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Abstract

We add arbitraging middlemen–investors who attempt to profit from buy-

ing low and selling high–to a canonical housing market search model. Not

surprisingly, in a slack market in which it is difficult to sell, the opportunities

offered to mismatched homeowners to quickly dispose of their old houses by

these middlemen are particularly welcome. Less obvious is that the same op-

portunities are similarly welcome in a tight market in which houses can be sold

quickly even without the aid of these intermediaries. To follow is the possibil-

ity of multiple equilibrium In one equilibrium, most, if not all, transactions

are intermediated, resulting in rapid turnover, a high vacancy rate, and high

housing prices. In another equilibrium, few houses are bought and sold by mid-

dlemen. Turnover is sluggish, few houses are vacant, and prices are moderate.

The housing market can then be intrinsically unstable even when all flippers

are of the liquidity-providing variety in classical finance theory.
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1 Introduction

In many housing markets, the purchases of owner-occupied houses by individuals

who attempt to profit from buying low and selling high rather than for occupa-

tion are commonplace. For a long time, anecdotal evidence abounds as to how the

presence of these investors, who are popularly known as flippers in the U.S., in the

housing market can be widespread.1 More recently, empirical studies have began to

systematically document the extent to which transactions in the housing market are

motivated by buying and selling for short-term gains and how these activities are

correlated with the housing price cycle. Notable contributions include Haughwout

et al. (2011), Depken et al. (2009), and Bayer et al. (2011).2 A common theme in

the discussion is that housing market flippers can be of two types–the trend-chasing

speculators versus the arbitraging middlemen. Whereas the speculators, as noise

traders, inevitably destabilize the market, the middlemen, as liquidity providers in

classical finance theory, help improve market efficiency. But is such a simple and

clear-cut dichotomy warranted? To the extent that the sales and purchases of houses

by flippers, arbitraging middlemen or otherwise, add to market demand and supply,

it is not inconceivable that the entry and exit of these investors into and out of the

housing market can be a source of volatility. Moreover, any efficiency improvement

brought by arbitraging middlemen must be offset by the losses would-be buyers suffer

when facing the higher market price in a more fluid market.

In this paper, we study a housing market search model along the lines of Arnold

(1989) and Wheaton (1990) in which houses are demanded by flippers in addition to

end-user households. The flippers are of the liquidity-providing variety in classical

finance theory. A role for these agents exists because ordinary households are assumed

liquidity constrained to the extent that each cannot hold more than one house at a

time. In this case, a household which desires to move because the old house is no

longer a good match must first sell it before the household can buy up a new house.

In a buyer’s market–a market in which sellers outnumber buyers by a significant

margin–the wait can be lengthy. This opens up profitable opportunities for the

flippers to just buy up the mismatched house at a discount in return for the time

spent waiting for the eventual end-user buyer to arrive on behalf of the original owner.

1Out of the five transactions in a large developement in Hong Kong in August 2010, three were

reported to involve investors who buy in anticipation of short-term gains (September 10, 2010, Hong

Kong Economic Times). According to one industry insider, among all buyers of a new develop-

ment in Hong Kong recently, only about 60% are buying for own occupation (November 20, 2010,

Wenweipo).
2Haughwout et al. (2011) report that at the peak of housing price cycle in the U.S. in 2006, up

to 45% of new purchase mortgages in the “bubble states” are taken out by individuals having two

or more first-lien mortgages. Around the same period of time, Depken et al. (2009) find that 25%

of housing market transactions are for houses sold again within the first two years of purchase in

the Las Vegas metropolitian area. Bayer et al. (2011) report a much smaller percentage of such

purchases, however, at about 4%, for their sample comprising transactions in five counties in the

LA area.
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This is the usual reason for why flippers can improve market liquidity. The novelty

in our analysis is that we find that mismatched homeowners could similarly prefer

to sell quickly to flippers in a seller’s market to capitalize on the high prices in such

a market sooner. In either case, transaction volumes, vacancies, and housing prices

all increase with the extent of flippers’ presence in the market, whereas the average

Time-On-the-Market (TOM) declines in the interim.

Because flippers can survive in both slack and tight markets, multiple equilibrium

is a distinct possibility in our model. With a multiplicity of equilibrium, wide swings

in prices and transactions can happen without any underlying changes in technology,

preference, and interest rate. Moreover, in our model, the market penetration of

flippers can be rather sensitive to small interest rate shocks. In this case, a given

interest rate shock will have an indirect impact on housing prices through its influence

on the entry and exit of flippers, in addition to the usual direct effect of interest rates

on asset prices. Then, a housing market populated by liquidity-providing middlemen

can be prone to a substantial amount of volatility. In all, the presence of these agents

in the housing market can be a double-edged sword. On the one hand, the flippers

may help improve liquidity. On the other hand, when the extent of their presence

can be fickle, the housing market can become more volatile as a result.

It would be foolhardy to suggest that the volatility arising from the activities of

liquidity-providing middlemen in our analysis is an important source of the housing

market bubble in the U.S. in the early- to mid-2000s. Perhaps the trend-chasing

speculators have played a significantly more decisive role. In any case, we should

emphasize that our model is not meant to be a candidate explanation for any episodes

of housing market bubble in the U.S. and beyond. Nevertheless, our quantitative

analysis indicates that housing prices can differ by up to 23 percent across steady-

state equilibria and vary by 26 percent in response to a seemingly unimportant interest

rate shock when the model is calibrated to the several observable characteristics of

the U.S. housing market. Amid this substantial price difference, welfare differs much

less across the steady-state equilibria. Aggregate welfare in a “fully-intermediated”

equilibrium is at most 7 percent higher than in a “no-intermediation” equilibrium.

That any welfare increase from intermediation may be modest is because the increase

is bounded by the losses would-be buyers suffer in a more active and higher-priced

market.

Our model has a number of readily testable implications. First, it trivially pre-

dicts a positive cross-section relation between housing prices and TOM–mismatched

homeowners can either sell to flippers at a discount or to wait for a better offer from

an end-user buyer to arrive–which agrees with the evidence reported in Merlo and

Ortalo-Magne (2004), Leung et al. (2002) and Genesove and Mayer (1997), among

others.3

3Albrecht et al. (2007) emphasize another aspect of the results reported in Merlo and Ortalo-

Magne (2004), which is that downward price revisions are increasingly likely when a house spends

more and more time on the market.
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An important goal of the recent housing market search and matching literature is

to understand the positive time-series correlation between housing prices and trans-

action volumes and the negative correlation between the two and average TOM.4 In

Kranier (2001), for instance, a positive but temporary preference shock can give rise

to higher prices and a greater volume of transaction, whereas Diaz and Jerez’s (2009)

analysis implies that an adverse shock to construction will shorten TOM, and may

possibly lead to higher prices and a greater volume of transaction. The paper by Ngai

and Tenreyro (2010) focuses on the co-movement in prices and sales over the seasonal

cycle and they argue that increasing returns in the matching technology play a key

role in generating such cycles.

In our model, across steady-state equilibria, a positive relation between prices and

transaction volumes and a negative relation between the two and average TOM also

hold—in an equilibrium in which more houses are sold to flippers, prices and sales both

increase, whereas houses on average stay on the market for a shorter period of time.

In the meantime, in our model, vacancies tend to increase together with prices and

transaction volumes if the increase in transaction volume is due to more houses sold

to flippers, who may then just leave them vacant for the time it takes for the end-user

buyers to arrive. In contrast, in both the Kranier and the Diaz and Jerez’s model, the

increase in sales should be accompanied by a decline in vacancy–given that when a

house is sold, it is sold to an end-user, who will immediately occupy it, vacancies must

decline, or at least remain unchanged. In Ngai and Tenreyro’s model, households are

assumed to move out of their old houses and into rental housing immediately when

they become mismatched. Then, any and all houses on the market are vacant houses

and given the assumed increasing-returns-to-scale matching technology, vacancies rise

and fall with prices and transactions in the seasonal cycle. A mismatched household

in their model, however, could well have stayed in the old house and avoided rental

housing and the payment thereof until it has successfully sold the old house. In this

alternative setup, the stock of vacant houses only includes houses held by people who

have bought new houses before they manage to sell their old ones. Then, it is no

longer clear that vacancies must rise and fall with prices and sales in the seasonal

cycle of Ngai and Tenreyro.

Figure 1 depicts the familiar positive housing price-transaction volume correlation

for the U.S. for the 1981Q1 to 2011Q3 time period.5 The usual housing market

4Stein (1995), who explains how the down-payment requirement plays a crucial role in amplifying

shocks, is an early non-search-theoretic explanation for the positive relation between prices and sales.

Hort (2000) and Leung et al. (2003), among others, provide recent evidence. Kwok and Tse (2006)

show that the same relation holds in the cross section.
5Housing Price is defined as the nominal house price, which is the transaction-based house price

index from OFHEO (http://www.fhfa.gov), divided by the CPI, from the Federal Reserve Bank at

St. Louis. We set Housing Price at 1981Q1 equal to 100. Transaction is measured by the quarterly

sales in single-family homes, apartment condos, and co-ops, normed by the stock of such units. The

sales data are from the Real Estate Outlook by the National Assoication of Realtors, complied by

Moody’s Analytics. The housing stock is defined as the sum of owner-occupied units and vacant
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Figure 1: Price and Transactions

search model predicts that vacancies should decline in the housing market boom

in the late-1990s to the mid-2000s and rise thereafter when the market collapses

around 2007. Figures 2 and 3, however, show that any decline in vacancy is not

apparent in the boom.6 In fact, if there is any co-movement between vacancies on

the one hand and prices and transactions on the other hand in the run-up to the

peak of the housing market boom in 2006, vacancies appear to have risen along with

prices and transactions. In a literal interpretation of our model, vacancies should fall

very significantly to follow the market collapse since 2007. The decline in vacancy in

Figures 2 and 3 since the market collapse is modest, however, compared to the increase

in the boom years. Two forces absent in our analysis—the massive amount of bank

foreclosures and unsold new constructions in the market bust—may have accounted

for the slow decline in vacancy since 2007.

Insofar as the flippers in our model act as middlemen between the original home-

owners and the eventual end-user buyers, this paper contributes to the literature on

middlemen in search and matching pioneered by Rubinstein and Wolinsky (1987).

Previously, it was argued that middlemen could survive by developing reputations as

sellers of high quality goods (Li, 1998), by holding a large inventory of differentiated

and for-sale-only units. The data are from the Bureau of Census’s CPS/HVS Series H-111 available

at http://www.census.gov/housing/hvs/data/histtabs.html.
6Vacancy rate is obtained by dividing the number of vacant and for-sale-only housing units by

the housing stock as defined in the prevous note.
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Figure 2: Price and Vacancy

Figure 3: Transactions and Vacancy
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products to make shopping less costly for others (Johri and Leach, 2002; Shevchenko,

2004; Smith, 2004), by raising the matching rate in case matching is subject to in-

creasing returns (Masters, 2007), and by lowering distance-related trade costs for

others (Tse, 2011). This paper studies the role of middlemen in the provision of

market liquidity.

A simple model of housing market flippers as middlemen is also in Bayer et al.

(2011). The model though is partial equilibrium in nature and cannot be used to

answer many of the questions we ask in this paper. Intermediaries who serve to

improve liquidity in the housing market are also present in the model of the interaction

of the frictional housing and labor markets of Head and Lloyd-Ellis (2012), which is

fully general equilibrium in nature. Analyzes of how middlemen may serve to improve

liquidity in a search market also include Gavazza (2012) and Lagos et al. (2011).

