursively, when facing m+ 1 unsampled

products, if the consumer searches on and if the next product has utility greater than am,

then she will buy the next product, while if the next product�s utility is below am, she will

continue to search and so obtain expected surplus am � p. Hence,

am+1 � p =
Z umax

am

(u� p)dF (u) + (am � p)F (am)� s ;

which simpli�es to

am+1 = am + V (am) : (7)

This is a �rst-order di¤erence equation which governs how a consumer�s optimal stopping

rule evolves as she has more products remaining unsampled. The right-hand side of (7)

increases with am. Note that a1 > a0 = p whenever V (p) > 0, i.e., when p < a. In this

case, it follows from (7) that am+1 > am for all m � 0, so that a consumer is willing to

accept a less suitable product as she nears the end of the search process.12 In particular, it

is possible that a consumer will end up purchasing a product with lower match utility than

a product she previously rejected. It also follows from (7) that the di¤erence am+1 � am
decreases with m. Unlike the case with free recall, each am depends on price p since the

starting value a0 does so. Provided the sequence am converges as m!1 (which it always

will do if s > 0 or if u has bounded support), it will converge to the free-recall threshold

a in expression (3).

This analysis has taken as given the market price p, and we next derive the symmetric

equilibrium price. Suppose n�1 �rms set the price p and one �rm is considering its choice
of price, say ~p. (Of course, when choosing their search strategy consumers anticipate that

this �rm has set the equilibrium price p.) Suppose this deviating �rm happens to be in the

kth position of a consumer�s search process, so there are n� k �rms remaining unsampled.
Then the probability that the consumer will visit this �rm is h1 � 1 if k = 1, and if k > 1
this probability is

hk �
k�1Y
i=1

F (an�i) : (8)

She will then buy at this �rm if u� ~p > an�k�p, which has probability 1�F (an�k�p+ ~p),
and so the �rm�s demand given it is in a consumer�s kth search position is

hk[1� F (an�k � p+ ~p)] : (9)

12With free recall, the optimal stopping rule is stationary, and am � a given in formula (3). Thus, in
this situation consumers do not become less choosy as they near the end of the search process. In the

alternative setting of matching markets, an applicant for a job (say) may also be reluctant to search for

long because the desirable vacancies may quickly be �lled.
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Since the �rm is in any position 1 � k � n with equal probability, its total demand with
price ~p when all other �rms are expected to set price p is

Q =
1

n

nX
k=1

hk[1� F (an�k � p+ ~p)] ;

and its pro�t is ~pQ. The �rm�s pro�t is concave in its price ~p if (but not only if) each

function ~p[1 � F (an�k � p + ~p)] is concave in ~p. A su¢ cient condition for this is that the
density f(u) weakly increases with u.

Therefore, the �rst-order condition for p to be the equilibrium price is

p =

Pn
k=1 hk[1� F (an�k)]Pn

k=1 hkf(an�k)
;

which can be simpli�ed to

p =
1�

Qn
k=1 F (an�k)Pn

k=1 hkf(an�k)
: (10)

Since each an�k depends on p, this equation de�nes p only implicitly. Note that the

numerator in (10) is equilibrium industry demand,13 while
Pn

k=1 hk is the expected number

of searches performed by a consumer. As with the free-recall case, if 1 � F is strictly

logconcave, the number of �rms is �nite and condition (2) holds, expression (10) has a

solution in the range
1� F (a)
f(a)

< p < �p :

In particular, assumption (2) implies that consumers are willing to participate in the mar-

ket. It can be shown that as the number of �rms tends to in�nity, this equilibrium price

converges to the same lower bound 1�F (a)
f(a)

as in the free-recall case. Intuitively, when the

number of �rms is unlimited, a consumer would never choose to return to a previously

sampled �rm, even if she could freely do so, and so the use of exploding o¤ers then has no

e¤ect on the equilibrium price. It is also clear that as the search cost tends to its upper

bound (i.e., as a tends to �p), p0 converges to the monopoly price �p.

At this level of generality, it is hard to compare market performance with and without

the use of exploding o¤ers, and the comparison between the prices in (5) and in (10) is

opaque. Following Wolinsky, to gain further insights consider the case of a uniform distri-

bution for match utility. (In section 2.3, we will show that with the uniform distribution

it is an equilibrium for all �rms to use exploding o¤ers.)

Uniform example: If u is uniformly distributed on [0; 1], then (7) implies

am+1 =
1

2
(a2m + 1)� s

13A consumer will leave the market without buying anything if she searched through all products and

the �nal one has a utility lower than the price. The probability of that is
Qn
k=1 F (an�k).
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starting with a0 = p. This di¤erence equation appears to have no analytical solution. It

converges as m becomes large to a = 1�
p
2s, the free-recall threshold. Except when n is

small, equation (10) has no analytical solution, but it can be solved numerically. The solid

curve in Figure 1a depicts how the equilibrium price p varies with the number of �rms

when s = 0. The dashed curve represents the corresponding price (5) in the free-recall

market. Both prices converge to zero for large n, but it seems that prices with exploding

o¤ers are approximately double those which prevail with free recall. (This �gure includes

the monopoly case n = 1, in which case the monopolist charges the price �p = 1
2
and the

use of exploding o¤ers has no impact since consumers have only one option in any event.)

The di¤erence between the two prices is greatest for an intermediate numbers of �rms. In

the same example, Figure 1b shows that the exploding-o¤er equilibrium has a higher pro�t

level than the free-recall equilibrium except when n = 2.14 Numerical calculations suggest

that as the search cost gets larger, the di¤erence between the exploding-o¤er and free-recall

prices decreases (and if s = 1
8
, the di¤erence vanishes). However, for any positive s < 1

8
,

a similar pattern holds, except that the exploding-o¤er equilibrium more likely leads to a

lower pro�t than the free-recall equilibrium when s is larger (for example, when s = 1
20

pro�ts are lower with exploding o¤ers when n � 4).

2 4 6 8 10 12 14 16
0.0

0.1

0.2

0.3

0.4

0.5

n
2 4 6 8 10 12 14 16

0.0

0.1

0.2

0.3

n

Figure 1a: Prices with exploding o¤ers Figure 1b: Pro�ts with exploding o¤ers

In this uniform example, aggregate consumer surplus and total welfare (measured by

the sum of consumer surplus and pro�t) fall when �rms use exploding o¤ers. Consumer

surplus falls since the price rises compared to the free-recall situation and consumers are

prevented from returning to a product which yields positive surplus. (Even if p = p0, i.e.,

if using exploding o¤ers did not change the market price, consumers would obtain lower

surplus in the exploding-o¤er case due to the no-return restriction. The resulting higher

price p > p0 only adds to their loss.) As far as total welfare is concerned, relative to

14The reason why industry pro�ts increase with n for small n is that with few suppliers many consumers

will not �nd a product which yields them positive surplus. With monopoly, for instance, half of consumers

are excluded from the market, while with many �rms almost all consumers will eventually �nd a suitable

product. But with more �rms pro�ts fall with n, as the price reduction e¤ect outweighs this market

expansion e¤ect.
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the free-recall situation, the use of exploding o¤ers not only induces suboptimal consumer

search (i.e., consumers on average cease their search too early due to �buy now or never�

requirement, resulting in sub-optimal matching), but also excludes more consumers from

the market, both of which harm e¢ ciency.

Exponential example: To illustrate how the use of exploding o¤ers need not increase
equilibrium prices, consider a second example in which F (u) = 1 � e�u=�, where � is the
expected value of match utility. The special feature of this distribution is that a monopoly

�rm facing this population of consumers, where each consumer has an outside option with

utility z � 0, will choose the same price p = � regardless of z.15 When �rms use exploding
o¤ers, this immediately implies that each �rm will choose p = �, regardless of the number

of �rms and the search cost (as long as s is relatively small such that consumers are willing

to enter the market). One can also show that the same price is chosen when there is free

recall, so that p0 = � solves expression (5) in this example for all n and a. Thus, the

use of exploding o¤ers has no impact on equilibrium prices. Nevertheless, in this example

this sales technique harms both consumers and �rms, as demand and match quality are

arti�cially restricted by the requirement that consumers cannot return to a �rm. We will

see in the next section that �rms will not choose to use exploding o¤ers in this example.16

2.3 Incentives to use an exploding o¤er

Here we discuss when the behaviour discussed in the previous section is in fact an equi-

librium. That is, if all its rivals set the price p in (10) and make exploding o¤ers, does a

�rm have an incentive to deviate and allow free recall (and, possibly, set a di¤erent price

as well)? Before pursuing the analysis in detail, consider this simple duopoly example with

�xed prices which yields the main insight.

Suppose there are two �rms, both of which set the exogenous price p < a. Is a �rm�s

demand boosted or reduced if it decides to force its �rst-time visitors to buy immediately

or not at all? First, for those consumers who �rst sample its rival, �rm i�s decision whether

or not to use an exploding o¤er has no impact on its demand. Therefore, the only impact

on the �rm�s demand comes from that half of the consumer population who sample it �rst.

