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As the Copenhagen Accord indicates, most of the international
community agrees that global mean temperature should not be al
lowed to rise more than two degrees Celsius above preindustrial
levels to avoid unacceptable damages from climate change. The
scientific evidence distilled in the IPCC’s 4th Assessment Report
shows that this can only be achieved by vast reductions of green
house gas (GHG) emissions.
Still, international cooperation on GHG emissions reductions suf
fers from incentives to freeride and to renegotiate agreements in
case of noncompliance, and the same is true for other socalled
“public good games.” Using game theory, we show how one might
overcome these problems with a simple dynamic strategy of Lin
ear Compensation (LinC) when the parameters of the problem
fulfill some general conditions and players can be considered to
be sufficiently rational.
The proposed strategy redistributes liabilities according to past
compliance levels in a proportionate and timely way. It can be
used to implement any given allocation of target contributions,
whether optimal or suboptimal, and we prove that it has several
strong stability properties.

greenhouse gas emissions | freeriding | renegotiation | strategy | com
pensation

In many situations of decision-making under conflicting interests,
including the management of natural resources (1), game theory –

the study of rational behaviour in situations of conflict – proves to be
a useful analysis tool. Using its methods, we provide in this article a
partial solution for the cooperation problem in a class of so-called
public good games: If a number of players repeatedly contribute
some quantity of a public good, how can they make sure everyone co-
operates to achieve a given optimal level of contributions? The main
application we have in mind are international efforts to mitigate cli-
mate change. There the players are countries and the corresponding
public good is the amount of GHG emissions they avoid as compared
to a reference scenario (e.g., a “business as usual” emissions path).
Whereas the existing literature on this emissions game is mainly pes-
simistic about the likelihood of cooperation (2–11), our version of
the game allows for much more positive results.

The general situation is modeled here as a repeated game played
in a sequence of periods, with continuous control variables (e.g.
emissions reductions) that can take on any value in principle. We fo-
cus on the case where the marginal costs of contributing to the public
good are the same for all players. This is, e.g., the case if there is a
market for contributions that has perfect competition (12).

We propose that players adopt a simple dynamic strategy to
choose their contributions. In each period, an initially negotiated tar-
get allocation of liabilities will be redistributed in reaction to the pre-
ceding compliance levels. The redistributions are basically propor-
tional to shortfalls, i.e., to the amount by which players have failed to
comply in the previous period, but with an adjustment to keep total
liabilities constant. This strategy will be called Linear Compensation
(LinC), and its basic idea is illustrated in Fig. 1 in a fictitious com-
munity gardening example. In the emissions game, these liabilities
to reduce emissions then translate into emissions allowances via the
formula allowance = reference emissions – liability.

We prove that under certain conditions, an agreement to use the
strategy LinC is self-enforcing in that no player or group of play-
ers has a rational incentive to ever deviate from this strategy or can

ever convince the other players to switch to a different strategy by
renegotiating with them. In game-theoretic terms, it is both strongly
renegotiation-proof (13; 14) and a Pareto-efficient and strong Nash-
equilibrium in each subgame if all players use LinC. Our assumptions
and the proposed strategy are summarized in Fig. 2.

Since the strategy LinC can in principle stabilize an agreement
to meet any given target allocation, it does not solve the problem of
selecting these targets themselves. However, it indicates that players
can concentrate on first negotiating an allocation of the optimal to-
tal payoff achievable and then implementing that allocation by using
LinC. Regarding the emissions game, we will finally discuss why our
results are in contrast to the frequent claim in the literature that self-
enforcing agreements can achieve only sub-optimal targets, and will
hint at a possible modification of the Kyoto mechanism that might
enhance compliance levels.

Alice

Berta

Celia

First harvest: Second harvest: Next spring:
Berta falls short Liabilities are Liabilities

redistributed are restored

Fig. 1. Illustration of Linear Compensations in a simple public good game. Alice,
Berta, and Celia farm their backyard for carrots. Each has her individual farming
liability (redwhite separators) but harvests are divided equally. In the first year,
Berta falls short of her target by three square meters. Thus in the second year
her share of the total liabilities is temporarily increased by some multiple of this,
while those of the other two are decreased accordingly. Since in year two, all
comply with this completely, liabilities are then restored to their normal values.
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Framework
The public good game. Assume that there are infinitely many pe-
riods, numbered 1, 2, . . . , and finitely many players, numbered
1, . . . , n. In each period, t, each player, i, has to choose a quantity
qi(t) as her individual contribution to the public good in that period.
The resulting total contributions in period t are Q(t) =

∑
i qi(t).

Throughout this article, individual quantities are denoted by small
letters, and totals by large letters.

In the emissions game, qi(t) would be the difference between
i’s hypothetical amount of GHG emissions in period t in some pre-
determined reference scenario (e.g., “business as usual”), and i’s net
emissions in period t. By “net emissions” we mean the amount of real
emissions caused domestically plus, if players use emissions trading,
the amount of permits or certificates sold minus the amount of per-
mits or certificates bought on the market. In other words, qi(t) = 0
corresponds to business-as-usual behaviour, and qi(t) > 0 means
that i has reduced emissions in t domestically and/or by buying per-
mits or certificates.

Depending on qi(t) and Q(t), player i has certain individual ben-
efits bi(t) and individual costs ci(t) in period t. The typical condi-
tions under which a problem of cooperation arises and can be ap-
proached by our results are reflected in the following somewhat ide-
alized assumptions on these costs and benefits and on the informa-
tion, commitment abilities, and rationality the players possess. For
the emissions game, we discuss the validity of the following assump-
tions in more detail in the Appendix.

The good is called a public good since individual benefits bi(t)
are determined by total contributions only, through an increasing
function fi(Q(t)). They are zero at Q = 0, and marginal benefits
are non-increasing. A period’s total benefits B(t) are then given by
F (Q(t)) =

∑
i fi(Q(t)). On the negative side, we assume that total

costs C(t) are also determined by a non-negative and non-decreasing
function g(Q(t)) of total contributions, start at zero, and marginal
costs are non-decreasing.1 Unlike in some other models of public
goods, we assume here that total costs are shared in proportion to
individual contributions, e.g., because there is a market for contri-
butions that has perfect competition or because marginal costs are
constant. Hence

ci(t) = C(t) · qi(t)
Q(t)

= g(Q(t)) · qi(t)
Q(t)

[1]

if Q(t) > 0, and ci(t) = 0 otherwise.
In the emissions game, the benefits of reducing emissions by

1 Gton CO2-equivalents in period t correspond to all avoided wel-
fare losses that would have been caused at times after t by that ad-
ditional 1 Gton of emissions, properly discounted to reflect the cor-
responding time difference, and using any suitable welfare measure
such as consumption, income, gross domestic product (GDP), etc.
The above form of the costs ci seems justified when we assume an
international emissions market between firms, similar to the Euro-
pean Union Emission Trading Scheme (EUETS), to which all players
have equal access. A simple example of such a cost-benefit structure
is that of linear benefits and marginal costs (4): fi(Q) = βiQ with
βi > 0, g(Q) = Q2 for Q > 0, and g(Q) = 0 for Q 6 0. For other
examples, see SI: Examples.

We explicitly allow individual contributions qi to be any real
number in principle, positive or negative. However, as Q gets large,
costs get prohibitively high, and as Q gets small, benefits get pro-
hibitively negative. Hence total period payoffs, P (t) = B(t)−C(t),
are bounded from above but not from below, with P (t) → −∞ for
Q → ±∞. In the emissions game, large positive or negative values
for some qi(t) can obtain if large amounts of emissions permits are
traded. Although the strategy we will propose below prescribes such
large values of qi(t) only in cases where there has already been an
irrationally large earlier deviation, this might still lead to problems in
practice. Therefore we also analyse in the Supporting Information the
alternative case in which contributions and liabilities are bounded.

Players make the choices qi(t) individually and simultaneously
in each t, and all know that no player can commit himself bindingly
to some value of qi(t) at some time earlier than t. They also know
that each i has complete information about costs, benefits, and all
past contributions when choosing qi(t). Players are assumed to be
rational in that they aim at maximizing their long-term payoff, using
some strategy to choose qi(t) on the basis of this information, and
expect the others to do so as well. Regarding how much the players
value next period’s payoffs in comparison to this period’s, we assume
as usual that for some constant δ > 0 and all periods t, all prefer to
get one payoff unit in period t+ 1 to getting δ payoff units in t.

For some known (or estimated) optimal total contributions Q⋆,
total payoff is maximal, and marginal total costs equal marginal total
benefits but exceed marginal individual benefits:

F (Q⋆)− g(Q⋆) = max, g′(Q⋆) = F ′(Q⋆) > f ′
i(Q

⋆). [2]

Optimal total payoffs are usually much larger than the total payoffs
the players would end up if they do not cooperate. In the simple
example with linear benefits and marginal costs, e.g., optimal total
payoffs are larger than the non-cooperative equilibrium payoffs by
a factor of (n + 1)2/4, showing that the potential gains of cooper-
ation can be large and increase with the number of players (see SI:
One-shot game and SI: Examples).

Finally, let us assume that players can enter no legally binding
and enforceable agreements (since this is the worst case assumption
when studying the possibility of cooperation) but have somehow cho-
sen in advance (before period one) an allocation of the optimum tar-
get into individual targets q⋆i , with

∑
i q

⋆
i = Q⋆. This allocation will

be so that no group G of players has an incentive to contribute more
than what was agreed as their joint target Q⋆

G =
∑

i∈G q⋆i .2 How-
ever, the allocation need not be profitable for each player as compared
to the reference scenario, i.e., some target payoffs may be negative.