However, none of these studies allows end-user households a choice of whether to

deal with the middlemen and for the multiplicity of equilibrium and how the market

share of these middlemen may vary across the equilibria. Multiple equilibrium in a

search and matching model with middlemen can also exist in Watanabe (2010). The

multiplicity in that model, however, is due to the assumption that the intermediation

technology is subject to increasing returns to scale. Moreover, only one of the two

steady-state equilibria in that model is stable, whereas there can be two stable steady-

state equilibria in our model.

The next section presents the model. Section 3 contains the detailed analysis.

Section 4 takes a more systematic look at the patterns shown in Figures 1-3 with

reference to the model’s implications. In Section 5, we calibrate the model to several

observable characteristics of the U.S. housing market to assess the amount of volatility

that the model can generate. Our model, interpreted literally, is a model of buy-and-

sell flips. In Section 6, we conclude by arguing that the model, conceptually, can

also encompass buy-renovate-sell flips. All proofs are relegated to the Appendix. For

brevity, we restrict attention to analyzing steady-state equilibria in this paper. A

companion technical note (Leung and Tse, 2013) covers the analysis of the dynamics

for the special case in which all agents possess the same bargaining power.7

2 Model

2.1 Basics

The model housing market is populated by a continuum of measure one risk-neutral

households, each of whom discounts the future at the same rate rH . There are two

types of housing in the market: owner-occupied, the supply of which is perfectly

inelastic at H < 1 and rental, which is supplied perfectly elastically for a rental

payment of q per time unit. A household staying in a matched owner-occupied house

7Not for publication, available for download in http://www.sef.hku.hk/~tsechung/index.htm
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enjoys a flow utility of υ > 0, whereas a household either in a mismatched house or in

rental housing none. A household-house match breaks up exogenously at a Poisson

arrival rate δ, after which the household may continue to stay in the house but it

no longer enjoys the flow utility υ. In the meantime, the household may choose to

sell the old house and search out a new match. An important assumption is that

households are liquidity constrained to the extent that each can hold no more than

one house at a time. Then a mismatched homeowner must first sell the old house

before she can buy a new one. The qualitative nature of our results should hold as

long as there is a limit, not necessarily one, on the number of houses a household can

own at a time. The one-house-limit assumption simplifies considerably.

The search market The flow of matches in the search market is governed by a

concave and CRS matching function M (B,S), where B and S denote, respectively,

the measures of buyers and sellers in the market. Let θ = B/S denote market

tightness. Then, the rate at which a seller finds a buyer is

η =
M (B,S)

S
=M (θ, 1) ,

whereas the buyer’s matching rate is μ = η/θ. Given thatM is increasing and concave

in B and S,
∂η

∂θ
> 0,

∂μ

∂θ
< 0.

We impose the usual regularity conditions on M to ensure that

lim
θ→0

η = lim
θ→∞

μ = 0, lim
θ→∞

η = lim
θ→0

μ =∞.

Prices in the search market fall out of the Nash bargaining between pairs of matched

buyers and sellers.

The Walrasian investment market Instead of waiting out a buyer to arrive in

the search market, a mismatched homeowner may sell her old house right away in a

Walrasian market populated by specialist investors–agents who do not live in the

houses they have bought but rather attempt to profit from buying low and selling

high. Because homogeneous flippers do not gain by selling and buying houses to and

from one another, the risk-neutral flippers may only sell in the end-user search market

and will succeed in doing so at the same rate η that any household-seller does in the

market. We allow for flippers to discount the future at a possibly different rate rF
than the households in the city. In the competitive investment market, prices adjust

to eliminate any excess returns on real estate investment.

We recognize that the assumption of a Walrasian investment market seemingly

completely contradicts the motivations for applying the search and matching frame-

work to the study of the housing market. What is needed in the analysis, however,
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is not an investment market altogether free of search frictions of any kind, but only

one in which the frictions are less severe than in the end-user market.8 If flippers

are entirely motivated by arbitrage considerations and do not care if the houses to

be purchased are good matches for their own occupation, search should not a par-

ticularly serious problem. In reality, we imagine that households who intend to sell

quickly and are willing to accept a lower price will convey their intentions to real

estate agents, who in turn will alert any specialist investors the availability of such

deals. The competition among flippers should then bid prices up to just eliminate

any excess returns on investment. A Walrasian market assumption captures the favor

of such arrangements in the simplest possible manner.

2.2 Accounting identities and housing market flows

Accounting identities At any one time, a household can either be staying in a

matched house, in a mismatched house, or in rental housing. Let nM , nU , and nR
denote the measures of households in the respective states. Given a unit mass of

households in the market,

nM + nU + nR = 1. (1)

Each owner-occupied house must be held either by an ordinary household or by a

flipper. Hence,

nM + nU + nF = H, (2)

where nF denotes both the measures of active flippers and houses held by these

individuals.

If each household can hold no more than one house at any moment, the only

buyers in the search market are households in rental housing; i.e.,

B = nR. (3)

On the other hand, sellers in the search market include mismatched homeowners and

flippers, so that

S = nU + nF . (4)

Housing market flows In each unit of time, the inflows into matched owner-

occupied housing are comprised of the successful buyers among all households in rental

housing (μnR), whereas the outflows are comprised of those who become mismatched

in the interim (δnM). In the steady state,

μnR = δnM . (5)

Households’ whose matches just break up may choose to sell their old houses right

away to flippers in the investment market or to wait out a buyer to arrive in the

8Let’s say, for example, the meetings in the investment market are given by another CRS matching

function MF (B,S), whereby MF (B,S) > M (B,S) for any {B,S} pair.
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search market. Let α denote the fraction of mismatched households who choose to

sell in the investment market and 1− α the fraction who choose to sell in the search

market. In each time unit then, the measure of mismatched homeowners selling in

the search market increases by (1− α) δnM , whereas the exits are comprised of the

successful sellers (ηnU) in the meantime. In the steady state,

(1− α) δnM = ηnU . (6)

Households moving into rental housing are mismatched households who just sell their

properties to flippers (αδnM) and to end users (ηnU), respectively. The exits are

comprised of the successful buyers among all households in rental housing (μnR). In

the steady state,

αδnM + ηnU = μnR, (7)

In each time unit, the measure of houses held by flippers increases by the measure of

houses recently mismatched households decide to dispose right away in the investment

market (αδnM) and declines by the measure of houses flippers manage to sell to end-

users (ηnF ). In the steady state,
9

αδnM = ηnF . (8)

2.3 Flippers’ market share, market tightness, and turnovers

Since houses bought by flippers will next be put up for sale in the search market,

when more houses are bought by flippers, the search market should be increasingly

dominated by these agents.

Lemma 1 In the steady state,

nF

nU + nF
= α;

i.e., the fraction of houses held by flippers among all houses offered for sale in the

search market is equal to the fraction of mismatched homeowners selling to flippers

in the first place.

Equations (1)-(8), for the turnovers of houses and households, can be combined

to yield a single equation,

δ + η (1−H)− (1− α+ θ)Hδ = 0, (9)

in θ and α.10

9Where (1) and (2) are two equations in four unknowns, once any two of the four variables are

given, the other two are uniquely determined. In this connection, it is straightforward to verify that

only two of the four steady-state flow equations (5)-(8) constitute independent restrictions.
10See the proof of Lemma 2 in the Appendix for the derivation of the equation.
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Lemma 2 An implicit function θ = θT (α), for α ∈ [0, 1], defined by (9), is

guaranteed single-valued, and that ∂θT/∂α > 0. Both the lower and upper bounds,

given by, respectively, θT (0) and θT (1), are strictly positive and finite. Furthermore,

θT (1) > 1/H > 1.

A priori, it seems clear that when no houses are sold to flippers (α = 0), nF must

equal zero in the steady state. On the other hand, when all mismatched houses are

sold to flippers in the first instance (α = 1), nU , in the steady state, should just

be equal to zero. And then in general, as α increases from 0 toward 1, nF should

increase along, whereas nU should decline in the meantime. Lemma 3 confirms these

intuitions.

Lemma 3

a. At α = 0,

nF = 0, nR = 1−H, nM = H − nU ,
whereas nU is given by the solution to (61) in the Appendix.

b. As α increases from 0 toward 1,

∂nF

∂α
> 0,

∂nR

∂α
> 0,

∂nM

∂α
> 0, whereas

∂nU

∂α
< 0.

c. At α = 1,

nU = 0, nR = 1−H + nF , nM = H − nF ,
whereas nF is given by the solution to (62) in the Appendix.

What is less obvious in the Lemma is that, besides nF , both nR and nM also

increase along with α. The first relation follows from the fact that if both the popula-

tion of households and the housing stock are given, a unit increase in the measure of

houses held by flippers must be matched by a unit decline in the measure of houses

occupied by ordinary households. To follow then is the same unit increase in the

population of these households in rental housing. For the second relation, at a larger

α, fewer households spend any time at all selling their old houses in the search market

before initiating search for a new match. In the meantime, the increase in θ (Lemma

2), through lowering μ, lengthens the time a household spends on average in rental

housing before a new match can be found. By Lemma 3(b), the first effect dominates,

so that more households are in matched owner-occupied housing in the steady state.

Now, if ∂nR/∂α > 0 and given that B = nR, there will be more buyers in the

search market to follow an increase in α. Second, if ∂nM/∂α > 0 and given that
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S = nU + nF = H − nM by (2), there will be fewer sellers in the market in the

meantime. With more buyers and fewer sellers, market tightness,

θ =
B

S
=

nR

nU + nF
,

can only increase when more transactions are intermediated by flippers. These ten-

dencies, of course, are the forces behind the comparative statics in Lemma 2.

In the model housing market, the entire stock of vacant house is comprised of

houses held by flippers. With a given housing stock, the vacancy rate is simply equal

to nF/H. A direct corollary of Lemma 3(b) is that:

Lemma 4 In the steady state, the vacancy rate for owner-occupied houses is increas-

ing in α.

Housing market transactions per time unit in the model are comprised of (i) αδnM
houses sold from households to flippers, (ii) ηnF houses flippers sell to households,

and (iii) ηnU houses sold by one household to another, adding up to an aggregate

transaction volume,

TV = αδnM + ηnF + ηnU . (10)

Lemma 5 In the steady state, TV is increasing in α.

The usual measure of turnover in the housing market is the time it takes for a

house to be sold, what is known as Time-On-the-Market (TOM). Given that houses

sold in the investment market are on the market for a vanishingly small time interval

and houses sold in the search market for a length of time equal to 1/η on average, we

may define the model’s average TOM as

αδnM

TV
× 0 + ηnF + ηnU

TV
× 1

η
. (11)

Lemma 6 In the steady state, on average, TOM is decreasing in α.

TOM is a measure of the turnover of houses for sale, and as such Lemma 6

in itself does not carry any direct welfare implications. A more household-centric

measure of turnover is the length of time a household (rather than a house) has to

stay unmatched. We define what we call Time-Between-Matches (TBM) as the sum

of two spells: (1) the time it takes for a household to sell the old house, and (2) the

time it takes to find a new match thereafter. While the first spell (TOM) on average

is shorter with an increase in α, the second is longer as the increase in θ to accompany

the increase in α causes μ to fall. A priori then it is not clear what happens to the

average length of the whole spell. The old house is sold more quickly. But it also
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takes longer on average to find a new match in a market with more buyers and fewer

sellers. To examine which effect dominates, write the model’s average TBM as

α
1

μ
+ (1− α)

µ
1

η
+
1

μ

¶
. (12)

where 1/μ is the average TBM for households who sell in the investment market11

and 1/η + 1/μ for households who sell in the search market.12

Lemma 7 In the steady state, on average, TBM is decreasing in α.

