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Abstract.   Although evidence accrues in biology, anthropology and experimental 

economics that homo sapiens is a cooperative species, the reigning assumption in 

economic theory is that individuals optimize in an autarkic manner (as in Nash and 

Walrasian equilibrium).  I here postulate a cooperative kind of optimizing behavior, 

called Kantian.  It is shown that in simple economic models, when there are negative 

externalities (such as congestion effects from use of a commonly owned resource) or 

positive externalities (such as a social ethos reflected in individuals’ preferences), 

Kantian equilibria dominate Nash-Walras equilibria in terms of efficiency.  While 

economists schooled in Nash equilibrium may view the Kantian behavior as utopian, 

there is some – perhaps much -- evidence that it exists.  If cultures evolve through group 

selection, the hypothesis that Kantian behavior is more prevalent than we may think is 

supported by the efficiency results here demonstrated. 
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1. Introduction 

 Recent work in contemporary social science and evolutionary biology emphasizes 

that homo sapiens is a cooperative species.  In evolutionary biology, scientists are 

interested in explaining how cooperation and ‘altruism’ may have developed among 

humans through natural selection.   In economics, there is now a long series of 

experiments whose results are often explained by the hypothesis that individuals are to 

some degree altruistic.    Altruism is to be distinguished from reciprocity: when behaving 

in a cooperative manner, a reciprocator expects cooperation in return, which will increase 

his/her net payoff  (net, that is, of the original sacrifice entailed in cooperation), while an 

altruist cooperates without the expectation of a future reciprocating behavior.   Many 

biologists, experimental economists, and anthropologists now accept the existence of 

altruistic as well as reciprocating behavior.    A recent summary of the state-of-the-art in 

experimental economics, anthropology, and evolutionary biology is provided by Bowles 

and Gintis (2011).   See Rabin (2006) for a summary of the evidence from experimental 

economics.   An anthropological view is provided in Henrich and Henrich (2007).  A 

recent paper which provides a good bibliography of work attempting to explain altruistic 

preferences as evolutionary equilibria is Alger and Weibull (2012). 

 There is an important line of research, conducted by Ostrom (1990) and her 

collaborators, arguing that, in many small societies, people figure out how to avoid, or 

solve, the ‘tragedy of the commons.’  The ‘tragedy’ has in common with altruism the 

existence of an externality which conventional optimizing behavior does not properly 

address2.   It may be summarized as follows.  Imagine a lake which is owned in common 

by a group of fishers, who each possess preferences over fish and leisure, and perhaps 

differential skill (or sizes of boats) in (or for) fishing.  The lake produces fish with 

decreasing returns with respect to the fishing labor expended upon it.  In the game in 

which each fisher proposes as her strategy a fishing time, the Nash equilibrium is 

inefficient: there are congestion externalities, and all would be better off were they able 

to design a decrease, of a certain kind, in everyone’s fishing.    Ostrom has studied many 

                                                
2 In the case of altruism, ‘conventional’ behavior is market behavior, and in the case of 
the tragedy of the commons, it is autarkic optimizing behavior in using a resource which 
is owned in common. 
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such societies, and maintains that many or most of them learn to regulate ‘fishing,’ 

without privatizing the ‘lake.’   Somehow, the inefficient Nash equilibrium is avoided.   

This example is not one in which fishers care about other fishers (necessarily), but it is 

one in which cooperation is organized to deal with a negative externality of autarkic 

behavior. 

  Ostrom’s observations pertain to small societies.   In large economies, we 

observe the evolution of the welfare state, supported by considerable degrees of taxation 

of market earnings.   It is not immediately evident that welfare states are due to feelings 

of solidarity,  or simply provide a more conventional public good or a good in which 

market failures abound (insurance), or reflect reciprocating behavior  among citizens 

(welfare states expand after wars, perhaps as a reward to returning soldiers; see Scheve 

and Stasavage[2012]).    Nevertheless, the large scope of welfare states, especially in 

Northern Europe, is perhaps most easily explained by a solidaristic ethos.  Redistributive 

taxation is, that is to say,  at least some degree a reaction to the  material deprivation of a 

section of society, which others view as undeserved, and desire to redress.   Nevertheless, 

as is well-known, redistributive taxation induces, to some degree, allocative inefficiency.  

The solution is second-best. 

 Among economists, there have been two principal strategies to explain behavior 

that is not easily explained as a Nash equilibrium of the game that agents appear to be 

playing: the first is that the real game is a repeated one, or is thought to be a repeated 

game by the players, and they are indeed playing a Nash equilibrium of that game.  The 

second is that players have other-regarding preferences: they are to some degree 

altruistic.  Outcomes are then explained as Nash equilibria of games whose players have 

non-classical (i.e., non-self-interested) preferences.     Here, I introduce another approach.  

I propose that players are optimizing in a non-classical manner.  This leads to a class of 

equilibrium concepts that I call Kantian equilibria.   Briefly, with Kantian optimization, 

agents ask themselves, at a particular set of actions in a game: If I were to deviate from 

my stipulated action, and all others were to deviate in like manner from their stipulated 

actions, would I prefer the new action profile?    I denote this kind of thinking Kantian 

because an individual only deviates in a particular way, at an action profile, if he would 

prefer the situation in which his action were universalized – that is to say, he’d prefer the 
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action profile where all make the kind of deviation he is contemplating.    Each agent 

evaluates not the profile that would result if only he deviated, but rather the profile of 

actions that would result if all deviated in similar fashion.  Kant’s categorical imperative 

says: Take those and only those actions that are universalizable, meaning that the world 

would be better (according to one’s own preferences) were one’s behavior universalized.  

It is important that the new action profile be evaluated with one’s own preferences, which 

need not be altruistic.    

 There is an important distinction, then, between the approach of behavioral 

economics, which has by and large focused on amending preferences from self-interested 

ones to altruistic or other-regarding ones, to the approach I describe, which amends 

optimizing behavior,  but does not (necessarily) fiddle with preferences.      Of course,  

one could be even more revisionist, and amend both optimizing behavior and preferences, 

leading to the four-fold taxonomy of modeling approaches summarized in Table 1. 

 

                  Preferences 

Optimization 

 

Self-interested 

 

Other-regarding 

Nash classical Behavioral economics 

Kantian  this paper, section 2 this paper, section 3 

 

Table 1.  Taxonomy of possible models 

 

The purpose of the present inquiry is to study whether the inefficiency of Nash 

equilibrium can be overcome with Kantian optimization – in both cases of the bottom 

row of Table 1.   I cannot over-emphasize the fact that varying preferences as a modeling 

technique is independent of the strategy of varying optimizing protocols as a modeling 

technique.   The first strategy alters the column of the matrix in table 1 in which the 

researcher works, while the second alters the row. 

 Let me comment further on the distinction between Nash and Kantian behavior.  

It is noteworthy that economists have devoted very little thought to modeling 

cooperation.   We have a notion of cooperative games, but that theory represents 

cooperation in an extremely reduced form.    Cooperative behavior is not modeled, but is 
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simply represented by defining values of coalitions.  How do coalitions come to realize 

these values?  The theory is silent on the matter.   If an imputation is in the core of a 

‘cooperative’ game, it is, a fortiori, Pareto efficient: typically, one is concerned with 

whether cooperative games contain non-empty cores, but the behavior which leads to an 

imputation in the core is typically not studied.    A major exception to this claim is the 

theorem that non-cooperative, autarkic optimizing behavior, in a perfectly competitive 

market economy, induces an equilibrium that lies in the core of an associated game.  But 

this is an exception to my claim, not the rule.   In contrast, the Shapley value of a convex 

cooperative game is in the core: but nobody derives the Shapely value as the outcome of 

optimizing behavior of individuals. 

 I wish to propose that Kantian optimization can be viewed as a model of 

cooperation.   As a Kantian optimizer, I adopt a norm which says: If I want to deviate 

from a contemplated action profile (of my community’s members), then I may do so only 

if I would have all others deviate ‘in like manner.’    I have not spelled out what the 

phrase in scare quotes means, as yet – that will comprise the details of this paper.    

Contrast this kind of thinking with the autarkic thinking postulated in Nash behavior – I 

change my action by myself, assuming that others in my community stand pat.  

 I next describe the economic environment for this inquiry. There is a concave 

production function that produces a single output from a single input, called effort.  Effort 

is supplied by individuals; it may differ in intensity or efficiency units, but effort can be 

aggregated across individuals when measured in the proper units.  Individuals have 

conventional personal utility functions, representing their self-interested preferences over 

income and effort.   In general, they may care about the welfare of others as well.  There 

are two aspects to this caring:  how individuals choose to aggregate individual welfares 

into social welfare, and the degree to which social welfare counts in the individual’s 

preferences.  We will assume here that individuals are homogeneous with respect to these 

two decisions.   

  An individual of type γ  has preferences represented by an all-encompassing 

utility function which might be of the form: 

 
  
U γ (x(⋅), E(⋅)) = uγ (x(γ ), E(γ ))+αexp log[uτ(x(τ), E(τ))∫ ]dF(τ)    (1.1) 
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where   u
γ (⋅,⋅) is the personal utility function of type γ over consumption and effort, 

   E(⋅) : + →  +  is a function which describes the efforts of individuals of all types,  

   x(⋅) : + →  +  is a function which defines the amount of output (a single good) allocated 

to each type, α  is a non-negative number measuring the degree of social ethos, F is the 

distribution of types in the society, and the social-welfare function  (in this case) is given 

by a member of the CES family  

    
  
W p (u[i]) = u[i]p dF(i)∫( )1/ p

,     (1.2) 

as 
  p→ 0 .  (It is well-known that the function in (1.2) approaches the exponential of the 

average of the logarithms as 
  p→ 0 .)   Think of an individual’s type as signifying, inter 

alia, the degree to which effort is easy for him, or his natural talent. 

 A society in which people do not count the welfare of others is one with 

individualistic ethos: in such a society,  α = 0 .  A society in which people count the 

welfare of others is one with social ethos.  Social ethos can be stronger or weaker, as 

represented by the  

parameter α .  When α = ∞ , the economy is equivalent to the one in which for everyone, 

all-encompassing utility is equal to social welfare; this is the purely altruistic economy. 

 Production is described by a differentiable, concave production function G.  In the 

continuum economy, the value   G(E)  is per capita output of the good when the effort 

schedule is   E(⋅)  and   E ≡ E(γ )dF(γ )∫ .   When the number of agents is finite, I usually 

write the discrete effort vector as   E = (E1,..., En ) and the sum of efforts as  E
S ≡ E j∑ .   

Total output is then   G(ES ) . 

 Here is a brief outline of what follows.  Section 2 defines Kantian equilibrium, 

and studies its efficiency properties in conventional economies where there is 

individualistic ethos: this section develops the approach in the south-west entry in table 1.    

Section 3 looks at economies with a social ethos: this section develops the approach in 

the south-east entry in table 1.  Section 4 provides an existence theorem for Kantian 

equilibrium, and comments upon dynamic properties. Section 5 discusses the question 
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whether Kantian optimization is a utopian idea, of only theoretical interest, or whether it 

might come to be characterize human societies.   

 I originally proposed a definition of Kantian equilibrium in Roemer (1996), and 

showed its relationship to the ‘proportional solution, ’ of Roemer and Silvestre (1993).  In 

Roemer (2010), I investigated a special case of Kantian equilibrium, that I now call 

multiplicative Kantian equilibrium.    The present paper shows that there are many 

versions of Kantian optimization, and characterizes when they deliver efficient outcomes 

in the presence of the various kinds of externalities in which Nash equilibrium performs 

poorly.    I focus, in this paper, upon three kinds of externality: (1)  the tragedy of the 

commons, as illustrated by the ‘fisher economies’ that I’ve described, that Ostrom 

studied;  (2) inefficiencies induced by taxation, which also can be viewed as the 

consequence of externalities; and (3) the inefficiency induced in market economies when 

there are other-regarding preferences. 