If �rm i allows free recall, a consumer will buy from it immediately whenever ui > a, and

a consumer will return to buy from it whenever p < ui < a and ui > uj. This pattern

of demand is depicted in Figure 2a below. If, instead, �rm i uses an exploding o¤er,

15This is the �memoryless�property of the exponential distribution. With price p, the monopolist will

sell to a consumer if u � p � z, and so will choose p to maximize pe�(p+z)=�, a choice which does not

depend on z.
16While we have been unable to make progress in comparing prices with and without exploding o¤ers with

general distributions for match utility, numerical simulations con�rm that for a wide range of distributions

prices are higher when exploding o¤ers are employed. (We conjecture that this is true provided 1 � F is

strictly logconcave.)
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expression (7) implies that a consumer will buy from it if and only if ui > a1 = p+ V (p).

This pattern of demand is depicted in Figure 2b.
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Figure 2a: Demand with free recall Figure 2b: Demand with exploding o¤er

As discussed in section 2.2, a1 2 (p; a) and so the use of an exploding o¤er makes

a consumer more likely to buy immediately, but it eliminates all the returning demand.

One can calculate that when u is uniformly distributed on [0; 1], �rm i�s demand in the

two �gures is identical, and when a �rm forces immediate sale this has no net impact on

its demand. More generally, the impact of using an exploding o¤er is to eliminate the

�rm�s demand from �low ui�consumers, who have match utility close to price p and might

otherwise come back, and to boost its demand from �high ui�consumers, who do not wish

to risk losing the existing desirable option by going on to sample the rival. If u has an

increasing density, the latter e¤ect dominates the former, and the net impact of forcing

immediate sale is to boost a �rm�s demand. Similarly, if the density decreases, then the

former e¤ect dominates and demand is reduced when an exploding o¤er is used.

The next result proves that this insight is valid with an arbitrary �nite number of

�rms.17

Proposition 1 Suppose the number of �rms is 1 < n <1.
(i) If the density f is strictly increasing then the only symmetric equilibrium involves �rms

using exploding o¤ers;

17Note that if there were unlimited �rms in the market (n = 1), banning return or arti�cially raising
the cost of return has no impact on a �rm�s pro�t. This is because, as is well known, with unlimited

options, consumers would not choose to return to a previously sampled option even if it was free for them

to do so. As such, both equilibria with exploding o¤ers and with free recall can exist for any match utility

distribution.
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(ii) If the density f is strictly decreasing then the only symmetric equilibrium involves �rms

allowing free recall;

(iii) If u is uniformly distributed then an equilibrium with exploding o¤ers and an equilib-

rium with free recall both exist.

(All omitted proofs can be found in the appendix.)

Thus, we see there are plausible cases when exploding o¤ers are used in equilibrium, as

well as other plausible cases (such as the exponential distribution considered above) when

a �rm prefers to let consumers return freely after sampling rival products. In the uniform

example at least (see Figure 1a), the use of exploding o¤ers leads to higher prices being

chosen in equilibrium. In these situations, �rms may choose to use exploding o¤ers and

yet consumers are harmed by the practice.18

Nevertheless, our analysis covers only situations with monotonic densities. The reason

why results are so clear-cut with monotonic densities is that the impact of exploding

o¤ers on a �rm�s demand is unambiguous, regardless of the prevailing price. With a non-

monotonic density function, whether exploding o¤ers are an equilibrium sales technique

may depend on price. In particular, it may depend both on the number of �rms in the

market and the size of the search cost. A second factor which could come into play with

non-monotonic densities is that �rms may choose intermediate return policies, which make

return costly for their �rst-time visitors but not prohibitively so.19 (With a monotonic

density, a �rm wishes either to make return impossible or free, even if it could impose

intermediate returning costs.) As can be seen from the proof of Proposition 2 below, when

we start from the free-recall equilibrium with price p0, introducing a small return cost

boosts a �rm�s demand if Z a

p0

F (u)n�1f 0(u)du > 0 : (11)

Whether this condition holds for non-monotonic densities depends both on the number of

�rms and the search cost. Consider for example aWeibull distribution with F (u) = 1�e�u3

de�ned on [0;1), which has a hump-shaped density with mode around 0:87. If the search
cost is high enough that a is smaller than the mode, then (11) always holds. With a

low search cost such that a = 2, then condition (11) always fails and free recall is the

equilibrium outcome. However, if the search cost is moderate so that a = 1, then condition

(11) holds for n = 2; 3 but fails for n � 4. In this case, an oligopoly with few �rms has an
incentive to make return costly, while a more competitive market will allow free recall.

18The use of exploding o¤ers could be prohibited by mandating a �cooling o¤ period�, so that consumers

have the right to return a product in some speci�ed time after agreeing to purchase. (They could then

return a product if they subsequently �nd a preferred option.) Many jurisdictions impose cooling o¤

periods for some products, especially those sold in the home.
19For example, online sellers can ask customers to log on to their accounts or input information again;

�rms can ask consumers to queue again or make another appointment if they want to come back.
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Finally, this analysis relies on a �rm�s ability to commit to an exploding o¤er. If a

consumer does come back to a �rm after sampling a rival, the �rm will have an incentive to

sell to that consumer. This credibility problem is enhanced by the fact that consumers often

will wish to return to previous �rms, since their stopping rule is such that their remaining

option may have lower utility than previously rejected options. This commitment problem

could sometimes be solved in a dynamic environment, where sellers gain a reputation for

sticking to exploding o¤ers. (In labour market settings, for instance, some employers may

be known to keep their word.) Alternatively, in our next model in which �rms set higher

prices to returning visitors rather than banning their return, we show in section 3.3 that if

�rms cannot commit to their �buy-later�price then exploding o¤ers are the only credible

equilibrium whenever consumers face a positive intrinsic cost of returning to a �rm. This

argument is akin to the �Diamond paradox�, and holds for arbitrary distributions of the

match utility (including those with decreasing densities).

3 Buy-Now Discounts

An alternative framework allows a �rm to charge a higher price to returning visitors instead

of the drastic measure of banning return. Consider the same model as before, except that

instead of choosing the extreme policies of either allowing free return or no return, each

�rm can choose two distinct prices: p̂ is the price for returning customers and p is the price

for �rst-time visitors. Whenever p̂ > p, returning to a previous �rm is costly.20 Indeed,

when p̂ is su¢ ciently high, the �rm in e¤ect uses exploding o¤ers. One interpretation of

this discriminatory pricing is that each �rm sets a regular (or �buy-later�) price p̂ and

o¤ers the �rst-time visitors a �buy-now�discount � � p̂ � p. We assume for now that a
�rm can commit to p̂ when it o¤ers new visitors the buy-now price p. (We discuss the

impact of more limited commitment later in section 3.3.)

3.1 Incentives to o¤er a buy-now discount

In this section we analyze when a �rm unilaterally has an incentive to o¤er a buy-now

discount � , starting from the situation in which all �rms o¤er the equilibrium uniform

price p0 in expression (5). As a preliminary result, we observe that the impact of o¤ering

a small buy-now discount on a �rm�s pro�t is just as if the �rm levies a small buy-later

premium:

20If p̂ < p, then a consumer has an incentive to leave a �rm and then return, even if she has no intention

of investigating other �rms. If this kind of consumer arbitrage behavior� of stepping out the door and

then back in again� cannot be prevented, then setting p̂ < p is equivalent to setting a uniform price p̂,

and so without loss of generality we assume �rms are constrained to set p̂ � p.
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Lemma 1 Starting from the situation in which all �rms o¤er the equilibrium uniform

price p0 in (5), the impact on a �rm�s pro�t of o¤ering a small buy-now discount � (so

its buy-now price is p0 � � and its buy-later price is p0) is equal to the impact of levying a
buy-later premium � (so its buy-now price is p0 and its buy-later price is p0 + �).

Proof. Suppose all but one �rm choose the uniform price p0 in (5). If the remaining

�rm o¤ers the buy-now price p and buy-later price p+� , denote this �rm�s pro�t by �(p; �).

If p � p0 and � � 0 we have the �rst-order approximation

�(p; �) � �(p0; 0) + (p� p0)�p(p0; 0) + ��� (p0; 0)
= �(p0; 0) + ��� (p0; 0) ; (12)

where the equality follows from the assumption that p0 is the equilibrium uniform price

and subscripts denote partial derivatives. It follows that the impact on the �rm�s pro�t is

captured by the term ��� (p0; 0), which implies the result.

Intuitively, the fact that p0 is the equilibrium uniform price implies that a �rm�s pro�t is

not a¤ected by small changes in its uniform price, and the only impact on a �rm�s pro�t

comes from its buy-now discount � (regardless of whether this is interpreted as a discount

for immediate purchase relative to the buy-later price p0, or as a premium for later purchase

relative to the buy-now price p0).