Lemma 7 may be taken as the dual of Lemma 3(a) (∂nM/∂α > 0). When matched

households are more numerous in the steady state, on average, people must be spend-

ing less time between matches

Up to this point, the model is purely mechanical. Given α, market tightness

θ is completely isomorphic to the determination of housing prices in equilibrium.

The same conclusion carries over to the determination of vacancies, turnover, and

transaction volumes. If not for the inclusion of flippers in the model housing market, α

is identically equal to 0 and Lemma 2 would have completed the analysis of everything

that seems to be of any interest. With the inclusion of flippers and their market share

measured by α, Lemmas 6 and 7 show how changes in the latter affect the turnovers of

houses and households, which can have important consequences on welfare, a question

we shall address in the following. But first α obviously should be made endogenous

to which we next turn.

2.4 Asset values and housing prices

Asset values for flippers Let VF be the value of a vacant house to a flipper and

pFS the price she expects to receive for selling it in the search market. In the steady

state,

rFVF = η (pFS − VF ) . (13)

Let pFB be the price the flipper has paid for the house in the competitive investment

market in the first place. In equilibrium, where any excess returns on real estate

investment are eliminated,

pFB = VF . (14)

11The household sells the old house instantaneously. Given a house-finding rate μ, the average

TBM is then 1/μ.
12Let t1 denote the time it takes the household to sell the old house in the search market and

t2 − t1 the time it takes the household to find a new match after the old house is sold. Then the
household’s TBM is just t2. On average, E [t2] =

R∞
0

ηe−ηt1
³R∞

t1
t2μe

−μ(t2−t1)dt2
´
dt1 = 1/η+1/μ.
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Asset values for households There are three (mutually exclusive) states to which

a household can belong at any one time,

1. in a matched house; value VM ,

2. in a mismatched house; value VU ,

3. in rental housing; value VR.

The flow payoff for a matched owner-occupier begins with the utility she derives

from staying in a matched house υ. The match will be broken, however, with prob-

ability δ, after which the household may sell the house right away in the investment

market at price pFB and switch to rental housing immediately thereafter. Alterna-

tively, the household can continue to stay in the house while trying to sell it in the

search market. In all,

rHVM = υ + δ (max {VR + pFB, VU}− VM) . (15)

Let pH denote the price a household-seller expects to receive in the search market.

Then, the flow payoff of a mismatched owner-occupier is equal to

rHVU = η (VR + pH − VU) . (16)

Two comments are in order. First, in (16), the mismatched owner-occupier is entirely

preoccupied with disposing the old house while she makes no attempt to search for a

new match. This is due to the assumption that a household cannot hold more than

one house at a time and the search process is memoryless. Second, under (15) and

(16), the household has only one chance to sell the house in the investment market, at

the moment the match is broken. Those who forfeit this one-time opportunity must

wait out a buyer in the search market to arrive. This restriction is without loss of

generality in a steady-state equilibrium, in which the asset values and housing prices

stay unchanging over time. No matter, after the old house is eventually sold, the

household moves to rental housing to start searching for a new match. Hence, with

α equal to the fraction of houses offered for sale in the search market held by flippers

and 1− α the fraction held by ordinary households,

rHVR = −q + μ (VM − (αpFS + (1− α) pH)− VR) , (17)

where q is the exogenously given flow rental payment.

Bargaining Prices in the search market fall out of Nash bargaining betweenmatched

buyer-seller pairs. There is only one buyer type in the search market–households

in rental housing. The sellers can be either flippers, assumed to possess bargaining

power βF , or mismatched homeowners, assumed to possess bargaining power βH .

14



Hence, when a household-buyer is matched with a flipper, the division of surplus in

Nash Bargaining satisfies

βF (VM − pFS − VR) = (1− βF ) (pFS − VF ) , (18)

whereas when the household-buyer is matched with a household-seller, the division

of surplus in Nash Bargaining satisfies13

βH (VM − pH − VR) = (1− βH) (VR + pH − VU) . (19)

If flippers are agents specializing in buying and selling, it is most reasonable to assume

that βF ≥ βH .

2.5 Which market to sell?

Define

∆ ≡ VR + pFB − VU (20)

as the difference in payoff for a mismatched homeowner between selling in the in-

vestment market (VR + pFB) and in the search market (VU). By (13), (14), (18), and

(19),

∆ = (1− βH)
−1
µ
βHrF + βFη

βFη
pFB − pH

¶
. (21)

That is, mismatched homeowners prefer to sell right away in the investment market if

the given instantaneous reward (pFB) dominates an appropriately-discounted reward

of selling in the search market
³

βF η

βHrF+βF η
pH

´
to be received at some future date.

Lemma 9 in the Appendix presents the solutions of pFB and pH , together with

those of the various asset values, from (13)-(19). Substituting in the solutions to (21),

∆ is seen to have the same sign as

D (θ,α) ≡
µ
βF
rH

rF
− βH − zβH

¶
η + (1− βH − α (βF − βH))μ− (δ + rH) z, (22)

where z = q/υ.14 Clearly, if D (θ,α) > 0 (< 0), for all α ∈ [0, 1], an individual
mismatched homeowner prefers to sell in the investment (search) market at the given

θ no matter what others choose to do. For certain θ, however, there may exist some

αD (θ) ∈ [0, 1] such that D (θ,αD (θ)) = 0. In this case, equilibrium requires a certain
13With multiple types, the assumption of perfect information in bargaining is perhaps stretching

a bit. We could have specified a bargaining game with imperfect information as in Harsanyi and

Selten (1972), Chatterjee and Samuelson (1983), or Riddell (1981), for instance. It is not clear what

may be the payoffs for the added complications.
14Lemma 9 in the Appendix presents two sets of prices and asset values, one derived under the

assumption that ∆ ≤ 0 and the other ∆ ≥ 0. In either case, ∆ is seen to have the same sign as D

in (22).
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fraction αD (θ) of mismatched homeowners selling in the investment market and the

rest selling in the search market. In all, we can define a correspondence

αA (θ) =

⎧⎨⎩ 1

αD (θ)

0

D (θ, 1) > 0

D (θ,αD (θ)) = 0

D (θ, 0) < 0

,

that gives the fraction of mismatched homeowners selling in the investment market

from the households’ optimal decisions formed by arbitraging between selling in the

two markets.

To further characterize αA (θ), we need to sign ∂D/∂θ. Given that η is increasing

and μ is decreasing in θ, D (θ,α) is guaranteed decreasing in θ throughout if

rF ≥ βF
βH

rH

1 + z
≡ brH ;

otherwise, it can be shown thatD (θ,α) as a function of θ is U-shaped, first decreasing

but eventually increasing under a fairly weak condition on η,15 which we assume holds

in the following.

Lemma 8 Suppose βF > βH .

a. If rF ≥ brH, αA (θ) is non-increasing throughout, given by
αA (θ) =

⎧⎪⎨⎪⎩
1 θ ≤ bθa
αD (θ) θ ∈

³bθa,bθb´
0 θ ≥ bθb ,

where bθa < bθb are defined by, respectively, D ³bθa, 1´ = 0 and D
³bθb, 0´ = 0,

and that ∂αD (θ) /∂θ < 0.

b. If rF < brH, there are three possibilities:
(i) αA (θ) = 1 for θ ≥ 0.

(ii) αA (θ) =

⎧⎪⎨⎪⎩
1 θ ≤ bθ1
αD (θ) θ ∈

³bθ1,bθ2´
1 θ ≥ bθ2 .

where bθ1 < bθ2 are defined by D ³bθ1, 1´ = 0 and D
³bθ2, 1´ = 0 along the

decreasing and increasing portions of D (θ,α), respectively. Here, αD (θ) is

15The condition is 2∂η
∂θ

³
η − θ ∂η

∂θ

´
+ θ ∂

2η

∂θ2
η ≤ 0, which is guaranteed to hold if η is isoelastic.
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first decreasing, reaching a minimum above zero, and then increasing toward 1.

(iii) αA (θ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1 θ ≤ bθ1a
αD (θ) θ ∈

³bθ1a,bθ1b´
0 θ ∈

hbθ1b,bθ2ai
αD (θ) θ ∈

³bθ2a,bθ2b´
1 θ ≥ bθ2b

,

where bθ1a < bθ1b < bθ2a < bθ2b are defined by, respectively, D ³bθ1a, 1´ = 0 and

D
³bθ1b, 0´ = 0 along the decreasing portion of D (θ,α) and D ³bθ2a, 0´ = 0 and

D
³bθ2b, 1´ = 0 along the increasing portion of D (θ,α). For θ ∈

³bθ1a,bθ1b´,
∂αD (θ) /∂θ < 0, whereas for θ ∈

³bθ2a,bθ2b´, ∂αD (θ) /∂θ > 0.
Part (a) is concerned with where D (θ,α) is decreasing in θ throughout. In this

case, for the small θ, D (θ,α) > 0 and for the large θ, D (θ,α) < 0 for any α ∈ [0, 1].
In between, there exists an interval

³bθa,bθb´ along which D (θ,αD (θ)) = 0 for some
unique αD (θ) ∈ (0, 1). Panels E and F of Figure 4 illustrate two such αA (θ) functions
that follow. Part (b) is concerned with where D (θ,α) is U-shaped, first decreasing

but eventually increasing in θ. Now if the U-shaped D (θ,α) stays above zero for all

θ and α ∈ [0, 1], αA (θ) = 1 always as in part (b.i). Panel A of Figure 4 depicts such
an αA (θ) function. On the other hand, the U-shaped D (θ,α) may only stay above

zero for the smallest and largest θ for all α ∈ [0, 1]. Part (b.ii) is concerned with the
case of D (θ, 0) never falling to zero. Then, αA (θ) never reaches zero too. Panel B

of Figure 4 illustrates an example of such an αA (θ). On the other hand, if D (θ, 0)

does fall below zero for a range of θ, over the given range of θ, αA (θ) = 0. Part

(b.iii) defines such an αA (θ) function and Panels C and D of Figure 4 illustrate two

examples.

In Lemma 8, we restrict attention to where βF > βH . In case βF = βH , D (θ,α)

in (22) is independent of α, which means that at a given θ, it is either greater than,

equal to, or less than zero for all α. Then, if D = 0 holds at some θ0, αD (θ
0) = [0, 1]

and αA (θ) becomes a multi-valued correspondence. In the counterpart to Lemma

8(a), bθa and bθb would collapse into a single bθ, while in the counterpart to Lemma
8(b.iii), bθ1a and bθ1b would collapse into one bθ1 and bθ2a and bθ2b into another bθ2. At
such θs, αA (θ) = [0, 1]. In Panels C-F of Figure 4, the downward and upward-sloping

segments would become vertical segments. Analogously, the two bθ in Lemma 8(b.ii)
would become one at which αA (θ) = [0, 1], while the U-shaped segment in Panel B

of Figure 4 would vanish. Since αA (θ) for βF = βH is merely the limit of αA (θ) for

βF > βH as βF → βH from above, for brevity and for ease of exposition, we shall only
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Figure 4: The αA (θ) function
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present results for the case of βF > βH hereinafter. The ommision is without loss

of generality. In the quantitative analysis in Section 5, we will relax the restriction

though and also consider the case of βF = βH .