 

2.  Kantian equilibrium in economies with an individualistic ethos 

 

 Immanuel Kant proposed the behavioral ethic known as the categorical 

imperative: take those actions and only those actions which you would have all others 

emulate3.    This suggests the following formalization.  Let   {V
γ (E(⋅))} be a set of payoff 

functions for a game played by types γ, where the strategy of each player is a non-

negative effort   E(γ ) .  Thus the payoff of each depends upon the efforts of all.  A 

multiplicative Kantian equilibrium is an effort schedule   E
*(⋅)  such that nobody would 

prefer that everybody alter his effort by the same non-negative factor. That is: 

   (∀γ )(∀r ≥ 0)(V γ (E*(⋅)) ≥V γ (rE*(⋅))) . (2.1) 

   

In Roemer (1996, 2010), this concept was simply called ‘Kantian equilibrium.’  

 The remarkable feature of multiplicative Kantian equilibrium is that it resolves 

the tragedy of the commons.  Consider the example given in section 1 of the community 

                                                
3 As noted, the more general version of the categorical imperative is that one’s behavior 
should accord with 'universalizable maxims.’ 
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of fishers.    At an effort allocation   E(⋅) , if each fisher of type γ keeps his catch, then his 

fish income will be : 

 
  
x f (E(⋅),γ ) = E(γ )

E
G(E) . (2.2)  . 

Thus, the fishers’ game is defined by the payoff functions: 

   V
γ (E(⋅)) = uγ (x f (E(⋅),γ ), E(γ )) . (2.3) 

 It is proved in the two citations given above to Kantian equilibrium  that if a 

strictly positive effort allocation is a multiplicative Kantian equilibrium in the game (2.3), 

then it is Pareto efficient in the economy    ξ = (u,G, F ,0) , where u is any profile of 

concave perdonal utility functions, and the last co-ordinate in the description of the 

economy is the value of α .   This is a stronger statement than saying the allocation is 

efficient in the game   {V
γ} : for in the game, only certain types of allocation are permitted 

– ones in which fish are distributed in proportion to effort expended.  But the economy

   (u,G, F ,0)  defines any allocation as feasible, as long as   x(γ )dF(γ )∫ ≤ G(E) .   So 

Kantian behavior, if adopted by individuals, resolves the tragedy of the commons.     The 

intuition is that the Kantian counterfactual (that every person will expand his labor by a 

factor r if I do so – or so I contemplate) forces each to internalize the externality 

associated with the congestion effect of his own fishing.    It is not obvious that 

multiplicative Kantian equilibrium will internalize the externality in exactly the right way 

– to produce efficiency – but it does.  

 A proportional solution in the fisher economy is defined as an allocation 

  (x(⋅), E(⋅))  with two properties: 

 (i)   x(γ ) = x f (E(⋅),γ ) , and 

 (ii)   (x(⋅), E(⋅))  is Pareto efficient. 

The proportional solution was introduced in Roemer and Silvestre (1993), although the 

concept of (multiplicative) Kantian equilibrium came later.  The proportional solutions of 

the fisher economy are exactly its positive multiplicative Kantian equilibria  (see theorem 

1 below).  In the small societies which Ostrom has studied, which are (in the formal 

sense) usually ‘economies of fishers’ where each individual ‘keeps his catch,’ she argues 

that internal regulation assigns ‘fishing times’ that often engender a Pareto efficient 
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allocation.  If this is so, these allocations are proportional solutions, and therefore (by the 

theorem just quoted) they are multiplicative Kantian equilibria in the game where 

participating fishers/hunters/miners propose labor times for accessing a commonly owned 

resource.    This suggests that small societies discover their multiplicative Kantian 

equilibria.  Ostrom (1990), however, does not provide any evidence for Kantian thinking 

among citizens of these socieities.   Knowing the theory of multiplicative Kantian 

equilibrium, one is tempted to ask whether a ‘Kantian protocol’ exists in these small 

societies, which somehow leads to the discovery of the equilibrium. 

 I now introduce a second Kantian protocol which leads to additive Kantian 

equilibrium4. An effort allocation   E(⋅)  is an additive Kantian equilibrium if and only if 

no individual would have all individuals add (or subtract) the same amount of effort to 

everyone’s present effort.  That is: 

 
  
(∀γ )(∀r ≥ − inf

τ
E(τ))(V γ (E(⋅)) ≥V γ (E(⋅)+ r)) , (2.4) 

where   E(⋅)+ r  is the allocation in which the effort of type γ individuals is   E(γ )+ r .  The 

lower bound 
  
(r ≥ − inf

τ
E(τ))  is necessary to avoid negative efforts, and to keep the 

optimization problem proposed in (2.4) a concave problem.    It is assumed that effort is 

unbounded above but bounded below by zero.  Additive Kantian equilibrium again 

postulates that each person ‘internalizes’ the effects of his contemplated change in effort, 

but now the variation is additive rather than multiplicative. 

 In the sequel, I will denote these two kinds of Kantian behavior as  K ×  and  K + . 

 We can moreover define a general ‘Kantian variation’ which includes as special 

cases additive and multiplicative Kantian equilibrium.  We say a function 
  
ϕ :

+

2
→ 

+
 is 

a Kantian variation if : 

     ∀x ϕ(x,1) = x , 

and if,  for any   x ≠ 0  , the function    ϕ(x,⋅)  maps onto the non-negative real line. 

Denote by   ϕ[E(⋅),r]  the effort schedule    E  defined by 
   
E(γ ) = ϕ(E(γ ),r) .   

Then an effort schedule   E(⋅)  is a ϕ − Kantian equilibrium if and only if: 

                                                
4 This variation of Kantian equilibrium was proposed to me by J. Silvestre in 2004. 
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   (∀γ )(V γ (ϕ[E(⋅),r]) is maximized at r = 1) . (2.5)  

If we let   ϕ(x,r) = rx , this definition reduces to multiplicative Kantian equilibrium; if we 

let   ϕ(x,r) = x + r −1, it reduces to additive Kantian equilibrium.   

 Let   ϕ(x,r)  be any Kantian variation that is concave in r, and let the payoff 

functions generated by some allocation rule,   {V
γ} ,  be concave.   Then a positive effort 

schedule   E(⋅)  is a ϕ − Kantian equilibrium if and only if: 

 
  
∀γ d

dr r=1

V γ (ϕ[E(⋅),r]) = 0 . (2.6)   

Eqn. (2.6) follows immediately from definition (2.5), since   V
γ (ϕ[E(⋅),r])  is a concave 

function of r, and hence its maximum, if it is interior, is achieved where its derivative 

with respect to r is zero.    Note that both the additive and multiplicative Kantian 

variations are concave functions of r. 

 Denote by G the set of all concave differentiable production functions, and by E 

the set of all effort vectors, that is, functions    E : + →  + .   An allocation rule is a set of 

functions  {θ
γ}, one for each type, where   θ

γ :E×G→ [0,1]  and for all   (E,G) : 

   θ
γ (E,G)dF(γ ) = 1∫ . (2.7) 

The amount of output which type γ  receives at   E(⋅) when the production function is G is 

  θ
γ (E,G)G(E) , where  E  is interpreted as average effort in continuum economies, and as 

the sum of efforts in finite economies.   Note that, although allocation rules can depend 

on G, they do not depend on the utility functions of agents. 

 

Examples. 

1.  The proportional allocation rule is given by 
  
θγ ,P(E(⋅),G) = E(γ )

E
 

2.  The equal division allocation rule is given by  

 

  

θγ ,ED (E(⋅),G) =
1,  in continuum economies

1
n

,  in economies with n agents

⎧

⎨
⎪

⎩
⎪
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3.  The Walrasian allocation rules are given by: 

 
  
θγ ,W (E(⋅),G) = ′G (E)E(γ )

G(E)
+ σ(γ ) 1− E ′G (E)

G(E)
⎛
⎝⎜

⎞
⎠⎟

, 

where  σ(γ )  is the share of the firm that operates G owned by each agent of type γ .    

Note that although the proportional and equal-division allocation rules do not, in fact, 

depend upon G, the Walrasian rule does (except when G is linear).   This is one reason it 

is important to allow allocation rules to depend on G. 

 Once we propose an allocation rule, then we can define, for any economy 

   (u,G, F ,0) , its payoff functions   {V
γ} , and hence its   K

×  and K +  equilibria.  Define the 

domain of concave economies   G0   as all economies  (u,G,F,0)  where u is a profile of 

concave personal utility functions    u : +
2 →  ,   G ∈G , F is a distribution function of 

types, and α = 0  is the degree of social ethos.   (We fix the social-welfare function – for 

instance, the one displayed in (1.1).)   Denote by   G fin  the class of economies with a finite 

number of agents, and by  L  the class of economies where G is linear, and so.   (E.g., 

   L0, fin  is the class of finite economies with  α = 0 .) Although proofs of theorems will 

generally appear in the appendix, it is important to demonstrate the most important idea 

in this paper by proving the first proposition in the text.   

 

Proposition 1   Any strictly positive  K ×  equilibrium with respect to the proportional 

allocation rule is Pareto efficient on the domain   G0 .   Any strictly positive  K +  

equilibrium with respect to the equal-division allocation rule is Pareto efficient on the 

domain   G0 . 

Proof: 

1.  Let   E(⋅)  be a strictly positive  K ×  equilibrium w.r.t. the proportional allocation rule 

 θ
P .   The first-order condition stating this fact is: 

 
  
(∀γ ) d

dr r=1

uγ (rE(γ )
rE

G(rE),rE(γ )) = 0 , (2.8) 

which means: 
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(∀γ ) u1

γ ⋅ E(γ )
E

′G (E)E
⎛
⎝⎜

⎞
⎠⎟
+ u2

γ E(γ ) = 0 . (2.9) 

Since   E(γ ) > 0 , divide through (2.9) by   E(γ ) , giving: 

 
  
(∀γ ) −

u2
γ

u1
γ = ′G (E) . (2.10) 

Eqn. (2.10) states that the marginal rate of substitution between income and effort is, for 

every agent, equal to the marginal rate of transformation, which is exactly the condition 

for Pareto efficiency at an interior solution.  This proves the first claim. 

2.  For the second claim, let   E(⋅)  be a  K +  equilibrium w.r.t. the equal-division allocation 

rule  θ
ED  for any economy in   G0 .  Then: 

 
  
(∀γ ) d

dr r=0

u(G(E + r), E(γ )+ r) = 0 , (2.11) 

which means: 
   (∀γ ) u1

γ ⋅ ′G (E)+ u2
γ = 0 . (2.12) 

(Strict positivity of E is here used so that the range of r includes a small neighborhood of 

zero.)   Clearly (2.12) implies (2.10), and again the allocation is Pareto efficient.  

 Examine the proof of the first part of this proposition, and compare the reasoning 

that agents who are Kantian employ to Nash reasoning.  When a fisher contemplates 

increasing his effort on the lake by 10%,  she asks herself, “How would I like it if 

everyone increased his effort by 10%?”  She is thereby forced to internalize the 

externality that her increased labor would impose on others, when G is strictly concave.   

 It is important to note that, in Kantian optimization, agents evaluate deviations 

from their own viewpoints, as in Nash optimization.   They do not put themselves in the 

shoes of others, as they do in Rawls’s original position, or in Harsanyi’s (1977) thought 

experiment in which agents employ empathy.   In this sense,  Kantian behavior requires 

less of a displacement of the self than ‘veil-of-ignorance’ thought experiments require.    

Agents require no empathy to conduct Kantian optimization: what changes from Nash 

behavior is the supposition about the counterfactual.     

 Indeed, the next theorem states that there is a unidimensional continuum of 

allocation rules, with the proportional and equal-division rules as its two endpoints, each 
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of which can be efficiently implemented on   G0  using a particular Kantian variation.  

Define the allocation rule: 

 
  
θβ
γ (E(⋅)) = E(γ )+β

E +β
, 0 ≤ β ≤ ∞ (continuum case)  (2.13) 

and the Kantian variations: 

   
ϕβ(x,r) = rx + (r −1)β, 0 ≤ β ≤ ∞ . (2.14) 

( For finite economies, we write (2.13) as 
  
θβ
γ (E(⋅)) = E(γ )+β

ES + nβ
, ES = E(τ)∑ .)   Note 

that for  β = 0 , θβ  is the proportional rule and ϕβ  is the multiplicative Kantian variation, 

and for β = ∞ , θβ  is the equal-division rule and ϕβ  is the additive Kantian variation (this 

last fact is perhaps not quite obvious).    We will call a Kantian equilibrium associated 

with the variation ϕβ ,  a  K β  equilibrium.    (So   K 0 ≡ K × , etc.) 