To illustrate the pros and cons of o¤ering a discount most transparently, consider the

case of duopoly. It is somewhat more straightforward to consider the incentive to set a

buy-later premium, and then to invoke Lemma 1. If �rm i introduces a buy-later premium,

this has no impact on its demand and pro�t from those consumers who �rst sample the

rival given they hold equilibrium beliefs, and so we can restrict attention to that portion of

consumers who sample �rm i �rst. A buy-later premium not only discourages consumers

from searching on, as the exploding o¤er did in the earlier analysis, but also generates

extra revenue from returning consumers.

How exactly does � a¤ect a consumer�s decision whether to buy immediately from �rm

i? Denote by a(�) the reservation utility which leads the consumer to buy immediately,

i.e., if she �nds match utility ui � a(�) at the �rm she will buy without investigating the

rival. Clearly if no premium is levied (� = 0) then a(0) = a, the free-recall reservation level

in (3). By de�nition, if a consumer discovers utility ui = a(�) at �rm i she is indi¤erent

between buying immediately (thus obtaining surplus a(�)�p0) and going on to investigate
�rm j, which yields expected utilityZ umax

a(�)��
(uj � p0)dF (uj)| {z }

utility when she buys from j

+ F (a(�)� �)[a(�)� p0 � � ]| {z }
utility when she returns to buy from i

� s : (13)

To understand expression (13), note that if the consumer �nds utility uj at the rival, she

will buy from that �rm if uj � p0 � a(�) � p0 � � , and otherwise she will return to buy
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from �rm i (but at the higher price p0+ �). Equating a(�)� p0 with expression (13) yields
the following formula for a(�) given � :

V (a(�)� �) = � : (14)

(Remember V (�) is de�ned in (1), and given � this equation has a unique solution a(�).)
The resulting pattern of demand for those consumers who �rst sample �rm i is illustrated

in Figure 3.21 Note that a(�) decreases with � , and by di¤erentiating (14) we obtain

a0(�) =
�F (a(�)� �)
1� F (a(�)� �) : (15)

This is intuitive, as raising the cost of returning makes a consumer more likely to buy

immediately (just as in the extreme case of exploding o¤ers).
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Figure 3: Pattern of demand when �rm i levies buy-later premium �

Using Figure 3, from those consumers who sample �rm i �rst the fraction who buy

from the �rm is

1� F (a(�)) +
Z a(�)

p0+�

F (u� �)f(u)du :

21This analysis and Figure 3 presume that some consumers do return to �rm i after sampling �rm j,

which requires that the premium � is not too large. By examining the �gure, one sees that the exact

condition is a(�) > p0 + � . From (14), and noting that V (�) is a decreasing function, this is equivalent to
� < V (p0). This is possible for su¢ ciently small � as long as V (p0) > 0, which is true given (2). When

the discount exceeds V (p0), the returning cost is so great that the consumer never returns to a �rm once

she leaves it (i.e., the �rm in e¤ect uses an exploding o¤er).
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By using (15), the derivative of �rm i�s demand with respect to � is equal toZ a(�)

p0+�

F (u� �)f 0(u)du : (16)

In particular, the �rm�s demand is boosted with a buy-later premium whenever the density

is increasing, as we saw earlier when we discussed exploding o¤ers in section 2.3.

Firm i makes revenue p0 from each of its customers, and an additional � from each of

its returning customers. It follows that the derivative of �rm i�s pro�ts with respect to �

evaluated at � = 0 is Z a

p0

F (u) [f(u) + p0f
0(u)] du : (17)

Here,
R a
p0
Ffdu is the extra revenue generated from the returning customers while

R a
p0
Ff 0du

is the extra (maybe negative) demand generated by increasing the cost of return.

From (17) and Lemma 1, the �rm has an incentive to introduce a buy-now discount

if the density f is increasing. But it has an incentive to introduce a discount much more

generally, and the incentive is present whenever p0 in (5) is strictly above
1�F (a)
f(a)

. To see

this, use (5) to obtain

p0

Z a

p0

F (u)f 0(u)du =
1

2

�
p0f(a)

1� F (a)(1� F (a)
2)� (1� F (p0)2)

�
> �1

2

�
F (a)2 � F (p0)2

�
= �

Z a

p0

F (u)f(u)du ;

where the inequality follows from the assumption that p0 >
1�F (a)
f(a)

. Thus, expression (17)

is positive and a �rm has a unilateral incentive to o¤er a buy-now discount.

This result holds for arbitrary (but �nite) numbers of �rms:

Proposition 2 Starting from the free-recall equilibrium with uniform price p0 in (5), a

�rm has a unilateral incentive to o¤er �rst-time visitors a buy-now discount if p0 >
1�F (a)
f(a)

.

As discussed in section 2, a su¢ cient condition to ensure p0 >
1�F (a)
f(a)

is that the hazard

rate for the match utility is strictly increasing and that the number of �rms is �nite.

Proposition 2 indicates that a seller (a sales assistant in an electronics store, say)

typically has an incentive to o¤er a �rst-time visitor a discount on the regular price if the

consumer buys immediately. The intuition for this result is as follows. As Lemma 1 shows,

the impact of a small buy-now discount is the same as a small buy-later premium. A small

buy-later premium has two e¤ects: the extra revenue e¤ect� every returning consumer

now pays a premium, and the demand e¤ect� the �rst-time visitors become more likely

to buy immediately, but those potential returning consumers become less likely to come

back. The second e¤ect is similar to the demand e¤ect caused by exploding o¤ers, and as
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we have shown whether it is positive or negative depends on the shape of f . However, the

�rst revenue e¤ect must be positive. Proposition 2 shows that this �rst e¤ect is powerful

enough that the overall e¤ect becomes positive under a mild hazard-rate condition.

From the proof of the result one can also see that if p0 =
1�F (a)
f(a)

, then a �rm has no

local incentive to introduce a buy-now discount. For instance, in the exponential example

discussed in section 2.2, we have p0 =
1�F (a)
f(a)

. Similarly, if a �rm acts as a monopoly (e.g.,

when the search cost is high so that (2) is binding) or if there are in�nitely many �rms,

then p0 =
1�F (a)
f(a)

. In all such cases, a �rm has no (local) incentive to o¤er a buy-now

discount. We will also see in section 3.3 below that if the �rm cannot commit to raising its

price to returning visitors, uniform pricing without buy-now discounts may often emerge

as an equilibrium outcome.

3.2 Equilibrium discounts in a duopoly example

The previous result indicated that �rms have an incentive to o¤er a buy-now discount,

provided a hazard rate condition was satis�ed. In this section we derive the equilibrium

discount and price in a duopoly setting, and compare this outcome to the situation with

uniform prices.22

For convenience, we analyze the model in terms of the buy-now price p and the buy-now

discount � = p̂�p (rather than in terms of p and p̂). Let the symmetric equilibrium outcome
be (p; �), and suppose �rm i deviates and o¤ers an alternative tari¤ (pi; � i). Similarly to

Figure 3 above, �rm i�s demand from those consumers who sample it �rst is as depicted

on Figure 4a. (Recall that a(�) is de�ned above in (14).) Firm i�s demand from those

consumers who �rst encounter the rival is shown on Figure 4b.

As discussed earlier, these �gures presume that � ; � i � V (p). In equilibrium we will

indeed have � < V (p) so that some consumers do return to a �rm after sampling the rival.

And it is without loss of generality that we consider deviations restricted to � i � V (p).23

When �rm i unilaterally deviates to (pi; � i), with � i � V (p), its pro�t is

piQT + � iQR ; (18)

where QT is �rm i�s total demand and QR is the portion of demand from its returning

customers. (The �rm obtains revenue pi from each of its customers, plus the incremental

revenue � i from each of its returning customers.)

22When there are more than two �rms, the consumer stopping rule with buy-now discounts depends

on the history of realized match utilities, and this makes the equilibrium analysis very complex. (When

exploding o¤ers are used, by contrast, the stopping rule does not depend on previous o¤ers, since the

consumer has no ability to return.)
23When � i > V (p), returning demand disappears and the �rm�s pro�t is independent of � i. Hence, our

restriction to � i � V (p) is without loss of generality.
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Figure 4a: Firm i�s demand Figure 4b: Firm i�s demand

when it is sampled �rst when it is sampled second

For simplicity, from now on we focus on the example in which match utility ui is

uniformly distributed on [0; 1], so that expression (14) becomes

a(�) = 1 + � �
p
2(s+ �) : (19)

This greatly simpli�es the algebra and enables us to check second-order conditions for

the candidate equilibrium. (See Table 2 below for illustrations of the equilibrium when

the distribution of match utility is non-uniform.) To ensure an active market we assume

s < 1
8
.