The first general lesson from Lemma 8 is that facing a slack search market with a

small θ, mismatched homeowners always welcome the opportunity to quickly dispose

of their old houses in the investment market, whether or not rF ≥ brH . In a slack search
market where sellers outnumber buyers significantly, it can take a long time to sell.

Selling to flippers quickly is obviously optimal. The novelty here is that mismatched

homeowners can prefer to sell to flippers even when the search market is tight so

that houses can be sold quickly there. Intuitively, when markets are tight, houses

can be sold not just quickly but also at high prices. Then, mismatched homeowners

may prefer to just sell right away in the investment market to capitalize on the high

housing price sooner. According to Lemma 8(b), this can happen when flippers can

finance investment at a low rF or, by virtue of bargaining with a large βF , they are

able to negotiate a high price when selling in the search market later on. In either

case, flippers can pay particularly high prices to attract mismatched homeowners to

sell in the investment market.

2.6 Equilibrium

We now have two steady-state relations between α and θ: the θT (α) function in

Lemma 2 from the turnover equations and the αA (θ) function in Lemma 8 from

mismatched homeowners arbitraging between selling in the two markets. A steady-

state equilibrium is any {α, θ} pair that simultaneously satisfies the two relations.

3 Analysis

3.1 Existence of equilibrium

To show the existence of equilibrium, it is useful to define F (α) ≡ αA (θT (α)), a

continuous function mapping [0, 1] into itself. A steady-state equilibrium is any fixed

point of F .

Proposition 1 Equilibrium exists for all {rH , rF , υ, q, δ,βF ,βH ,H} tuple.

3.2 Multiplicity

To check for multiplicity, we begin with inverting θT (α) in Lemma 2 to define

αT ≡ θ−1T , whereby αT : [θT (0) , θT (1)] → [0, 1]. Given that ∂θT/∂α > 0, like-

wise, ∂αT/∂θ > 0 for θ ∈ [θT (0) , θT (1)].16 That is, αT (θ) increases continuously

from 0 at θ = θT (0) to 1 at θ = θT (1), as illustrated in Figure 5.

16The closed-form solution for αT (θ) is given by (56) in the Appendix.
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Figure 5: The αT (θ) function

With αT (θ) from Figure 5 and the applicable αA (θ) from Figure 4, a steady-state

equilibrium is any θ at which αA (θ) = αT (θ). Now, if αA (θT (0)) = 0, then θ = θT (0)

and α = 0 is a steady-state equilibrium since by construction, αT (θT (0)) = 0. In

this equilibrium, all sales and purchases are between two end-users while turnover

is slowest. On the other hand, if αA (θT (1)) = 1, then θ = θT (1) and α = 1 is a

steady-state equilibrium since by construction, αT (θT (1)) = 1. In this equilibrium,

all transactions are intermediated and turnover is fastest. In between, there can be

equilibria at where α = αD (θ) ∈ (0, 1) for some θ ∈ (θT (0) ,θT (1)). In such equilibria,
with mismatched homeowners indifferent between selling in the investment and search

markets, a fraction, but only a fraction, of all transactions are intermediated.

Since αT (θ) is strictly increasing over [θT (0) ,θT (1)], equilibrium is unique if

αA (θ) is non-increasing throughout. But αA (θ) can be strictly increasing over a

given range of θ for certain parameter configurations, in which case the multiplicity

of equilibrium becomes a distinct possibility.

Proposition 2 If rF ≥ brH, equilibrium is guaranteed unique. If rF < brH , αA (θ)
is as given in Lemma 8(b.iii), and if θT (0) ≤ bθ2a < bθ2b ≤ θT (1), there exist at least

two steady-state equilibria.

Figures 6 and 7 illustrate the situation covered by the second part of the Propo-

sition. In both figures, there are indeed three equilibria. Consider first the θT (1)

equilibrium. At θ = θT (1), there is a tight search market in which houses are sold

quickly and also at high prices. Mismatched homeowners then find it advantageous
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Figure 6: Multiple Equilibrium: bθ1b > θT (0)

Figure 7: Mutliple Equilibrium: θT (0) > bθ1b
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to capitalize on the high prices sooner by selling in the investment market right away.

In the meantime, if all mismatched houses are sold in the investment market in the

first instance, the rapid turnover will indeed give rise to a tight market. In this way,

θ = θT (1) and α = 1 is equilibrium in Figures 6 and 7. For smaller θ, mismatched

homeowners’ incentives to sell in the investment market are weakened. But precisely

because fewer or none at all mismatched houses are sold in the investment market, a

relatively slack market will emerge from the slow turnover. As a result, a smaller α

and a smaller θ is also equilibrium in Figures 6 and 7.

Consider a small perturbation from the middle equilibrium in Figures 6 and 7

that knocks the {θ,α} pair off to the right of the αA (θ) schedule. Then, D (θ,α) > 0
since ∂D/∂α < 0, after which all mismatched homeowners would find it better to sell

in the investment market. The increase in turnover would then raise θ. Eventually

the market should settle at the θT (1) equilibrium. Conversely, a perturbation that

knocks the {θ,α} pair off to the left of αA (θ) schedule from the middle equilibrium

in Figures 6 and 7 should send the market to a smaller θ and α equilibrium. In

general, an equilibrium that occurs at where αA (θ) is increasing should be unstable.

By analogous arguments, the other equilibria in the two figures should be locally

stable. Hence, there are not just multiple steady-state equilibria but also multiple

locally stable steady-state equilibria.

With multiple steady-state equilibria, the presence of flippers’ in the market can

be fickle, especially when the equilibrium the market happens to be in is unstable. In

general, where there are multiple equilibria, any seemingly unimportant shock can dis-

locate the market from one equilibrium and move it to another, causing catastrophic

changes in flippers’ market share, turnover, and transaction volume. To follow such

discrete changes in the activities of flippers can be significant fluctuations in housing

price, a subject we shall address in Section 3.4. And then in Section 5, we will cal-

ibrate the model to several observable characteristics of the U.S. housing market to

assess quantitatively the importance of such a channel of volatility.

3.3 Cost of financing and flippers’ market share

Flippers can afford to pay the highest price when they can finance investment at the

least cost. As rF increases, other things equal, their presence should diminish. More

precisely, by Lemma 10 in the Appendix:

(A) For sufficiently small but positive rF , D (θ,α) > 0 for all θ and α ∈ [0, 1] so
that the αA (θ) = 1 throughout as shown in Panel A of Figure 4.

(B) As rF increases to some given level below brH , D (θ, 1) = 0 begins to hold at
two values for θ, while in between D (θ,αD (θ)) = 0 for some αD (θ) ∈ (0, 1). Panel
A turns into Panel B. In the meantime, bθ1 decreases and bθ2 increases along with the
increase in rF .

(C) Thereafter, as rF continues to increase, D (θ, 0) = 0 also begins to hold at

two values for θ. In between D (θ, 0) < 0. Panel B turns into Panel C.
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(D) While rF remains below brH , ∂bθ1i/∂rF < 0 and ∂bθ2i/∂rF > 0 for i = a, b.

Panel C turns into Panel D.

(E) In the limit as rF → brH , bθ2i → ∞ for i = a, b, whereas bθ1i, i = a, b tend to
the respective unique roots of D (θ, 1) = 0 and D (θ, 0) = 0 at which rF = brH just
holds. Panel D turns into Panel E.

(F) For rF ≥ brH , ∂bθi/∂rF < 0 for i = a, b. The limits bθLi ≡ limrF→∞bθi > 0, for
i = a, b. If βH ≥ 1/2, bθLi < 1. The αA (θ) in Panel E gradually evolves toward the

one in Panel F.

Granted that αT (θ) is independent of rF , the effects of an increase in rF on

equilibrium {α, θ} can then be read off by superimposing the same given αT (θ)

successively into Panels A to F of Figure 4. We can conclude from this exercise

the following.

Proposition 3

a. For sufficiently small but positive rF , the unique equilibrium is θ = θT (1) and

α = 1.

b. For larger rF , α must fall below unity and θ below θT (1) in equilibrium if

βH ≥ 1/2.

i. If θT (0) ≥ bθLb , as rF becomes large enough, θ = θT (0) and α = 0.

ii. Otherwise, α stays positive for arbitrarily large rF .

c. If θ = θT (1) and α = 1 is not equilibrium at a certain rF , the pair is not

equilibrium for any larger rF . If θ = θT (0) and α = 0 is equilibrium at a

certain rF , the pair remains equilibrium for any larger rF .

d. In any α = αD (θ) equilibrium at which ∂αD/∂θ < 0, α is decreasing in rF .

e. In any α = αD (θ) equilibrium at which ∂αD/∂θ > 0, α is increasing in rF .

Parts (a)-(d) of the Proposition conform to the intuitive notion that an increase

(decrease) in rF should have a negative (positive) impact on flippers’s market share.

What seems surprising is that α can remain strictly positive in equilibrium even for

an arbitrarily large rF (part (b.ii)), under which flippers can only finance investment

at a huge disadvantage vis-a-vis ordinary households. The condition for this to be

the case, θT (0) < bθLb , holds for small θT (0). By (54) in the proof of Lemma 2,
∂θT (0) /∂H < 0, and that limH→1 θT (0) = 0. With a larger housing stock, there

are more units for sale, other things being equal. In the meantime, if there are fewer

households in rental housing, there will be fewer buyers in the search market. Then, a
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role for flippers can remain no matter what, if the slack in the end-user search market

makes selling in the market very difficult.

Part (e) that an increase (decrease) in rF can have a positive (negative) impact

on flippers’ market share in equilibrium is counterintuitive too. In Figures 6 and 7,

the upward-sloping portion of αA (θ) along with the horizontal segment to its right

are for values of θ for which mismatched homeowners prefer to sell in the investment

market to quickly capitalize on the high housing price. Now, at a larger rF , flippers

can only pay lower prices, moving that portion of αA (θ) out to the right and making

it intersect the upward-sloping αT (θ) at a larger α.

On the contrary, by Part (d), an increase (decrease) in rF will have the ex-

pected negative (positive) impact on flippers’ market share if equilibrium is at where

∂αD/∂θ < 0. In Figure 6, the downward-sloping portion of αA (θ) along with the

horizontal segment to its left are for values of θ for which mismatched homeowners

find it advantageous to sell in the investment market because it can take a long time

to sell in a slack search market. An increase in rF , by lowering the price flippers are

able to offer to mismatched homeowners, shortens the interval. Then αA (θ) would

only meet the downward-sloping αT (θ) at a smaller α and θ.

On the whole, one can conclude that at a larger rF , fewer transactions would

be intermediated if one is willing to dismiss any equilibrium at where ∂αD/∂θ > 0

on stability grounds and the possibility that agents may coordinate to a larger α

equilibrium in case there exist multiple equilibria. However, we do not think that

the analysis, strictly speaking, allows us to rule out occasions, admittedly rare, in

which an increase in rF can, rather perversely, be followed by a heightened presence

of flippers in the model housing market.

3.4 Housing prices

Housing prices in no-intermediation equilibrium Absent flippers, all housing

market transactions are between pairs of end-user households at17

pH =
βH (η + rH)− (1− βH)μ

(rH + δ + βHη) rH
υ +

q

rH
, (23)

evaluated at θ = θT (0).