 Before stating the next theorem we must define the following.  Fix β  and an 

effort vector   E ∈ ++
n .   Define 

 
ri

j = Ei +β
E j +β

.   Now consider the set of vectors in    +
n  of 

the form 
  
(ϕβ(x,r1

j ),ϕβ(x,r2
j ),...,ϕβ(x,rn

j ))  where x varies over the positive real numbers, 

but restricted to an interval that keeps the defined vector non-negative.  This is a ray in 

   +
n  which I denote by   M

j (E) .      We have: 

 

Lemma   Fix a vector   E ∈ ++
n  and a non-negative number β .   Then the ray  M

j (E)  

does not depend on j. 

Proof: 

Let 
  
v = (ϕβ(x,r1

j ),ϕβ(x,r2
j ),...,ϕβ(x,rn

j ))
 
be an arbitrary vector in   M

j (E) .  We wish to 

show that, for any   k ≠ j, v ∈M k (E) .   This is accomplished if we can produce a number 

  x̂  such that 
  
v = (ϕβ( x̂,r1

k ),...,ϕβ( x̂,rn
k )) .   Check that 

 
x̂ = Ek + β

E j + β
x + β 1− E j + β

Ek + β
⎛

⎝⎜
⎞

⎠⎟
  

 works.    
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 As a consequence of the lemma, we may refer to the line segment just defined as 

  M (E)  . 

 

 
 
Theorem 15   For  0 ≤ β ≤ ∞ : 
A. If   E(⋅)  is a strictly positive  K β  equilibrium w.r.t. the allocation rule θβ  at any 

economy in   G0 , then the induced allocation is Pareto efficient.   

B.   θ0  is the only allocation rule for which the  K ×  equilibrium is Pareto efficient on the 

domain    G0, fin .  

C. For  β > 0 ,  the only allocation rules that are efficiently implementable on    G0, fin  are of 

the form 
  
θ j (E,G) = θβ

j (E)+ k j (E)
G(E)  where   {k j}  are any functions satisfying: 

 

 (i)
  

k j (E) ≡ 0
j
∑  

 (ii)   (∀j, E)(θ j (E,G)∈[0,1]) , and  

 (iii)   (∀j, E)(k j  is constant on the line segment M (E)) . That is, on   M (E)  

     ∇k j ⋅(E +β) ≡ 0 ,  

  where   E +β = (E1 +β,..., En +β) . 

D.  For any  β ∈[0,∞]  , and  

  
(∀E ∈ ++

n )(∀j = 1,...,n)( θβ
j(E) = λ(E)θ0

j(E)+ (1− λ(E))θ∞
j (E)),   

where 
 
λ(E) = ES

ES + nβ
 . 

Proof: See appendix6. 

                                                
5  Theorem 3 of Roemer (2010) stated something similar to part B of the present theorem, 
but the proof offered there is incorrect.     
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 The theorem states first that for all  β ≥ 0 , the pair  
(ϕβ ,θβ )  is an efficient Kantian 

pair: i.e., that the allocation rule θβ  is efficiently implementable in  K β  equilibrium on 

the convex domain    E
0, fin .   Part C states that the only other allocation rules that are  K β  

implementable are ones which add numbers to the θβ  shares that are constant on certain 

sets of lines in    +
n .   Part B states that (in the unique case when  β = 0 ) these constants 

must be zero.    Part D states that the allocation rules θβ  are convex combinations of the 

proportional rule θ0   and the equal-division rule θ∞  .   The weights in the convex 

combination depend on the effort vector, but not on the component j.  

 Unfortunately, part C makes theorem 1 difficult to state.  One may ask, is it 

necessary?   That is, do there in fact exist allocation rules satisfying conditions C (i)-

C(iii) of the theorem where the functions  k j  are not identically zero?   The following 

example shows that there are. 

 

Example 4. 

 We consider  K +  equilibrium (i.e., β = ∞ ) where   n = 2 .  In this case  

   
  
θ∞

j (E1, E2 ) = 1
2

 , 

that is, the equal-division allocation rule.    Now consider: 

 

  

   

θ1(E) =

1
2
+ G(E1 − E2 )

2G(E1 + E2 )
,  if E1 ≥ E2

1
2
− G(E1 − E2 )

2G(E1 + E2 )
,  if E1 < E2

⎧

⎨

⎪
⎪

⎩

⎪
⎪

θ2(E) = 1− θ1(E)

     .  (2.15) 

The  θ  rule satisfies conditions C(i)-C(iii).     
                                                                                                                                            
6 I believe that appropriate versions of parts B and C are also true on the space of 

continuum economies, but proving that would require more sophisticated mathematical 

techniques. 
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Example 5     We now provide an example of a similar sort for any  β > 0 .  Let   n = 2 .  Fix 

E.  The line segment   M (E)  has a smallest element: it is a vector with at least one 

component equal to zero.  (This vector is dominated, component-wise, by all other 

vectors in the line segment.)   Denote this vector by   M (E)min , and the sum of its 

components by   M
S (E)min    .  Define the allocation rules: 

  

   

θ1(E) =
θβ

1 (E)− G( M S (E)min )
2G(ES )

, if E1 ≥ E2

θβ
1 (E)+ G( M (E)min )

2G(ES )
,  if E1 < E2

⎧

⎨

⎪
⎪

⎩

⎪
⎪

θβ
2 (E) = 1− θβ

1 (E)

. 

Since   M
S (E)min < ES , we have 

   
θβ

i (E)∈[0,1] .   Moreover the function    G( M S (E)min)  is 

obviously constant on the line segment   M (E) .    Hence the allocation rule satisfies 

conditions C(i)-(iii) of the theorem. 

 From the history-of-thought vantage point, the case  β = 0  is the classical socialist 

economy: that is, it’s an economy where output is distributed in proportion to labor 

expended and efficiently so.   The rule θβ  in case β = ∞  is the classical ‘communist’  

economy: output is distributed ‘according to need’ (here, needs are identical across 

persons), and efficiently so.   Indeed, the allocation rules θβ associated with  β ∈(0,∞)  are  

convex combinations of these two classical rules, in the sense that part D states.   The fact 

that the allocation rules that can be efficiently implemented with various kinds of Kantian 

optimization define a uni-dimensional continuum between these two classical concepts of 

cooperative society provides further support for viewing the Kantian optimization 

protocols as models of cooperative behavior. 

 I conjecture that there are no other allocation rules, than the ones described in 

theorem 1, which can be efficiently implemented with respect to any Kantian variation on 

the domain .   

 I believe that history displays examples of both the proportional and equal-

division allocation rules.   The former have been discussed in relation to Ostrom’s work 

   E
0, fin
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on fisher economies.  And anthropologists conjecture that many hunting societies 

employed the equal-division rule.  Israeli kibbutzim employed the equal division rule, at 

least in the early days.  (Whether they found Pareto efficient equal-division allocations is 

another question.)    Theorem 1 suggests that we look for societies that implemented 

some of the other allocation rules in the β  continuum, although the Kantian variations 

involved for  β ∉{0,∞}may be too arcane for human societies.  

 It remains to ask, when we discover an example of a society which appears to 

implement one of these allocation rules, whether Kantian thinking among its members 

plays a role in maintaining its stability.   Just as a Nash equilibrium is stable, so a Kantian 

allocation will be stable if the players in the game employ Kantian optimization.  

 The analogous result to theorem 1 for Nash equilibrium is: 

Theorem 2  

A.  There is no allocation rule that is efficiently implementable in Nash equilibrium on 

the domain    E
0, fin .    

B. On continuum economies, Walrasian rules are efficiently Nash implementable7. 

Proof: Appendix.  

 

 The reason that the Walrasian allocation rule, as defined in the previous footnote, 

is not efficiently implementable in Nash equilibrium on finite economies is that an 

individual’s Nash behavior at the Walrasian allocation rule takes account of her effect on 

  ′G (ES )  and on her share of profits as she deviates her effort  (i.e., agents are not price 

takers).  It is only in the continuum economy that the agent rationally ignores such 

effects, and hence, Nash behavior induces efficiency.    Of course, this is the point that 

Makowski and Ostroy (2001)   have focused upon in their work on the distinction 

between perfect competition and Walrasian equilibrium. 

 We conclude this section with a discussion of affine taxation in linear economies. 

Suppose that  G(x) = ax , and there is a private-ownership economy with zero profits at 

competitive equilibrium.  A typical allocation rule is the linear-tax rule: 

                                                
7 A Walrasian rule allocates output to an individual of type γ  equal to his value marginal 

product    E(γ ) ′G (E)  plus a fixed share of the firm’s profits. 
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    xt
γ (E(⋅)) = (1− t)wE(γ )+ t wE(τ)dF(τ)∫  ,    (2.16) 

where w is the wage paid by the firm and t is the tax rate.   Under the competitive 

assumption, the firm pays a wage equal to the marginal product of effort,  w = a .  There is 

a positive externality here  for positive tax rates:  some of each worker’s earnings are 

redistributed to others.  It is unfortunate that, under classical behavior, at least if the 

economy is large, individuals ignore the positive externalities induced by their labor, and 

so there is a deadweight loss with taxation.   Let us note: 

Proposition 2.   For any  t ∈[0,1] , the K +   equilibrium induced by the affine tax 

allocation rule xt   is Pareto efficient. 

Proof: 

1. A K +   equilibrium is characterized by the F.O.C.s   

  (∀γ )  
 

d
dr

r=0

uγ ((1− t)a(E(γ )+ r)+ ta(E + r),E(γ )+ r) = 0  . 

Verify that this reduces to   

   u1
γ ⋅((1− t)a + ta)+ u2

γ = 0          (2.17) 

or  u1
γ a + u2

γ = 0  , which says that the marginal rate of substitution equals the marginal 

rate of transformation, the condition for Pareto efficiency.  

 The way in which the additive Kantian protocol handles the positive externality 

associated with taxation is evident by looking at the coefficient of u1
γ   in equation (2.17).  

When a worker is considering increasing her effort by a unit, she contemplates not only 

receiving her tax-reduced wage,  (1− t)a  , but also her increased lump-sum payment, ta .  

Thus, taxation introduces no wedge between the effective marginal rate of substitution and 

the marginal rate of transformation, as occurs with the autarkic, Nash protocol. 

 

 

3.  Economies with a social ethos 

 It is appropriate to begin this section with a thought of the political philosopher, 

G.A. Cohen (2010), who offers a definition of ‘socialism’ as a society in which earnings 

of individuals at first accord with a conception of equality of opportunity that has 
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developed in the last thirty years in political philosophy (see Rawls (1971), Dworkin 

(1981), Arneson (1989), and Cohen(1989)), but in which inequality in those earnings is 

then reduced because of the necessity to maintain ‘community,’ an ethos in which 

‘…people care about, and where necessary, care for one another, and, too, care 

that they care about one another.’   Community, Cohen argues, may induce a society to 

reduce material inequalities (for example, through taxation) that would otherwise be 

acceptable according to ‘socialist’ equality of opportunity.   But, Cohen writes: 

…the principal problem that faces the socialist ideal is that we do 
not know how to design the machinery that would make it run. Our problem is 
not, primarily, human selfishness, but our lack of a suitable organizational 
technology: our problem is a problem of design. It may be an insoluble design 
problem, and it is a design problem that is undoubtedly exacerbated by our selfish 
propensities, but a design problem, so I think, is what we’ve got.  
 

 An economist reading these words thinks of the first theorem of welfare 

economics.   A Walrasian equilibrium is Pareto efficient in an economy with complete 

markets, private goods, and the absence of externalities.  But under Cohen’s 

communitarian ethos, people care about the welfare of others – which induces massive 

consumption externalities – and so the competitive equilibrium will not, in general, be 

efficient.  What economic mechanism can deliver efficiency under these conditions8? 