In the emissions game, the targets could for example be negoti-
ated using equity criteria such as per capita emissions permits, per
capita payoffs, historical responsibility, etc. (6; 15; 16). In game-
theoretic terms, this initial negotiation poses a problem of equilib-
rium selection that might be solved by coalition formation and pre-

The public good game:

• Repeated game, no binding agreements or commitments
• Individual contributions are made per player and period

and are publicly known after each period
• Positive, nonincreasing marginal individual benefits,

depending on total contributions
• Nonnegative total costs with nondecreasing marginals,

depending on total contributions,
shared in proportion to individual contributions

• All players discount future payoffs in the same way
• Optimal total contributions are known and

an allocation into individual targets has been agreed upon

The strategy of Linear Compensation (LinC):

• Initial individual liabilities = targets
• Shortfall per period = liability – actual contribution

(if positive, otherwise zero)
• New liability = target + [own shortfall – mean shortfall] · factor
• The strategy is to always contribute your liability

Fig. 2. Main assumptions and solution for the public good game

1Formally, fi and g are twice differentiable, bi(t) = fi(Q(t)), C(t) = g(Q(t)) > 0,
fi(0) = g(0) = 0, f ′

i(Q) > 0, g′(Q) > 0, f ′′
i (Q) 6 0, and g′′(Q) > 0.

2Formally:
∑

i∈G f ′
i(Q

⋆) < h′(0) where h(x) = (Q⋆
G + x)g(Q⋆ + x)/(Q⋆ + x).
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cedes the problem of cooperation which we are concerned with in
this article (see also SI: Target allocation).

Freeriding and renegotiations. In this kind of public good game,
the problem of cooperation is now this: Although the negotiated tar-
gets provide the optimal total payoff and are often also profitable for
each individual player, they constitute no binding agreement. Hence
player i will hesitate to meet the target if he can hope that the others
will meet it, since contributing less reduces i’s costs more than his
benefits (see Eqn. 2). If there is only one period of play, this free-rider
incentive is known to make cooperation almost impossible, since ra-
tional players will then contribute a much smaller quantity, which
means that the agreement is not self-enforcing (for more on this, see
SI: Properties of the one-shot game).

In a repeated game, however, a player i can react to the other
players’ earlier actions by choosing qi(t) according to some strategy
si that takes into account all players’ individual contributions before
t. When reacting suitably to free-riding, its immediate gains might
be compensated by later losses. The announcement to react in such a
way can then deter free-riding as long as that announcement is cred-
ible (see, e.g., Robert Aumann’s Nobel Lecture (17)).

However, if those who react to free-riding would thereby reduce
their own long-term payoffs, and if they cannot bindingly commit
themselves beforehand to actually carry out the announced reaction
despite harming themselves in doing so, then such a “threat” would
not be credible since a potential free-rider could expect that a ratio-
nal player will not harm herself but rather “overlook” the free-riding.
After the fact, a free-rider of period t could then successfully renego-
tiate with the others between periods t and t+1, convincing them to
“let bygones be bygones”. The effect is that his free-riding in t will
be ignored, since in t+ 1 everyone benefits from doing so (13).

A famous example of such a non-credible strategy, though in a
different game, is the strategy “tit for tat” that can be observed in var-
ious versions of the repeated Prisoners’ Dilemma in which players
can commit themselves beforehand (18; 19). In that game, each of
two players decides to either “cooperate” or “defect” in each period,
and the strategy is to start with “cooperate” and then do whatever
the other player did in the previous period, thereby punishing non-
cooperation by non-cooperation. But once this calls for “defect” in
some period, both would be better off at that point if they instead both
continued with “cooperate”. So the threat to defect after a defection
is void and cannot deter free-riding under assumptions of rationality
and without commitment possibilities (20).

Another problematic strategy is to simply treat free-riding as
some form of debt to be repayed with interest, as it is done, e.g., in the
“Procedures and mechanisms relating to compliance under the Kyoto
protocol” that were adopted in 2001 in the so-called “Marrakech Ac-
cord”. According to its Article XV 5 (a), a country free-riding in one
period has its liabilities in the following period increased by 1.3 times
the size of its shortfalls. In our framework, such a rule would lead to
contributions in t + 1 that exceed the optimal value Q⋆. Hence if
renegotiations are possible after a shortfall, all players would agree
to rather jointly contribute the smaller but optimal value Q⋆ in t+ 1,
allocating individual contributions in a way so that the additional pay-
off is positive for each country. Even worse, if a player never fulfils
his liabilities, he gets away with it.

Depending on the cost-benefit structure of a repeated game, there
might or might not be strategies that achieve a certain level of stabil-
ity against deviations such as free-riding and against incentives to
renegotiate. Fortunately, we can formally prove that in our assumed
framework, a rather simple, proportionate combination of the above
two ideas of punishing other’s and repaying own shortfalls is both
efficient and extremely stable, even when players make small errors
in implementing it. Fig. 2 summarizes our main assumptions and the
suggested solution that we present below.

Results
Avoiding renegotiations. Let us deal with the question of renegoti-
ations first. The crucial idea to avoid those in our kind of game is
to keep total contributions constant and only redistribute them as a
reaction to past behaviour. Consider a strategy s which, in each pe-
riod t, tells all players to choose their contributions qi(t) in a certain
way which makes sure that the total target is met, Q(t) = Q⋆. Then
no matter the actions before t, there can be no alternative strategy s̃
that achieves higher total payoffs than s from time t on. So, any al-
ternative strategy s̃ that leads to different payoffs than s would lead
to a strictly smaller payoff than s for at least one player. This holds
whether only payoffs in t are considered or also later payoffs with
discounting. Hence at no possible situation in the game, all players
would agree to change the strategy. In game-theoretic terms, such a
strategy is Pareto-efficient in all subgames. It will thus be strongly
renegotiation-proof (13; 14) if we manage to do the redistribution of
contributions in t+1 in a way that makes free-riding in t unprofitable
in the long run. This we will do next.3

Deterring simple freeriding by groups of players. In this section,
we will need many of the denotations we introduced earlier and
which are summarized in Fig. 3.

Suppose in some period t, all players contribute their targets, ex-
cept that a set G of players free-rides. This means they jointly con-
tribute only a quantity QG(t) =

∑
i∈G qi(t) that is by some amount

x > 0 smaller than their joint target contribution: QG(t) = Q⋆
G −x.

Note that G’s benefits are given by fG(Q) =
∑

i∈G fi(Q), so that
βG = f ′

G(Q
⋆) is G’s target marginal benefit. Let γ = g(Q⋆)/Q⋆ be

the average unit costs at the target contributions. Then the free-riding
reduces G’s joint benefits in t by at least xβG, but saves them costs
of at most xγ. Hence their joint payoff increases by at most

x(γ − βG). [3]

How much redistribution in t+1 is now needed to make this unprof-
itable for G? Suppose the contributions in t + 1 are redistributed
in such a way that everyone gets their target benefits but group G
has additional costs, and these additional costs times δ are no smaller
than the right-hand side of Eqn. 3. Then, in period t, it is not attrac-
tive for G to free-ride, since in that period, they value their resulting
losses in t + 1 higher than their gains in t. Such a redistribution can
easily be achieved: Just let G’s joint contributions QG(t + 1) be at
least Q⋆

G+x(γ−βG)/γδ and reduce the other players’ contributions

α compensation factor
B(t), bi(t) benefits in period t, total and for player i
βG marginal benefits at target, for a group of players G
C(t), ci(t) costs in period t, total and for player i
d̄(t), di(t) shortfalls in period t, average and of player i
δ lower bound for discounting factors
F (Q), fi(Q) benefits of total contributions Q, total and for player i
g(Q) total costs of total contributions Q
γ average unit costs at target
ℓi(t) liability of player i in period t
Q(t), qi(t) contributions in period t, total and by player i
Q⋆, q⋆i target contributions, total and for player i
x size of potential shortfall by a group of players G

Fig. 3. Main symbols used in this article

3 If we drop the assumption that the global target Q⋆ maximizes total payoff, e.g., because of
uncertainty in estimating the optimum, then such redistribution strategies are no longer Pareto
efficient in all subgames. Renegotiations that improve total payoff may then happen, which
is desirable. Still, the same reasoning as above shows that there is never an incentive for all
players to pretend past actions were different from what they really are, hence no group of
players can convince the rest to ignore their shortfalls. This is called weak renegotiation-proofness
(13; 14). See also the Appendix.
4 If all players are in G, optimality of Q⋆ implies that shortfalls give no gains for G in period t.
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accordingly.4 This leads to additional costs for G of size

[Q⋆
G + x(γ − βG)/γδ]γ −Q⋆

Gγ = x(γ − βG)/δ. [4]

So, G’s joint gains in t are overcompensated by these losses in t+1.
Although the free-riding for one period might be profitable for some
individual members of G, there is always at least one member of G
for which it is not. Fig. 1 illustrates the basic idea.

We will show next how the same kind of redistribution can be
used to deter also every conceivable sequence of deviations from the
target path.

The strategy of Linear Compensation (LinC). A simple strategy that
does this assigns each player i in each period t a certain individual
liability ℓi(t) which that player should contribute in t. In period one,
liabilities equal the negotiated targets, ℓi(1) = q⋆i (1). Later, they
depend on the differences between last period’s liabilities and ac-
tual contributions of all players. After each period t, we first com-
pute everyone’s shortfalls in t, which are di(t) = ℓi(t) − qi(t) if
ℓi(t) > qi(t), and otherwise di(t) = 0, that is, we do not count ex-
cesses. Then we redistribute the targets in t+1 so that these shortfalls
are compensated linearly, but keeping the total target unchanged:

new liability = target + [own shortfall − mean shortfall] · factor

ℓi(t+ 1) = q⋆i + [di(t)− d̄(t)] · α. [5]

In this, d̄(t) =
∑

i di(t)/n is the mean shortfall and α is a certain
positive compensation factor we will discuss below. Obviously, if all
players comply with their liabilities by putting qi(t) = ℓi(t), then all
shortfalls are zero, and both liabilities and contributions stay equal to
the original targets so that the optimal path is implemented.