The demand functions in (18) can be derived by calculating the areas of the various

regions in Figure 4 to yield

2QT = 1� (a(� i) + pi � p)| {z }
buy immediately from i

+ a(�)(1� pi)�
1

2
(a(�)� � � p)2| {z }

buy from i after �rst sampling j

+
1

2
(a(� i)� � i)2 �

1

2
p2| {z }

returning demand 2QR

;

(20)

where a(�) is given in (19). Note that the �rm�s returning demand does not depend on its

buy-now price pi over the relevant range in this uniform example. (By examining Figure

4a, we see that varying pi simply shifts the region of returning demand uniformly to the

left or right.) Note also that the �rm�s total demand QT does not depend on its buy-now

discount � i. (This is a special case of expression (16) above, when f � 1.) Thus, �rm i�s

pro�t in (18) is additively separable in its buy-now price pi and its buy-now discount � i.

In particular, �rm i will choose its buy-now discount � i to maximize � iQR, the extra

revenue from its returning consumers, which has �rst-order condition24

24We can show that � iQR is concave in � i for � i � 1=8 and decreasing in � i for � i > 1=8. So the

�rst-order condition is also su¢ cient.
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[a(�)� � ]2 � p2 � 2� [a(�)� � ]
1� [a(�)� � ] = 0 : (21)

(Here, we used expression (15).) Note that the left-hand side of (21) is strictly positive

when � = 0 (provided that s < 1
8
and p < 1

2
, and we will show shortly that p < 1

2
). It

follows that the equilibrium discount is positive, as was already indicated by Proposition

2.

Turning to the equilibrium buy-now price p, note that �rm i�s total demand in (20) is

linear in pi, and so its pro�t is concave in pi. Therefore, the �rst-order condition for pi to

be optimal is su¢ cient. Each �rm�s equilibrium total demand is 1
2
[1� p(p + �)]. That is,

a consumer will leave the market without buying anything if and only if she neither buys

at the second �rm nor wants to go back to the �rst one. Using this fact, the �rst-order

condition for the equilibrium buy-now price p, given � , is

1

p
� p = 1 + a(�) + � : (22)

The right-hand side of (22) is greater than 3
2
.25 Since the left-hand side of (22) is decreasing

in p, it follows that the solution to this �rst-order condition satis�es p < 1
2
. Moreover, for

0 � � � 1
8
� s, which will turn out to be the relevant range of � , the right-hand side of

(22) is decreasing in � , and so the buy-now price p in (22) is an increasing function of

� . Intuitively, a buy-now discount increases search frictions in the market, which in turn

allows �rms to charge a higher price.

The equilibrium strategy (p; �) is then found by solving the pair of nonlinear equations

(21)�(22), which can typically be done only numerically.26 For instance, when s = 0,

solving these equations shows that p � 0:45 and � � 0:06 and hence a buy-later price

of p̂ � 0:51 (which is actually slightly above the monopoly price of �p = 0:5). In this

example, although the market has no intrinsic search frictions, �rms in equilibrium impose

�tari¤ intermediated�search frictions on consumers via the buy-now discount, which here

is about 12% of the buy-later price. By contrast, in a market with s = 1
8
, which is the

highest intrinsic search cost which induces consumers to participate, one can check that

the (exact) solution to this pair of equations is p = �p = 1
2
and � = 0, so that there is no

buy-now discount. (When s = 1
8
, search costs are so high that consumers will accept the

�rst o¤er which yields them a non-negative surplus. In particular, there are no returning

consumers even with costless recall.)

More generally, the equilibrium buy-now discount � decreases with the search cost

s. That is, the higher is the intrinsic search cost, the less incentive �rms have to deter

25Note that a(�) + � is a convex function which is minimized by setting � = 1=8 � s, which makes the
right-hand side of (22) equal to 7=4� 2s. Since s < 1=8, the claim follows.
26Given s < 1

8 , we can show that the system of (21)�(22) has a solution (p; �) 2 (0; 12 )� (0;
1
8 � s), and

p < a(�)� � or � < V (p) (so there do exist returning consumers in equilibrium). See our previous working
paper Armstrong and Zhou (2010) for more details.
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consumers from searching on. This can be seen from Figure 5a below, which depicts how

the buy-later price p̂ = p+ � (the upper solid curve) and the buy-now price p (the middle

solid curve) vary with s. As is expected, the buy-now price increases with the search cost.

Less expected is the observation that the buy-later price depends non-monotonically on s

(and is always above the monopoly price �p = 1
2
in this example).

We next compare this outcome with the situation in which �rms must o¤er uniform

prices to their fresh and returning customers. The equilibrium uniform price p0 is given by

expression (5), or equivalently it is given by (22) after setting � = 0. Recall that the price

which solves (22) increases with the buy-now discount � over the relevant range. Since the

equilibrium buy-now discount is positive, we deduce the following result:

Proposition 3 In the uniform-duopoly case with s < 1
8
, the use of buy-now discounts leads

to higher prices, i.e., p0 < p < p̂.

That is, even the discounted buy-now price in the discriminatory case is higher than

the uniform price, and the ability to o¤er discounts for immediate purchase drives up both

prices.27 The intuition is that the buy-now discount adds to the intrinsic search frictions in

the market, and this allows �rms to charge a higher price. (Relative to the uniform-price

case, consumers become less willing to search on, and so the �rms�demand is less price

elastic.) Figure 5a depicts the three prices, where from the bottom up the three curves

represent p0, p and p̂, respectively. As we have already mentioned, when s = 1
8
the search

cost is so high that no �rms have incentive to o¤er buy-now discounts, and so all three

prices coincide.

Since both prices rise, the buy-now discount equilibrium excludes more consumers from

the market. In addition, one can show that the use of buy-now discounts boosts fresh

demand (the sum of the �rst two terms in (20)) and reduces returning demand. This is

illustrated for the case s = 0 in Table 1 (including for reference the case where exploding

o¤ers are used).

p p̂ fresh returning excluded

no discount 0.41 0.41 41% 41% 17%

with discount 0.45 0.51 66% 11% 23%

exploding o¤er 0.45 n/a 73% 0% 27%

Table 1: The impact on prices and demand of buy-now discounts and exploding o¤ers

However, whether the use of buy-now discounts leads to higher pro�t depends on the

magnitude of the search cost. Figure 5b shows how industry pro�ts with uniform pricing

(the dashed curve) and pro�ts with buy-now discounts (the solid curve) vary with the

27It is not unusual that the ability to price discriminate in oligopoly leads to falls in all prices, but cases

where all prices rise are less familiar.
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search cost s. We see that price discrimination leads to higher pro�t only if the search cost

is relatively small. When the search cost is relatively high, price discrimination leads to

prices which exclude too many consumers. In these cases, �rms are engaged in a prisoner�s

dilemma: when feasible an individual �rm wishes to o¤er a buy-now discount, but when

both do so industry pro�ts fall.28 Nevertheless, as was seen in the exploding o¤er analysis

in Figure 1b above, when there are more than two �rms we anticipate that pro�ts will rise

when buy-now discounts are used, since the price-increasing e¤ect will then outweigh the

market participation e¤ect. (When there are many �rms, most consumers will eventually

�nd a product they buy.)
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0.42
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Figure 5a: Prices and search cost
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Figure 5b: Pro�ts and search cost

Finally, we observe in this example that aggregate consumer surplus and total welfare

(measured by the sum of consumer surplus and pro�t) fall when �rms use buy-now dis-

counts.

Our analysis in this section so far has assumed that the match utility is uniformly

distributed. It is possible to derive equilibrium prices in non-uniform examples by calcu-

lating the measure, rather than simply the area, of the regions in Figure 4. We report

numerical calculations for the equilibrium tari¤ in examples where the density function

f is linear rather than constant. Speci�cally, suppose that the density takes the form

f(u) = 2�u + 1 � �, where u 2 [0; 1] and � 2 [�1; 1], so that the density function is a
straight line with slope 2� passing through the point (1

2
; 1). All such distributions have an

increasing hazard rate, and so Proposition 2 indicates that �rms will set a positive buy-now

discount. Table 2 reports the equilibrium prices for various values of �, assuming that the

search cost is zero.
28This bears some similarities to situations with competitive bundling. There, a �rm often has a unilat-

eral incentive to o¤er consumers a discount for buying two products rather than one, and when all �rms

do this industry pro�ts fall. However, in contrast to the current case where the discount relaxes competi-

tion and drives prices up, with bundling the discount intensi�es competition and drives prices down. For

instance, see Armstrong and Vickers (2010) for more details.
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Here, the �rst row reports the equilibrium uniform price, the second and third rows

report the buy-now price and buy-now discount, while the �nal row reports the buy-now

discount as a proportion of the buy-later price. The central column with � = 0 is the

uniform case already discussed. As expected, when the density is increasing, the incentive

to set a buy-now discount is reinforced by an additional strategic e¤ect: as seen in (16),

with an increasing density a �rm�s total demand is boosted if it makes it costly to return.

Thus, we see that the size of the buy-now discount increases with �, both in absolute

terms and as a proportion of the buy-later price. Notice also that all prices are higher with

price discrimination than without discrimination, even when the density is decreasing. In

particular, consumers are worse o¤ with this form of price discrimination.