 A recent contribution which is relevant to this inquiry is that of  Dufwenberg, 

Heidhues, Kirchsteiger, Riedel, and Sobel (2010), which studies, at a level more general 

than that of this paper,  the veracity of the first and second welfare theorems in the 

presence of other-regarding preferences, what I here call social ethos.   From the 

viewpoint of the evolution of economic thought, it is significant that their article is the 

result of combining three independent papers by subsets of the five authors: in other 

words, the problem of addressing seriously the efficiency consequences of the existence 

of other-regarding preferences is certainly in the air at present. 

 We proceed, now, to study Kantian equilibrium where the all-encompassing 

                                                
8 In war-time Britain, many spoke of ‘doing their bit’ for the war effort – voluntary 
additional sacrifice for the sake of the common good.  (See the wonderful BBC series 
‘Foyle’s War’ to understand the pervasiveness of this ethos.)   But, if I want to contribute 
to the common struggle, how much extra should I do?   
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utility function is given by (1.1), and α > 0 .  Such economies are synonymously referred 

to as ones with a social ethos, or other-regarding preferences. 

  

A. Efficiency results 

 We begin by characterizing interior Pareto efficient allocations in continuum 

economies where individuals have all-encompassing utility functions like those in (1.1), 

except we use the more general CES social-welfare function.  That is, we assume that: 

   
U γ (x(⋅), E(⋅)) = uγ (x(γ ), E(γ ))+α uτ(x(τ), E(τ))

0

∞

∫ ]p dF(τ)
⎛
⎝⎜

⎞
⎠⎟

1/ p

 ,   (3.1) 

where 
  1≥ p > −∞ .  As noted, the case 

  p = 0  generates the formulation in (1.1). 

 At an allocation   (x
*(⋅), E

*(⋅)) , we write   u
γ (x*(γ ), E*(γ )) ≡ u[*,γ ] , and for the two 

partial derivatives of u,
  
u j
γ (x*(γ ), E*(γ )) ≡ uj[*,γ ] . 

 

Theorem 3   A strictly positive allocation is Pareto efficient in the economy    (u,G, F ,α)  if 

and only if: 

  (a) 
  

∀γ
u

2
[*,γ ]

u
1
[*,γ ]

= − ′G (E) , and 

 

  (b) 
  
∀γ 1

u1[*,γ ]
≥
α(Q*)(1− p)/ p u[*,γ ]p−1 u1[*,τ]−1 dF(τ)∫

1+α(Q*)(1− p)/ p u[*,τ]p−1 dF(τ)∫
, 

where .     

Proof: Appendix. 

 I offer some remarks about and corollaries to theorem 3. 

 First, we introduce a quasi-linear economy for which the results take a 

particularly simple and intuitive form.   In the quasi-linear economy, we take  

   
  
uγ (x, E) = x − E2

γ
.         (3.2) 

1.  Note the separate roles played by the conditions (a) and (b) of theorem 3.  Condition 

(a) assures allocative efficiency in the economy with  α = 0 .  Condition (b) is entirely 

  
Q* ≡ u[*∫ ,γ ]p dF(γ )
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responsible for the efficiency requirement induced by social ethos.  Note that the function 

G does not appear in (b).  

  Indeed, it is obvious that any allocation which is Pareto efficient in the α-

economy (for any α) must be efficient in the economy with  α = 0 .  For suppose not.  

Then the allocation in question is Pareto-dominated by some allocation in the 0-economy.  

But immediately, that allocation must dominate the original one in the α -economy, as it 

causes the social-welfare function to increase (as well as the private part u of all-

encompassing utility).  It is therefore not surprising that the characterization of theorem 2 

says that ‘the allocation is efficient in the 0-economy (part (a)) and satisfies a condition 

which becomes increasingly restrictive as α becomes larger (part (b)).’  

2.  Define   PE(α)  as the set of interior Pareto efficient allocations for the α-economy.  It 

follows from condition (b) of theorem 3 that the Pareto sets are nested, that is: 

    α > ′α ⇒ PE(α)⊂ PE( ′α ) . 

Hence, denoting the fully altruistic economy by α = ∞ , we have: 

    PE(∞) =∩α≥0 PE(α) . 

  PE(∞)  will generally be a unique allocation – the allocation that maximizes social 

welfare. 

3.  Let α→∞ ; then condition (b) of theorem 3 reduces to: 

  .       (3.3) 

We have: 

Corollary 1  An interior allocation is efficient in the fully altruistic economy (i.e., 

maximizes social welfare)  if and only if: 

  (a) 
  

∀γ
u

2
[*,γ ]

u
1
[*,γ ]

= − ′G (E)

 
, 

and   (c)  for some 
  
λ > 0, ∀γ u

1
[*,γ ]= λu[*,γ ]

1− p . 

Proof: 

  

∀γ
u

1
[*,γ ]−1

u
1
[*,τ]−1 dF(τ)∫

≥
u[*,γ ]p−1

u[*,τ]p−1 dF(τ)∫
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 We need only show that (3.3) implies (c). (The converse is obviously true.)   

Denote 
  

λ =
u

1
[*,τ]−1 dF(τ)∫

u[*,τ]p−1 dF(τ)∫
. Then (3.3) can be written: 

   ∀γ u1[*,γ ]−1 ≥ λu[*,γ ]p−1 . (3.4) 

    

Suppose there is a set of types of positive measure for which the inequality in (3.4) is 

slack.  Then integrating (3.4) gives us: 

       
  

u
1
[*,γ ]−1 dF(γ ) > λ u[*,γ ]p−1 dF(γ )∫∫ ,  

which says λ > λ , a contradiction.  Therefore (3.4) holds with equality for almost all γ, 

and the corollary follows.  

 

4.  Consider the quasi-linear economy.  Then .  Now corollary 1 implies that in the 

quasi-linear economy, the only Pareto efficient interior allocation as α→∞  is the 

equal-utility allocation for which condition (a) holds.  

  Let us compute this allocation in the quasi – linear economy  in which production 

is linear:  G(x) = x .   Then these conditions reduce to: 

  (i)   
  

2E(γ )

γ
= 1 , and 

  (ii)  
  

k = x(γ )−
E(γ )2

γ
, and 

  (iii)  
  

x(γ )dF(γ )∫ = E(γ )dF(γ )∫ . 

It is not hard to show that (i), (ii), and (iii) characterize the equal utility allocation: 

  
  
E(γ ) =

γ

2
, x(γ ) =

γ + γ

4
, where 

  
γ = γ dF(γ ).∫  

5. Consider the preferences when .  In this case, the altruistic part of U is 

, and .  Therefore condition (b) of theorem 2 becomes 

simpler: 

  
(∀γ ) u[*,γ ]

u1[*,γ ]
≥

α u1
−1[*,τ]dF(τ)∫

1+α u−1[*,τ]dF(τ)∫
. 

  
u

1
≡ 1

  p = 0

  
exp[ log(u[∫ *,γ ])dF(γ )

  Q
*
= 1
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 We next prove: 

 

Theorem 4.  Let an allocation rule θ be given, and denote the set of β − Kantian 

equilibria for the economy    (u,G, F ,α)  by   K
β(θ,α) .  Then   K

β(θ,α) = Kβ(θ,0) . 

Proof: Appendix. 

 Indeed, the theorem is more general than stated: different agents can have 

different values of the altruistic parameter α . The argument shows that the Kantian 

equilibria of these economies are identical to the Kantian equilibria of the associated 

economy where all   α 's  are zero.     This is apparently a disturbing result: for it says that 

Kantian optimization cannot deal, at least explicitly, with the externalities induced by 

altruism! 

 We do, however, have one instrument – namely, β -- which may help achieve 

Pareto efficient allocations when  α > 0 .   Indeed, consider the family of quasi-linear 

economies, where, for some fixed  ρ >1:  

 
  

uγ (x, E) = x − Eρ

ργ
. (3.5) 

For these economies we can always choose a value β  so that the  K β  equilibrium w.r.t. 

the allocation rule θβ  is efficient for economies with any value of α : that is to say, the 

  
(K β ,θβ )  allocation maximizes social welfare (and so is in   PE(∞) ). 

Theorem 5   Let 
  
uγ (x, E) = x − Eρ

ργ
, some  ρ >1.  Let G be any concave production 

function. Define  E  by the equation 
  
E = γ ρ ′G (E)1/(ρ−1)   where 

  
γ ρ ≡ γ1/(ρ−1) dF(γ )∫ . Then 

for this economy : 

(a) An allocation is PE(0) iff   E(γ ) = γ1/(ρ−1) ′G (E)1/(ρ−1) .   

(b)  Define 
  
β(ρ) = ρ G(E)

′G (E)
− E .   The  K β  allocation w.r.t. the allocation rule θβ   is in 

  PE(∞) . 
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(c) As  β→β(ρ)  from below, the maximum value of α  for which the 
  
(K β ,θβ )  allocation 

is in   PE(α)  approaches infinity. 

Proof: Appendix. 

 The reader is entitled to ask: What happens for  β > β(ρ) ?   The answer is that, in 

the 
  
(K β ,θβ )  allocation, some utilities become negative, and so social welfare for the CES 

family of functions is undefined, and so all-encompassing utility U is undefined. 

 

B. Taxation in private-ownership economies 

 The  K β  equilibria for the allocation rules θβ  are not implementable with markets 

in any obvious way.   This is most easily seen by noting that the proportional rule is not 

so implementable9.   Of course, according the second theorem of welfare economics, 

there is some division of shares in the firm which operates G which would implement 

these rules in Walrasian equilibrium in continuum economies, but to compute those 

shares, one would have to know the preferences of the agents.    The advantage of the 

Kantian approach is that the Kantian allocations are decentralizable in the sense that 

agents need only know the production function G , average effort  E , and their own 

preferences,  to compute the deviation they would like (everybody) to make. 

 Nevertheless, one would like Kantian optimization to be useful in market 

economies as well.   For the linear economies, we have a hopeful result – namely, 

Proposition 2.   Before stating it, let us define the allocation rules associated with linear 

taxation.  Define the linear allocation rule for linear economies with production function 

  G(x) = ax  by: 

  
  
θ j

[t ](E) = (1− t) E j

ES + t
n

.    (3.6) 

That is, each agent receives   (1− t)  times the marginal product of his labor plus an equal 

share of tax revenues. 
                                                
9 However, the equal-division allocation rule is market-implementable. Impose linear 

taxation in a Walrasian economy and set the tax rate equal to unity.  This is equivalent to 

the equal-division allocation rule. 
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Theorem 6 

A.  For any   t ∈[0,1] , the  K + equilibria for the linear tax rule   
θ[t ]  is Pareto efficient on  

   L0, fin . 

B.  The only allocation rules which are efficiently implementable in  K +  on    L0, fin  are of 

the form 
  
θ j (E) = θ[t ]

j (E)+ k j (E)
G(E)

 for some   t ∈[0,1]  where: 

  (i) for all E,   k j (E) = 0∑  

  (ii) for all (j,E)   θ
j (E)∈[0,1] , and 

  (iii) for all (j,E),    ∇k j (E) ⋅E = 0 . 

 

Proof: Part A is simply Proposition 2; part B is proved in the appendix. 

 By virtue of Part A of the above theorem, and theorem 4, in a society with other-

regarding preferences and linear production, citizens could choose a high tax rate to 

redistribute income substantially, without sacrificing allocative efficiency, thereby 

addressing the positive externality due to their concern for others.   Part B of the theorem 

is analogous to part C of theorem 1.     

  As in theorem 1, one is entitled to ask whether  there are examples of allocation 

rules where the functions  k j  are not identically zero.   There are, as the next example 

shows. 

 

Example 5.   

 Let n = 2, and consider the allocation rule: 

 

  

θ1(E) =
(1− t) E1

ES + t
2
+ t2(E1 − E2 )

2ES , if E1 ≥ E2

(1− t) E1

ES + t
2
− t2(E2 − E1)

2ES ,  if E1 ≥ E2

⎧

⎨
⎪
⎪

⎩
⎪
⎪

θ2(E) = 1− θ1(E)

,            (3.7) 
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for   t ∈(0,1) .  It is easy to verify that these rules satisfy conditions B(i)-(iii), and these 

rules are clearly not linear tax rules.   

