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Abstract

This paper studies repeated costly signalling when luck matters for the
outcome. Benefit is obtained from the belief of the market, not directly
from the effort or the signal. Nonstationary environments are allowed.

In the unique equilibrium in which effort is affine in type, the more
the current cost of effort varies in type, the smaller the effort of the lowest
types and the greater that of the highest. The effort and payoff of inter-
mediate types generically moves in the same direction as their cost and
marginal cost. Greater dependence of future costs on type reduces effort
for all types.

The framework extends to productive effort, human capital accumu-
lation and exogenous information revelation.

Keywords: Signalling, dynamic games, stochastic games, incomplete
information.

JEL classification: C73, D82, D83.

1 Introduction

Acquiring education to signal one’s intelligence takes time. The studying effort
translates into education outcomes only stochastically (grades are partly due
to luck). Intelligence (IQ) is normally distributed (the famous ‘bell curve’ of
Herrnstein and Murray (1994)). The grade distribution is also often normal.1

To describe such situations, a model of repeated noisy signalling with normally
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1The grade is often the sum of marks for many questions. If these marks are independent
conditional on knowledge, then the distribution of their sum converges to normal as the
number of questions increases.
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distributed types and signals is proposed. Repetition means that signalling
effort is chosen on multiple occasions, not just once. Noise means the effort is
imperfectly observable.

Other examples of repeated noisy signalling are a politician practising speeches
in order to appear competent in the run-up to an election, a lobbyist exerting
effort to shift public opinion to induce politicians to decide favourably, or a
manager artificially inflating financial results every reporting period to get a
bonus based on the share price.

The repeated noisy signalling model proposed in this paper is technically
simple, tractable even when the environment is nonstationary, and yields closed
form comparative statics. Some of the results are as expected, e.g. signalling
effort increases in the precision of the signal and the variance of the type distri-
bution. Some are more surprising—for example, as the dependence of cost on
type increases, some of the types whose cost rises raise their effort. An increased
influence of type on cost has qualitatively different effects on equilibrium effort
depending on whether the influence increases at present or in the future.

Time is discrete and the horizon finite or infinite. There is a sender (em-
ployee) and a competitive market (employers). The sender has an IQ level
(type) drawn from a normal distribution. Type determines the cost of effort.
The wage the market would be willing to offer the sender under perfect infor-
mation is affine in type and effort. The sender privately observes the type and
chooses his effort level every period. The market has a common prior belief
about the sender’s IQ and observes in every period a normally distributed sig-
nal (test result) with mean equal to the effort. In some (ex ante known) periods,
the sender receives a benefit, which is determined by the posterior belief of the
market. Attention is restricted to affine equilibria (the sender’s effort is affine
in type).

In the unique affine equilibrium, the greater the current effect of IQ on the
cost of effort, the less effort the least intelligent and the more the most intelligent
exert. Intuitively, the cost of the lowest types rises, so they exert less effort.
Similarly, the highest types exert more effort because their cost falls. However,
generically there are types whose effort moves in the same direction as their
cost and marginal cost. The reason is that a greater dependence of cost on type
tends to make the benefit respond more to the signal. This increases the payoff
to signalling, which may outweigh the increased cost.

The more the future cost of effort is influenced by IQ, the lower the current
effort of all types and the higher the future effort. Signalling efforts in different
periods are substitutes. This is due to the increased precision of the future belief
of the employers when the future dependence of cost on IQ increases. A more
precise belief responds less to effort, reducing the present benefit of signalling.

The effort of all types increases in the precision of the signal. The intuition
is that less noise implies a greater benefit of signalling. Effort increases in the
variance of the type distribution, because the reward the market is willing to
offer to different types becomes more dispersed. There is thus a greater incen-
tive to masquerade as a higher type, which must be counteracted by greater,
costlier effort of the higher types. Effort is independent of the mean of the type
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distribution, because the incentive to signal only comes from the wage difference
between types, not the level of wages.