� = �1 � = �0:5 � = 0 � = 0:5 � = 1

p0 0.312 0.382 0.414 0.405 0.360

p 0.313 0.392 0.450 0.474 0.470

� 0.017 0.032 0.060 0.091 0.124

�=(p+ �) 0.05 0.075 0.12 0.16 0.21

Table 2: Equilibrium prices with a linear density function (s = 0)

3.3 Buy-now discounts without commitment

We discuss next whether buy-now discounts can emerge as an equilibrium outcome if we

relax the assumption that a �rm can commit to its buy-later price when consumers �rst

visit. In this case, a consumer can discover a �rm�s actual buy-later price only after she

returns to the �rm.

First, consider a situation with partial commitment, by which we mean that �rms can

commit to a returning purchase price cap (but cannot commit to a speci�c price). This

case could apply in situations where �rms can post a �regular�price. For example, the

price printed on the price label in a store usually has this kind of commitment power. Here,

there is an equilibrium with the same outcome as in the full commitment case. Speci�cally,

in this equilibrium, �rms charge a buy-now price p, commit to a buy-later price cap p̂, and

actually charge returning consumers p̂, where both p and p̂ take the same values as the

equilibrium prices in the commitment case. To sustain this equilibrium, we assume that all

consumers believe that for any (maybe o¤-equilibrium) committed price cap p̂i the �rm�s

actual buy-later price will be p̂i. To see that this is an equilibrium, observe that when

consumers hold the above beliefs, they will return to a previously visited �rm, say �rm

i, only if ui � p̂i, where p̂i is the anticipated �rm i�s buy-later price. This implies that

�rm i can have no incentive to charge them a price below p̂i.29 (It may have an incentive

to raise the price above p̂i, but that is not permitted given that the �rm commits to this

29Note that charging a returning price below p̂i is a private deviation, so it will not increase the number

of consumers who return to this �rm. Hence, such a deviation does not bring the �rm any bene�t.
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cap.) This in turn ful�lls consumer beliefs. Thus, a buy-later price cap can be used as a

full commitment device.30

In other situations, �rms may not be able to make any commitments about their buy-

later price when consumers �rst visit. Here, and unlike the rest of this paper, it makes an

important di¤erence whether or not consumers face an intrinsic returning cost when they

come back to a previously-visited �rm. We discuss the two cases in turn.

No intrinsic return cost: If consumers face no such cost (as we assumed for simplicity
in the rest of the paper), there are usually multiple equilibria. For example, it is a trivial

equilibrium that �rms charge a su¢ ciently high returning price such that consumers never

return (i.e., all �rms actually use exploding o¤ers). Given there are no returning con-

sumers, �rms have no incentive to decrease the returning price. It is also possible (at least

in the uniform-duopoly example of the previous section) to construct equilibria of the con-

stant markup form which are qualitatively similar to the commitment prices: consumers

anticipate that a �rm will set a return price p̂i = pi + � if that �rm o¤ers the buy-now

price pi, and given these expectations �rms have no incentive to set a di¤erent buy-later

price. (There is a continuum of such credible � .)

However, there is often an equilibrium in which uniform pricing is a credible strategy,

so that no buy-now discount is o¤ered. That is to say, (i) consumers do not anticipate that

they will face a higher price if they return to buy from a previously sampled �rm and plan

their search strategy accordingly, and (ii) when a consumer does return to a �rm, that �rm

has no ex post incentive to �surprise�the consumer with an unexpected price hike.

First of all, this is easy to understand in the extreme case with s = 0. The reason is

that when search costs are zero, consumers sample all �rms before they purchase (given

their belief that there is no returning purchase surcharge), and so all buyers are returning

customers. Thus, we are just in the situation of Wolinsky model with zero search costs, and

the incentive to set the price to returning consumers is exactly the same as the incentive

to set the uniform price p0 in (5).

Consider next cases with s > 0. For simplicity, focus on the case of duopoly. Suppose

�rm i sets a slightly di¤erent buy-now price p and surprises the returning consumers with

a small premium � � 0.31 Consumers still hold the equilibrium beliefs that if they come

back to �rm i, they will only pay p instead of p+ � . Let �(p; �) be �rm i�s deviation pro�t

30There may exist other equilibria involving di¤erent consumer beliefs.
31We consider in this discussion only local deviations. Given that �rm i has no pro�table local deviation,

it also has no pro�table global deviation if its pro�t function is quasiconcave in p and � , for instance.

Although in our search model it is hard to derive more primitive conditions, we can show that it is true

at least for a uniform distribution for match utility.

Note that setting � < 0 will only reduce each returning consumer�s payment but not increase the

returning demand since consumers observe this deviation only after they come back to the �rm and all of

them value the product at ui � p. Thus, the �rm will never choose to surprise a returning visitor with a

price reduction.
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when it o¤ers this alternative tari¤. When p is close to p0 and � is close to zero, as with

expression (12) above we have

�(p; �) � �(p0; 0) + ��� (p0; 0) :

Thus, this deviation is unpro�table if �� (p0; 0) < 0. This implies that we need only consider

the deviation with an unchanged buy-now price p0 and a small buy-later premium � .

Notice the (unexpected) buy-later premium � will only a¤ect �rm i�s returning demand,

which is depicted on Figure 6. The sole di¤erence between Figures 3 and 6 is that the

threshold for buying immediately at �rm i is lower in Figure 3 than in Figure 6� it is

a(�) instead of a� due to the fact that the consumer anticipated the buy-later premium in

Figure 3 but not in Figure 6.
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Figure 6: Pattern of demand when �rm i surprises return consumers with price increase �

From the �gure it follows that �rm i�s pro�t from the returning customers when it

increases the buy-later price by � is

(p0 + �)

Z a

p0+�

F (u� �)f(u)du :

Hence, we have

�� (p0; 0) =

Z a

p0

F (u)f(u)du� p0
�
F (p0)f(p0) +

Z a

p0

f(u)2du

�
=

Z a

p0

F (u)f(u)du� p0
�
F (a)f(a)�

Z a

p0

F (u)f 0(u)du

�
:
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(The second step follows after integrating by parts.) The �rst term is just �rm i�s returning

demand in equilibrium, so it re�ects the marginal bene�t from each returning consumer

paying the premium � . The second term is the loss due to the reduction of returning

demand caused by the unexpected premium � (some returning consumers leave the market

and some go back to buy from other �rms). Compared to (17), which describes the incentive

to raise returning price in the case with commitment, the current incentive is reduced by

p0F (a)f(a). This is because in the commitment case, committing to a higher return price

can induce more consumers to buy immediately and so has an extra (strategic) demand

bene�t, which is absent in the no-commitment case.

Using the expression for the equilibrium uniform price (5), we obtain

�� (p0; 0) =
1

2
(1� F (a))f(a)

�
p0 �

1 + F (a)

f(a)

�
: (23)

When the search cost is high and close to the limit in (2) (so a � �p � p0), then p0 � 1�F (a)
f(a)

and so (23) is negative. More generally, expression (23) reveals that the �rm has no

incentive to deviate from uniform pricing if

p0 <
1 + F (a)

f(a)
: (24)

A su¢ cient condition for this is that

u

1 + F (u)
increases with u : (25)

(Condition (25) implies that 1 + F (u) � uf(u), and so p0 < a � 1+F (a)
f(a)

.) For example,

(25) holds for any distribution with a weakly decreasing density (given the lower bound of

the match utility is zero as assumed in our model).32 In particular, it holds with a uniform

distribution for match utility.

It appears to be relatively hard to �nd distributions for the match utility such that (24)

is violated.33 This provides one possible explanation for why in many markets uniform

prices o¤ered to �rst-time and returning visitors is the norm.34 The precise reason why a

�rm typically, but not always, has no incentive to raise price to returning consumers is not

transparent. The fact that a consumer has rejected the rival�s product suggests that a �rm

should raise its price, since it has some monopoly power over this consumer. (This is the

reason why less prominent �rms set higher prices in Armstrong, Vickers, and Zhou (2009).)

32One can show that a weakly decreasing density implies that uniform price is a credible equilibrium for

an arbitrary number of �rms, not just for duopoly.
33One example which violates (24) is F (u) = 9

10u+
1
10u

100 with support 0 � u � 1 when s � 0. When
s � 0, a � 1 and condition (24) requires that p0 < 2

10:9 . However, (5) implies that p0 � 0:31. Note that
this distribution has an increasing hazard rate, so this example demonstrates that the standard increasing

hazard rate condition cannot guarantee (24).
34Another possible reason why in many cases �rms do not surcharge their returning customers is con-

sumers�antagonism to an unexpected price rise.
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But set against this is the fact that the consumer has also rejected the �rm�s product on a

�rst visit, which tends to make the �rm want to set a low price to the returning consumer.

The net impact of these two forces renders the informational motive to set high prices to

returning consumers weak or non-existent.