 We are not interested in linear economies as such, because they are so special.  

Theorem 6 is presented because it motivates us to ask how linear taxation performs in 

concave economies with a continuum of agents.  Let us postulate that a linear-taxation 

allocation rule is applied to a person’s income, which is equal to his effort times the 

Walrasian wage plus an equal-per-capita share of the firm’s profits.  The effort allocation 

  E(⋅)  is a  K +  equilibrium for the t-linear tax rule if: 

  

  
(∀γ ) d

dr r=0

uγ ((1− t)(E(γ )+ r) ′G (E + r)+ (1− t)(G(E + r)− (E + r) ′G (E + r))+ tG(E + r), E(γ )+ r) = 0  

or:     u1
γ ⋅ (1− t)(E(γ )− E) ′′G (E)+ ′G (E)( ) + u2

γ = 0 ,        (3.8) 

and so the marginal rate of substitution of type γ  is: 

  
  
−

u2
γ

u1
γ = ′G (E)+ (1− t)(E(γ )− E) ′′G (E) .        (3.9) 

What is noteworthy is that the wedge between the MRS and the MRT, which is 

  (1− t)(E(γ )− E) ′′G (E) ,  goes to zero as  t  approaches one.   Of course, this must be the 

case, since the allocation at   t = 1 is the equal-division allocation, which we know is 0-

efficient on concave economies.    (Of course, (3.9) shows that the linear share rules are 

Pareto efficient on linear economies.) 

 Compare (3.9) with Nash-Walras equilibrium in the same private-ownership 

economy, which is given by: 

  
  
−

u2
γ

u1
γ = (1− t) ′G (E) .     (3.10) 

Here, the wedge between the MRS and the MRT is   t ′G (E)  which becomes equal to the 

whole MRT as t goes to one.   If there is a social ethos, citizens might well wish to 

redistribute market incomes via taxation.  Under Nash optimization, it becomes 

increasingly costly to do so (as taxes increase), while with  K +  optimization, equation 

(3.9) suggests it may become decreasingly costly to do so. 
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 We study this issue with some simulations. I choose 
  
G(x,r) =

x
r

r
, for several 

values of   r ∈(0,1) ,  and use the quasi-linear utility 
  
uγ (x, y) = x − y2

γ
.  The distribution F 

is lognormal with a mean of 50 and a median of 40.   Let the distribution of profit shares 

be egalitarian:  σ(γ ) ≡ 1.   (If we desire an anonymous Walrasian rule, we must choose 

this distribution.)  

 I describe the computational procedure by which the  K +  equilibrium is computed 

for various tax rates.  The characterization of the effort schedule in  K +  equilibrium for 

the quasi-linear utility profile  is given by:  

    
(1− t) ′′G (E)(E(γ )− σ(γ )E)+ ′G (E) = 2

γ
E(γ )         (3.11)

  

  For the specified production function, this equation may be solved to yield:  

  
  

E(γ ,t) =
E(t)r−1

γ (1+ (1− r)(1− t))

2+ γ (1− r)(1− t)E(t)r−2
,   (3.12) 

where   E(t)  is the integral of   E(γ ,t)  dF.    Integrating (3.12) and manipulating the result 

gives an equation in the single unknown   E(t) : 

  
  

1=
(1+ (1− r)(1− t))γ

2E(t)2−r
+ (1− r)(1− t)γ

dF(γ )∫ .  (3.13) 

Fixing r, we solve (3.13) for   E(t) numerically, for various values of t, and then compute 

the Kantian equilibrium effort schedule from (3.12).   Then we compute social welfare at 

the various values of t. 

 It is a standard exercise to compute the effort schedule for Walrasian equilibrium.  

Individual effort is given by 
   

E(γ ,t) =
(1− t)wγ

2
, and average effort is given by 

   

E(t) =
(1− t)wγ

2
, where w is the Walrasian wage, which solves to be:   

    
   
w = ′G ( E) = (1− t)γ

2
⎛
⎝⎜

⎞
⎠⎟

(r−1)/(2−r )

  .    



 27 

 We will perform a political-economy simulation.  For each voter, we may define 

an indirect (all-encompassing) utility function which gives her utility at the  K +  

equilibrium as a function of the tax rate, and another indirect utility function which gives 

her (all-encompassing) utility at the Nash-Walras equilibrium as a function of the tax 

rate.  These indirect utility functions are single-peaked in t, and so we will assume that 

the politically chosen tax rate is the ideal tax rate of the median-type voter.   (This will be 

the median ideal tax rate.)   We compute these tax rates for various values of the social-

ethos parameter α , for both  K +  and Nash-Walras equilibrium.  We compare social 

welfare in these two equilibria, using the social-welfare function that citizens use in their 

all-encompassing utility functions. 

 Tables 1a and 1b report results for   r = 0.90 and r = 0.50 .   In the first case, the 

maximum admissible tax rate is about 0.70, because for higher rates, some utilities 

become negative, and the social-welfare function is undefined.  For each value of α , I 

compute the ideal tax rate of the median type at the Kantian and Walrasian equilibrium, 

and report the values of social welfare at those political equilibria.   For   r = 0.5 , the 

maximum admissible tax rate is about 0.8.  In both cases, it turns out that the ideal tax 

rate of the median type, in the Kantian regime, is the maximum admissible rate.  We see 

from the tables that the ideal tax rate of the median type, in the Walrasian regime, is 

much smaller, and decreases slightly as α  increases.  

 

 

 

 

 

 

 

 

Table 2a  Political-equilibrium tax rates and social welfare in Kantian and Walrasian 

regimes, for  the quasi-linear economy with   G(x) = x0.9 / 0.9  and  σ(γ ) ≡ 1  

  

Out[44]//TableForm=
alpha t-Kant t-Walras Soc Wel û Kant Soc Wel û Walras
0. 0.7 0.166667 8.47076 7.72644
0.1 0.7 0.167536 8.47076 7.72656
0.2 0.7 0.168222 8.47076 7.72665
0.3 0.7 0.168778 8.47076 7.72672
0.4 0.7 0.169238 8.47076 7.72676
0.5 0.7 0.169624 8.47076 7.7268
0.6 0.7 0.169953 8.47076 7.72683
0.7 0.7 0.170237 8.47076 7.72686
0.8 0.7 0.170484 8.47076 7.72687
0.9 0.7 0.170701 8.47076 7.72689
1. 0.7 0.170894 8.47076 7.7269
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Table 2b Political-equilibrium tax rates and social welfare in Kantian and Walrasian 

regimes, for  the quasi-linear economy with   G(x) = x
0.5 / 0.5  and  σ(γ ) ≡ 1  

 

This is a consequence of the deadweight loss experienced with taxation in the Walrasian 

regime.  We see that, even with substantial concavity, the political equilibrium in the 

Kantian regime dominates that of the Walrasian regime in terms of social welfare, at least 

for values of α  in  [0,1] .  

 

4. Existence and dynamics 

 The existence of proportional solutions, which are the  K ×  equilibria of convex 

economies    (u,G, F ,α)  was proved in Roemer and Silvestre (1993).   Here, we provide 

conditions under which β − Kantian equilibria exist, with respect to the allocation rules 

described in Theorem 1. 

 

Theorem 7.   .  Let   ξ ∈E fin . Let the component functions of u be strictly concave. 

A.  If for all   u ∈u , 
  

∂2u
∂x∂y

≤ 0 , then a strictly positive  K +  equilibrium w.r.t. the equal-

division allocation rule  θ
ED  exists on ξ . 

B. Let  0 ≤ β < ∞ .   If for all   u ∈u , u is quasi-linear, then a strictly positive β − Kantian 

equilibrium w.r.t. the allocation rule θβ  exists. 
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Proof: Appendix. 

 The premises of this theorem can surely be weakened. 

 We turn briefly to dynamics.  There will not be robust dynamics for Kantian 

equilibrium, as there are not for Nash equilibrium.   There is, however, a simple dynamic 

mechanism that will, in well-behaved cases, converge to a Kantian equilibrium from any 

initial effort vector.   The mechanism is based on the mapping Θ  defined in the proof of 

theorem 7.   We illustrate it here for the case of a profile of quasi-linear utility functions 

and the equal-division allocation rule.  Thus,  let    u
j (x, y) = x − c j ( y) , for   j = 1,...,n , 

where  c j  is a strictly convex function.  For any vector    E0 ∈ ++
n , define   r

j (E0 )  as the 

unique solution of: 

 arg
  
max

r

G(E0 + nr)
n

− c j (E0
j + r)

⎛
⎝⎜

⎞
⎠⎟

. (4.1) 

Define    Θ
j (E0 ) = E0

j + r j (E0 ) .  The mapping   Θ = (Θ1,...,Θn ) maps    +
n →  +

n  and is 

analogous to the best-reply correspondence in Nash equilibrium.   A fixed point of Θ  is a 

 K +  equilibrium for the equal-division allocation rule, since at a fixed point   E* , 

  r
j (E*) = 0  for all j.  Since the example is special, the next result is proved only for the 

case n = 2, although it is true for finite n.  The next proposition shows that if we iterate 

the mapping Θ  indefinitely from any initial starting vector   E0  it converges to (the 

unique) K +  equilibrium for the equal-division allocation rule. 

 

Proposition 3   For n = 2, there exists a unique fixed point of the mapping Θ , which is a 

 K +  equilibrium for the equal-division allocation rule with quasi-linear preferences.  The 

dynamic process defined by iterating the application of Θ  from any initial effort vector 

converges to the  K +  equilibrium.  

Proof: Appendix.  

  

5. Discussion 

 My analysis has been positive rather than normative.   I have argued that if agents 

optimize in the Kantian way, then certain allocation rules will produce Pareto efficient 
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allocations, while Nash optimization will not.  While the analysis is positive,  Kantian 

optimization,  if people follow it, is motivated by a moral attitude:  each must think that 

he should take an action if and only if he would advocate that all others take a similar 

action.   I again emphasize that optimization protocols differ from preferences: thus, 

optimizing according to the Kantian protocol implies nothing about whether one’s 

preferences are other-regarding or self-interested – rather, it has to do with cooperation.  

You and I may cooperate, to our mutual benefit, whether or not we care about each other.    

Is it plausible to think that there are (or could be) societies where individuals do (or 

would) optimize in the Kantian manner?   

 Certainly parents try to teach Kantian behavior to their children, at least in some 

contexts.   “Don’t throw that candy wrapper on the ground: How would you feel if 

everyone did so?”   The golden rule  (“Do unto others as you would have them do unto 

you” ) is a special case of Kantian ethics.   (And wishful thinking  [“if I do X, then all 

those who are similarly situated to me will do X”], although a predictive claim, rather 

than an ethical one, will also induce Kantian equilibrium – if all think that way.)   This 

may explain why people vote in large elections, and make charitable contributions.    So 

there is some reason to believe that Kantian equilibria are accessible to human societies. 

 Consider the relationship between the theoretical concept of Nash equilibrium and 

the empirical evidence that agents play the Nash equilibrium in certain social situations 

that can be modeled as games.   We do not claim that agents are consciously computing 

the Nash equilibrium of the game: rather, we believe there is some process by which 

players discover the Nash equilibrium, and once it is discovered, it is stable, given 

autarkic reasoning.    We now know there are many experimental situations in which 

players in a game do not play (what we think is) the Nash equilibrium.  Conventionally, 

this ‘deviant’ behavior has been rationalized by proposing that players have different 

payoff functions from the ones that the experimenter is trying to induce in them, or that 

they are adopting behavior that is Nash in repeated games generated by iterating the one-

shot game under consideration.    Another possibility, however, is that players in these 

games are playing some kind of Kantian equilibrium.   In Roemer (2010), I showed that 

if, in the prisoners’ dilemma game, agents play mixed strategies on the two pure 

strategies of {Cooperate, Defect}, then all multiplicative Kantian equilibria entail both 
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players’ cooperating with probability at least one-half   (i.e., no matter how great is the 

payoff to defecting).   It can also be shown that, in a stochastic dictator game, where the 

dictator is chosen randomly at stage 1 and allocates the pie between herself and the other 

player in stage 2,  the unique  K ×  equilibrium is that each player gives one-half the pie to 

the other player,  if he is chosen. 