The compensation factor α has to be large enough for the argu-
ment of Eqns. 3 and 4 to apply in all possible situations, whatever the
contributions have been before t. In the simple free-riding situation
discussed in the previous section, the group’s joint shortfall equals x
and the mean shortfall is d̄(t) = x/n. Hence G’s joint additional
liability in t+1 is [x− |G|x/n] ·α, where |G| < n is the number of
players in G. If this is at least x/δ, then having shortfalls of size x is
not profitable, independently of what the actual liabilities in t were.
Since only shortfalls but not excesses lead to a redistribution, a group
can neither profit from contributing more than their liability.

In other words, to make sure no group of players has ever an in-
centive to deviate from their liability for one period, even if liabilities
are already different from the target, it suffices if

α >
n

γδ
·max

G

γ − βG

n− |G| , [6]

where the maximum is taken over all possible groups of players G.
If it is known that the benefit functions of all players are equal,
then βG = C′(Q⋆)|G|/n > γ|G|/n and Eqn. 6 simplifies to
α > [nγ − C′(Q⋆)]/γδ(n − 1), so that in particular α > 1/δ
suffices. Note that liabilities do not depend on costs and benefits ex-
plicitly, only via the negotiated targets q⋆i and the factor α, so the
information about costs and benefits one needs to apply LinC is lim-
ited to the knowledge of the optimum contribution and the marginal
costs and benefits at the target. Let us call the strategy defined by
Eqns. 5 and 6 Linear Compensation (LinC).

In game-theoretic terms, we have shown above that when all
players comply with LinC, this forms a one-shot subgame-perfect
equilibrium. It is then also never profitable to deviate from LinC for
any number of successive periods. The proof for this follows a stan-
dard argument (21): Assume m > 0 is the smallest integer for which
a sequence of m successive deviations exists that are profitable for
some group G. Let t, . . . , t + m − 1 be the periods in which they
deviate, and t+m the period in which they return to compliance with
LinC. But we already proved above that in period t+m− 1, it is not
profitable to deviate for one period and then return to LinC. Hence

it must be even more profitable to only do the first m− 1 deviations
and then return to LinC already in period t + m − 1. So there is a
sequence of m − 1 successive deviations that are profitable, in con-
tradiction to our choice of m. In the Appendix, we prove that even
no conceivable infinite sequence of deviations is profitable for any
group G of players. Hence for any given set of targets q⋆i , it builds a
strong Nash equilibrium in each subgame if all players comply with
LinC given these targets. Roughly speaking, the reason is that if G
continually shortfalls, liabilities and contributions of the other play-
ers will decrease fast enough so that G’s gains from saved costs are
overcompensated by its losses from decreased total contributions in
the long-term. Note that the others do not need to use a threat of
contributing nothing forever, which would be incredible, but only the
threat of answering a period of shortfalls by a period of “punishment”
one at a time. This gradual escalation is credible when there is com-
mon knowledge of rationality, since G knows in advance that after
each individual period t of shortfalls, the others still expect them to
follow their rational interest and return to compliance in t+1 instead
of shortfalling again, no matter how many shortfalls have happened
already.

Discussion
We have presented here a simple strategy by which players in a pub-
lic good game can try to keep each other in check in the provision
of agreed target contributions. Our approach can be interpreted as a
combination of, on the one hand, a proportionate version of the pun-
ishment approach that strategies like “tit for tat” use in the Prisoners’
Dilemma, and, on the other hand, the repayment approach that is al-
ready included in the Kyoto mechanism. Unlike each one of these
ingredients alone, this combination has then been formally shown
here to have strong game-theoretic stability properties if the situation
fulfils some simplifying assumptions. In Axelrod’s (18) terminology,
our strategy, LinC, is nice in that it cooperates unless provoked, re-
taliating when provoked, forgiving when deviators repay, and uses
contrition to avoid the “echo effect”. We believe that very similar
strategies will be valuable also in contexts in which some of our as-
sumptions are violated (see the discussion in the Appendix).

Since LinC uses a proportionate and timely “measure for mea-
sure” reaction to shortfalls, it performs well also in situations in
which players cannot control their actions perfectly. If their errors
can be modelled as being random with a given variance, it is easy
to see from Eqn. 5 that errors do not add up or lead away from the
target, nor do one-time deviations initiate an infinite “echoing” se-
quence of reactions as strategies like “tit for tat” would.5 The latter
is avoided by comparing actual contributions not to the initial targets
but to dynamic liabilities, which are similar to the “standings” used
in “contrite tit-for-tat” for the repeated Prisoners’ Dilemma (22).

All the above stability properties of LinC hold independently of
the value of the discounting factor δ if only the compensation fac-
tor α is chosen accordingly.6 This is in contrast to n-player versions
of the repeated Prisoners’ Dilemma, in which such stable strategies
only exist when players are sufficiently patient, i.e., when δ is close to
unity (20). The reason is that when the only possible two actions are
to “cooperate” or to “defect”, no redistribution that keeps the optimal
total target is possible. Strategies must then use sophisticated recip-
rocation to construct credible threats not subject to renegotiation.

It may come as a surprise that while in many other games there
are no strong Nash equilibria at all, the public good game studied here
even allows players to sustain any conceivable allocation of the opti-
mal total payoff with such an equilibrium. This means that although

5With implementation errors of variance σ2, the mean squared deviation of ℓi(t + 1) from
the target q⋆i will be at most σ2α2(n − 1)/n, hence the mean squared deviation between
actual and target contributions is of magnitude σ2(1 + α2(n − 1)/n).
6The value of δ however does play a role when, in addition to our assumptions, liabilities shall
be bounded. This is further explored in the Appendix.
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the cooperation problem can be solved in this game, the equilibrium
selection problem might be even harder than in games with no or
only a small number of strong equilibria. In SI: Target allocation,
we give some hints on possible game-theoretic approaches. In the
emissions game, our scheme can be interpreted as a form of “cap and
trade” with a dynamic allocation of permits that does not seem to re-
quire negative initial targets (“hot air”) for some countries to secure
compliance (23).

Comparison with the literature on the emissions game. Some of
the existing literature on the emissions game (8; 9) treat it as a form
of Prisoners’ Dilemma with a choice to either “cooperate” or “de-
fect”, and the above discussion explains why those studies are much
more pessimistic about cooperation. Although there are also positive
contributions like (24), they do not consider deviations by groups of
players and cannot be applied to a model with more than two choices
(25). We believe that a model in which countries choose an actual
level of emissions is more appropriate than one in which they can
only choose between two pre-determined emission levels.

In (3; 26), several dynamic physico-economic models of the
emissions game are described which are much more sophisticated
than our simplistic model and differ in features that are important
for a strategic analysis and give it a different strategy set than in our
game. A slightly similar approach as ours (27) uses harsh punishment
strategies that last several periods to arrive at a subgame-perfect equi-
librium. As those authors do not discuss renegotiations or deviations
by groups of players, it is not straightforward to compare their partly
negative and partly positive results to our optimistic result, which will
be an important task for future research.

Other authors neglect the time dimension (2; 4–6) and assume
countries choose only once, whether to join a long-term coalition or
not. Usually only one coalition is assumed to form which then tries
to maximize their joint payoff, while each non-member tries to max-
imize its individual payoffs, leading to sub-optimal total payoffs. As
these studies have to assume that players can sign legally binding and
enforceable long-term agreements, it remains unclear why the pre-
dicted coalition would not later on find another such agreement with
all non-members to realize the optimal total payoff and share the re-
sulting surplus in some way. The present paper shows that such an
agreement would indeed be stable if players agree to use LinC for its
implementation, which we further discuss in SI: Coalition formation.

In one paper (7), a complicated iterated game is used as a model
that has, however, only finitely many periods, so that the game can be
“solved backwards”. Unfortunately, with a finite time horizon, one
cannot react to free-riding in the last period, and this has also negative
effects in earlier periods.

As mentioned, the Kyoto mechanism already includes a form of
compensation rule, and our results indicate that it should be analysed
whether compliance can be expected to improve if the compensation
is modified to keep total liabilities constant as in Eqn. 5 and if the
current compensation factor of 1.3 is adjusted according to Eqn. 6.

Appendix: Validity of assumptions on the emissions game

Typical models of the emissions game (4; 7) fulfil our assump-
tions on costs and benefits.

Concerning benefits, the economic literature on climate change
as distilled in the IPCC’s 4th Assessment Report indicates that the
global society as a whole would benefit from reduced GHG concen-
trations. The regional distribution of the consequences of climate
change is much more uncertain, but some studies (28; 29) suggest
that on a suitable level of regional aggregation, most or all world re-
gions do indeed have positive marginal benefit functions f ′

i , whether
in terms of GDP, consumption, or other welfare measures. If some
country or region i would not profit from reduced GHG concentra-
tions, it may still be part of a politically or economically closely inte-
grated group of countries that would profit from reduced GHG con-

centrations as a group. In that case, it may be appropriate to treat
that group as a single player, and indeed many models use world re-
gions instead of countries as players (4; 5; 7). Otherwise, i has to
be excluded from our analysis and its contributions (if any) could be
treated as an exogenous variable for our solution to be applicable.

The common assumption that marginal benefits are non-
increasing was made mainly for simplification. Many models in the
literature even assume constant marginal benefits. If actual marginal
benefits can be increasing, e.g., because of certain tipping elements
in the Earth system (30; 31), our analysis would still be valid if we
let βG denote the value infQ6f ′

G
(Q⋆) f

′
G(Q) instead of f ′

G(Q
⋆) and

raise the compensation factor α accordingly.
For costs, the convexity of the cost function (i.e., non-decreasing

marginal costs) is more essential for our analysis but reflects the
usual assumptions. A recent study (32) estimates actual marginal
costs to be approximately linear, hence a model of linear benefits and
marginal costs seems to be a plausible first approximation. However,
we also assume that marginal costs are equalized for all countries
by emissions trading and shared in proportion of contributions, and
whether this is justified depends on whether the market has perfect
competition or prices can be influenced strategically by countries as
it is assumed in some models (33). With a suitable choice of α, LinC
should work also for other cost sharing schemes as long as individual
costs gi grow in a convex way when contributions are redistributed.
Future research should investigate this issue in detail.