The next section introduces the model and Section 3 discusses equilibria.
Comparative statics are calculated in Section 4. Section 5 extends the model to
exogenously and endogenously changing type, exogenous information revelation,
productive effort (similar to the career concerns model of Holmström (1999))
and multiple senders. Section 6 discusses the related literature and Section 7
concludes.

2 Model

The players are a sender and a competitive market. Time is discrete, indexed
by t. The horizon length is T ∈ N∪{∞}. The sender’s type is θ ∈ R. The type
distribution is normal: p0 = N (µθ, τθ), where τX = 1

σ2
X

denotes the precision

and σ2
X the variance of random variable X.

Each period, the sender chooses effort e ∈ R.2 The action and utility of the
market are not modelled explicitly. Instead, the sender is assumed to derive a
benefit directly from the belief pT = (p1, . . . , pT ) of the market, where pt ∈ ∆(R)
is the belief at the end of period t (when t signals have been observed). The
assumption that benefit depends directly on belief follows Spence (1973). It can
be microfounded similarly to Cho and Kreps (1987).

The market does not observe the sender’s effort e, past or present. Only
a noisy signal st = et + εt of the sender’s effort is publicly observed, where
εt ∼ N(0, τεt) is independent over time. Based on the signal, the market will
update its belief about the type of the sender. Denote the mean and precision
of the posterior belief pt by µθt and τθt respectively.

The set of signal histories of length t is Rt. A generic history of length t
is denoted st = (s1, . . . , st). Due to the noisy observation of effort, all signal
histories are on the equilibrium path and refinements are not applicable. A
public strategy of the sender is

eT = (e1(θ), . . . , eT (θ))θ∈R : R× ∪T−1t=0 Rt → R.

The effort path of a single type θ is denoted eT (θ) = (e1(θ), . . . , eT (θ)).
Public strategies are w.l.o.g., because payoffs from the current period on

depend only on the public signals generated and efforts chosen. The sender
gains nothing by conditioning the current action on past ones.

For any strategy expected from the sender, the sender’s best response is
pure, because convex cost implies that for any mixed effort, the same signal
distribution can be generated at lower cost by a pure effort level.

The sender’s stage game payoff at time t is

uSt (θ, et, pt) = btµθt − ct (et − αtθ) ,
2Negative efforts are possible, but their probability in the equilibrium studied later can be

made arbitrarily small by making µθ positive and large enough. Alternatively, if one wishes
effort to be positive, e can be thought of as the log of effort.
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with bt ≥ 0, ct ∈ C2, ct ≥ 0, c′t > 0, limz→∞ c′t(z) = ∞, c′′t > 0, αt ≥ α > 0.
Assuming a cost function of the form c(e − αθ) ensures the existence of an
equilibrium where effort is affine in type. This assumption on cost is with loss
of generality, but makes the model tractable. The sender is risk-neutral.

Discounting can be incorporated in bt and ct(·), so a separate discount factor
is not specified. The sender’s overall payoff is

US(θ, eT (θ), pT ) =

T∑
t=1

[btµθt − ct (et(θ)− αtθ)] .

To ensure the expectation of US(θ, eT (θ), pT ) is finite when T = ∞, assume∑T
t=1 bt <∞. To make the game nontrivial, assume

∑T
t=1 bt > 0.

By assumption, effort is costly in all periods. Benefit is obtained only in
periods in which bt > 0. If the benefit is zero from a certain period on, then no
type will exert any effort after that period, so the game effectively ends there.
Assume w.l.o.g. that there is a benefit to signalling in the last period (bT > 0)
if the horizon is finite (T < ∞), and bt > 0 infinitely often if the horizon is
infinite.

Definition 1. A public equilibrium consists of a public strategy eT∗ and a belief
process pT such that

(a) eT∗(θ) ∈ arg maxeT (θ) E
eT (θ)
p0

[
US(θ, eT (θ), pT )

]
given p0, θ and pT ,

(b) pt is derived from Bayes’ rule given eT∗ and st = (s1, . . . , st):

pt(θ) =
Pr(st|eT∗(θ))p0(θ)∫∞

−∞ Pr(st|eT∗(z))p0(z)dz
∀θ,

where Pr(st|eT∗(θ)) =
∏t
n=1

√
τεn√
2π

exp
(
− 1

2 (sn − e∗n(θ))2τεn
)
.