Positive intrinsic return cost: The preceding discussion depends on the assumption
that consumers had no cost of returning to a previously visited �rm. If there is even a

small intrinsic returning cost, say r > 0, the �rm has an incentive to �surprise�returning

consumers with a price rise of at least r. (Returning customers all have match utility

ui > p0+r, otherwise they would not return.) It turns out that the only credible equilibrium

when r > 0 involves exploding o¤ers. To see this, suppose in some equilibrium that each

consumer forecasts that a �rm�s buy-later price is p̂(pi) when its buy-now price is pi, where

p̂(�) can take any form. Suppose that the buy-now price in this equilibrium is p�, say, and

suppose� contrary to the claim� there is some returning demand in this equilibrium. But

if a consumer returns to �rm i after sampling other �rms, her match utility must satisfy

ui � p̂(p�) + r, since the consumer needs to pay the returning cost r > 0. Since all its

returning customers have match utility at least as great as p̂(p�) + r, the �rm�s optimal

price for these customers must be at least p̂(p�) + r,35 which contradicts the assumption

that p̂(p�) was the correctly anticipated buy-later price.

Thus, when there is an intrinsic returning cost, no matter how small, rational consumers

anticipate that buy-later prices will be so high that it is never worthwhile to return to a

previous �rm after leaving it. In e¤ect, �rms are forced to make exploding o¤ers, and

consumers have just one chance to buy from any �rm. (The equilibrium price is then as

described in section 2.2.) This result is analogous to Diamond�s (1971) paradox, showing

how a small search cost can cause a market to shut down. Diamond�s result relies on

consumers knowing their match utility in advance, and a central advantage of Wolinsky�s

formulation with ex ante unknown match utilities is that this paradox can be avoided. But

even in our Wolinsky-type framework, the returning consumers know their match utility,

and so the returning market fails for the same reason as the primary market failed in

Diamond�s framework.

4 Extensions

This paper has explored the incentives �rms have to make it costly for consumers to return

after investigating rival sellers. The use of exploding o¤ers can be individually pro�table

for �rms under certain conditions, such as when the density for match utility is increasing.

A less extreme policy is to o¤er �rst-time visitors a buy-now discount, and �rms have an

35Note that surprising returning consumers by charging them p̂(p�) + r will not induce any of them to

leave this �rm again and buy from others, since going back to any other �rm also involves a return cost r.
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incentive to o¤er such discounts under relatively mild conditions. Either selling technique

tends to raise market prices and lower both consumer surplus and total welfare. If �rms

cannot commit to their buy-later price the outcome depends on whether there is an intrinsic

cost of returning to a �rm: if the intrinsic return cost is zero, it is often an equilibrium

for �rms not to o¤er a buy-now discount; if the return cost is positive, �rms are forced to

make exploding o¤ers.

Several extensions to this analysis are worthwhile, including the following:

The impact of prominence: In some markets consumers are known to search in a
non-random order. For example, when one seller is more prominent than others, more

consumers may sample it �rst. (Recall that De los Santos (2008) showed how one seller in

the online book market attracted a greatly disproportionate share of initial searches.)

In the model of exploding o¤ers, prominence does not a¤ect a �rm�s incentive to adopt

exploding o¤ers if the utility density is monotonic. It can be understood by looking at

Figure 2 for the duopoly case. The decision about whether or not to use an exploding o¤er

only a¤ects a �rm�s demand from consumers who sample it �rst, and this demand e¤ect is

positive (negative) if the density is increasing (decreasing), independent of the proportion

of such consumers. However, prominence does a¤ect the equilibrium price when exploding

o¤ers prevail. Intuitively, �rms placed earlier positions in the consumer search order should

have incentive to charge lower prices than their rivals. This is because consumers who face

exploding o¤ers are more choosy at the start of their search process, and so the demand

faced by prominent �rms is more price elastic.36 This result is akin to the prominence

model with free recall analyzed in Armstrong, Vickers, and Zhou (2009).

In the model of buy-now discounts, the situation is more complicated, because �rms

also care about the extra revenue generated by the high-price returning customers. In the

duopoly example analyzed in section 3.2, one can show numerically that when s = 0 the

prominent �rm�s buy-now discount decreases from 0:06 to 0:053 as its share of �rst-time

visitors increases from 50% to 100%, while the less prominent �rm�s buy-now discount

increases from 0:06 to 0:063. That is, the less prominent �rm will actually o¤er a deeper

buy-now discount than its rival.

More ornate schemes: In the buy-now discount model, sellers may be able to extract
more surplus from buyers by o¤ering them an additional option� namely, buyers can pay

a deposit d for the option to return and buy at a speci�ed price q.37 With this new

option, more consumers may opt to search on, and among the consumers who do search

36This implies that if consumers can choose their search orders freely, the no-recall model with ex ante

symmetric �rms also has asymmetric equilibria (in addition to the symmetric equilibrium discussed in

section 2.2) in which consumers sample a certain �rm �rst and this �rm then provides better deals.
37For example, some business schools demand a deposit from applicants who want to keep the admission

o¤er for a longer time. It is also sometimes used in business-to-business transactions.
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on, those having relatively high valuations of the �rst product will buy the deposit contract

while others having relatively low valuations will not since they rarely come back. In the

uniform-duopoly example, one can show that: (i) starting from the buy-now discount

equilibrium in section 3.2, each �rm has an incentive to introduce a deposit contract; (ii)

the purchase price in the deposit contract is even lower than the buy-now price (i.e., q < p)

but the consumers who buy the deposit contract and eventually come back pay more than

fresh consumers (i.e., d + q > p); (iii) with the new instrument �rms earn lower pro�t

in equilibrium. This extension could be extended further, so that �rms o¤er a menu of

deposit contracts (a bigger deposit would grant the right to come back and buy at a lower

price). Nevertheless, the informal and perhaps furtive nature of buy-now discounts will

often make the use of these ornate contracts implausible in practice.

Other forms of search-based discrimination: In this paper we assumed that �rms
can distinguish �rst-time from returning visitors. In some situations, �rms may be able

to distinguish more �nely between consumers, and can further identify whether a �rst-

time visitor has previously sampled other sellers or not. (For instance, an online �rm may

be able to track whether a consumer has previously paid it a visit and whether she has

already visited some rivals.) In the duopoly case, one can show that each �rm will charge

the same price to returning consumers and its �rst-time visitors who have sampled the

rival �rm �rst, and charge a lower price to the �rst-time visitors who sample it �rst. Thus,

in equilibrium a �rm discriminates equally against all consumers who have investigated the

rival seller, regardless of whether or not the consumer �rst sampled the rival.38

Consumers�incentives to conceal/reveal their search history: Notice that from an
ex ante perspective, in both of our models a consumer will be better o¤ if she can conceal

her identity as a returning consumer.39 Thus, if it is costless to pretend to be a new visitor

(e.g., by deleting cookies on your computer), all consumers will do this, and the market

will operate as a standard search market with uniform prices as in Wolinsky (1986). But

if there are some costs involved in concealing search history, or if some consumers do not

think to do so, there will remain an incentive to condition prices on observed search history.

Consumers may also have incentive to (selectively) reveal their search history. For

instance, they may want to force the current seller to o¤er a better deal by providing

hard information of a previous price o¤er (if this is possible).40 Investigating how such a

38See our previous working paper Armstrong and Zhou (2010) for more details.
39This is somewhat related to models of sequential bargaining. If one buyer is negotiating with a sequence

of sellers, then the buyer may gain from keeping the order (and the outcome) of negotiations secret from

sellers. Noe and Wang (2004) present such a model, and �nd that when the objects sold are complements

for the buyer, then the buyer obtains greater surplus if he randomizes and conceals the order in which he

approaches the sellers.
40In Daughety and Reinganum (1992), if a consumer makes contact with two sellers, she can force the
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possibility could a¤ect price competition and market performance is an interesting topic

for future investigation.

High-pressure selling to conceal information about match utility: A focus of

this paper has been on a seller�s strategic incentive to prevent a consumer from acquiring

information about rival o¤erings. By making it hard to return to a �rm, a consumer is

reluctant to go on to investigate other deals. An alternative form of high-pressure selling

is to force a potential customer to buy quickly, before she has had a chance to evaluate

the current product adequately. (This seems to be a reason for the sales techniques used

by time-share companies, for instance.) If a seller forces consumers to decide quickly (or

o¤ers a discount if they buy quickly), a consumer might have to decide whether or not to

purchase before she has worked out how much she actually wants the product. Without

accurate information about the realized match utility, suppose that a consumer bases her

purchase decision on the expected match utility, which is �u, say.

This setting can be analyzed within a monopoly framework (unlike our main model).

Suppose the monopolist has marginal cost c for supplying the product. If the seller gives the

consumer time to calculate her (privately observed) match utility u, the seller�s pro�t with

price p is (p� c)(1�F (p)), and the optimal price maximizes this expression. If instead the
seller forces the consumer to buy immediately or never knowing only her expected utility,

the seller can charge p = �u and obtain pro�t �u � c. Since �u > p(1 � F (p)) for all p, it
follows that the latter strategy is more pro�table whenever c is su¢ ciently close to zero.