To be able to apply the powerful analysis tools developed for re-
peated games, we had to assume time-independent cost and benefit
functions, although in a more accurate model the functions fi and
g, and hence the quantity Q⋆ would display some time-dependency,
e.g., because of technological progress or the stock pollutant nature of
GHG, making this an iterated or even dynamic instead of a repeated
game. However, most of our analysis depends only on a comparison
of two successive periods, and if the period length is not too large, fi,
g, and Q⋆ will change only little from period t to period t+1. Future
work should check whether a suitable increase in the compensation
factor α might suffice to account for this variation.

Another issue is that of risk and uncertainty. In a more accurate
model, benefits of reductions in period t would be an uncertain and/or
risky quantity (34; 35), e.g., due to the unknown value of future GDP
and the fact that for a stock pullutant, emissions-related damages in
t may depend on earlier emissions in a non-linear way. Much of
the existing literature on cooperation in this game assume this non-
linearity is small enough for a game-theoretic analysis to disregard
it (2; 4; 5; 7). On the question of discounting in the context of the
emissions game, see (36), where it is also argued that risky payoffs
can be treated as risk-free by using their expected value and a lower,
“risk-free” discounting rate. One might also want to use a more gen-
eral payoff function of the form hi(bi − ci) with concave increasing
functions hi, for which we conjecture our results will still hold.

Finally, whether the assumption of complete information is a rea-
sonable approximation will have to be checked carefully, even when
risk has been accounted for as indicated. Uncertain information about
past contributions may be overcome by improving monitoring possi-
bilities (23), increasing the period length, or basing liabilities on ear-
lier periods by replacing ℓi(t + 1) by ℓi(t + k) for some k > 1 in
Eqn. 5. The assumption that no country has a significant possibility to
bindingly commit itself to certain future contributions has to be evalu-
ated in light of the possibility of early investment decisions. Whether
countries can be considered to be rational players in the sense of
classical game-theory or exhibit some form of bounded rationality
(37), and whether they cannot enter legally binding agreements that
are not self-enforcing in the sense discussed, but can somehow be
enforced by other means external to the considered game (e.g., inter-
national bodies or trade sanctions), are difficult questions of political
science and international legal theory which are beyond the scope of
this article. In this context, models that link emissions reductions
with other issues (38), and approaches based on agent-based model-
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ing (39), learning theory (40), or complex networks (41) are impor-
tant contributions. Also, decision-makers might include criteria such
as reputation and relative status in their reasoning, or might be influ-
enced by citizens’ altruistic attitudes towards public goods problems
(42).

Appendix: Why infinite sequences of deviations do not pay

Suppose all players comply with LinC by putting qi(t) = ℓi(t)
except that from some period t0 on, a group G of players play a de-
viation strategy s that leads to joint shortfalls

∑
i∈G di(t) = xt in

each period t > t0. Since excess contributions never pay, we can
assume that xt > 0.

Assume further that in each period t and for each integer r > 0,
all players consider getting one payoff unit in period t + r as equiv-
alent to getting wt,r payoff units immediately in period t, where the
discounting weights wt,r fulfil the conditions

wt,0 = 1, wt,1 > δ, wt,r > 0,
∑∞

r=0 wt,r = Wt < ∞. [7]

E.g., players could use exponential discounting with wt,r = εr ,
δ < ε < 1, and Wt = 1/(1− ε).7 G’s discounted long-term payoff
from t0 on is then UG(t0) =

∑
t>t0

wt0,t−t0PG(t) with joint period
payoffs PG(t) =

∑
i∈G(bi(t)− ci(t)). We will show that this is no

larger than if they had continued to comply with LinC instead. As-
sume ∆(s,LinC) > 0 is the difference in UG(t0) between playing s
and playing LinC from t0 on, and consider the following two cases.

(i) Suppose the discounted total long-term shortfalls are finite,
i.e., the series

∑
t>t0

wt0,t−t0xt of non-negative terms converges.
Now consider the truncated deviation strategy s̃ that returns to com-
pliance in some period t1 > t0, i.e., consists in playing s for t0 6
t < t1 and playing LinC for t > t1. Let ∆(s, s̃) be the difference in
UG(t0) between playing s and s̃. This is at most the costs they save
in periods t > t1 when playing s instead of LinC, which is at most
xtγ according to Eqn. 3. Hence ∆(s, s̃) 6

∑
t>t1

wt0,t−t0xtγ.
Because of the assumed series convergence, this goes to zero for
t1 → ∞, so it is smaller than ∆(s,LinC) if t1 is large enough. Then
∆(s̃,LinC) = ∆(s,LinC)−∆(s, s̃) > 0 which means that already
the truncated deviation strategy s̃ is profitable. But we already proved
that no finite sequence of deviations is profitable, a contradiction.

(ii) Suppose the discounted total long-term shortfalls are infinite,∑
t>t0

wt0,t−t0xt = ∞. Because xt−1 > 0, the joint liability of G
in period t is no smaller than the target, LG(t) =

∑
i∈G ℓi(t) > Q⋆

G.
Their joint costs are

CG(t) = (LG(t)− xt)
g(Q⋆ − xt)

Q⋆ − xt
. [8]

If xt > Q⋆, these are zero because total costs are. For xt < Q⋆, we
have CG(t) > (LG(t)−Q⋆)g(Q⋆−xt)/(Q

⋆−xt). The latter is non-
negative for LG(t) > Q⋆ and is otherwise at least (Q⋆

G −Q⋆)γ 6 0
since average costs are non-decreasing. So in all cases, CG(t) >
(Q⋆

G − Q⋆)γ. Concerning benefits, let fG(Q) =
∑

i∈G fi(Q) and
let βG = f ′

G(Q
⋆) be the target marginal benefit of G. Then G’s

joint benefits are fG(Q
⋆ − xt), which is at most fG(Q⋆) − βGxt

because marginal benefits are non-increasing. Thus G’s joint payoffs
are at most (Q⋆ −Q⋆

G)γ + fG(Q
⋆)− βGxt, so that G’s discounted

long-term payoff UG(t0) is then at most

Wt0 [(Q
⋆ −Q⋆

G)γ + fG(Q
⋆)]− βG

∑
t>t0

wt0,t−t0xt.

But the latter series diverges because of our assumption, hence
UG(t0) = −∞. In other words, an infinite sequence of shortfalls
growing this fast is infinitely bad.

Cases (i) and (ii) exhaust the possibilities, hence no strategy of
deviations whether of finite or infinite length can increase G’s dis-
counted long-term joint payoff. Hence LinC builds a strong Nash-
equilibrium in each subgame.8
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Supporting Information: Properties of the one-shot game
Here we consider the one-shot version of the game (also called the
stage game of the repeated game) in which only one period is played
and a strategy just consists of choosing the individual contributions
qi of that period.

Pareto-efficient contributions. Since the game has transferable util-
ity and the total period payoff P has a unique maximum P ? for
Q = Q?, a vector of individual contributions qi is Pareto-efficient
if and only if

∑
i qi = Q?.

Pure-strategy equilibria.A pure-strategy equilibrium is a strong
form of Nash equilibrium in which strategies do not use random-
ization. Let Q−i = Q − qi be the joint contributions of all play-
ers except i. A best response qi of player i to a given value of
Q−i is a value of qi that maximizes the individual period payoff
Pi. A best response must make total contributions non-negative,
Q > 0, since for Q < 0 we have ∂Pi/∂qi > f ′i(0) > 0. Hence
qi > −Q−i. Denote average unit costs by h(Q) = g(Q)/Q > 0, so
that h′(Q) = (g′(Q)− h(Q))/Q > 0 for Q > 0 and h′(Q) = 0 for
Q 6 0. Note that for qi = −Q−i we have Pi = 0, and for qi → +∞
we have Pi → −∞. Thus, for any best response qi to Q−i, either
(i) qi > −Q−i and Pi as a function of qi has a local maximum with
Pi > 0 at qi, in particular ∂Pi/∂qi = f ′i(Q)−h(Q)−qih′(Q) = 0,
or (ii) qi = −Q−i and Pi as a function of qi has a global maximum
Pi = 0 at that value.

Now a pure-strategy equilibrium (PSE) is a vector of contri-
butions qi for all i such that qi is a best response to Q−i for all
i. So for a PSE, either (i) Q > 0 and ∂Pi/∂qi = 0 for all i,
or (ii) Q = 0 and Pi as a function of qi has a global maximum
at that value for all i. In case (i), taking the sum over all i gives
0 = F ′(Q)−nh(Q)−Qh′(Q) or F ′(Q) = (n− 1)h(Q) + g′(Q).
Since the left-hand side is non-increasing, the right-hand side non-
decreasing, and since F ′(Q?) = g′(Q?), this condition has at least
one (and often unique) solution QPSE > 0:

F ′(QPSE) = (n− 1)h(QPSE) + g′(QPSE). [9]

Given QPSE, the individual conditions ∂Pi/∂qi = 0 have a unique
solution

qPSE
i =

f ′i(Q
PSE)− h(QPSE)

h′(QPSE)
[10]

if h′(QPSE) > 0. This solution leads to individual period payoffs

PPSE
i = fi(Q

PSE) + h(QPSE)
h(QPSE)− f ′i(QPSE)

h′(QPSE)
. [11]

If PPSE
i > 0 for all i, this solution is the unique one-shot PSE with

Q = QPSE. If h′(QPSE) = 0 or some of the PPSE
i are non-positive,

the analysis is more complicated.
Because PPSE < P ?, there are allocations qi of the total optimal

contributions Q? that give each i a strictly higher payoff than PPSE
i .

Hence each such PSE is Pareto-dominated but may serve as a kind of
benchmark in negotiations of the target allocation q?i in the sense that
one could only allow for target allocations that Pareto-dominate the
PSE. See also SI: Target allocation.