Housing prices in fully-intermediated equilibrium In a fully-intermediated

equilibrium, all houses are first sold from mismatched homeowners to flippers at18

pFB =
βFη (υ + q)

(rF + βFη) rH + (δ + (1− βF )μ) rF
, (24)

17From (37) evaluated at α = 0. The equations for the housing prices and asset values referred to

hereinafter can be found in Lemma 9 in the Appendix.
18From (45) evaluated at α = 1.
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in the investment market and then at19

pFS =
βF (η + rF ) (υ + q)

(rF + βFη) rH + (δ + (1− βF )μ) rF
, (25)

from flippers to end-user households in the search market, both evaluated at θ =

θT (1). Clearly, pFB < pFS. Now, houses sold from households to flippers stay on

the market for a vanishingly small time interval, whereas houses sold from flippers to

households in the search market stay on the market for, on average, 1/η > 0 units of

time. There should then be a positive cross-section relation between prices and TOM

in the model housing market, as in the real-world housing market. Besides, with

pFB < pFS, the model trivially predicts that houses bought by flippers are at lower

prices than are houses bought by non-flippers. Both Depken et al. (2009) and Bayer

et al. (2011) find the tendency to hold in their respective hedonic price regressions.

Housing prices in partially-intermediated equilibrium In a steady-state equi-

librium in which mismatched homeowners sell in both the investment and search

markets, in addition to the two prices20

pFB =
βFη

rF (rH + δ + βHη)
υ, (26)

pFS =
βFη + βF rF

rF (rH + δ + βHη)
υ, (27)

for transactions between a flipper and an end-user household, there will also be trans-

actions between two end-user households, carried out at price21

pH =
βFη + βHrF

rF (rH + δ + βHη)
υ. (28)

Here, we have pFB < pH < pFS for βF > βH . Just as in the fully-intermediated

equilibrium, a positive relation between prices and TOM holds in the cross section

and houses bought by flippers are at lower prices.

Prices across equilibria Across steady-state equilibria, θ = B/S is largest in the

equilibrium where flippers are most numerous. Then, prices should be highest in such

an equilibrium where the competition among buyers is most intense.

Proposition 4 Across steady-state equilibria in case there exist multiple equilibria,

housing prices in both the search and investment markets are highest in the equilibrium

with the tightest market and lowest in the equilibrium with the slackest market.

19From (44) evaluated at α = 1.
20From (39) or (45) and (38) or (44), respectively, all evaluated at D (θ,α) = 0.
21From (37) or (43), both evaluated at D (θ,α) = 0
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Now, a direct corollary of the Proposition and Lemmas 4-7 is that:

Proposition 5 Across steady-state equilibria in case there exist multiple equilibria,

prices, vacancies, and transaction volumes increase or decrease together from one to

another equilibrium, whereas average TOM and TBM move with the former set of

variables in the opposite direction.

Interest rate shocks As usual, in the present model, interest rates can play an

important role in determining housing prices. First, in a no-intermediation equilib-

rium, a decline in rH can lead to higher prices for sufficiently large θT (0) and/or q,

as can be verified by differentiating (23), but market tightness, vacancies, turnover,

and transaction volumes are invariant to an interest rate shock that has no effects on

α. In the entire absence of flippers, not surprisingly, rF plays no role at all.

In a fully-intermediated equilibrium, rF should certainly be an important factor in

determining housing prices. Indeed, both pFB and pFS are decreasing in rF , as can be

verified by differentiating (24) and (25). Just as in the no-intermedation equilibrium,

such interest rate shocks will leave no impact on market tightness, vacancies, turnover,

and transaction volumes, if all transactions were already intermediated in the first

place.

In a partially-intermediated equilibrium, prices in the search market, pFS and pH ,

as well as in the investment market pFB, are decreasing in rF , just as they are in a

fully-intermediated equilibrium. But where θ was not already fixed at the boundary

of θT (1), housing prices can also vary to follow any movements in θ triggered by

the given interest rate shock. As expected, the prices given in (26)-(28) are higher

when the search market is tighter. Hence, if a given positive (negative) interest

rate shock should cause α and therefore θ to decrease (increase), there will be lower

(higher) housing prices to follow because of a direct negative (positive) effect and of

an indirect effect via dampening (raising) flippers’ presence in the market. In this

case, when the two effects work in the same direction, a given interest rate shock can

cause substantially more housing price volatility than in a model that only allows for

the usual effect of interest rates on asset prices.

However, a positive interest rate shock need not cause θ and α to fall. By Proposi-

tion 3(e), along any αD (θ) equilibrium where ∂αD (θ) /∂θ > 0, the given interest rate

shock will be followed by increases in θ and α. Furthermore, in case there exist mul-

tiple equilibria, the shock can possibly dislocate the market from a given equilibrium

and send it to another equilibrium. In what direction housing prices will move then

cannot be unambiguously read off from (26)-(28) as the direct effect of any interest

rate shock and the indirect effect via the movements in θ can affect housing prices

differently. To proceed, we solve D (θ,α) = 0 for rF and substitute the result into

(26)-(28), respectively,

pFB =
βHη + ((βF − βH)αT − (1− βH))μ

rH (rH + δ + βHη)
υ +

q

rH
, (29)
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pFS =
βHη + βF rH + ((βF − βH)αT − (1− βH))μ

rH (rH + δ + βHη)
υ +

q

rH
, (30)

pH =
βHη + βHrH + ((βF − βH)αT − (1− βH))μ

rH (rH + δ + βHη)
υ +

q

rH
. (31)

The three equations are independent of rF — whatever effects a given change in rF will

have on housing prices are subsumed through the effects of changes in θ that follow

the change in rF obtained from holding D (θ,α) = 0. To evaluate the the effects of

rF on housing prices then is to differentiate these three expressions just with respect

to θ.

Proposition 6 Across steady-state equilibria and holding D (θ,α) = 0, a shock to

rF , whether positive or negative, will cause housing prices to increase (decrease), as

long as to follow the interest rate shock are increases (decreases) in θ and α.

By Proposition 6, the indirect effect of an interest rate shock on housing prices

through the changes in flippers’ presence and then in market tightness always domi-

nates the direct effect shall the two be of opposite tendencies. A surprising implication

then is that housing prices can actually go up in response to an increase in flippers’

cost of financing, if to follow the higher interest rate is also a heightened presence of

flippers’ in the market. In any case, a direct corollary of Lemmas 4-7 and Proposition

6 is that:

Proposition 7 Across steady-state equilibria and holding D (θ,α) = 0, a shock to

rF will cause housing prices, transaction volumes, and vacancies to move in the same

direction, whereas average TOM and TBM will move in the opposite direction.

3.5 A general interest rate shock

So far, we have restricted attention to analyzing how changes in rF alone affect the

extent of intermediation and the consequent effects on housing prices. It turns out

that many of the implications continue to hold for general changes in interest rate

that affect both flippers and ordinary households alike. To begin, write R for rH/rF
in (22),

D (θ,α) ≡ (βFR− βH − zβH) η + (1− βH − α (βF − βH))μ− (δ + rH) z (32)

Then equiproportionate increases in rH and rF , while leaving R unchanged, lower

D (θ,α). A general increase in interest rate thus weakens mismatched homeowners’

incentives to sell in the investment market, just as an increase in rF , holding fixed

rH , does. Analogous to Proposition 3 is that:

Proposition 8 Holding constant R at some given level,
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a. for sufficiently large rH, in equilibrium, θ < θT (1) and α < 1. Eventually, as

rH rises above a certain level, θ = θT (0) and α = 0 must obtain.

b. if θ = θT (1) and α = 1 is not equilibrium at some rH, the pair is not equi-

librium for larger rH. If θ = θT (0) and α = 0 is equilibrium at some rH, the

pair remains equilibrium for larger rH.

c. In any α = αD (θ) equilibrium at which ∂αD/∂θ < 0, α is decreasing in rH.

d. In any α = αD (θ) equilibrium at which ∂αD/∂θ > 0, α is increasing in rH.

The effects of the general increase in the cost of financing on housing prices are

similar to those of an increase in rF alone.

Proposition 9

a. In the fully-intermediated equilibrium, equiproportionate increases in rH and rF
lower housing prices. The same effect is felt in the no-intermediation equilib-

rium for sufficiently large θT (0) and/or q.

b. In a partially-intermediated equilibrium,

i. equiproportionate increases in rH and rF , holding θ fixed, lower housing

prices;

ii. across steady-state equilibria and holding D (θ,α) = 0, equiproportionate

changes in rH and rF , whether positive or otherwise, cause pFB to in-

crease (decrease) as long as to follow the interest rate shocks are increases

(decreases) in θ and α for βF = βH = 1/2 and R ∈ [0, 1 + z]; the same
effect is felt on pFS and pH for R in neighborhoods of R = 0, 1, and 1+z.

Notice that by (b.i), if to follow the equiproportionate increases in rH and rF is

a decline in flippers’ presence, housing prices must unambiguously fall, just as when

an increase in rF alone causes θ and α to fall will lower housing prices for sure. More

generally, (b.ii) is concerned with how prices may vary when the interest rate shocks

may be followed by either an increase or a decline in θ, as in the situations covered in

Proposition 6. Also as in Proposition 6, here prices will increase if θ and α happen to

rise to follow the interest rate shocks, positive or otherwise, if the values of βF , βH ,

and R are chosen appropriately. These restrictions are sufficient, but not necessary,

conditions and we suspect that the conclusions should hold under considerably weaker

conditions.
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3.6 Welfare

In a steady-state equilibrium where D (θ,α) = 0, asset values for matched and mis-

matched homeowners, renters, and flippers are given by, respectively,22

VM =
(rH + βHη) υ

rH (rH + δ + βHη)
, (33)

VU =
βHηυ

rH (rH + δ + βHη)
, (34)

VR =
(βHrF − βF rH) ηυ

rF rH (rH + δ + βHη)
, (35)

VF =
βFηυ

rF (rH + δ + βHη)
. (36)

It is straightforward to verify that VM , VU , and VF are all increasing in θ. Any

homeowners–matched or mismatched, end-users or flippers–benefit from the higher

housing prices in a tighter market. The asset value for households in rental housing

VR, however, is decreasing in θ if βHrF < βF rH , which is a necessary condition for

the multiplicity of equilibrium (Proposition 2). In this case, would-be buyers are

made worse off by the higher housing prices in the tighter market. In a comparison

between two steady-state equilibria both at where D (θ,α) = 0, homeowners are

better off whereas renters are worse off in the larger θ equilibrium than in the smaller

θ equilibrium. Any two such equilibria cannot then be Pareto-ranked. The same

conclusion applies to comparisons between aD (θ,α) > 0 equilibrium and aD (θ,α) =

0 equilibrium and between a D (θ,α) = 0 equilibrium and a D (θ,α) < 0 equilibrium.

Even though the equilibria cannot be Pareto-ranked, perhaps they can be ranked

by aggregate welfare as measured by the sum of the asset values for all agents,

W = nMVM + nUVU + nRVR + nFVF .

At where D (θ,α) = 0, the asset values are given by (33)-(36). Again, consider a com-

parison between two steady-state equilibria both at where D (θ,α) = 0. Substituting

from (57)-(60) in the Appendix for the various steady-state measures of agents and

simplifying,

W =
ηυ

rH + δ + βHη

µ
H

η + δ
+

βF
rF
(H − 1) + βH

rH

¶
.