The expectation in the definition is over the paths of the belief process given
the chosen strategy. Henceforth, public equilibria are simply called equilibria.

3 Equilibrium effort and payoff

If all types are expected to exert the same effort in a given period, then in that
period, all types will try to choose the lowest-cost effort. This does not exist
if e ∈ R. If the action set is extended to R ∪ {−∞}, then pooling on e = −∞
in all periods is always an equilibrium. The equilibria that feature pooling on
e = −∞ after some history disappear if the signal depends on type (for some
η > 0, have s = e + ε + ηθ). Pooling on any e > −∞ is not possible in any
equilibrium after any history, because all types will deviate to arbitrarily low
effort when pooling is expected.

Henceforth, the focus is on action set R and equilibria where effort is affine
in type after any history. Only the strategy the market expects is restricted
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to be affine. The sender is allowed to choose any public strategy in response.
It will be shown the unique best response is affine. The existence of equilibria
with effort nonlinear in type is an intractable problem in general, even in the
one-shot game. It is technically similar to the uniqueness question in the insider
trading model of Kyle (1985). With exponential cost, the affine equilibrium can
be proved unique in a larger set of strategies.

3.1 Finite horizon

The finite horizon case is solved by backward induction. The final period (one-
shot game) is solved first. To simplify notation, the time indices are dropped
where no confusion arises.

3.1.1 One-shot signalling

Assume that the strategy the market expects from the sender is such that the
final period marginal benefit m does not depend on effort or type. The correct-
ness of this expectation will be verified later. Setting marginal benefit equal to
marginal cost yields the best response e(θ) = (c′)−1(m) + αθ. The SOC holds
due to convex cost. Corner solutions cannot occur due to e ∈ R. Therefore in
any equilibrium with constant marginal benefit, effort is affine in type and the
slope in type is α.

To check that the marginal benefit is indeed constant, the belief updating
formula must first be found. From the market’s point of view, effort e is a
random variable (a function of the random variable θ). Updating uses s|e ∼
N (e, τε) and the prior distribution of e from the market’s point of view

e ∼ N
(

(c′)−1(m) + αµθ,
τθ
α2

)
.

The updated distribution of e given signal s is

e|s ∼ N
(
τeµe + τεs

τe + τε
, τe + τε

)
= N

(
τθ
α2

(
(c′)−1(m) + αµθ

)
+ τεs

τθ
α2 + τε

,
τθ
α2

+ τε

)
.

Since θ = 1
αe−

(c′)−1(m)
α , the updated distribution of θ is

θ|s ∼ N

(
τθ
(
(c′)−1(m) + αµθ

)
+ α2τεs

α(τθ + α2τε)
− (c′)−1(m)

α
, τθ + α2τε

)
.

The average signal equals the effort, so the expected benefit of effort is

b
τθµθ + ατεe− (c′)−1(m)ατε

τθ + α2τε
. (1)
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The marginal benefit of effort is bατε
τθ+α2τε

= m at every effort and signal for every
type. The conjecture that the marginal benefit is independent of effort and type
is verified. This marginal benefit corresponds to an equilibrium in which effort
in terms of primitives is

e∗(θ) = (c′)−1
(

bατε
τθ + α2τε

)
+ αθ. (2)

The expected payoff under the optimal strategy is

b
τθµθ + α2τεθ

τθ + α2τε
− c

(
(c′)−1

(
bατε

τθ + α2τε

))
.

It was shown that if the marginal benefit is constant, then effort is affine in
type with slope α and if effort is affine in type (whatever the slope), then the
marginal benefit is constant. This proves the following.

Lemma 1. If a strategy of the form e∗(θ) = k1 + k2θ with k2 > 0 is expected,
then any best response has the form e(θ) = k3 + αθ.

It was shown above that an expected strategy of the form e∗(θ) = k3+αθ has
a unique best response (2). Uniqueness of affine equilibrium is an implication.