 The non-experimental (i.e., real-world) counterpart, as I have said in the 

introduction, may be the games that the societies that Elinor Ostrom has studied are 

playing.   If these games can be modeled as ‘fisher’ economies, with common ownership 

of a resource whose use displays congestion externalities, and if, as Ostrom contends, 

these societies often figure out how to engender efficient allocations of labor applied to 

the common resource, then they are discovering the multiplicative Kantian equilibrium of 

the game.  Perhaps Kantian reasoning helps to maintain the equilibrium: optimizing 

behavior may be cooperative and not autarkic. Ostrom explains the maintenance of the 

efficient labor allocation by invoking the community’s use of sanctions and punishments, 

but that may not be the entire story: it may be that many fishers are thinking in the 

Kantian manner, and that punishments and monitoring are needed only to control a 

minority who are Nash optimizers.   What I am proposing is that an ethic may have 

evolved, in these societies, in which the fisher says to himself,  “I would like to increase 

my fishing time by 5 hours a week, but I have a right to do so only if all others could 

similarly increase their fishing times, and that I would not like. ”   Armed only with the 

theory of Nash equilibrium, one naturally thinks that these Pareto efficient solutions to 

the tragedy of the commons require punishments to keep everyone in line.   But this may 

not be so.  

 As I noted earlier, Kantian ethics, and therefore the behavior they induce, require 

less selflessness than another kind of ethic: putting oneself in the shoes of others.   

Consider charity.   “I should give to the unfortunate, because I could have been that 

unfortunate soul – indeed, there but for the grace of God go I. ”  The Kantian ethic says, 

in contrast:  “I will give to the unfortunate an amount which I would like all others who 

are similarly situated to me to give.”  Assuming that there is a social ethos (that is,  α > 0 ) 

this kind of reasoning may induce substantial charity – or, in the political case, fiscal 

redistribution.     The Kantian ethic does not require the individual to place herself in the 
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shoes of another.   In this sense, it requires a less radical departure from self than the 

‘grace of God’ rationale does.   

 My analysis has studied the consequences of assuming that the optimizing 

behavior of individuals might not be autarkic, as in Nash equilibrium, but interdependent 

or cooperative, as in the various kinds of Kantian optimization.    To the extent that 

human societies have prospered by exploiting the ability of individuals of members of 

our species to cooperate with each other, it is perhaps likely that Kantian reasoning is a 

cultural adaptation, selected by evolution ( the classic reference is Boyd and Richerson 

[1985]).  Because we have shown that Kantian behavior can resolve, in many cases, the 

inefficiency of autarkic behavior, cultures which discover it, and attempt to induce that 

behavior in their members, will thrive relative to others.  Group selection may produce 

Kantian optimization as a meme.   

 One can rightfully ask whether it is utopian to suppose that the allocation rules 

studied here can be used in large economies10.   Even if the optimization rules of 

Theorem 1 are not employed,  one may ask what happens if agents in a private-ownership 

economy with markets optimize by choosing their effort supplies in the Kantian manner.  

This question motivated my simulations of the linear-tax allocation rules where the 

market allocation is Walrasian, summarized in table 2.    We do not get full Pareto 

efficiency, but the results are much better when agents are Kantian than when they are 

Nash optimizers.    

 One of the motivations I gave for studying Kantian optimization was in order to 

resolve the inefficiencies in economies with a social ethos, due to the consumption 

externalities that they entail.   It seems that, if a society is solidaristic in the sense of 

possessing a social ethos, then it is more likely that its members would behave in a 

                                                
10 An interesting recent example is the behavior of the small island nation of Mauritius 
with regard to global warming, which will affect it severely, through rising sea levels.  
Mauritius has undertaken serious steps to reduce its carbon footprint, although this will 
have negligible effect on its own situation (namely, the sea level).   It is behaving as a 
Kantian optimizer, taking the action it would like all other nations to take.  Kantian 
optimization, in this case, is an attempt to set a moral example.  See the Maurice Ile 
Durable website (http://www.gov.mu/portal/sites/mid/index.html). We can think of many 
other examples where individuals have attempted to induce cooperative behavior in 
others by their moral example. 
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cooperative fashion.    The behavior upon which I have focused in this paper is 

optimizing behavior.   I have not argued, however, that there is a link between a 

community’s possessing a social ethos and its members’ employing Kantian 

optimization.  I leave the reader with this question. 



November 7, 2012 
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(for “Kantian optimization: An approach to cooperative behavior” by J.E. Roemer) 

“Appendix: proofs of theorems” 
   

Proof of Theorem 1. 

The proof of part A simply mimics the proof of Proposition 1.  We prove part B. 

1.  Consider the Kantian variation   ϕ
β(x,r) = rE + (r −1)β , and any allocation rule 

  {θ
j , j = 1,...,n}, defined for a finite economy with n agents.  The condition that must hold 

for a rule θ  to be efficiently implemented on  E  in  K β  equilibrium is the FOC: 
 

 
  
(∀j) ∇θ j (E) ⋅(E +β)G(ES )+ θ j (E) ′G (ES )(ES + nβ)

E j +β
= ′G (ES ) , (A.1) 

 
which is the statement that that at a  K β  equilibrium   E = (E1,..., En ) , the marginal rate of 

substitution between effort and income for each agent is equal to the marginal rate of 

transformation.  Recall that  E
S ≡ E j∑ ,  ∇θ

j  is the gradient of the function  θ
j  with 

respect to its n arguments,  E +β  is the vector whose jth component is  E
j +β , and 

  ∇θ
j (E) ⋅(E +β)  is the scalar product of two n vectors.  (A.1) can be written as: 

 
 

 
  
(∇θ j (E) ⋅ (E +β)

E j +β
) G(ES )

′G (ES )
+ θ j (E) (ES + nβ)

E j +β
= 1.  (A.2) 

2.  We now argue that (A.2) must hold as a set of partial differential equations on    ++
n .  

For let   E ∈ ++
n  be any vector.  Fix a production function G.  We can always construct n 

utility functions whose marginal rates of substitution at the points   (θ
j (E), E j )  are exactly 

given by the value of the left-hand side of equation (A.1).   For the economy thus defined, 

E is indeed a  K β  equilibrium.   This demonstrates the claim. 

3.  Continue to fix a vector   E ∈ ++
n .  Define 

 
ri

j =
Ei +β
E j +β

 for   i = 1,...,n  and notice that 

  
ϕβ(E j ,ri

j ) = Ei .  Consider the ray gotten by varying x, defined in the text:  

  
M (E) = (ϕβ(x,r1

j ),ϕβ(x,r2
j ),...,ϕβ(x,rn

j )) .  Note that when 
 
x = E j ,  this picks out the 

vector E.   We will reduce the system (A.2) of PDEs to ordinary differential equations on 

  M (E) . 
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Define 

  
ψ j (x) = θ j (ϕβ(x,r1

j ),...,ϕβ(x,rn
j )) .    Note that : 

 
  
(ψ j ′) (x) = ∇θ j (ϕβ(x,r j )) ⋅r j  (A.3) 

where   
ϕβ(x,r)  is the generic vector in the ray, and   r

j = (r1
j ,...,rn

j ) . 

Define   µ
j (x) = G( ϕ(x,ri

j ))∑  and note that: 

   (µ
j ′) (x) = ′G ( ϕ(x,ri

j )) ri
j∑∑ . (A.4) 

It follows that we may write (A.2) restricted to the ray  M (E)  as: 

 
  
(ψ j ′) (x)r S , j µ j (x)

(µ j ′) (x)
+ψ j (x)r S , j = 1 , (A.5) 

where 
  
r S , j ≡ ri

j

i
∑ .  

4.   (A.5) is a first-order ODE.    A particular solution is given by the constant function: 

 
  
ψ j (x) = 1

r S , j , (A.6) 

and the general solution to its homogeneous variant is: 

 
  
ψ̂ j (x) = k j ( M (E))

µ j (x)
, (A.7) 

where  k j  a constant that depends on  the ray   M (E) .  Therefore the general solution of  

(A.5) is  

   
  
ψ j (x) = 1

r S , j +
k j ( M (E))
µ j (x)

.        (A.8) 

Now, evaluating this equation at  x = E j  gives: 

 
  
ψ j (E j ) = θ j (E) = 1

r S , j +
k j ( M (E))

G(E)
= E j +β

(Ei +β)∑
+ k j ( M (E))

G(E)
. (A.9) 

Since the n shares in (A.8) sum to one, (A.8) tells us that we must have   k j ( M (E)) = 0∑ .   

5.  Finally,  we verify that the allocation rules defined in (A.9) satisfy the PDEs (A.2). 

To do so, we must show that : 

 
  
∇ k j (E)

G(ES )
⎛

⎝⎜
⎞

⎠⎟
⎛

⎝
⎜

⎞

⎠
⎟ ⋅

(E +β)
E j +β

) G(ES )
′G (ES )

+ k j (E)
G(ES )

⎛

⎝⎜
⎞

⎠⎟
(ES + nβ)

E j +β
= 0.       (A2a)
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Recalling that by definition
  

  ∇k j (E) ⋅(E +β) = 0 , because   k
j (E)  is constant on   M (E) , 

(A.2a) is easily verified.
 
 

6.  To prove part B, return to equation (A.8) which holds on the ray   M (E) .   For  β = 0  

(i.e.,  K ×  equilibrium), the ray   M (E) ={(r1
j x,...,rn

jx) | x ≥ 0}.  Hence, as x approaches 

zero   µ
j (x)  approaches zero.  If, for some j,   k

j ( M (E)) ≠ 0 , then for sufficiently small x, 

  ψ
j (x)  would violate the constraint that it lie in  [0,1] .  Hence, for the case when  β = 0  

(and only for that case) we may conclude that the constants  k j  are identically zero, and 

the claim of part B follows.  

7.  Part D is immediately verified by simple algebra.      

 

Proof of Theorem 2: 

1.  An interior allocation E is Nash implementable on the class of finite convex 

economies for the allocation rule θ  if and only if 

 
  
∀j u1

j ⋅(∂θ
j (E)

∂E j

G(ES )+ θ j (E) ′G (ES ))+ u2
j = 0  (A.10) 

Therefore θ  is efficiently implementable iff:  

 
  
∀j 1= θ j (E)+ G(ES )

′G (ES )
∂θ j (E)
∂E j

. (A.11) 

2.  Indeed, (A.11) must hold for the entire positive orthant    ++
n , for given any positive 

vector E,  we can construct n concave utility functions such that (A.10) holds at E. 
 
3.  For fixed E, define 

  
ψ j (x) = θ j (E1, E2 ,..., E j−1,x, E j+1,..., En )  and 

  
µ j (x) = G(x + ES − E j ) .  Then (A.11) gives us the differential equation: 
 

 
  
1= ψ j (x)+ µ j (x)

(µ j ′) (x)
(ψ j ′) (x) , (A.12) 

which must hold on   ++ . 
4.  But (A.12) implies that  

 
  

(ψ j ′) (x)
1− ψ j (x)

= (µ j ′) (x)
µ j (x)

 (A.13) 
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which implies that   µ
j (x)(1− ψ j (x)) = k j  and therefore 

  
ψ j (x) = 1− k j (E− j )

µ j (x)
 where 

the constant  k j  may depend on the ray   (E1,.., E j−1,x, E j+1,.., En )  on which  ψ
j  is defined. 