Supporting Information:
Renegotiations when targets are not optimal
Let us drop the assumption that the global target Q? maximizes total
payoff. Then LinC is no longer Pareto-efficient, hence not strongly
renegotiation-proof, but is still weakly renegotiation-proof and also
has the following property if α is large enough: Assume some group
G of players can profit from free-riding in a period t and then rene-
gotiating a new strategy s with the others that all will follow from
t + 1 on. Then there is another strategy s̃ that all players outside
G strictly prefer to play from t + 1 on over playing s, and so that
G’s long-term payoff from t on is smaller than if all had continued
to play LinC. We will prove below that this strategy s̃ can be chosen
so that it simply consists in continuing to play LinC, but with a new
set of targets q?i from t + 1 on, and taking into account in t + 1 the
shortfalls in t. In other words, the “meta-strategy” of sticking to LinC
and only changing the targets when necessary deters any attempts of
free-riding followed by renegotiation.

The proof is this: As all would agree to play s from t + 1
on, it must increase Ui(t + 1) for all i, hence it must increase∑
i Ui(t+1) =

∑
r>0 wt+1,rP (t+1+r). Thus the supremum of the

new total period payoffs, P+ = supr>0 P (t + 1 + r), exceeds the
original target payoffs and is finite since payoffs are bounded from
above. Since total payoffs F (Q) − g(Q) are a continuous function
of Q, there is a value Q+ for which they equal P+. So any strat-
egy s̃ that has total contributions Q+ from t+ 1 on gives at least the
same value of

∑
i Ui(t + 1) as s does. In particular, this is true if s̃

consists in applying LinC with any targets q+i instead of q?i , as long
as
∑
i q

+
i = Q+. Since each Ui(t + 1) is a linear function of the

targets q+i , the latter can also be chosen so that for each individual
i, Ui(t + 1) is larger for s̃ than for s. Let q0i be those targets and
consider the alternative targets q+i = q0i + (n− |G|)λ for i ∈ G and
q+i = q0i − |G|λ for i /∈ G, with some λ > 0. Then Ui(t + 1) is
still larger for s̃ than for s for all i /∈ G, and UG(t + 1) is linearly
decreasing with increasing λ. Now let s0 be the strategy of applying
LinC with the original targets q?i and consider these four cases:

(i) all play s0 from t on,
(ii) G free-rides in t and all continue s0 from t+ 1 on,
(iii) G free-rides in t and all switch to s from t+ 1 on,
(iv) G free-rides in t and all switch to s̃ from t+ 1 on.

We already know that UG(t) is larger in case (i) than in case (ii) and
UG(t + 1) is larger in case (iii) than in cases (ii) and (iv). Hence λ
can be chosen so that UG(t) is smaller in case (iv) than in case (i),
but UG(t + 1) is still larger in case (iv) than in case (ii). Since also
Ui(t + 1) is larger in case (iv) than in case (iii) for all i /∈ G, this
means that when G proposes switching to s after the free-riding, the
rest can argue for switching to s̃ instead which at t+ 1 still all prefer
to continuing with s0, but which makes sure the free-riding by G did
not pay in the long run.
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Supporting Information: Examples
Linear benefits, monomial costs. Many examples from the litera-
ture are of the following form:

• Individual benefits fi(Q) = βiQ with f ′i(Q) = βi > 0.
• Total marginal benefits F ′(Q) = β =

∑
i βi > 0.

• Total costs g(Q) = max{Q, 0}ζ with ζ > 1.
• Marginal total costs g′(Q) = ζ max{Q, 0}ζ−1.
• Average unit costs h(Q) = max{Q, 0}ζ−1 with
h′(Q) = (ζ − 1)Qζ−2 for Q > 0 and h′(Q) = 0 for Q < 0.

• Total period payoff P (Q) = βQ−max{Q, 0}ζ with
P ′(Q) = β − ζ max{Q, 0}ζ−1.

• Individual period payoff Pi = βiQ− qih(Q) with
∂Pi/∂qi = βi − (ζ − 1)(qi +Q)Qζ−2 for Q > 0 and
∂Pi/∂qi = βi for Q < 0.

The optimal total contributions Q? > 0 then fulfil

0 = P ′(Q?) = β − ζ(Q?)ζ−1,

hence

Q? = γ
1
ζ−1 ,

P ? = (ζ − 1)γ
ζ
ζ−1 ,

where γ = β/ζ are the target average unit costs. Similarly, a one-
shot PSE has QPSE > 0 and thus fulfils

0 = F ′(QPSE)− (n− 1)h(QPSE)− g′(QPSE)

= β − (n− 1 + ζ)(QPSE)ζ−1,

hence the uniquely PSE is given by

QPSE = β̃
1
ζ−1 ,

qPSE
i =

βi − β̃
ζ − 1

β̃
2−ζ
ζ−1 ,

PPSE
i =

(ζ − 2)βi + β̃

ζ − 1
β̃

1
ζ−1 ,

PPSE = (n− 2 + ζ)β̃
ζ
ζ−1 = O

(
P ?/n

1
ζ−1

)
,

where β̃ = β/(n − 1 + ζ) is slightly smaller than the average in-
dividual marginal benefits. For ζ = 2, total period payoff is then
shared equally between players, and individual payoffs are PPSE

i ∝
1/(n+ 1)2, bearing a surprising similarity to Cournot-Nash payoffs
in Cournot oligopolies (see also SI: Target allocation). For ζ > 2,
part of it is shared in proportion to marginal benefits, while for ζ < 2,
those with larger marginal benefits get smaller payoffs.

Decreasing marginal benefits, quadratic costs.A simple model
with decreasing instead of constant marginal benefits that can still
be solved analytically is this:

• Individual benefits fi(Q) = βi ln(1 +Q) for Q > 0 and
fi(Q) = βi(Q−Q2/2 +Q3/3) for Q 6 0, with βi > 0.

• Individual marginal benefits f ′i(Q) = βi/(1 +Q) for Q > 0 and
f ′i(Q) = βi(1−Q+Q2) for Q 6 0.

• Total costs g(Q) = max{Q, 0}2.
• Marginal total costs g′(Q) = max{2Q, 0}.
• Average unit costs h(Q) = max{Q, 0} with h′(Q) = 1 for
Q > 0 and h′(Q) = 0 for Q < 0.

• Total period payoff for Q > 0:
P (Q) = β ln(1 +Q)−Q2 with P ′(Q) = β/(1 +Q)− 2Q.

• Individual period payoff for Q > 0:
Pi = βi ln(1 +Q)− qiQ with ∂Pi/∂qi = βi/(1 +Q)− qi−Q.

Optimal total contributions Q? > 0 must fulfil
0 = P ′(Q?) = β/(1 +Q?)− 2Q?,

hence

Q? =

√
1 + 2β − 1

2
,

P ? = β ln

√
1 + 2β + 1

2
+

√
1 + 2β − 1− β

2
.

Similarly, a one-shot PSE has QPSE > 0 and thus fulfils

0 = F ′(QPSE)− (n− 1)h(QPSE)− g′(QPSE)

= β/(1 +QPSE)− (n+ 1)QPSE,

hence the unique PSE is given by

QPSE =
%− 1

2
,

qPSE
i = 2

βi − β̃
%+ 1

,

PPSE
i = βi

(
ln
%+ 1

2
− %− 1

%+ 1

)
+ β̃

%− 1

%+ 1
,

PPSE = β ln
%+ 1

2
+
%− 1

2
− β̃,

where β̃ = β/(n+ 1) is slightly smaller than the average individual

marginal benefits, and % =

√
1 + 4β̃. Again, part of the total pe-

riod payoff is shared in proportion to marginal benefits, and that part
grows with β.

For small β and large n, P ? ≈ β2/4 and PPSE ≈ β2/n =
O(P ?/n), i.e., the cooperative payoff is of the order n larger than
the PSE payoff. For large β, P ? ≈ β(lnβ − ln 2)/2 and PPSE ≈
β(lnβ− ln(n+ 1))/2 = O(P ?), i.e., the ratio between cooperative
and PSE payoffs does not diverge for large n.

Diverging costs for some maximal contributions. A simple model
in which contributions are effectively bounded from above by diverg-
ing costs is this:
• Linear individual benefits fi(Q) = βiQ with βi > 0.
• Individual marginal benefits f ′i(Q) = βi.
• Total costs g(Q) = Q2/(1 − Q) for Q ∈ [0, 1) and g(Q) = 0

for Q < 0.
• Marginal total costs g′(Q) = Q(2−Q)/(1−Q)2 forQ ∈ [0, 1).
• Average unit costs h(Q) = Q/(1−Q) for Q ∈ [0, 1), with
h′(Q) = 1/(1−Q)2

• Total period payoff P (Q) = βQ−Q2/(1−Q) for Q ∈ [0, 1),
with P ′(Q) = β −Q(2−Q)/(1−Q)2,

• Undividual period payoff Pi = βiQ− qiQ/(1−Q)
for Q ∈ [0, 1), with ∂Pi/∂qi = βi−Q/(1−Q)− qi/(1−Q)2.

Optimal total contributions Q? ∈ (0, 1) fulfil

0 = P ′(Q?) = β −Q?(2−Q?)/(1−Q?)2,
hence

Q? = 1− 1/
√
β + 1,

P ? = β + 2− 2
√
β + 1.

Similarly, a one-shot PSE has QPSE ∈ (0, 1) and thus fulfils

0 = F ′(QPSE)− (n− 1)h(QPSE)− g′(QPSE)

= β −Q?(n+ 1−NQ?)/(1−Q?)2,
hence the unique PSE is given by

QPSE = 1−
n−1
2

+
√
β + n+ (n−1

2
)2

β + n
.

For large n, PPSE ≈ β2/n = O(P ?/n), i.e., the cooperative payoff
is of the order n larger than the PSE payoff.