The proof of uniqueness in a larger class of strategies closely follows McLen-
nan et al. (2014) Theorem 1.2. Complex-variable functions are used, so more
definitions are needed. A real entire function is smooth and coincides on R with
its Taylor series centered at zero. A region is an open connected set D ⊆ C.
A function is analytic on D if it is complex-differentiable at every point in D.
An entire function is analytic on C. An analytic function is single-valued if it
has an unambiguously defined maximal analytic continuation. If a real-valued
function coincides on C with its Taylor series centered at zero and is smooth,
then it is single-valued.

Proposition 2. If c(·) = exp(·) or (c′)−1 is entire, then in the one-shot sig-
nalling game there is only one equilibrium that on some (x1, x2) ⊂ R coincides
with a function that is single-valued on (x1, x2).

Proof. For any strategy e∗ that the market expects, the posterior mean E[µθ(s)|e] =∫∞
−∞ µθ1(s) 1

π
√
2

exp
(
−(s− e)2τε

)
ds that the worker expects is entire as a func-

tion of effort. This is proved in McLennan et al. (2014) Theorems 2.1 and 2.2.
Note that the posterior mean µθ1(s) after signal s depends on e∗.

Rearrange the FOC ∂E[µθ1(s)|e]
∂e |e=e∗(θ) − c′(e∗(θ)− αθ) = 0 as

1

α

[
e∗(θ)− (c′)−1

(
∂E[µθ1(s)|e]

∂e
|e=e∗(θ)

)]
= θ. (3)

The left-hand side (LHS) is entire in e∗(θ) if (c′)−1
(
∂E[µθ1(s)|e]

∂e |e=e∗(θ)
)

is.

The derivative of an entire function is entire. The composition of entire func-
tions is entire, so if (c′)−1 is entire, then the LHS is as well. The logarithm
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of a nowhere zero entire function is entire, so another sufficient condition is
∂E[µθ1(s)|e]

∂e |e=e∗(θ) 6= 0.

To prove ∂E[µθ1(s)|e]
∂e |e=e∗(θ) > 0 ∀θ in any equilibrium, use the incentive

constraints (ICs) that an equilibrium e∗ must satisfy: E[µθ1(s)|e1]−c(e1−θ1) ≥
E[µθ1(s)|e2]− c(e2−θ1) and E[µθ1(s)|e2]− c(e2−θ2) ≥ E[µθ1(s)|e1]− c(e1−θ2).
If E[µθ1(s)|e1] = E[µθ1(s)|e2], then e1 = e2. Adding the ICs,

c(e1 − θ1) + c(e2 − θ2) ≤ c(e2 − θ1) + c(e1 − θ2).

If θ1 < θ2 and e1 ≥ e2, then e1−θ1 > {e1 − θ2, e2 − θ1} > e2−θ2, so e1−θ1, e2−
θ2 is a mean-preserving spread of e1−θ2, e2−θ1. The mean is 1

2 [e1+e2−θ1−θ2].
Applying a convex c(·) to a mean-preserving spread, one gets c(e1−θ1)+ c(e2−
θ2) > c(e2 − θ1) + c(e1 − θ2), a contradiction. So θ1 < θ2 ⇒ e1 < e2. The
strict monotone likelihood ratio property (MLRP) of normal signals now implies
e1 < e2 ⇒ E[µθ1(s)|e1] < E[µθ1(s)|e2]. Smoothness of E[µθ1(s)|e] means that
∂E[µθ1(s)|e]

∂e |e=e∗(θ) > 0.
Proposition 3.2 of McLennan et al. (2014) applies unchanged to 3, proving

that if e∗ coincides on some (x1, x2) with a function that is single-valued on
(x1, x2), then e∗ is affine. There is only one affine equilibrium.

Having studied the one-shot case, the next step is to examine a multiperiod
model. It turns out the equilibrium effort and payoff are similar to the one-shot
case.