This expression is guaranteed increasing in θ for large H. In this case, there is a

larger aggregate asset value in the tighter and higher-priced equilibrium where more

transactions are intermediated. For smaller H, however, W above is decreasing in θ,

so that there is only a smaller W in such an equilibrium than in one in which fewer

22The first two equations are from (41) and (42), respectively. The last two are from (40) and

(39), respectively, both evaluated at D (θ,α) = 0.
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transactions are intermediated. Thus, it seems that the equilibria cannot in general

be ranked by even aggregate asset value. While all agents, except for households in

rental housing, benefit from the higher housing prices in a more active equilibrium

and that more households are matched in the steady state amid a shorter average

Time-Between-Matches, W need not be higher. Would-be buyers in rental housing

are more numerous and they suffer a lower asset value due to the higher prices. Such

a negative impact on W can more than offset the positive effects of a more active

market, especially when there is a small housing stock. Intuitively, when there is

a small H, there are few house owners to benefit from the higher prices and faster

turnover, while there are many would-be buyers to suffer from the same higher prices

and the longer wait for owner-occupied housing. When owner-occupied houses are

scarce to begin with, leaving more houses vacant in the hands of flippers can be

disproportionately costly.23 Conversely, in a market endowed with a large H, it is

hardest to sell and flippers’ role in speeding up turnover is most valued.

4 Time-series relations among housing price, trans-

action volume, and vacancy

By Propositions 5, 7, and 9, any movement from one to another steady-state equi-

librium would involve housing prices, transaction volumes, and vacancies all moving

in the same direction. The positive time-series relation between housing prices and

transaction volumes is well-known and numerous models have been constructed to

account for it. Unique to our analysis is that vacancies should also move in the same

direction with the two variables.

The prediction is not obviously inconsistent with the pictures depicted in Figures

1-3 in the Introduction. In a more systematic analysis, we first verify that in the

1981Q1 to 2011Q3 sample period, the three variables are all I(1) at conventional

significance levels. Next, we test for cointegration. Assuming the absence of any

time trends and intercepts in the cointegrating equations, both the Trace test and

the Max-eigenvalue test indicate two such equations, whose normalized forms read

Price — 6045.51×Vacancy = 0,

Transaction — 0.74×Vacancy = 0,
which together imply that the three variables tend to move in the same direction from

one to another long-run equilibrium over time. With other time trend and intercept

assumptions, either one or both of the tests suggest that there exist only one or as

many as three cointegrating equations. In a single cointegrating equation with non-

zero coefficients for all three variables, at least two of the three coefficients must be of

23Masters (2007) is also a model in which intermediation in a search and matching environment

can be wasteful.
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the same sign. Then, the two variables concerned must co-move in opposite directions

across long-run equilibria. With as many cointegrating equations as the number of

variables, there exist definite long-run values for the three variables, which rules

out the possibility of the system moving from one to another long-run equilibrium

altogether. Restricting a priori to two cointegrating equations in the estimation,

however, we always obtain two equations whose coefficients have the same signs as

those in the system above whatever the trend and intercept assumptions are. Then,

any long-run movements for the three variables must be in the same direction.

5 Quantitative predictions on volatility

Given the possible multiplicity of equilibrium and that an interest rate shock may have

important effects on the extent of intermediation, the model can be consistent with

a volatile housing market. The question remains as to how important quantitatively

such channels of volitality can be. In this section, we calibrate the model to several

observable characteristics of the U.S. housing market and study by how much housing

prices can fluctuate across steady-state equilibria and in response to interest rate

shocks.

To begin, we take a time unit in the model to be a quarter of a year and assume a

Cobb-Douglas matching function whereby η (θ) = aθb. We set a priori the mismatch

rate δ = 0.014 to calibrate a two-year mobility rate of 11.4% for owner-occupiers

reported in Ferreira et al. (2010) and b = 0.84, which is the elasticity of the seller’s

matching hazard with respect to the buyer-seller ratio reported in Genesove and Han

(2012). Next, the parameters a andH and the share of mismatched households selling

to flippers α are chosen to calibrate:

1. a quarterly transaction rate of owner-occupied houses of 1.78%

2. a vacancy rate of owner-occupied houses of 1.84%

3. the share of houses bought by flippers among all transactions of owner-occupied

houses equal to 19%

The first two targets are, respectively, the average quarterly transaction rate and the

average vacancy rate for the period 2000Q1-2006Q4, calculated from our dataset for

the plots in Figures 1-3 and the estimations in Section 4. Estimates of the share of

houses bought by flippers come from two sources. First, Haughwout et al. (2011)

report that the share of all new purchase mortgages in the whole of the U.S. taken

out by investors is around 25% on average during the period 2000Q1-2006Q4,24 where

an investor is an individual who holds two or more first-lien mortgages. Because an

24The investor share peaks at 35% for the whole of the U.S. and 45% for the“bubble states” in

2006.
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investor in Haughwout et al. may intend to hold the house as a long-term investment,

the 25% share is probably an overestimate of the true flippers’ share. Second, Depken

et al. (2009) report that for the same period, on average, 13.7% of housing market

transactions are for houses sold again within the first two years of purchase in the

metropolitan Las Vegas area.25. Because not all houses bought for short-term flips

can actually be sold within two years, the 13.7% share is probably an underestimate

of the true flippers’s share. Our 19% target is obtained by taking a simple average of

the two estimates.

Given the targets, denoted as xi, i = 1, 2, 3, respectively, we then choose a, H,

and α to

min

(
3X
i=1

µ
xi − bxi
xi

¶2)
,

subject to

a ≤ 1.2,
0.6 ≤ H < 1,

0 ≤ α ≤ 1,
where the bxi’s are the model’s calibrated values of the corresponding targets.26 The
minimization is carried out via a grid search with a grid size of 0.005 for each of

a, H, and α. The first constraint is for expediency in the grid search and is not

binding. Given that H in the model is the stock of owner-occupied houses relative

to the population of households demanding such housing, anything near the lower

bound of the second constraint is probably unreasonable, whereas the model is not

well-behaved ifH exceeds the upper bound of the constraint. In all, the minimization

yields a = 0.085, H = 0.865, and α = 0.25 at which the calibrated values of the three

targets are reported in the second column of Table 1.

Table 1: Calibration Targets and Calibrated Model Values
Targeted value Calibrated value

Transaction rate (quarterly) 0.0178 0.016

Vacancy rate 0.0184 0.018

Flippers’ share in transactions 0.19 0.19

Thus far in the calibration, we have effectively identified αT = 0.25 as equi-

librium. For equilibrium to be indeed at α = 25, we need to pick the values for

{q, υ,βH ,βF , rH , rF} to force αA = 0.25 as well. Since only the ratio z = q/υ, but

not the levels of the two parameters, matters for the value of αA and the comparison

25The percentage peaks at 25% in 2005.
26The bxs rate are equal to TV/H, rF /H, and αδnM/TV for the model’s transaction rate, vacancy

rate, and flippers’ share, respectively.
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of prices and welfare, we first normalize υ = 1. We then obtain an estimate of z (or

equivalently q) equal to 1.43 from the results in Anenberg and Bayer (2013). The

details are in Appendix 7.2. Next, we set rH = 0.02 for an annual rate of 8% to

match the usual 30-year fixed-rate mortgage rate. Lastly, for the lack of any obvious

empirical counterpart, we set the household-seller’s bargaining power βH = 0.5. Then

for each of βF = 0.5, 0.6, 0.65, 0.7, and 0.8, we look for the value of rF at which

αA = 0.25. The results are shown in Table 2.
27 ,28

Table 2: Calibrated βF and rF for αA = 0.25

βF 0.5 0.6 0.65 0.7 0.8

rF 0.0077 0.0091 0.0099 0.0106 0.012

rF (annual basis) 3.1% 3.7% 4% 4.23% 4.8%

For the last two pairs of βF and rF in Table 2, the α = 0.25 equilibrium is the

unique equilibrium. For the first three pairs, however, there are two other equilibria

each besides the α = 0.25 equilibrium. Table 3 reports the prices and aggregate asset

values in these equilibria. For instance, for βF = 0.5 and rF = 3.1% per annum, the

three equilibria are at α = 0, 0.25, and 1, respectively.29 The price p, on the next row,

is the average of pH , pFB, and pFS, weighted by the shares of transactions taking place

at the respective prices, with p in the smallest-α equilibrium set equal to 1. Evidently,

the volatility arising from the multiplicity is non-trivial, with average prices differing

by up to 23% among the equilibria. Meanwhile, welfare, as measured by the aggregate

asset value W , shown on the last row, differs by at most 7%. This is not surprising

in light of the analysis in Section 3.7. Whereas homeowners benefit from the higher

prices and faster turnover, would-be buyers in rental housing are made worse off by

the same higher prices and longer wait for owner-occupied housing. Any efficiency

27A rF below rH by a few percentage points can make sense if flippers, but not end-user house-

holds, tend to choose mortgages with zero initial or negative amortization, short interest rate reset

periods, or low introductory teaser interest rates. Such mortgages obviously are ideal for flippers

who plan to sell quickly for short-term gains. Amromin et al. (2012) find that borrowers who take

out such “complex” mortages are usually high income individuals with good credit scores. Foote

et al. (2012) find that periods of interest rate resets do not tend to trigger significant increases in

defaults, consistent with the finding of Amromin et al. that the borrowers of such mortgages are

sophisticated investors. Barlevy and Fisher (2010) find that interest-only mortgages are used much

more heavily in cities with the most rapid increase in housing prices. And then Haughwout et al.

(2011) find that states that have undergone the most rapid price increase are states where the share

of transaction involving flippers is highest.
28Notice that the model does not require rF to be smaller than rH for flippers to survive (Propo-

sition 3). For smaller values for z, we can force αA to be equal to 0.25 at much larger rF .
29At α = 1, in the steady state, one half of all houses bought are purchases made by flippers. This

is just about equal to the peak investor share in the “bubble states” reported in Haughwout et al.

(2011).
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gains from intermediation must be weighted against the losses buyers suffer amid a

tighter market.

Table 3: Multiple Equilibrium
βF 0.5 0.6 0.65

rF (annual basis) 3.1% 3.7% 4%

α 0 0.25 1 0 0.25 1 0.25 0.71 1

p 1 1.1 1.2 1 1.11 1.23 1 1.08 1.11

W 1 1.04 1.07 1 1.04 1.07 1 1.025 1.03

Table 4: Housing Prices and Interest Rates, βF = 0.7

rF (annual basis) 3.5% 4.21% 4.22% 4.23% 4.27% 6%

α = 0 0.89 0.89

α = 0.25 1

α = 0.63 1.07

α = 1 1.13 1.12

To study the response of housing prices to interest rate shocks, we report in Table

4 average housing prices p for various small deviations of rF from a benchmark of

rF = 4.23% and βF = 0.7 at which equilibrium is unique at the calibrated value

of α = 0.25. Fixing βF = 0.7, for all values of rF under consideration, equilibrium

remains unique. The entries in the table are normed by the average equilibrium price

at the benchmark rF . Here, housing prices hardly move to follow a given interest rate

shock if the shock has not caused any changes in equilibrium α. But when the given

interest rate shock does cause α to change significantly, it also leads to significant

changes in housing prices. Specifically, a decline in rF from 6% per annum to 4.27%

per annum causes no noticeable change in p when the given movement in rF has no

effect on α. On the other hand, a further decline in rF from 4.27% per annum to 4.21%

per annum now causes p to increase by 26% as α rises from 0 to 1 in the meantime.

Thereafter, p remains essentially unchanged from any additional decline in rF as α

has already reached the upper bound of 1. Hence, the response of housing prices to

interest rate shocks can appear erratic and unpredictable. Before a given threshold

rF is reached, the response is at most moderate. When rF crosses the threshold to

trigger the entries of flippers, the housing market can become significantly tighter

and housing prices significantly higher as a result.
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6 Concluding remarks

Without any assumed or acquired heterogeneity and endogenous search efforts, our

model predicts a positive relation between housing prices and TOM in the cross

section, a relation found in numerous empirical studies. Our model can also generate

the well-known relation between prices and transaction volumes in the time series.