2 www.pnas.org — — J. Heitzig Keeping climate in check, Supporting Information



Supporting Information: Bounded liabilities
In some applications, it might be desirable or necessary to restrict
the range of possible liabilities LinC might allocate in reaction to de-
viations. Let’s assume liabilities must be bounded by some lower
bounds `min

i < q?i for all players i, so that only liabilities with
`i(t) > `min

i are feasible allocations. E.g., if individual contributions
qi cannot be negative, one could choose `min

i = 0. Any strategy that
still keeps total liabilities fixed to the optimal targetQ? in order to be
strongly renegotiation-proof can then assign any group G of players
at most the liability Lmax

G = Q? −
∑
i/∈G `

min
i .

We suggest to use the following modified strategy of Bounded
Linear Compensations (BLinC) in that case: For those players iwith-
out shortfalls in t, liabilities in t+1 are calculated as in LinC, but are
capped at their lower bounds. For those with shortfalls, the liability
adjustments are then scaled down to keep the total target:

`i(t+ 1) =

{
max{ q?i + [di(t)− d̄(t)] · α , `min

i } if di(t) = 0
q?i + [di(t)− d̄(t)] · α /s(t) if di(t) > 0,

[12]
where s(t) > 0 is chosen so that

∑
i `i(t + 1) = Q?. If shortfalls

are moderate so that d̄(t) 6 (q?i − `min
i )/α for all i with di(t) = 0,

then s(t) = 1 and the allocation is the same as in LinC (Eqn. 5).
While LinC’s subgame-perfectness follows from the ability to as-

sign additional liabilities proportional to a large enough multiple of
the shortfalls, BLinC can do so no longer in case of large shortfalls.
Hence it depends on the choice of the bounds `min

i and on the dis-
counting factor δ whether BLinC is subgame-perfect or not. Note
that the gain that any group G of players would get from a shortfall
of size x > 0 in a situation in which its liability is already maximal,
LG = Lmax

G , is at most Lmax
G γ − (Lmax

G − x)γx − xβG, where
γx = g(Q? − x)/(Q? − x) are the average unit costs at Q? − x,
with γx 6 γ because average costs are non-decreasing. And the dis-
counted loss that G would have in t + 1 from having assigned max-
imal liabilities again is at least δγ(Lmax

G − Q?G). Hence a sufficient
condition for such a shortfall to be unprofitable is that the former be
smaller than the latter, which is equivalent to

x(βG − γx) + Lmax
G γx > Q?Gγδ + Lmax

G γ(1− δ). [13]

We will now show that if the target allocation q? is profitable for
each player, so that Q?βG − Q?Gγ > 0 for all G, and if δ is
close enough to unity and the bounds `min

i are small enough, then
the above condition is fulfilled for all G and all x > 0. Let
εG = (Q?βG − Q?Gγ)/2(1 + βG) > 0, ε = minG εG > 0,
and x0 = Q? − ε. Choose the bounds `min

i small enough so that
Lmax
G > Q? and Lmax

G > (Q?Gγ + ε− x0(βG − γ))/γx0 for all G.
Then, for all G and x,

x(βG − γx) + Lmax
G γx > Q?Gγ + ε. [14]

This is because (i) for x ∈ [x0, L
max
G ], we have x(βG − γx) +

Lmax
G γx > xβG > (Q? − εG)βG > Q?Gγ + εG > Q?Gγ + ε,

(ii) for x > Lmax
G > Q?, we have γx = 0 and thus x(βG − γx) +

Lmax
G γx = xβG > Q?βG > Q?Gγ + ε, and (iii) for x 6 x0, we

have 0 6 γx0 6 γx 6 γ and thus x(βG − γx) + Lmax
G γx >

x0(βG − γ) + Lmax
G γx0 > Q?Gγ + ε. Now if δ is close enough

to unity,Q?Gγ+ε > Q?Gγδ+Lmax
G γ(1−δ) and the claim is proved.

This means that, for large enough compensation factor α, no
group of players has ever an incentive to deviate from BLinC for one
period, and thus neither for a finite number of periods. In contrast
to LinC, the bounds on liabilities in BLinC imply that also the possi-
ble payoffs are bounded. Hence a standard argument as in (1) shows
that then also no infinite number of deviations can pay. In particular,
this shows that with individually profitable targets q?i , large enough
α and δ, and small enough `min

i , the modified strategy BLinC is still
subgame-perfect.

In the example with linear benefits and marginal costs (ζ = 2),
and for `min

i = 0 (non-negative liabilities), Eqn. 13 is fulfilled when
Q?G < min{βG − β(1− δ)/2, βG(1− βG/2β)/δ − β(1− δ)/2δ}

for all G. For large enough δ, this can be fulfilled by a target al-
location proportional to marginal benefits, q?i = βi/2. That alloca-
tion leads to payoffs which are also proportional to marginal benefits,
Pi = βiβ/4.

For the emissions game, we simulated whether BLinC can be
used instead of LinC in a slightly modified version of the “STACO”
cost-benefit-model which is frequently used in the literature (2–4)1

if the global optimal emissions abatement path Q?(t) is allocated in
a certain way and the explicit time-dependency of the benefit func-
tions bi(t) is taken into account properly. For the chosen model pa-
rameters, a moderate α of 1.22 fulfils Eqn. 6. We tested an alloca-
tion under which half of the long-term global payoff as compared to
the business-as-usual scenario was distributed so that each region’s
per capita payoff in purchasing power (PPP) increases by the same
amount, and the other half was distributed in proportion to regional
GDP (based on 1995 population, PPP, and GDP data).2 That alloca-
tion gives four players negative contribution targets q?i (t), i.e., more
emissions permits than under business-as-usual. When the liability
bounds `min

i (t) were chosen so that those four players never have lia-
bilities lower than twice this negative value, and all others never have
negative liabilities, we could verify that none of the 4095 possible
groups of players ever had incentives to deviate from BLinC. An al-
ternative allocation that completely achieved equal per capita payoffs
in PPP did not allow to use the same kind of bounds `min

i (t) since
then some groups of industrialized regions could profit from free-
riding. Still, such targets can be stabilized by using the unbounded
strategy LinC.

Supporting Information: Target allocation
We proved that for each conceivable target allocation, playing LinC
constitutes a strong form of strategic equilibrium that realizes this al-
location. Hence the problem of negotiating a target allocation can be
seen as a problem of selecting a particular equilibrium of the game.

The game-theoretic literature does not answer clearly which
equilibria rational players can, will, or should select in a game that
has many equilibria, and there are quite different approaches to this.

Coalition formation. One approach is to envision that players might
end up partitioned into some coalition structure π = {S1, . . . , Sm},
i.e., a partition of all players intom disjoint coalitions of one or more
players each, who will cooperate internally but not with each other.
The coalition structure {N} in which all players cooperate is called
the grand coalition. In the public good game, such a coalition struc-
ture can reach a large number of alternative equilibria as follows:
Consider them-player version of the game in which each coalition Sj
is treated as one player with benefit function fSj =

∑
i∈Sj fi, and

let (QPSE
1 , . . . , QPSE

m ) be the contributions in a PSE of this game.
These can be determined by replacing n, fi, and qi in Eqns. 9 and 10
by m, fSj , and QPSE

j , respectively. Now assume each Sj has agreed
internally on some individual target allocation q?i of QPSE

j , so that∑
i∈Sj q

?
i = QPSE

j , and applies LinC to these targets internally (i.e.,
ignoring players outside Sj in the calculation of liabilities). Then it
is easy to see that this constitutes an equilibrium of the whole game
with similar stability properties as when LinC is applied by the grand
coalition, but total payoffs are sub-optimal when the coalition struc-
ture is not the grand coalition.

1Model parameters: 12 players (economic world regions); 2-year periods; exponential dis-
counting at 2% yearly; costs based on cubic regional abatement cost functions as estimated by
(5); benefits = avoided emissions-related economic damages in linear approximation, properly
discounted; damages estimated as 2.7% of regional GDP if atmospheric GHG concentrations
double; GDP estimated with the “DICE” integrated assessment model (1994 version with “no
controls”, scenario B2 (6)); play simulated from 2010–2110.
2This is basically the average of the sharing rules 2 and 3 from (7), for which those authors
found that only very small long-term coalitions were stable in their model.
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Let vPSE(Sj , π) be the joint payoff of Sj in such an equilibrium,
given the coalition structure π. Then it might be considered plausible
that vPSE(Sj , π) is the joint payoff that the players in Sj can expect
to get should initial negotiations lead to the coalition structure π.

Both classical “cooperative” game theory and the newer more
sophisticated theory of zt coalition formation (8) now try to predict
which coalition structures might arise and what allocations the coali-
tions will agree to, by only considering what each coalition can ex-
pect to get given each coalition structure, and assuming players can
influence the coalition structure in various ways independent from
those payoffs, by individually or jointly leaving, joining, or blocking
coalitions. Such an analysis then only depends on the partition func-
tion v = vPSE. Depending on the precise assumptions, that theory
sometimes somewhat surprisingly predicts that not the grand coali-
tion but a partition into more than one coalition will form, resulting
in sub-optimal payoffs.3

Consider for example the public good game with symmetric lin-
ear benefits fi(Q) = Q and quadratic costs g(Q) = max{0, Q}2.
Then it can be shown (see SI: Examples) that vPSE has a partic-
ularly simple form that only depends on the number of coalitions
and not at all on their size or their individual benefit functions:
v(Sj , π) = A/(|π| + 1)2 for some constant A. This extreme form
of v has been analysed in the literature as a kind of quintessential
example of cooperative games with externalities since it also arises
naturally from Cournot-Nash equilibria in Cournot oligopolies4 For
n = 5 (and similarly for larger n), one approach (9) predicts that a
coalition structure with one individual player S1 and two coalitions
S2, S3 consisting of two players each will arise, each coalition get-
ting a payoff of 1/16. The argument for this is that any allocation
of the grand coalition’s payoff of 1/4 must give at least one player
at most a payoff of 1/20 < 1/16, so that that player will leave the
grand coalition and the remaining four players will then split in two
pairs for similar reasons. Another approach by the same authors (10)
assumes that the actual bargaining process follows a certain particu-
lar protocol and predicts that the result is one individual player and a
coalition of the remaining four players, not splitting any further into
two pairs. Other authors (11; 12) arrive at still different coalition
structures for different values of n (e.g., n = 6).