3.1.2 Arbitrary period

Belief remains normal under Bayesian updating when the effort expected by the
market is affine in type. In a multiperiod model with an affine expected strategy
e∗t (θ) = kt + αtθ ∀t, the precision of the belief is updated deterministically and
independently of type, realized signal or chosen effort (but depending on the
expected effort) by the formula τθ,t = τθ,t−1 + α2

t τεt. In terms of the precision

of the prior τθ, the precision at the end of period t is τθ,t = τθ +
∑t
n=1 τεnα

2
n.

The marginal benefit of signalling in period t consists of the marginal flow
benefit mt (which comes from shifting the belief at the end of the current period)
and the marginal benefit of shifting the starting belief in all future periods. The
latter consists of the effect of the mean of the belief on the benefit in each
period, multiplied by the effect of the mean at the end of the current period on
the appropriate future period’s mean, summed and multiplied by the expected
change in the mean at the end of the current period induced by higher effort:

αtτεt
τθ,t

bt+1τθ,t
τθ,t+1

+

T−t∑
k=2

bt+kτθ,t+k−1
τθ,t+k

k−1∏
j=1

τθ,t+j−1
τθ,t+j

 = αtτεt

T−t∑
k=1

bt+k
τθ,t+k

.

The notational convention used is that if k < y, then
∏k
j=y xj = 1 for any xj .
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Conjecture that the marginal flow benefit is constant in effort and type.

Define γT−t = (c′t)
−1
(
mt + αtτεt

∑T−t
k=1

bt+k
τθ,t+k

)
. Equating marginal benefit and

marginal cost, the sender’s best response is et(θ) = γT−t + αtθ.
The updated distribution of effort from the market’s viewpoint conditional

on signal st is

et|st ∼ N
(
τθ,t−1 [γT−t + αtµθ,t−1] + α2

t τεtst
τθ,t−1 + α2

t τεt
,

τθ,t−1
α2
t

+ τεt

)
.

Using θ = 1
αt
et − γT−t

αt
, the updated distribution of θ is

θ|st ∼ N
(
τθ,t−1µθ,t−1 + αtτεt(st − γT−t)

τθ,t−1 + α2
t τεt

, τθ,t−1 + α2
t τεt

)
, (4)

so the derivative of the mean of the belief after period t w.r.t. the mean before t
is

τθ,t−1

τθ,t−1+α2
tτεt

. This is used in the derivation of the marginal benefit of shifting

the mean of future belief.
The expected flow benefit in period t from effort et(θ) is

bt

[
τθ,t−1 (γT−t + αtµθ,t−1) + α2

t τεtet(θ)

αt(τθ,t−1 + α2
t τεt)

− γT−t
αt

]
.

The marginal flow benefit is mt = btαtτεt
τθ,t−1+α2

tτεt
. The total marginal benefit is

the sum of the marginal flow benefit and the payoff from shifting the mean of
the belief in the future

btαtτεt
τθ,t−1 + α2

t τεt
+ αtτεt

T−t∑
k=1

bt+k
τθ,t+k

= αtτεt

T−t∑
k=0

bt+k
τθ,t+k

,

which is constant in effort and type, as conjectured. The optimal effort is

e∗t (θ) = (c′t)
−1

(
αtτεt

T∑
n=t

bn
τθ,t−1 +

∑n
k=t τεkα

2
k

)
+ αtθ. (5)

In any finite horizon signalling game there is by backward induction a unique
affine informative equilibrium.

As (5) shows, optimal effort does not depend on the mean of the belief. Since
the precision of the belief changes deterministically over time, effort does not
depend on the sender observing the signal. Therefore the model with private
monitoring where only the market sees the signal (for example, employers see
reference letters that the employee does not) has the same unique affine infor-
mative equilibrium. The same holds for any intermediate information structure
where the sender sees some noisy signal of the signal (e.g. the interviewer’s
questions convey information about the content of the reference letters).
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3.2 Infinite horizon

Taking the limit as T →∞ of finite-horizon games and their respective equilib-
ria, the effort in the infinite-horizon game is

e∗t (θ) = (c′t)
−1

(
αtτεt

∞∑
k=0

bt+k
τθ,t+k

)
+ αtθ, (6)

with τθ,t+k = τθ,t+
∑k
n=t+1 τεnα

2
n. That this is an equilibrium can be checked by

following the same reasoning as in the finite horizon case—assume the marginal
benefit is independent of effort or type, take the FOC, update the belief and
verify the assumption on marginal benefit. Effort is finite for every type after
every history, because

∑∞
t=1 bt < ∞ by assumption. If there is some δ ∈ (0, 1)

s.t. ct = δtc, bt = δtb and αt = α for all t, then the discounted sum of efforts is
also finite for every type and sequence of signals.