By contrast, if c is su¢ ciently large (above �u, for instance), then the monopolist prefers to

give consumers enough time to understand the realized match utility.41

One can also consider a search version of this problem. Consider the Wolinsky model,

but suppose a consumer�s initial search is costless so that all consumers are willing to

participate in the market. When marginal production cost c is small enough, it turns out

to be an equilibrium for all �rms to force sales before the consumer discovers her utility

and to fully extract expected utility with the monopoly price p = �u. (Suppose all other

�rms do so. Then when a consumer arrives at a seller, she will never search further.

So the seller acts as a monopolist and, as we have seen, its most pro�table strategy is

then to force a quick sale to conceal match-speci�c information.42) Even with very small

search costs, then, all �rms engage in this form of high-pressure selling, with undesirable

results: consumers are left with no surplus; even low-u consumers buy, despite the costs

sellers to compete in Bertrand fashion and force her price down to marginal cost.
41For further details of the monopolist�s incentives to reveal or conceal match-speci�c information, see

Lewis and Sappington (1994). They show that the monopolist typically will choose to reveal all information

or none. Anderson and Renault (2009) discuss when a �rm wishes to disclose match-speci�c information

to consumers about a rival�s product.
42It is therefore clear that if c is large enough (above �u, say), this hihg-pressure selling equilibrium

cannot be sustained.
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of serving them, and consumers are randomly matched with sellers rather than buying the

most suitable product. Thus, even in a search market with di¤erentiated products as in

Wolinsky (1986), if �rms have the ability to conceal match-speci�c information by means

of high-pressure sales techniques they will often choose to do so, and the Diamond Paradox

emerges once again.

APPENDIX

Proof of Proposition 1: Part (i): Our proof consists of two steps. First, we show that
if the match utility density f is strictly increasing, then all �rms using exploding o¤ers is

an equilibrium. Second, we exclude the possibility that all �rms allowing free recall is also

an equilibrium.

The hypothesis is that all �rms choose to use exploding o¤ers and to set the price p

in (10). Suppose a deviating �rm chooses price ~p and allows free recall, while other �rms

follow the proposed equilibrium strategy. Suppose that the deviating �rm is in the kth
position of a consumer�s search process and k < n. (If k = n then allowing free recall or

not does not a¤ect the �rm�s demand.) Then the probability that this consumer will visit

the �rm is still hk in (8), since consumers hold equilibrium beliefs. However, her incentive

to search beyond the �rm is now altered. Since she can return to this �rm whenever she

wants, she becomes more willing to continue searching. If at the deviating �rm she �nds

utility u such that u� ~p � 0, she will never buy from the �rm (either immediately or later).
So consider the situation where u � ~p > 0. Then if she leaves the deviating �rm, she will
enter a no-recall search market with n � k products each being sold at price p, but now
with an outside option u� ~p. To calculate the consumer�s stopping rule in this situation,
we need to calculate her expected surplus from entering such a search market.

Denote by Wm(z) the expected surplus from a no-recall search market with m unsam-

pled products with price p and outside option z � 0. It is di¢ cult to derive an explicit

expression for Wm(z), and instead we use an indirect method.43 Let rm(z) be the proba-

bility that the consumer will eventually consume the outside option. By standard envelope

reasoning we have the following result.44

Claim 1 Wm(z) is convex and W 0
m(z) = rm(z) almost everywhere.

43By contrast, it is straightforward to derive an explicit expression for consumer surplus in the case of

free recall� see expression (30) below.
44A sketch of a proof goes as follows. Let �m be the set of all possible stopping rules in the no-recall

search market with m products and outside option z. If the consumer uses � 2 �m, her expected surplus
is zR(�) + U(�), where R(�) is the probability that the consumer will opt for z given the stopping rule

�, and U(�) is the surplus from buying other products (including the expected search costs). Thus,

Wm(z) = max�2�m [zR(�) + U(�)] and rm(z) = R(�(z)), where �(z) is the optimal stopping rule given z.

Wm(z) is convex since the objective function is linear in z, and its derivative is rm(z) almost everywhere.
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Notice thatWm(0), the expected surplus from a no-recall search market with a zero outside

option, is just am � p. Thus, we have

Wm(z) = am � p+
Z z

0

rm(x)dx :

Since 0 < rm(z) � 1, Wm(z) is an increasing function with slope no greater than one. In

addition, since the consumer can always consume the outside option without searching at

all, we have Wm(z) � z. In particular, for a su¢ ciently large z (e.g., z � umax � p), the
consumer will consume the outside option immediately, so Wm(z) = z. Hence, we can

deduce that Wm(z) = z and rm(z) = 1 for z � zm, where zm = inffz : Wm(z) = zg and
zm 2 (am � p; umax � p). For z < zm, the consumer will search and so rm(z) < 1.
When the deviating �rm occupies the kth position in a consumer�s search order, the

consumer will buy from it immediately if and only if u�~p � Wn�k(u�~p), i.e., if u�~p � zn�k,
where zn�k, according to its de�nition, satis�es

zn�k = an�k � p+
Z zn�k

0

rn�k(x)dx : (26)

Thus, the �rm�s demand when it is in the kth position, charges price ~p and permits free

return, is

hk

�
1� F (zn�k + ~p) +

Z zn�k+~p

~p

rn�k(u� ~p)f(u)du
�

= hk

�
1� F (zn�k + ~p) +

Z zn�k

0

rn�k(u)f(u+ ~p)du

�
; (27)

where the equality follows after changing variables in the integral. Compared to the demand

generated with an exploding o¤er given in (9), it now has reduced immediate demand since

zn�k > an�k � p, but has positive returning demand comprised of the integral term.

Claim 2 Demand in (27) is smaller than that in (9) if f is strictly increasing.

Proof. We need to showZ zn�k

0

rn�k(u)f(u+ ~p)du < F (zn�k + ~p)� F (an�k � p+ ~p) : (28)

De�ne

�(u) � zn�k + ~p�
Z zn�k

u

rn�k(x)dx :

Note that �0(u) = rn�k(u), �(zn�k) = zn�k + ~p, and �(0) = an�k � p + ~p (which follows
from (26)). Then the right-hand side of (28) can be written asZ zn�k

0

rn�k(u)f(�(u))du :
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Since �(u) > u + ~p (because rn�k(x) < 1 for x < zn�k), expression (28) holds if f is an

increasing function.

Therefore, for any price ~p, unilaterally allowing free recall causes the deviating �rm�s

demand (and hence pro�t) to fall when f is increasing. (This is true regardless of the �rm�s

position in a consumer�s search order, except when it is in the �nal position in which case

the use of exploding o¤ers makes no di¤erence to the �rm�s demand.) It follows that an

equilibrium in which all �rms use exploding o¤ers exists.

The second step is to exclude the possibility of a free-recall equilibrium when f is

strictly increasing. We show that, starting from the hypothetical free-recall equilibrium

with price p0, each �rm has a unilateral incentive to use an exploding o¤er no matter what

position it is in the consumer�s search process (except when it is in the �nal position).

As in expression (4), a �rm�s demand, if it is in the kth position of the consumer�s search

process with k < n, is

F (a)k�1[1� F (a)] +
Z a

p0

F (u)n�1f(u)du : (29)

The �rst term is demand when the consumer buys the �rm�s product immediately, and the

second term is demand when the consumer �rst leaves the �rm but eventually comes back.

Suppose now that the �rm unilaterally uses an exploding o¤er but still charges the price p0.

(We will show the �rm�s pro�ts increase with this deviation, and hence the hypothetical

equilibrium is not valid. The �rm�s pro�ts would increase still further if it altered its price

as well.) De�ne � � maxf0; u1� p0; � � � ; uk�1� p0g. Then the consumer will visit the �rm
if and only if � < a�p0. If she �nds match utility u at the �rm, she will buy (immediately)
if u� p0 is greater than the expected surplus from searching further.