.   
5.  In turn, this last equation says that on the ray   

(E1,..., E j−1,x, E j+1,..., En )  we have: 

 
  
θ j (E1,..., E j−1,x, E j+1,..., En )G(x + ES − E j ) = G(x + ES − E j )− k j (E− j ) , (A.14) 

which says that ‘every agent receives his entire marginal product’ on this space.  To be 

precise: 

  

  

(∀x, y > 0)
(θ j (E1,..., E j−1,x, E j+1,..., En )G(x + ES − E j )− θ

j (E1,..., E j−1, y, E j+1,..., En )G( y + ES − E j ) =

G(x + ES − E j )−G( y + ES − E j ))
 
           (A.15) 
Now let   

y = 0 and x = E j  and let 
  
z j = θ j (E1,..., E j−1,0, E j+1,..., En )G(ES − E j ) .    Then 

(A.15) says that: 

 
  
(∀j)(θ j (E)G(ES )− z j = G(ES )−G(ES − E j )) . (A.16) 

6.  Adding up the equations in (A.16) over j, and using the fact that   
z j ≥ 0 , we have: 

 
  
G(ES ) ≥ nG(ES )− G(ES − E j )∑  (A.17) 

or: 

 
  
G(ES ) ≤ 1

n−1
G(ES − E j )∑ . (A.18) 

 

7.  Now note that 
  

1
n−1

(ES − E j ) = ES∑ .   Therefore (A.18) can be written: 

 
  
G( 1

n−1
(ES − E j )) ≤

1
n−1

G(ES − E j )∑∑ , (A.19) 

which is impossible for any strictly concave G.   This proves part A of the theorem. 

8.  The proof of part B is well-known: for part B just says that Nash behavior, taking 

prices as given, at the Walrasian allocation rule, induces Pareto efficiency. 

 
  
 

Proof of Theorem 3: 
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Consider the program: 

  

  

max
K ,h(),q()

uτ(x*(τ)+ h(τ), E*(τ)+ q(τ)
τ∈D
∫ )dF(τ)+αF(D)K

subject to

∀γ uγ (x*(γ )+ h(γ ), E*(γ )+ q(γ ))+αK ≥ uγ (x*(γ ), E*(γ ))+αK *

∀γ x*(γ )+ h(γ ) ≥ 0

∀γ E*(γ )+ q(γ ) ≥ 0

K ≤ uγ (x*(γ )+ h(γ ), E*(γ )+ q(γ )) p dF(γ )∫( )1/ p

G( (E*(γ )+ q(γ ))∫ dF(γ )) ≥ (x*(γ )+ h(γ )∫ )dF(γ )

 

 

where D  is any set of types of positive measure.  Suppose the solution to this program is 

 . (K* is the value of the social-welfare function – given in the K 

constraint in the program -- when 
  h = q = 0 .) Then   (x*(⋅), E*(⋅))  is a Pareto efficient  

allocation.  Since we are studying strictly positive allocations, the second and third sets of 

constraints at the proposed optimal solution will be slack. 

 We will show that conditions (a) and (b) of the proposition characterize the * 

allocations for which this statement is true.  Let  be any feasible triple in the 

above program, for a fixed positive allocation   (x
*, E

*) .  Let .   Then define 

the Lagrange function: 

 

  

Δ(ε) = uτ(x*(τ)+ εh(τ), E*(τ)+ εq(τ)
τ∈D
∫ )dF(τ)+αF(D)(K * + εΔK )+

ρ G( (E*(τ)+ εq(t))dF(τ)− (x*(τ)+ εh(τ))dF(τ)∫∫( ) + λ uτ(x*(τ)+ εh(τ), E*(τ)+ εq(τ)∫ ) p dF(τ)⎛
⎝⎜

⎞
⎠⎟

1/ p

−

λ K * + εΔK )( ) + B(γ )∫ (u(x*(τ)+ εh(τ), E*(τ)+ εq(τ),τ)+αεΔK − u(x*(τ), E*(τ),τ))dF(τ).

 

 

Suppose there is non-negative function   B(⋅)  and non-negative numbers  for which 

the function  is maximized at zero.   Note  is the value of the objective of the 

above program, when  and , and  equals the value of the 

objective at  plus some non-negative terms.  The claim will then follow.   Since 

  h
*
≡ 0, q*

≡ 0, K = K *

  (h,q, K )

  ΔK = K − K
*

 (λ,ρ)

Δ
 Δ(0)

  h
*
≡ 0 ≡ q*

  K = K
*

 Δ(1)

  (h,q, K )
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 is a concave function, it suffices to produce an allocation   (x*, E*)  for which non-

negative  exist such that . 

 Compute the derivative of Δ  at zero: 

 

  

′Δ (0) = u1[*,γ ]h(γ )+ u2[*,γ ]q(γ )dF(γ )( )
D
∫ +αF(D)ΔK +

ρ ′G ( E*(τ)dF(τ)) q(τ)dF(τ)− h(τ)dF(τ)∫∫∫( ) +
λ
p

(Q*)(1− p)/ p p u[*,γ ]p−1∫ u1[*,γ ]h(γ )+ u2[*,γ ]q(γ )( )dF(γ )−

λΔK + B(γ )∫ u1[*,γ ]h(γ )+ u2[*,γ ]q(γ )+αΔK( )dF(γ ).

 

 

We now gather together the coefficients of   ΔK ,h,  and q in the above expression 

and set them equal to zero: 

 

Coefficient of   ΔK :      αF(D)+α B(γ )dF(γ )− λ = 0∫   (A.9) 

 

Coefficient of 
   
h(γ ) : u

1
[*,γ ]1

D
− ρ+ λ(Q*)(1− p)/ p u[*,γ ]p−1u

1
[*,γ ]+ B(γ )u

1
[*,γ ]= 0 ,   

(A.10) 

Coefficient of 
   
q(γ ) : u

2
[*,γ ]1

D
+ ρ ′G (E)+ λ(Q*)(1− p)/ p

u[*,γ ]p−1
u

2
[*,γ ]+ B(γ )u

2
[*,γ ] = 0 ,  

(A.11) 

where  and 
  
E = E

*(γ )dF(γ )∫ . 

 By setting all these coefficients equal to zero, and solving for the Lagrange 

multipliers, we will discover the characterization of the allocation .  Note that, 

at an interior Pareto efficient solution, we must have: 

   
  

u
2
[*,γ ]

u
1
[*,γ ]

= − ′G (E) , 

Δ

  (B,λ,ρ)  ′Δ (0) = 0

   

1
D

(γ ) =
1,  if γ ∈D

0,  if γ ∉D

⎧
⎨
⎪

⎩⎪

  (x
*(), E

*())
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for this is the statement that the marginal rate of substitution for each type between labor 

and output is equal to the marginal rate of transformation between labor and output.  

Therefore write: 

  
  

u
1
[*,γ ]+ u

2
[*,γ ]= u

1
[*,γ ] 1+

u
2
[*,γ ]

u
1
[*,γ ]

⎛

⎝⎜
⎞

⎠⎟
= u

1
[*,γ ] 1− ′G (E)( ) .  (A.12) 

Now add together the equations for the coefficients of   q(γ ) and h(γ ) , divide this new 

equation by   1− ′G (E) , use equation (A.12), and the result is exactly the equation (A.11). 

Therefore, eqn. (A.12) has enabled us to eliminate equation (A.11): if we can produce 

non-negative values   (B(⋅),λ,ρ)  satisfying (A.9) and (A.10), we are done. 

 Solve eqn. (A.10) for   B(γ ) : 

 
   

B(γ ) =
ρ− u

1
[*,γ ]1

D
− u

1
[*,γ ]λ(Q*)(1− p)/ p

u[*,γ ]p−1

u
1
[*,γ ]

 .    (A.13) 

From eqn. (A.9), we have   λ = αF(D)+α B(γ )dF(γ )∫ , and substituting the expression 

for   B(γ )  into this equation, we integrate and solve for  λ :  

  
  
λ =

αρ u1[*,γ ]−1 dF(γ )∫
1+α(Q*)(1− p)/ p u[*,γ ]p−1 dF(γ )∫

   (A.14). 

 

Eqn. (A.13) says that   B(γ )  is non-negative if and only if  

  
   
ρ ≥ u

1
[*,γ ](1

D
+ λ(Q*)(1− p)/ p

u[*,γ ]p−1)  ;                (A.15) 

substituting the expression for λ from (A.14) into (A.15) yields an inequality in ρ which, 

by rearranging terms, can be written as: 

 
  
ρ 1− u1[*,γ ]

α(Q*)(1− p)/ p u[*,γ ]p−1 u1[*,τ]−1 dF(τ)∫
1+α(Q*)(1− p)/ p u[*,τ][−1 dF(τ)∫

⎛

⎝⎜
⎞

⎠⎟
≥ u1[*,γ ] .        (A.16) 

In sum, we can find non-negative Lagrange multipliers iff we can produce a non-negative 

number ρ such that (A.16) is true for all γ.  This can be done iff: 

 
  
∀γ 1

u1[*,γ ]
≥
α(Q*)(1− p)/ p u[*,γ ]p−1 u1[*,τ]−1 dF(τ)∫

1+α(Q*)(1− p)/ p u[*,τ]p−1 dF(τ)∫
, 

proving the theorem.     
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Proof of Theorem 4. 

 We prove the generalization of the theorem stated in the text.  We prove the result 

for  K ×  equilibrium for simplicity’s sake, although the proof for  K β  equilibrium is the 

same.  Also for simplicity’s sake, we use the social-welfare function of (1.1). 

1.   For the allocation rule θ , an allocation E is a  K ×  equilibrium iff: 

  
d
dr

|r=1 uγ (θγ (rE)G(rE),rE(γ ))+αγ exp log(uτ(θτ(rE)G(rE),rE(τ))dF(τ)∫( ) = 0 , (A.17) 

where we assume that the altruism parameters  {α
γ}  are non-negative.  Expand this 

derivative, writing it as:  

 
  
(∀γ ) Dγ (E)+αγ exp log(uτ(θτ(E)G(E)∫ , E(τ))dF(τ)

Dτ(E)
uτ∫ dF(τ)

⎛

⎝⎜
⎞

⎠⎟
= 0,   (A.18) 

where 
  
Dτ(E) = d

dr r=1

uτ(θτ(rE)G(rE),rE(τ)) . 

2.  Now (A.18) says that : 
   (∀γ )(Dγ (E) = −αγk)  

where k is a constant (independent of γ ).   Therefore we can substitute  −α
τk  for   D

τ(E)  

on the r.h.s. of eqn. (A.18), and re-write that equation as: 

   −α
γk −αγkm = 0 ,      (A. 19) 

where m is a positive constant.   If  α
γ = 0 ,  we have from  (A.18) that   D

γ (E) = 0 . Id 

 α
γ ≠ 0 ,   it follows from (A.19)   that   k = 0 .   But this means that for all γ ,   D

γ (E) = 0 , 

which is exactly the condition that E is a Kantian equilibrium for the economy with 

 α = 0 .  

 

Proof of Theorem 5: 

 

1.  The effort allocation in part (a) maximizes the surplus, which is the condition for 

efficiency in the quasi-linear economy with  α = 0 . 

2. Integrating the expression for   E(γ ) , we have that the equation 
  
E = γ ρ ′G (E)1/(ρ−1)  , 

characterizing  E .  
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3.  To prove claim (b), we show that the  β(ρ) -Kantian 

 equilibrium produces equal utilities across γ . From Remark 4 stated after Theorem 2, 

this suffices to show that the allocation will be in   PE(∞) .    We have: 

 

  

u[γ ,β]= γ1/(ρ−1) ′G (E)1/(ρ−1) +β
γρ ′G (E)1/(ρ−1) +β

G(E)− γ ρ/(ρ−1) ′G (E)ρ/(ρ−1)

ργ
=

γ1/(ρ−1) ′G (E)1/(ρ−1)G(E)
γ ρ ′G (E)1/(ρ−1) +β

− ′G (E)ρ/(ρ−1)

ρ

⎛

⎝
⎜

⎞

⎠
⎟ + k

 (A.17) 

 

where k is a constant independent of γ .   Calculation shows that the value of β  that 

causes the coefficient of  γ
1/(ρ−1)  in (A.17) to vanish is  β(ρ)  as defined in claim (b).  It is 

easy to observe that  β(ρ) > 0  by the concavity of G, and because  ρ >1.  This proves 

claim (b). 

4.  Claim (c) follows from analyzing the condition (b) of theorem 2, which for quasi-

linear economies is: 

     (∀γ ) 1+α u[*,τ]−1 dF(∫ τ) ≥ αu[*,γ ]−1 , 

 

 as β  approaches  β(ρ)  from below.   