There are no other affine equilibria in the infinite horizon game. Together
with the preceding paragraph, we have

Proposition 3. There is a unique affine equilibrium in the infinite horizon
game, with strategy given by (6).

The proof of uniqueness is the same as in the one-shot case: if effort is
expected to be affine in type, then the marginal benefit is constant, which
implies that the slope of effort in type is αt in period t. The slope determines
the intercept and thus the marginal benefit.

4 Comparative statics

The formulas in this section do not depend on whether the horizon T is finite
or infinite.

Effort at t clearly increases in type and the current and future benefit multi-
pliers bt+k, k ≥ 0, based on (5). It also increases in the precision of the current
noise:

∂e∗t (θ)

∂τεt
= Dtαt

T∑
i=t

bi[τθi − α2
t τεt]

τ2θ,i
> 0,

where

Dt =
(
(c′t)
−1)′(αtτεt T∑

i=t

bi
τθ,i

)
=

1

c′′t

(
(c′t)
−1
(
αtτεt

∑T
i=t

bi
τθ,i

)) .
Intuitively, the lower the variance of the noise, the more effort affects belief, so
the greater the benefit of effort. Effort decreases in the precision of future noise.

Effort is independent of the mean of the belief, decreases in marginal cost3,
the precision of the belief and the future type differentiation αt+k, k ≥ 1. It is

3If the marginal cost function increases everywhere, then the effort of all types decreases.

9



intuitive that effort should decrease in marginal cost. If belief is more precise,
then it is more difficult to change its mean, so the benefit of effort is lower.
Based on (5), higher αt+k reduces effort by increasing the precision of future
beliefs, which lowers their responsiveness to effort.

The effect of the current type differentiation parameter αt is

∂e∗t (θ)

∂αt
= θ + τεtDt

(
T∑
i=t

bi
τθ,i
− 2α2

t τεt

T∑
i=t

bi
τ2θ,i

)
, (7)

so effort increases in αt for types above a cutoff and decreases for types below.
The cutoff is generally nonzero, so some types θ < 0 whose cost and marginal
cost increase when αt rises may exert more effort. For other parameter values,
some types θ > 0 may lower effort when αt rises. If |θ| is large enough, the sign

of
∂e∗t (θ)
∂αt

is the same as the sign of θ, so effort rises for the highest and falls for
the lowest types when the differentiation parameter αt increases.

The change in effort as current type differentiation rises is driven by two
forces. The first is the direct effect of a change in marginal cost (captured by
θ on the RHS of (7)). This effect is positive iff θ > 0. The second is the effect
of the change in marginal benefit, which may be positive or negative. It is the
product of the effect of current effort on belief at the end of the current period
and the influence of this belief on the total benefit. As αt rises, effort may
influence belief at the end of period t more or less, depending on the balance
of two forces: the greater difference of the expected effort across types (which
raises effort) and the increased belief precision τθ,t (which lowers effort). With
an increase in αt, the persistence of belief increases, so µθ,t affects the total
benefit more.

Increasing patience is described by the growth of δ in bn = δn−tb̂n ∀n ≥ t.
Only the current cost ct matters for e∗t (θ), so a change in the discount factor
does not influence effort through cost.

∂e∗t (θ)

∂δ
= Dtαtτεt

T∑
n=t+1

(n− t)δn−t−1b̂n
τθ,t−1 +

∑n
k=t τεkα

2
k

> 0.