Denote by Vm (z) the expected surplus from participating in a free-recall search market

with m products o¤ered at price p0 and an outside option z < a� p0. Then45

Vm (z) = z +

Z a

z+p0

[1� F (u)m]du : (30)

One can check that z � Vm (z) < a� p0.
45The consumer will stop searching before she runs out of options if and only if she �nds a product with

match utility greater than a. (This is true regardless of z provided that z < a� p0.) Her expected surplus
is therefore

Vm (z) = [1� F (a)m] � [E (uju � a)� p0] + Pr (u� < a) � E [maxfu� � p0; zgju� < a]� sT;

where u� = maxfu1; � � � ; umg and T = [1� F (a)m] = [1� F (a)] is the expected number of searches. The
�rst term is the surplus when the consumer ends up buying a product with match utility higher than

a, and the second term is the surplus when she ends up sampling all �rms. From the de�nition of the

reservation utility a in (3), we have s = [1� F (a)] [E (uju � a)� a]. Substituting this into Vm(z) yields
the formula.
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The consumer will buy from �rm i if and only if u � p0 � Vn�k(�). Here, � is the

consumer�s outside option if the consumer leaves the �rm and continues searching (since

the �rm is using an exploding o¤er). The c.d.f. of � de�ned on [0; umax � p0] is G(�) �
F (�+p0)

k�1, which has a mass point at zero. Therefore, the deviating �rm�s demand when

it is in the kth position is

Pr (� < a� p0 and u� p0 > Vn�k(�)) (31)

= G(0)[1� F (p0 + Vn�k(0))] +
Z a�p0

0

[1� F (p0 + Vn�k(�))]
dG(�)

d�
d�

= F (a)k�1[1� F (p0 + Vn�k(a� p0))] +
Z a

p0

f(p0 + Vn�k(x� p0))V 0n�k(x� p0)F (x)k�1dx ;

where the second equality follows after integrating by parts and changing the integral

variable. According to the de�nition of Vm(�) in (30), we have Vn�k(a� p0) = a� p0 and

Vn�k(x� p0) = x� p0 +
Z a

x

[1� F (u)n�k]du ; V 0n�k(x� p0) = F (x)n�k :

Substituting these into (31) shows that the �rm�s demand is

F (a)k�1[1� F (a)] +
Z a

p0

F (x)n�1f

�
a�

Z a

x

F (u)n�kdu

�
dx : (32)

Since a �
R a
x
F (u)n�kdu > x for x < a, one can see that if f is strictly increasing

(we actually only need f to be strictly increasing on [p0; a]), demand in (32) is strictly

greater than demand in (29). Therefore, the �rm does have an incentive to deviate from

the supposed free-recall equilibrium. This completes the proof of part (i). Parts (ii) and

(iii) can be proved in a similar manner.

Proof of Proposition 2: We will show that a �rm has an incentive to introduce a small

buy-later premium, and then invoke Lemma 1 to show that the �rm also has an incentive to

o¤er a small buy-now discount. Compared to the duopoly case analyzed in the main text,

the additional analysis needed for the general n-�rm case involves the extra complexity of a

consumer�s stopping rule. In particular, the consumer�s stopping rule at a �rm which o¤ers

a buy-later premium will depend on the history of o¤ers she sees before she encounters the

�rm, and this feature is absent in the duopoly analysis.

Let p0 be the price in the free-recall equilibrium de�ned by (5). Assumption (2) implies

that p0 < a. We �rst consider this hypothetical search problem:

A search problem: Suppose the consumer encounters �rm i �rst, and is o¤ered match

utility ui, the buy-now price p0, and a buy-later premium � > 0 (so the buy-later

price at �rm i is p̂ = p0+ � .) Suppose she expects that all m remaining �rms charge

price p0 < a and allow free recall, and suppose the consumer has an outside option

� < a� p0. What is her optimal stopping rule at �rm i?
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It is clear that (a) if ui � a, the consumer will surely stop searching and buy at �rm
i immediately (this is even true when � = 0); and (b) if ui � p0 � �, then �rm i�s o¤er

is dominated by the outside option and the consumer will not buy from the �rm (either

immediately or later), and she will keep searching since � < a� p0.
Now consider the intermediate case with ui � p0 2 (�; a � p0). If the consumer buys

immediately at �rm i, her payo¤ is ui � p0. If she leaves �rm i, she will begin a free-recall

search process with m �rms and an outside option

z = maxf�; ui � p̂g < a� p0 :

(Recall she will pay the higher price p̂ > p0 if she returns to buy from �rm i.) As before,

the expected surplus Vm(z) from entering this search market is given by (30). Given �, z

is a function of ui and we can therefore regard Vm(z) as a function of ui: it is �at until

ui reaches � + p̂ and then increases with ui with slope less than one. (Note that we are

considering the case with ui < a, so the slope cannot be equal to one.) Recall from (30)

that for z < a� p0, z < Vm(z) < a� p0.
Clearly, the consumer will buy immediately from �rm i if and only if

ui � p0 � Vm(maxf�; ui � p̂g) : (33)

Given the properties of Vm(�), the equality of (33) has a unique solution am(�) 2 (�+p0; a).
We conclude that the consumer will buy immediately from �rm i if and only if ui � am(�).
There are then two cases, depending on the size of the premium � :

(i) If ui � p0 crosses Vm(z) at the �at portion, which occurs when � + p̂ � p0 > Vm(�)
or � > Vm(�)� �, then

am(�) = p0 + Vm(�) ; (34)

which does not depend on � . In this case, the consumer will never return to �rm i once

she leaves because ui � p̂ is dominated by �. Therefore, � is so large that �rm i has no

returning demand.

(ii) If ui� p crosses Vm(z) at the increasing portion, which occurs when � � Vm(�)� �,
then am(�) is implicitly determined by am(�)� p0 = Vm(am(�)� p0 � �), which from (30)

implies am(�) satis�es

� =

Z a

am(�)��
[1� F (u)m]du ; (35)

which does not depend on p0 or �. In particular, am(0) = a. Expression (35) is the

generalization beyond duopoly of our earlier formula (14). In this case, the consumer will

initially reject �rm i�s o¤er if ui < am(�), but will come back to the �rm after sampling the

remaining m �rms if ui� p̂ > max1�j�mf�; uj�p0g.46 Note that the assumption � < a�p0
implies that Vm(�)� � > 0, and so case (ii) is relevant for all su¢ ciently small � > 0.
In sum, we deduce the following result:

46Note that once the consumer leaves �rm i, she has the outside option z < a� p0 and so she will never
come back before sampling all the remaining m �rms.
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Claim 3 In this hypothetical search problem, the consumer will buy from �rm i imme-

diately if and only if ui � am(�), where am(�) is de�ned in (34) if � > Vm(�) � � and
otherwise am(�) is de�ned in (35).

Finally, since Vm(�)� � is decreasing in �, the condition � > Vm(�)� � is equivalent to
� 2 (�� ; a� p0), where �� solves

� = Vm(�� )� �� =
Z a

��+p0

[1� F (u)m]du (36)

if � < Vm(0), and �� = 0 otherwise. In particular, Vm(�0) = �0 = a� p0.

We now prove Proposition 2. Starting from the free-recall equilibrium with price p0,

suppose �rm i unilaterally introduces a returning purchase premium � > 0 but keeps the

buy-now price unchanged at p0. Suppose �rm i happens to be in the kth position of the

consumer�s search process. If k = n, then � has no impact on �rm i�s pro�t. In the

following, we show that for any k < n, introducing a small premium � > 0 is pro�table for

the �rm.

As in the proof of Proposition 1, let � � maxf0; u1�p0; � � � ; uk�1�p0g be the best o¤er
from the previous k � 1 �rms. A consumer will visit �rm i if � < a� p0. If the consumer
arrives at �rm i and discovers match utility ui and the buy-later premium � (but still

holds the equilibrium belief about the remaining n�k �rms�policies), she faces the search
problem we have just analyzed with m = n� k, and her stopping rule will depend on her
best previous o¤er �. Let us focus on a relatively small � such that � < Vn�k(0) and de�ne

�� as in (36) with m = n � k. Then if � 2 (�� ; a � p0), the reservation utility according
to (34) is an�k(�) = p0 + Vn�k(�). In this case, the consumer will buy immediately if

ui � an�k(�), and otherwise she will keep searching and never come back. Alternatively, if
� � �� the reservation utility an�k(�) is as given in (35) with m = n� k. In this case, even
if the consumer leaves �rm i �rst (i.e., if ui < an�k(�)), she will eventually come back after

sampling all remaining �rms if ui � p0 � � is greater than their o¤ered surplus and the
outside option � which represents the best o¤er among the previous k�1 �rms. Explicitly,
�rm i�s returning demand in this case is

Pr(max
j>k

f�; uj � p0g < ui � p0 � � < an�k(�)� p0 � �)

=

Z an�k(�)

p0+�

F (ui � �)n�1dF (ui) =
Z an�k(�)��

p0

F (u)f(u+ �)du :

(Note � is also a random variable with c.d.f. G(�) = F (� + p0)
k�1, and the second step

follows after changing the integral variable.) Therefore, �rm i�s pro�t if it is in the kth
search position and charges the buy-later premium � is

p0

Z a�p0

��

[1� F (p0 + Vn�k(�))] dG(�) + p0G(�� )[1� F (an�k(�))]
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+ (p0 + �)

Z an�k(�)��

p0

F (u)n�1f(u+ �)du : (37)

Note from (35) that

(1� a0n�k(0))(1� F (a)n�k) = 1 : (38)

By using the observations Vn�k(�0) = �0 = a� p0 and (38), the derivative with respect to
� of �rm i�s pro�t in (37) when it is in the kth position (with k < n), evaluated at � = 0, isZ a

p0

F (u)n�1[f(u) + p0f
0(u)]du ; (39)

which generalizes the duopoly expression (17). Here,
R a
p0
F n�1fdu is the extra revenue

generated from the returning customers, while
R a
p0
F n�1f 0du is the extra demand generated

by increasing the cost of return. That (39) is positive when p0 >
1�F (a)
f(a)

follows the

argument given in the main text for duopoly. Since (39) is positive (and the same) for all

k < n, the proof is complete.
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