In such analyses, however, it remains unclear why the predicted
coalitions should not afterwards negotiate an additional agreement
with each other in order to realize and share also the additional to-
tal payoff that is possible by forming the grand coalition. Following
Coase (13), such behaviour should always be expected so that only
optimal allocations can result. We support this point of view with an
analysis of the case n = 5 of the above example, in the next sub-
section.

Other choices of the partition function v than vPSE might also be
plausible. Assume players can make each other believe that, should
no global agreement be reached, they will contribute nothing. Then
each coalition Sj can only expect to benefit from its own contribu-
tions, resulting in a maximal payoff v0(Sj , π) = v0(Sj) that only
depends on Sj (actually only on the functions fSj and g) and is su-
peradditive: v0(Sj ∪ Sk) > v0(Sj) + v0(Sk). For such superad-
ditive value functions, a rich literature exists which holds that the
grand coalition will indeed form. Its most prominent solution con-
cept is the Shapley value (14) which suggests that player i’s share
of v(N) should be a certain linear combination of the differences
v(S ∪ {i}) − v(S) for all S with i /∈ S. For situations with play-
ers of unequal “size”, there are weighted versions of this (15) that
give players with larger weight wi (e.g., a country’s population in the
emissions game) larger payoffs. Depending on the chosen weights,
this can lead to any payoff allocation in the so-called core of the game
(16). Given v and weights wi with

∑
i wi = 1, the (weighted) Shap-

ley values are φi = wi[P (N) − P (N \ {i})], where the potential

function P is defined recursively as P (∅) = 0 and

P (S) =

[
v(S) +

∑
i∈S

wiP (S \ {i})

]
/
∑
i∈S

wi. [15]

A third choice of v relies on the assumption that players can make
each other believe that, should no global agreement be reached, they
will not enter any other agreement with a smaller coalition but still
maximize their individual payoff by playing a best response of the
one-shot game. In that case, we get the value function v(N) = P ?

and v(S) =
∑
i∈S P

PSE
i for S 6= N , which is not only superadditive

but even additive for all coalitions except the grand coalition. Such a
situation is often called a pure bargaining or unanimity game, and its
weighted Shapley values are simply φi = PPSE

i +wi(P
? −PPSE),

that is, the surplus from cooperation is shared in proportion to the
weights. In the example of linear benefits and marginal costs, the
weighted Shapley values are then proportional to 4 + wi(n− 1)2.

Coalition formation when inter-coalitional agreements are pos-
sible. Before turning to a more general case, we present this idea
by first discussing the example of five players with linear bene-
fits and marginal costs, for which the value function has the form
v(Sj , π) = 1/(|π| + 1)2. Suppose the grand coalition, denoted by
(12345), meets to negotiate an allocation of the total payoff of 1/4,
and the current proposal is to split it equally into 5 · 1/20. In (9) it
is argued that each player, say player 1, can then hope to get 1/16
if he leaves the room, since he can then expect that (i) another pair,
say players 23, will leave, so that the coalition structure (1, 23, 45)
of one singleton and two pairs will arise, and that (ii) the resulting
coalitions will then behave like three individual players, so that their
payoffs are those in the PSE, 1/16 for each coalition.

But if those three coalitions would agree on an additional inter-
coalitional agreement, they could realize a surplus of 1/4− 3/16 =
1/16 and share it to everyone’s profit. Collective rationality requires
that we assume this would indeed happen, leading to some individ-
ual payoffs ai with

∑
i ai = 1/4, a1 > 1/16, a2 + a3 > 1/16,

and a4 + a5 > 1/16. A similar assumption must be made for any
possible refinements of that structure that might arise should one of
the players 2345 leave her coalition. If 2 leaves, the resulting struc-
ture is either (1, 2, 3, 4, 5) or (1, 2, 3, 45), depending on whether the
latter can stabilize itself. Whether it can do so depends on what an
additional leaving player, say 5, can expect to get.

If 5 leaves (1, 2, 3, 45), we get the all-singletons structure
(1, 2, 3, 4, 5), and collective rationality implies that all five would
then come back to the table and start a new round of negotiations,
probably starting with the allocation that was discussed last for the
grand coalition. As this allocation is 5 · 1/20, player 5 can hence
expect to get 1/20 when leaving (1, 2, 3, 45). Collective rational-
ity now requires that (1, 2, 3, 45) would not agree on an allocation b
that destabilizes their structure, so we can assume that structure will
stabilize itself like this: First, coalition 45 has an intra-coalitional
agreement on how to share their PSE payoff of 1/25, and then the
four coalitions have an inter-coalitional agreement on how to share
the additionally possible payoff of 1/4 − 4/25 that gives neither 4
nor 5 an incentive to leave. Hence all players can expect that, should
the structure (1, 2, 3, 45) arise, their payoffs would be some bi with∑
i bi = 1/4, b1 > 1/25, b2 > 1/25, b3 > 1/25, b4 > 1/20, and

b5 > 1/20.
Let us now assume that each player announces in advance to ac-

cept no less than 1/20 should the structure (1, 2, 3, 45) arise. This

3Note that in many relating papers the authors use public goods examples with a different cost
structure than ours, assuming non-decreasing individual marginal costs that depend on indi-
vidual contributions, Ci = gi(qi), instead of our assumption of marginal costs that depend
only on total contributions, Ci = qig(Q)/Q.
4Although the corresponding game has a different individual payoff structure that cannot be
interpreted as a public good game, only v is considered relevant in this line of reasoning.
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is certainly a credible announcement since it corresponds to the cur-
rently discussed allocation, can be realized by putting ai = 1/20,
leads to a stable agreement, and gives no incentive to deviate from
it and accept less than 1/20 when the structure (1, 2, 3, 45) indeed
arises. We will argue below that these announcement will finally sta-
bilize the grand coalition. In other words, all players can expect the
payoffs to be bi = 1/20 if structure (1, 2, 3, 45) arises, and similarly
for all other structures with three singletons and a pair.

Now for the stability of (1, 23, 45): If a2 < b2 = 1/20, player
2 has an incentive to leave (1, 23, 45). A similar condition holds for
players 345, so (1, 23, 45) is unstable if not a2, a3, a4, a5 > 1/20.
But then a1 6 1/4 − 4/20 = 1/20 < 1/16, so 1 would not
agree on that allocation since he can realize 1/16 in the PSE. Hence
(1, 23, 45) can not stabilize itself, in contrast to the expectation (ii)
above, and will instead fall apart to give one of the stable coalitions
(1, 2, 3, 45) and (1, 23, 4, 5).

Similarly, also a two-singletons-and-a-triple structure, say
(1, 2, 345), cannot stably agree on a payoff allocation a′. It would
require

∑
i a
′
i = 1/4, a′1 > 1/16, a′2 > 1/16, and a′3 + a′4 + a′5 >

1/16. But since 1/4 − 2/16 < 3/20, one of a′3, a′4, a′5 must be
smaller than 1/20, so that that player would leave to get 1/20 in a
four-singletons-and-a-pair structure.

Now we check expectation (i) by checking the stability of
(1, 2345): They would agree on a payoff allocation c with

∑
i ci =

1/4, c1 > 1/9, and c2 + c3 + c4 + c5 > 1/9. If at least two
of the latter four summands are < 1/20, the corresponding play-
ers, say 45, have an incentive to leave since the unstable intermedi-
ate structure (1, 23, 45) would split further into either (1, 2, 3, 45) or
(1, 23, 4, 5), and both players get 1/20 in each of them. Hence sta-
bility of (1, 2345) requires that three of the values c2, c3, c4, c5 are
> 1/20, so that c1 6 1/4− 3/20 = 1/10 < 1/9 in contradiction to
c1 > 1/9. Thus (1, 2345) cannot stabilize itself either, and neither
can any other structure with a four-player coalition.

Finally, we can now check whether the grand coalition can ex-
pect anyone to leave should they propose the allocation 5 · 1/20: If
a player i leaves the room, he can expect that the other four play-
ers will split into two singletons and a pair that will first reach an
intra-coalitional agreement and then meet again with the rest to ne-
gotiate an allocation of the additional surplus they can get from an
inter-coalitional agreement. Because each other player announced to
accept no less than 1/20 in that case, i cannot expect to get more
than 1/4 − 4/20 = 1/20 when he leaves. Hence there is no incen-
tive for individuals to leave the grand coalition in the first place when
5 · 1/20 is proposed. With similar arguments, one can show that nei-
ther any coalition has an incentive to leave the grand coalition, and
that the same also holds for larger values of n with the assumed cost-
benefit functions. In other words, it seems likely that there will be an
agreement in the grand coalition when inter-coalitional agreements
are possible.

Now for a more general but symmetric case, where a similar anal-
ysis can be performed for most other cost-benefit structures. As-
sume benefits are symmetric, fi = f0 for all i, and that for each
m ∈ {1, . . . , n}, the equation

F ′(Q) = (m− 1)h(Q) + g′(Q) [16]

has a unique solutionQm with h′(Qm) > 0. Then for each coalition
structure π with |π| = m and each coalition S ∈ π with |S| = k, we
have

vPSE(S, π) = kf0(Qm) + h(Qm)
h(Qm)− kf ′0(Qm)

h′(Qm)
. [17]

Now assume all players announce they will not accept a payoff less
than vPSE(N, {N})/n = P ?/n, no matter what structure arises.