Patience increases signalling effort, which is not surprising, because signalling
is like investment—the cost is paid immediately, but the benefit is obtained in
the future. Increased patience raises the weight the agent assigns to the future
benefit in the payoff.

The value Vθ,t(µθ,t−1, τθ,t−1) at the start of period t is the sum of expected
benefits minus costs over future periods

T∑
n=t

[
bn
τθ,t−1µθ,t−1 + θ

∑n
k=t τεkα

2
k

τθ,n
− cn

(
(c′n)−1

(
αnτεn

T∑
i=n

bi
τθ,i

))]
. (8)

The term
τθ,t−1µθ,t−1+θ

∑n
k=t τεkα

2
k

τθ,n
=: Etµθ,n is the expected mean of the

belief at the end of period n conditional on the information at the start of period
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t. Value at t clearly increases in type and the mean of the belief (therefore also
in the mean of the prior).

As can be seen from

∂Vθ,t(µθ,t−1, τθ,t−1)

∂bn
=
τθ,t−1µθ,t−1 + θ

∑n
k=t τεkα

2
k

τθ,n
− 1

τθ,n

n∑
j=t

τ2εjα
2
jDj

T∑
i=j

bi
τθ,i

,

(9)

if the type or the mean of the belief is above a cutoff, then value increases in
bn, otherwise decreases. The first term on the RHS of (9) is the direct effect
of a higher benefit on the value. The second term is the cost imposed by the
increased effort motivated by higher marginal benefit.

Suppose cn(·) = ηĉn(·) with η > 0. The effect of cost on value is

∂Vθ,t(µθ,t−1, τθ,t−1)

∂η

= −ĉn

(
(ηĉ′n)−1

(
αnτεn

T∑
i=n

bi
τθ,i

))
+
αnτεn
η2

(ĉ′n)−1

(
αnτεn

T∑
i=n

bi
τθ,i

)
T∑
j=n

bj
τθ,j

.

This may be positive or negative, depending on the balance between the direct
effect of increased cost (the first term on the RHS) and the indirect effect of
lower effort (the second term).

Write the cost functions and benefit parameters again as cn(·) = δn−tĉn,

bn = δn−tb̂n ∀n ≥ t. The effect of increased patience (higher δ) on the value is

∂Vθ,t(µθ,t−1, τθ,t−1)

∂δ
=

T∑
n=t+1

(n− t)δn−t−1b̂n
τθ,t−1µθ,t−1 + θ

∑n
k=t τεkα

2
k

τθ,n

−
T∑

n=t+1

(n− t)δn−t−1ĉn

(
(ĉ′n)−1

(
αnτεn

T∑
i=n

δi−tb̂i
τθ,i

))

−
T∑
n=t

δn−tαnτεn

T∑
i=n

δi−nb̂i
τθ,i

ĉ′′n
(ĉ′n)−1

αnτεn T∑
j=n

δj−nb̂j
τθ,j

−1

× αnτεn
T∑

k=n+1

(k − n)δk−n−1b̂k
τθ,k

.

If the type or the mean of the belief is above a cutoff, then value increases in δ,
otherwise decreases. The first two sums on the RHS describe the increase in the
discounted expected benefit and cost as the discount rate increases. The last
sum is the effect of a change in effort in response to an altered discount rate.

The reason the value of the highest types increases in δ and the value of the
lowest decreases is that a rise in the discount factor puts more weight on the
future payoffs relative to the present. Low types expect their stage game payoff
to decrease in the future and high types expect it to increase.
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The intuition why value increases in δ for high beliefs is that the flow payoff
has the same sign as the mean belief and belief is persistent. For high beliefs,
positive flow benefit is expected in the near future. This benefit has more weight
with a higher δ. Note that value has not been divided by 1−δ to control for the
increase in the absolute value of the sum as the elements get multiplied by an

increasing δ. Defining V̂ = V
1−δ , the derivative is

∂V̂θ,t
∂δ = 1

1−δ
∂Vθ,t
∂δ + 1

(1−δ)2Vθ,t.