Previous models rely on preference and construction shocks and increasing returns in

the matching technology to generate such relations. In our model, such relations are

the relations among the variables across the steady-state equilibria and the relations

generated from interest rate shocks. Unique to our analysis is that vacancies should

move together with prices and transaction volumes. This relation appears to be borne

out in the data.

If flippers can survive in both slack and tight markets, the multiplicity of equilib-

rium can be a natural outcome in a frictional housing market. Such a model housing

market can then be consistent with a substantial amount of volatility. Undoubtedly,

our analysis cannot be the complete analysis of housing market booms and busts.

Credit market conditions, market psychology, and the dynamics of price movements

must also feature prominently. Nevertheless, we show that even in the absence of

such factors, the interaction of the strength of the incentives to sell quickly to flippers

and the influence of these agents’ activities on market tightness suffices to imply an

intrinsically volatile housing market.

In the U.S., house flipping is thought to often involve renovating before selling

rather than simply buying and then putting up the house for sale right away. In this

line of thinking, the returns to flipping are more about the returns to the renovations

investment than the returns to holding the house on behalf of liquidity-constrained

owners. The question then is what prevents the original owners themselves from

earning the returns on the investment. A not implausible explanation is that many

original owners lack the access to capital to undertake the investment, just as the

original owners in our model lack the access to capital to hold more than one house

at a time. Thus, at a deeper level, our model is not just a model of buy-and-sell flips

but should also encompass, with suitable modifications, buy-renovate-sell flips.
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7 Appendix

7.1 Lemma

Lemma 9 For ∆ ≤ 0, so that max {VR + pFB, VU} = VU ,
pH = {(βH (η + rH) (rF + βFη)− (1− βH) ((1− α)βFη + (1− αβF ) rF )μ) υ

+(rH + δ + βHη) (rF + βFη) q} /GH (37)

pFS = βF (η + rF )
(rH + βHη − μ (1− α) (1− βH)) υ + (rH + δ + βHη) q

GH
, (38)

pFB = VF = βFη
(rH + ηβH − μ (1− α) (1− βH)) υ + (rH + δ + ηβH) q

GH
, (39)

VR = {((1− α) (1− βH)βFηrH + (1− βF ) ηβHαrF + (1− βH − α (βF − βH))

×rHrF )μυ − (rH + δ + βHη) (rF + βFη) rHq} / (rHGH) , (40)

VM =
(rH + βHη) υ

rH (rH + δ + βHη)
, (41)

VU =
ηβHυ

rH (rH + δ + βHη)
, (42)

where

GH = (rH + δ + ηβH) ((rF + ηβF ) rH + (1− βF ) rFμα) .

For ∆ ≥ 0, so that max {VR + pFB, VU} = VR + pFB,
pH = {(βH (η + rH) (rF + βFη)− μ (1− βH) (rF + (1− α)βFη − αβF rF )) υ

+((1− βH) δrF + (rH + βHη) (rF + βFη)) q} /GF , (43)

pFS =
βF (η + rF ) ((rH + βHη − (1− βH) (1− α)μ) υ + (rH + βHη) q)

GF
, (44)

pFB = VF =
βFη ((βHη + rH − μ (1− α) (1− βH)) υ + (βHη + rH) q)

GF
, (45)

VR = {(((1− α)βFη + rF ) (1− βH) rH + (1− βF )βHηαrF − (βF − βH)αrF rH)

×μυ − (rH + ηβH) (rF rH + δrF + βFηrH) q} / (rHGF ) , (46)

VM =
(rH + βHη) (((rF + βFη) rH + (1− βF ) rFμα) υ − rF δq)

rHGF
, (47)

VU =
ηβH (((rF + βFη) rH + (1− βF ) rFμα) υ − rF δq)

rHGF
, (48)

where

GF = (rH + βHη) (rF rH + δrF + βFηrH + (1− βF ) rFμα)− (1− βH) (1− α)μδrF .
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Lemma 10

a. For rF < brH, D (θ,α) as a function of θ is U-shaped, with a well-defined

minimum for each α ∈ [0, 1]. Write D∗ (α) = minθD (θ,α). By the Envelope
Theorem, ∂D∗ (α) /∂α < 0.

i. For sufficiently small rF , D
∗ (α) > 0 for all α ∈ [0, 1].

ii. ∂D∗ (α) /∂rF < 0. As rF increases, before rF reaches brH, D∗ (1) = 0

attains.

iii. As rF continues to increase, D
∗ (1) falls below 0, and the two roots of

D (θ, 1) = 0, bθ1 and bθ2 diverge as ∂bθ1/∂rF < 0 but ∂bθ2/∂rF > 0.
iv. Then when rF increases up to another threshold before reaching brH, D∗ (0) =

0 attains.

v. Thereafter, D∗ (0) falls below 0, and the two roots of D (θ, 0) = 0, bθ1b andbθ2a diverge as ∂bθ1b/∂rF < 0 but ∂bθ2a/∂rF > 0
vi. As rF → brH, bθ2a →∞ and bθ2b →∞, whereas bθ1a → bθUa and bθ1b → bθUb for

some finite and positive limiting values bθUa and bθUb .
b. For rF ≥ brH, D (θ,α) becomes downward-sloping throughout.

i. At rF = brH, the D ³bθa, 1´ = 0 obtains at bθa = bθUa , and D ³bθb, 0´ = 0

obtains at bθb = bθUb .
ii. Thereafter, ∂bθa/∂rF < 0 and ∂bθb/∂rF < 0, while as rF becomes arbitrarily
large, bθa → bθLa and bθb → bθLb for some bθLa , bθLb ∈ (0, 1) if βH ≥ 1/2.

7.2 Calibrating z = q/υ

In the model housing market, the flow payoffs for matched owner-occupiers, mis-

matched owner-occupiers, and buyers in rental housing are equal to υ, 0, and −q,
respectively. In this case then, the difference between the flow payoffs of matched

and mismatched owner-occupiers is equal to υ, and that between mismatched owner-

occupiers and buyers is q. Anenberg and Bayer (2013) report estimates on

1. mean flow payoff for matched owner-occupiers 0.0273

2. flow payoff for owner-occupiers mismatched with their old houses 0.024, com-

prising 30% of all mismatched households

3. flow payoff for owner-occupiers mismatched with the metro area 0.0014, com-

prising 70% of all mismatched households
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while normalizing the flow payoff of buyers to 0. We may thus equate υ = 0.0273−
0.024 = 0.00033 and q = 0.024 so that z = 8 for households who are mismatched with

their old houses and υ = 0.0273− 0.0014 = 0.0259 and q = 0.0014 so that z = 0.054
for households who are mismatched with the metro area. Taking a weighted average

of the two estimates gives a value for z equal to 2.49. Alternatively, one may take the

weighted average first before taking the ratio: υ = 0.0273−0.03×0.024−0.7×0.0014
and q = 0.03 × 0.024 + 0.7 × 0.0014, so that z = 0.43. Since it is not clear in the

context of our model which method is conceptually better than the other, we resort

to taking a simple average of 2.49 and 0.43 to obtain a value of 1.43 for z.

7.3 Proofs

Proof of Lemma 1 Combining (5), (6), and

μ =
η

θ
= η

S

B
= η

nU + nF

nR

yields the result of the lemma.

Proof of Lemma 2 By Lemma 1,

nU =
1− α

α
nF . (49)

Use (1) and (2) to write

nR = 1−H + nF . (50)

Then, by (49) and (50),

θ =
B

S
=

nR

nU + nF
=
1−H + nF
1−α
α
nF + nF

= α
1−H + nF

nF
. (51)

Solve the equation for nF ,

nF =
α

θ − α
(1−H) . (52)

Next, by (5) and (1),

μnR = δ (1− nU − nR) .
Rearrange and then substitute from (49) and (50),

(μ+ δ) (1−H + nF ) = δ

µ
1− 1− α

α
nF

¶
.

Solve the equation for

nF = α
δH − μ (1−H)

δ + μα
. (53)
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Setting the LHSs of (52) and (53) equal yields (9). The LHS is equal to (1− (1− α)H) δ >

0 at θ = 0 but is negative for arbitrarily large θ given the concavity of η. A solution

is guaranteed to exist. Differentiating with respect to θ yields

∂η

∂θ
(1−H)−Hδ,

which is positive for small θ but negative otherwise. The solution to (9) must then

be unique, and that the LHS is decreasing in θ at where it vanishes. Given that the

LHS of the equation is increasing in α, ∂θT/∂α > 0. The lower and upper bounds

θT (0) and θT (1) are given by the respective solutions to

δ + η (1−H)− (1 + θ)Hδ = 0, (54)

δ + η (1−H)− θHδ = 0. (55)

By straightforward manipulation of the second equation, θT (1) > 1/H > 1.

Proof of Lemma 3 Comparative statics— Solve (9) for

α =
θδH − (1−H) (η + δ)

δH
. (56)

Substituting (56) into (52) yields

nF =
θδH − (1−H) (η + δ)

η + δ
. (57)

Substituting (57) into (49) and (50), respectively, yields

nU =
η (1−H) + δ (1− θH)

η + δ
, (58)

nR =
θδH

η + δ
. (59)

Finally, by (1), (58), and (59),

nM =
ηH

η + δ
. (60)

The comparative statics in the Lemma can be obtained by differentiating (57)-(60),

respectively, with respect to θ, and then noting that ∂θT/∂α > 0.

Boundary values— At α = 0, by (8), nF = 0. Then, by (50), nR = 1−H and by

(2), nM = H − nU . To obtain the equation for nU , substitute (2) for nM into (6), set

nF = α = 0 and solve the equation for

θT (0) = η−1
∙
δ
H − nU
nU

¸
.
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Substituting the expression into (54) yields

1−H
nU

− η−1
∙
δ
H − nU
nU

¸
= 0. (61)

At α = 1, by (6), nU = 0. And then by (50), nR = 1 − H + nF . Thus, with (1),

nM = H − nF . The equation for nF is obtained by first substituting (2) for nM into

(8), setting nU = 1 and α = 0 and solving the equation for

θT (1) = η−1
∙
δ
H − nF
nF

¸
.

Substituting the expression into (55) yields

1−H
nF

+ 1− η−1
∙
δ
H − nF
nF

¸
= 0. (62)

Proof of Lemma 5 By (54),

1−H
δH

=
θT (0)

δ + η (θT (0))
≤ θ

δ + η (θ)
, (63)

since θ ≥ θT (0). Substitute (2) into (10) and then from (56) and (60),

TV = αδnM + (H − nM) η = ηδH

δ + η
(1 + θ)− η (1−H) . (64)

Differentiating and simplifying,

∂TV

∂θ
= δH

µ
∂η

∂θ

δ (1 + θ)

(δ + η)
2
− ∂η

∂θ

1−H
δH

+
η

η + δ

¶
≥ δH

µ
η0
δ (1 + θ)

(δ + η)
2
− θ∂η/∂θ

δ + η
+

η

η + δ

¶
> 0,

where the first inequality is by (63) and the second inequality by the concavity of η.

But then ∂θT/∂α > 0; hence ∂TV/∂α > 0.

Proof of Lemma 6 Substituting from (2), (64), and (60) and simplifying, (11)

becomes µ
(1 + θ) η − 1−H

δH
η (δ + η)

¶−1
.