Then each structure π can either stabilize itself by giving each
player exactly P ?/n, or cannot stabilize itself at all. To see this,

call this symmetric allocation a, and proceed inductively from finer
to coarser structures: The all-singletons structure π is stable with
a since it gives each coalition at least the same as in the PSE,
P ?/n > vPSE({i}, π) for all i ∈ N , and no-one can leave any
coalition since they are all singletons already. Given that the claim is
true for all refinements of a structure π, we distinguish two cases to
show that it is also true for π:

(i) If a gives each coalition S ∈ π at least vPSE(S, π), it is a
possible outcome of an inter-coalitional agreement, and no player or
subcoalition has an incentive to leave. The latter is because for every
finer structure π′ that might arise from leaving, they must expect that,
because of the announcements, π′ will stabilize itself by agreeing on
the same allocation a if it can stabilize at all.

(ii) On the other hand, assume a gives some coalition S ∈ π
less than vPSE(S, π), but some other allocation b stabilizes π. Then
vPSE(S, π) > kP ?/n where k = |S|, and b gives each coalition
T ∈ π at least vPSE(T, π). Because S gets more under b than under
a, some other coalition T ∈ π must get less under b than under a.
The crucial point of the proof now is that this T cannot be a singleton;
otherwise it would get under b at least

vPSE(T, π) = f0(Qm) + h(Qm)
h(Qm)− f ′0(Qm)

h′(Qm)

>

(
kf0(Qm) + h(Qm)

h(Qm)− kf ′0(Qm)

h′(Qm)

)
/k

= vPSE(S, π)/k > P ?/n, [18]
but the latter is what a singleton gets under a. So T contains at least
two players and gets less under b than under a. Hence at least one
player in T gets less under b than under a. That player has an incen-
tive to leave T since she gets a in any stable structure that might arise
from her leaving T . This proves that when a does not stabilize π, no
other allocation b will. Finally, taking π = {N}, this proves that the
grand coalition can stabilize by agreeing on the symmetric allocation
ai = P ?/n.5

So, in contrast to (9), the possibility of players or coalitions leav-
ing negotiations need not destabilize the grand coalition if later inter-
coalitional agreements are possible. We will further explore this line
of thought in a forthcoming paper.

The tracing procedure. A quite different approach is that of Harsanyi
and Selten (17) based on payoff-dominance and a so-called tracing
procedure. It suggests that the grand coalition will indeed form to
realize an optimal (i.e., payoff-undominated) equilibrium which is
selected in a procedure in which all players gradually adapt their be-
liefs about the others’ choices in a Bayesian fashion, depending not
on a value function v but on the actual strategies that constitute the
available equilibria. Unfortunately, that theory is mainly developed
for games with bounded payoffs and only finitely many strategies,
and therefore does not apply easily to our situation. We may however
at least pick up the main idea of the tracing procedure (18) and inter-
pret it in our context, making a number of assumptions on the beliefs
of players during negotiations:

All players assess the progress of negotiations by the same pa-
rameter τ ∈ [0, 1] that increases monotonically from zero at the be-
ginning to one at the time agreement is reached. All players start at
τ = 0 with the assumption that the remaining players will use their
PSE strategies qPSE

i as given by Eqns. 9 and 10. At each point τ
during negotiations, all players expect some allocation ~q τ to be focal
at this point and that all other players will apply the strategy LinC
with targets ~q τ if agreement will be reached, but expect that all other
players will use their PSE strategies if no agreement will be reached.
In particular, ~q 0 = ~q PSE. At each point τ , each player i considers

5Note that this is also relevant for Cournot oligopolies of any size, since the Cournot-Nash
equilibrium leads to the same v as the public good game with symmetric linear benefits and
quadratic costs.
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the probability that agreement will be reached to be τ . We now re-
quire that the focal allocation ~q τ is rational for each player i if she
maintains these beliefs. For this, playing LinC with targets ~q τ must
be a best response for i to the strategy mixture of the other players
that her beliefs imply. For τ = 1, all players will assume the rest will
apply LinC with the agreed allocation with certainty, and our paper
proves that for i it is a best response to that if she applies LinC with
the same allocation. So, for τ = 1, the rationality requirement does
not restrict the set of possible allocations ~q τ . But for τ < 1, player i
expects that there is a positive probability 1− τ that the other players
play their PSE strategies instead of LinC, in which case the best re-
sponse would be to play qPSE

i as well. The long-term payoff player i
expects if she contributes qi in each period is

(1− τ)W1Pi(qi, qi +QPSE
−i ) + τVi(qi, ~q

τ ) [19]

where QPSE
−i = QPSE − qPSE

i , Pi(qi, Q) = fi(qi) − qih(Q) is the
period payoff of i if she contributes qi and total contributions are Q,
and Vi(qi, ~q τ ) is the long-term payoff for player i if she contributes
qi in each period while all other players apply LinC with targets ~q τ .
Unfortunately, the Appendix on infinite sequences of deviations (case
ii) shows that Vi(qi, ~q τ ) = −∞ if qi 6= qτi . This means that the best
response would always consist in accepting qτi whatever it is. But
then, also for τ ∈ (0, 1), the rationality requirement does not restrict
the set of possible allocations ~q τ , and the tracing procedure could not
predict how the beliefs develop and whether the ~q τ would converge.

Let us now assume that the cost-benefit structure is so that we
could restrict liabilities to non-negative values and use BLinC instead
of LinC to stabilize an agreement, as discussed in the Appendix on
bounded liabilities. If we replace LinC by BLinC in the above dis-
cussion, the value Vi(qi, ~q τ ) will not be−∞ if qi 6= qτi . Instead, the
contributions by the other players will quickly converge to zero so the
per-period payoff of i will converge to Pi(qi, qi). If i is sufficiently
patient, Vi(qi, ~q τ ) will then approximately equalW1(fi(qi)−g(qi)).
The best response qi to the current beliefs of i at τ is then approxi-
mately that qi which maximizes the function πτi (qi, ~q

τ ) that is given
by πτi (qi, ~q

τ ) = aτi (~q τ ) if qi = qτi and by πτi (qi, ~q
τ ) = pτi (qi) if

qi 6= qτi , where

aτi (~q τ ) = (1− τ)Pi(q
τ
i , q

τ
i +QPSE

−i ) + τPi(q
τ
i , Q

τ ), [20]

pτi (qi) = (1− τ)Pi(qi, qi +QPSE
−i ) + τPi(qi, qi). [21]

The function pτi (qi) has its maximum at that qi for which

0 =(1− τ)[f ′i(qi +QPSE
−i )− h(qi +QPSE

−i )− qih′(qi +QPSE
−i )]

+ τ [f ′i(qi)− g′(qi)]. [22]

Denote this qi by q̃τi and note that it depends on τ but not on the focal
allocation ~q τ . As our rationality requirement maintains that the best
response is qi = qτi , the value aτi (~q τ ) must be larger than pτi (q̃τi ) for
all i. Still, this does not much restrict the choice of ~q τ .

So far, we only required individual rationality during negotia-
tions. But it is natural also to assume a form of collective rationality
and require that the focal allocation ~q τ must be be so that there is
no alternative allocation that payoff-dominates it in the sense that the
expected payoff aτi (~q τ ) is larger for each i. This condition is equiva-
lent to requiring thatAτ (~q τ ) =

∑
i a
τ
i (~q τ ) is maximal at ~q τ , which

requires that for all i,

0 = ∂Aτ (~q τ )/∂qτi

= (1− τ)[f ′i(q
τ
i +QPSE

−i )− h(qτi +QPSE
−i )− qτi h′(qτi +QPSE

−i )]

+ τ [F ′(Qτ )− g′(Qτ )]. [23]

For τ = 1, these equations are all equivalent to the optimality con-
dition F ′(Qτ ) = g′(Qτ ). Although this implies that the final agree-
ment realizes the optimum total contributions Qτ = Q?, it does not

pose any further restriction on ~q τ . But for τ < 1, these n equations
might be independent and thus have a unique solution ~q τ . If this is
so for all τ ∈ (τ0, 1) for any τ0 < 1, the tracing procedure maintains
that in the last phase of the negotiations, the focal allocations will
“trace” the path of those unique solutions ~q τ , converging to some
limit ~q 1 for τ → 1. This limit could now be considered a likely final
outcome of the negotiations if suitable liability bounds can be found
that allow the application of BLinC to actually realize it.

Let us look at the simple example of linear benefits fi(Q) = βiQ
and quadratic costs g(Q) = max{0, Q}2 again (SI: Examples). In
that case, Eqn. 23 is

0 = (1− τ)[βi − 2qτi −QPSE
−i ] + τ [β − 2Qτ ]. [24]

We can first determine Qτ from their sum, giving

Qτ =
[β − (n− 1)QPSE](1− τ) + nβτ

2(1− τ) + 2nτ
[25]

which converges for τ → 1 to Q? = β/2 as required. Then we get

qτi =
βi −QPSE

−i

2
+ τ

β − 2Qτ

2(1− τ)
[26]

which converges to

q1i =
βi −QPSE

−i

2
+
n− 1

2n
QPSE = βi − β/2n. [27]

The resulting payoffs are then all equal, Pi = β2/4n, but this is a
consequence of this particularly simple payoff structure.

If g(Q) = max{0, Q}ζ with ζ 6= 2, the resulting payoffs are
larger for those with larger βi if ζ < 2, and they are larger for
those with smaller βi if ζ > 2, opposite to how the PSE payoffs be-
have. An example of this is the emissions game with the “STACO”
cost-benefit-model (2–4), using the same parameters as in the Ap-
pendix: It has approximately cubic costs (ζ = 3), and when we solve
Eqns. 23 numerically, the resulting allocation of the optimal global
payoff gives the US, Japan, and the EU (having large βi) a share of
about 4%, 6%, and 4% of the payoff, respectively, and the remain-
ing nine world regions (having small βi) a share of about 10% each.
However, such an allocation could not be stabilized using BLinC with
similar liability bounds as we discussed in the Appendix, so it does
not seem a likely outcome of the emissions game.
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