 

Proof of Theorem 6: 

1.   A simple calculation shows that if  E  is a  K +  equilibrium for an economy with a 

linear production function   G(x) = ax  w.r.t. any linear tax allocation rule   
θ[t ] , for   t ∈[0,1] , 

then the  allocation is 0-Pareto efficient.   

2.  Now let  E  be a  K +  equilibrium w.r.t. any allocation rule θ  on    (u,G, F ,0)  which is 

Pareto efficient on that economy.  E is a K +  equilibrium means: 

  
   
u1

j (∇θ j (E) ⋅1)aES + θ j (E)an( ) + u2
j = 0 , 

and so Pareto efficiency means that: 

  
   
(∇θ j (E) ⋅1)aES + θ j (E)an( ) = a , 

or: 
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     (∇θ
j (E) ⋅1)ES + nθ j (E) = 1.     (A.18) 

As has been argued in previous proofs,  (A.18) must hold as a system of partial 

differential equations on    ++
n .   

3. Define  ri
j = Ei − E j .  Define   ψ

j (x) = θ j (x + r1
j ,...,x + rn

j ) .  Note that 

   (ψ
j ′) (E j ) = (∇θ j (E) ⋅1) .  Hence, on the ray   M (E) ={(x + r1

j ,...,x + rn
j )} , we may write 

the differential equation (A.18) as: 

     (ψ
j ′) (x)(nx + r j ,S )+ nψ j (x) = 1,   (A.19) 

where 
  
r j ,S = ri

j

i
∑ .   Since the linear tax rules satisfy (A.18) by step 1, it follows that a 

particular solution of (A.19) is 
  
ψ j (x) = (1− t) x

nx + r j ,S + t
n

, for any   t ∈[0,1] .   The 

general solution to the homogeneous variant of (A.19) is 
  
ψ j (x) = k j

nx + r j ,S ,  where  k j  is 

a constant that may depend upon the ray   M (E) .   Therefore the general solution to 

(A.19) is: 

   
  
ψ j (x) = (1− t) x

nx + r j ,S + t
n
+ k j

nx + r j ,S , 

where t may be chosen freely, and  k j  is as described.  Translating back, this means that 

  
  
θ j (E) = θ[t ]

j (E)+ k j (E)
ES  

where we must have: 

 (i) for all E,   k j (E) = 0∑  

 (ii)   θ
j (E)∈[0,1]  

 (iii) for all j and E,    ∇k j (E) ⋅1 = 0 . 

Statements (i) and (ii) are obvious requirements, while statement (iii) says that the 

functions  k j  are constant on the ray  M (E) .    

 

Proof of Theorem 7: 

Part A 
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1.  Define the functions: 

 
  
r j (K , y) = max

r
u j (

G(K + y + nr)
n

, y + r)  for    (K , y)∈ +
2 . 

These are single-valued functions, by strict concavity of u. 

 

The first-order condition defining rj  is: 

    u1
j (⋅) ′G (K + y + nr)+ u2

j (⋅) = 0 . 

 

2.  Using the implicit function theorem, compute that the derivatives of  r j  w.r.t. its 

arguments are : 

  
  

dr
dK

= −
u1

j ′′G + u11
j ′G 2 + u12

j ′G
n(u1

j ′′G + u11
j ( ′G )2 + 2 ′G u12

j + u22
j )

< 0
. 

 

The denominator of this fraction is negative by concavity of u and G, the the numerator is 

negative since   u12
j ≤ 0 , and hence 

  
dr
dK

< 0 .    And: 

  
  

dr
dy

= −
u22

j + ( ′G )2u11
j + (n+1)u12

j + u1
j ′′G

n(u22
j + ( ′G )2u11

j + 2 ′G u12
j + u1

j ′′G )
< 0 . 

Likewise,  
  

dr
dy

< 0 .  

3. Define   y
j  by r j (0, y j ) = 0 .   If all agents other than j are putting in zero effort, then  y

j  

is the amount of effort for j at which he would not like to increase all efforts by any 

number.  Now define 
 
K − j = y j

i≠ j
∑ .   Next define   z

j  by    r
j (K − j , z j ) = 0 .    z j  is the 

amount of effort for j such that, if all other agents i are expending  y
i and he is expending 

 z j ,  he would not like to add or subtract any amount from all efforts. 

4.   We argue that  z
j < y j  for all j.   Just note that   r

j (K − j , z j ) = 0 = r j (0, y j ) .   Since 

  K − j > 0 , it follows that  z
j < y j , because the  r j are decreasing functions. 

5.  Hence we may define the non-degenerate rectangle    Δ ={E ∈ ++
n | z ≤ E ≤ y} . 
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6.   By applying the definition of   r
j (K , y) , note that we have the identity: 

    r
j (K + (n−1)b,a + b) = r j (K ,a)− b . 

7.  We now define a function    Θ : +
n →  +

n : 

    Θ(E1,..., En ) = (E1 + r1( Ê−1, E1),..., En + r n( Ê−n , En ))  

where 
  
Ê− j ≡ Ei

i≠ j
∑ .   Θ  is like the best-reply correspondence in Nash equilibrium. 

Θ  is single-valued and continuous, by the Berge maximum theorem.   

   We next show that  Θ(Δ)⊆ Δ .   Let   E = (E1,..., En )∈Δ .   We must show: 

     (∀j)(z j ≤ E j + r j ( Ê− j , E j ) ≤ y j .   (A.20) 

By step 6,   we have  

     r
j ( Ê− j , E j )− ( y j − E j ) = r j ( Ê− j + (n−1)( y j − E j ), y j ) ≤ 0 , 

where the inequality follows because  r j  is decreasing and   r
j (0, y j ) = 0  and 

  Ê
− j + (n−1)( y j − E j ) ≥ 0 .   This proves the second inequality in (A. 20).  

 Again by step 6, we have: 

   r
j ( Ê− j , E j )− (z j − E j ) = r j ( Ê− j + (n−1)(z j − E j ),z j ) ≥ 0  

where the inequality follows because  r j  is decreasing and   Ê
− j + (n−1)(z j − E j ) ≤ K − j  

(note that   (n−1)(z j − E j ) ≤ 0 ).   This proves the first inequality in (A.20). 

8.  Hence, the function Θ  satisfies all the premises of Brouwer’s Fixed Point Theorem, 

and hence possesses a fixed point. But a fixed point of Θ  is a vector E such that for all j, 

  r
j ( Ê− j , E j ) = 0 , which is precisely a  K +  equilibrium.  (Note that the rectangle is in the 

strictly positive orthant, which implies that the equilibrium is strictly positive.) 

 Part B 

9.  The proof proceeds in the same fashion as above, except we now define the functions: 

         
  
rβ

j (K , y) = argmax
r

u j (
ry +β(r −1)+β

r(K + y)+ nβ(r −1)+ nβ
G(r(K + y)+ n(r −1)β,ry +β(r −1)) . 

Recall that y will be evaluated at  E j  and K  at    Ê− j  for a vector E. 

The first-order condition defining the functions  
rβ

j  is: 

      u1
j ⋅ ′G + u2

j = 0 , 
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where u is evaluated at the point 
  
( y +β

K + y + nβ
G(r(K + y)+ (r −1)nβ),ry + (r −1)β) .  We 

compute, using the implicit function theorem, that: 

 
  

drβ
j

dK
= −

( ′G u11
j + u12

j ) y +β
K + y + nβ

′G rβ
j − G

K + y + nβ
⎛
⎝⎜

⎞
⎠⎟
+ rβ

j ′′G u1
j

( y +β)( ′G 2u11
j + 2 ′G u12

j + u22
j )+ u1

j ′′G (K + y + nβ)
. 

The denominator is negative by the concavity of u and G.   Quasi-linearity implies that 

  ′G u11
j + u12

j = 0  and so the numerator is negative if 
  
rβ

j > 0 .   But note that we must have 

  ry + (r −1)β ≥ 0 , since efforts cannot be negative, and so r is restricted to the interval 

with lower bound 
  
r ≥ β

y +β
> 0 , and so 

  
rβ

j > 0 .     Hence   
  

drβ
j

dK
< 0 .  

 Compute that:  

  

drβ
j

dy
= −

u11
j rβ

j ′G 2 ( y +β)
K + y + nβ

+ ′G G (K + (n−1)β)
(K + y + nβ)2

⎛
⎝⎜

⎞
⎠⎟
+ u12

j rβ
j ′G K + 2y + (n+1)β

K + y + nβ
⎛
⎝⎜

⎞
⎠⎟
+ K + y + (n−1)β

(K + y + nβ)2

⎛
⎝⎜

⎞
⎠⎟
+ rβ

ju22
j

( y +β)( ′G 2u11
j + 2 ′G u12

j + u22
j + u1 ′′G (K + y + nβ)

 

The denominator is negative by concavity, and the numerator is negative since   u12
j = 0 , 

and so 
  

drβ
j

dy
< 0 . 

10.  Hence the functions  rβ
j  are decreasing, and the proof proceeds as before, from steps 

3 through 8.          

 

Proof of Proposition 3: 

The proof proceeds by showing that the mapping Θ  is a contraction mapping.  It uses the 

following well-known mathematical result: 

Lemma  Let  be a norm on   n  and let   A   be the associated sup norm on mappings 

   A :n → n , defined by 
   

A = sup
x =1

A(x) .   Let   J ( A)  be the Jacobian matrix of A. If 

   J ( A) <1 , then A is a contraction mapping. 
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 If we can show that Θ  is a contraction mapping, then it possesses a unique fixed 

point, and the dynamic process induced by iterating the application of Θ  from any initial 

effort vector will converge to the fixed point. 

 

1.  For   n = 2 , the Jacobian of the map Θ  is 

  

1+ r1
1 r2

1

r1
2 1+ r2

2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

, where 

  
ri

j (E1, E2 ) = ∂r j

∂Ei (E1, E2 ) , assuming that these derivatives exist.  Thus, the lemma 

requires that we show the norm of this matrix is less than unity.   We take  to be the 

Euclidean norm on   2 .   We must show that: 

 

  

E = 1⇒
1+ r1

1(E) r2
1(E)

r1
2(E) 1+ r2

2(E)

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

E1

E2

⎛

⎝
⎜

⎞

⎠
⎟ <1 .   (A.21) 

2.  Assuming differentiability of  c j , the function   r
j (E)  is defined by the following first-

order condition: 

   ′G (ES + 2r j (E)) = (c j ′) (E j + r j (E)) ,      (A.22) 

which has a unique solution under standard assumptions.  By the implicit function 

theorem, the derivatives of   r
j (⋅)  are given by: 

 

   ′′G ( y j )(1+ 2ri
j (E)) = (c j ′′) (x j )(δ i

j + ri
j (E)) , 

where   y
j = G(ES + nr j (E)), x j = E j + r j (E)  and 

  
δ i

j =
1,  if i = j
0,  if i ≠ j

⎧
⎨
⎪

⎩⎪
; or 

   
  
ri

j (E) =
δ i

j (c j ′′) (x j )− ′′G ( y j )
2 ′′G ( y j )− (c j ′′) (x j )

.    (A.23) 

3.   It follows from step 1 that the Jacobian of Θ  is given by: 
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′′G ( y1)
2 ′′G ( y1)− (c1 ′′) (x1)

− ′′G ( y1)
2 ′′G ( y1)− (c1 ′′) (x1)

− ′′G ( y2 )
2 ′′G ( y2 )− (c2 ′′) (x2 )

′′G ( y2 )
2 ′′G ( y2 )− (c2 ′′) (x2 )

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

 

and so, from step 1, we need only show that: 

    (Q
1(E1 − E2 ))2 + (Q2(E1 − E2 ))2 <1    (A. 24) 

where 
  
(E1, E2 ) = 1 and 

  
Q j = ′′G ( y j )

2 ′′G ( y j )− (c j ′′) (x j )
.     Note that 

  
Q j < 1

2
.  Therefore 

(A.24) reduces to showing that 
  
1
2

(1− E1E2 ) <1, which is obviously true, proving the 

proposition.    
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