Differentiating with respect to θ yields an expression having the same sign as

−
µ
η + θ

∂η

∂θ
− 1−H

δH

∂η

∂θ
(δ + 2η)

¶
< −

µ
η + θ

∂η

∂θ
− θ

δ + η

∂η

∂θ
(δ + 2η)

¶
=

−
µ

η

δ + η

µ
δ + η − θ

∂η

∂θ

¶¶
< 0,

where the first inequality is by (63) and the second by the concavity of η. The Lemma

follows given that ∂θT/∂α > 0.
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Proof of Lemma 7 Substituting from (5), (6), and then (1), (12) becomes

1

μ
+
1− α

η
=
1− nM
δnM

,

a decreasing function of nM . But where ∂nM/∂α > 0, there must be a smaller average

TBM.

Proof of Lemma 8 With limθ→0 η = 0,

lim
θ→0

D = (1− βH − α (βF − βH))μ− (δ + rH) z =∞,

since limθ→0 μ =∞. With limθ→∞ μ = 0,

lim
θ→∞

D =

µ
βF
rH

rF
− βH − zβH

¶
η − (δ + rH) z,

which is negative if rF ≥ brH but equal to positive infinitive otherwise. Differentiating,
∂D

∂θ
=

µ
βF
rH

rF
− βH − zβH

¶
∂η

∂θ
+ (1− βH − α (βF − βH))

∂μ

∂θ
, (65)

which is guaranteed negative if rF ≥ brH . In this case, D starts out equal to positive

infinity and falls continuously below zero. Given that D is decreasing in α, D will

first hit zero at some bθa and α = 1. Further declines in θ requires corresponding

declines in α to keep D = 0. Formally, we define a decreasing function αD (θ) from

D (θ,αD (θ)) = 0. Eventually, as θ falls to some level bθb, D = 0 holds at α = 0.

Thereafter D < 0 for all α. This proves part (a) of the Lemma. On the other hand,

if rF < brH , D starts out and ends up equal to positive infinity. It must therefore be

initially decreasing but eventually increasing. If the condition in note 15 holds, (65)

changes sign just once, so that D is U-shaped. This can be shown by differentiating

(65) and evaluating at where it is equal to zero, which is positive if the condition in

note 15 holds. Then, at where (65) vanishes, D is convex. We can next use arguments

analogous to the proof of part (a) to complete the proof of part (b).

Proof of Lemma 9 Setting max {VR + pFB, VU} = VU in (15) and solving (13)-

(19) for the three prices and four asset values yield the solutions in the first part of

the Lemma. Setting max {VR + pFB, VU} = VR + pFB before solving (13)-(19) yield
the solutions in the second part.

Proof of Lemma 10 By (22), limrF→0D (θ,α) = ∞. Thus, for arbitrarily small
rF , D

∗ (α) > 0. This proves (a.i). Differentiating (22) and by the Envelope Theorem,

∂D∗ (α)
∂rF

= −βF
rH

r2F
η < 0.
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This proves the first part of (a.ii). As to the second part of (a.ii) and (a.iv), notice

that

lim
rF→brH D (θ, 1) = (1− βF )μ− (δ + rH) z,

lim
rF→brHD (θ, 0) = (1− βH)μ− (δ + rH) z,

both of which are minimized at θ → ∞, yielding negative D∗ (1) and D∗ (0) in the
limit. Given that D∗ (1) and D∗ (0) are continuous in rF , D∗ (1) = 0 and D∗ (0) =
0 must hold before rF has reached brH . Because D∗ (1) < D∗ (0) with βF > βH ,

D∗ (1) = 0 attains first before D∗ (0) = 0 holds. Differentiating D (θ,α) = 0,

∂θ

∂rF
=

βF
rH
r2
F

η

∂D/∂θ
>

<
0⇔ ∂D

∂θ
>

<
0. (66)

This proves (a.iii) and (a.v). For (a.iv), notice that ∂D/∂θ, as given by (65), can

only only remain positive as rF → brH if θ→∞ in the interim. This proves bθ2i →∞,
i = a, b, as rF → brH . The limiting values for bθ1a and bθ1b are given by the respective
solutions to

0 = (1− βF )μ
³bθUa ´− (δ + rH) z,

0 = (1− βH)μ
³bθUb ´− (δ + rH) z,

which are of course also the values for bθa and bθb at rF = brH . This proves (b.i). The
comparative statics in (b.ii) follow from (66). The limiting values of bθa and bθb as rF
becomes arbitrarily large are given by the respective solutions of bθLa and bθLb toÃ

1− βFbθLa − βH (1 + z)

!
η
³bθLa´ = (δ + rH) z,

Ã
1− βHbθLb − βH (1 + z)

!
η
³bθLb ´ = (δ + rH) z.

Given that the RHS of the two equations are positive and finite, the two θs are

positive and finite, satisfying respectively,

bθLa < 1− βF
βH (1 + z)

< 1,

bθLb < 1− βH
βH (1 + z)

< 1,

where the two rightmost inequalities follow from βF > βH ≥ 1/2. This completes the
proof of (b.ii).
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Proof of Proposition 1 By Brouwer’s Fixed Point Theorem, a continuous function

mapping the unit interval into itself must possess a fixed point.

Proof of Proposition 2 The first part of the proposition follows from the dis-

cussion in the text. For the second part, it should be clear that superimposing an

upward-sloping αT (θ) into Panel C or D of Figure 4 with the given restrictions yields

at least two intersections of the two schedules.

Proof of Proposition 3 Given that for small rF , αA (θ) is as given in Panel A of

Figure 4, (a) follows immediately. For large rF , αA (θ) tends to that in Panel F. In

this case, θ can remain equal to θT (1) only if θT (1) ≤ bθLa . Given that θT (1) > 1

(Lemma 2) but bθLa < 1 if βH ≥ 1/2 (Lemma 10), the condition cannot hold. Hence,
for large rF , in equilibrium, α < 1 and θ < θT (1). Next, if bθLb ≤ θT (0), in the limit

when rF becomes arbitrarily large, α = 0 and θ = θT (0). Otherwise, equilibrium is

at some αD (θ) > 0. This proves (b). For (c), note that as rF increases, the set of θ

over which αA (θ) = 1 shrinks and the set of θ over which αA (θ) = 0 expands. Parts

(d) and (e) are direct corollaries of (a.iii), (a.v), and (b.ii) of Lemma 10, given that

∂αT (θ) /∂θ > 0.

Proof of Proposition 4 We begin with showing search market price pFS in the

θT (1) equilibrium, given by (25), is higher than pFS in an αD (θ) equilibrium, given

by (27). Now, at where θ = bθ2b, D (θ, 1) = 0, the two pFS are by construction equal.
Second, with pFS in the first equation increasing in θ by the concavity of η and the pFS
in the second equation increasing in θ for rF < brH , which is a necessary condition for
multiplicity, pFS in the θT (1) equilibrium must exceed pFS in an αD (θ) equilibrium,

since in this case θT (1) ≥ bθ2b whereas pFS in an αD (θ) equilibrium is at where

θ ≤ bθ2b. Lastly, with pFS > pH in the αD (θ) equilibrium, the single search market

price in the θT (1) equilibrium exceeds the two search market prices in the αD (θ)

equilibrium. Next, in a comparison between pFS in two αD (θ) equilibria, given that

pFS in (27) is increasing in θ, there must be higher pFS in the larger θ equilibrium.

The same ranking applies to the two pH , given that pH in (28) is similarly increasing

in θ in case rF < brH . The final comparison is between pH in an αD (θ) equilibrium

and pH in the θT (0) equilibrium, given by (23). At where θ = bθ2a, D (θ, 0) = 0, the
two pH are by construction equal. With the first pH known to be increasing in θ,

the proof is completed as pH , given by (23), is likewise is increasing in θ given the

concavity of η. This completes the proof that search market housing prices across

steady-state equilibria can be ranked by the value of θ. Given that pFB =
η

η+rF
pFS,

investment market housing prices are ranked in the same order as in search market

housing prices.
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Proof of Proposition 6 By differentiating (29)-(31) with respect to θ and noting

that αT ≤ 1 and ∂αT/∂θ > 0.

Proof of Proposition 8 Hold constant R and allow rH to increase; by (32),

∂D∗ (α)
∂rH

= −z < 0.

For large rH then, αA (θ) cannot be like the ones in Panel A of Figure 4. For rF ≥ brH
(i.e., R ≤ βH (1 + z) /βF ), ∂D (θ,α) /∂θ < 0 for all θ and α ∈ [0, 1]. Then ∂bθi/∂rH <
0, for i = a, b, given that ∂D (θ,α) /∂rH < 0. Moreover, in this case, limrH→∞ bθi = 0,
for i = a, b. For rF < brH , again given that ∂D (θ,α) /∂rH < 0, ∂bθ1i/∂rH < 0 and
∂bθ2i/∂rH > 0, for i = a, b. As rH → ∞, D (θ,α) = 0 can only hold at θ equal to

zero and infinity; thus limrH→∞bθ1i = 0 and limrH→∞bθ2i = ∞. Parts (a)-(d) of the
Proposition follows immediately.

Proof of Proposition 9 Substituting rF = rHR
−1 into (24) and (25) and differ-

entiating proves the first part of (a). In a no-intermediation equilibrium, pH is given

by (23), which is independent of rF but decreasing in rH for sufficiently small θT (0)

and/or q. This proves the second part of (a). For (b), substituting rF = rHR
−1 into

(26)-(28), respectively, yields,

pFB =
βFη

rHR−1 (rH + δ + βHη)
υ, (67)

pFS =
βFη + βF rHR

−1

rHR−1 (rH + δ + βHη)
υ, (68)

pH =
βFη + βHrHR

−1

rHR−1 (rH + δ + βHη)
υ. (69)

all of which are decreasing in rH . Solving D = 0 from (32) for

rH =
(βFR− βH − zβH) η + (1− βH − α (βF − βH))μ

z
− δ, (70)

and substituting into (67)-(69), respectively, gives

pFB =
RβFηq

2

G
, (71)

pFS =
((βFR− βH) η + (1− βH − α (βF − βH))μ)βFυ − (ηβH + δ − ηR)βF q

G
q,

(72)
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pH =
((βFR− βH) η + (1− βH − α (βF − βH))μ) βHυ − (βH (ηβH + δ)− βFηR) q

G
q,

(73)

where

G = (((βH − βFR) η − (1− βH − α (βF − βH))μ) υ + (δ + βHη) q) (74)

× ((βH − βFR) η − (1− βH − α (βF − βH))μ) .

Differentiating (71) with respect to θ, evaluating the resulting expression at βF =

βH = 1/2 yields an expression whose sign is given by that of

η (R− 1 + 1/θ − z)− 2δz − (R− 1 + 1/θ)
µ
θ2
∂η

∂θ
(R− 1 + 1/θ − z)− η

¶
.

The expression is strictly positive at R = 0 and R = 1 + z if the RHS of (70) at

βF = βH = 1/2 is positive. And then differentiating twice with respect to R yields

−2θ2∂η
∂θ
< 0.

Thus, pFB in (71) must be increasing in θ for R ∈ [0, 1 + z]. For pFS and pH ,

differentiating (72) and (73) with respect to θ and evaluating at βF = βH = 1/2 and

R = 0, 1, and 1+ z, respectively, all yield a strictly positive expression as long as the

RHS of (70) is positive at βF = βH = 1/2. Then, pFS and pH in (72) and (73) must

be increasing in θ for R in neighborhoods of 0, 1, and 1 + z.
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