Similarly to
∂Vθ,t
∂δ , this is positive if the type or the mean of the belief is above

a cutoff.
The effect of increased precision of period-j noise on the value is

∂Vθ,t
∂τεj

=

T∑
n=t

bnτθ(θ − µθ)α2
j

τθ +
∑n
k=1 τεkα

2
k

−
T∑
n=t

α2
nτεn

T∑
i=n

bi
τθ,i

Dn

T∑
i=n

bi(1j=nτθ,i − α2
jτεn)

τ2θ,i
,

which is negative if θ < µθ,t−1 and unclear otherwise. More precise noise speeds
convergence of belief to the true type and increases effort, which increases cost.
For θ < µθ,t−1, both these effects are negative, but for θ > µθ,t−1, convergence
to the true type increases payoff.

The derivative of the value w.r.t. the precision of the belief is

∂Vθ,t
∂τθ,t−1

=

T∑
n=t

bn
(µθ,t−1 − θ)

∑n
k=t τεkα

2
k

(τθ,t−1 +
∑n
k=t τεkα

2
k)

2 +

T∑
n=t

αnτεn

T∑
i=n

bi
τθ,i

Dnαnτεn

T∑
k=n

bk
τ2θ,k

This is positive if the mean of the belief is greater than the type, and has unclear
sign otherwise. A more precise belief responds less to future signals (is more
persistent), so an overestimation of the type by the market is corrected slower.
This is captured by the first term on the RHS. The second term describes the
effect on the value of a reduction in effort in response to a more precise belief.
Lower effort decreases cost, thereby increasing the value.

The effect of the period-j cost difference αj , j ≥ t between the types on the
value is

∂Vθ,t
∂αj

= 2αjτεjτθ,t−1

T∑
n=j

bn
θ − µθ,t−1

τ2θ,n
− αjτ2εjDj

 T∑
k=j

bk
τθ,k

2

+ 2αjτεj

T∑
n=t

α2
nτ

2
εn

T∑
i=n

bi
τθ,i

[
c′′n

(
(c′n)−1

(
αnτεn

T∑
l=n

bl
τθ,l

))]−1 T∑
k=j

bk
τ2θ,k

.

The response of the value to a higher αj is positive if θ−µθ,t−1 is above a cutoff
and negative otherwise. Depending on the parameters, the value may go up for
some types θ < 0 whose cost goes up when αj increases or go down when cost
falls.
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5 Extensions

5.1 Exogenously changing type

Employees could have good and bad days, which make their ability change
over time. This can be modelled as an exogenously varying type. Similarly, a
politician’s competence in the foremost issue of the day varies exogenously if
the issue in question changes independently of the politician, e.g. a crisis arises
due to the actions of one neighbouring country or another.

Assume type changes as a random walk θt = θt−1 + νt, with νt ∼ N(0, τν)
independently of everything else. The distribution of θ0 is N(µθ,0, τθ,0). Assume
the sender observes θt−1 when choosing et. Let θt denote the type at the end
of period t.

The market update their belief about et based on st the same way as before.
The updating formula for θt−1 based on st is still (4), where θ has acquired the
subscript t−1 and γT−t has changed. Since the mean of the belief as a function
of effort is the same as in the constant type case, the marginal flow benefit of
effort is given by the same formula: mt = btαtτεt

τθ,t−1+α2
tτεt

. From the perspective of

the market at the end of period t, the mean of θt is the same as for θt−1, but
the precision is

τθ,t =
τν(τθ,t−1 + α2

t τεt)

τν + τθ,t−1 + α2
t τεt

.

The marginal benefit of signalling in period t can still be decomposed into
the part mt received in the current period and the part obtained in the future.
The latter is the product of three components. The first is αtτεt

τθ,t−1+α2
tτεt

, the

influence of the sender’s current effort on the mean of the market’s belief at
the end of the current period. The second is

∏n−1
k=1

τθ,t+k−1

τθ,t+k−1+α2
t+kτε,t+k

, the effect

of the mean of the belief at the end of period t on the mean of the belief at
the end of period t + n − 1 (this component is absent for n = 1). The third is

bt+nτθ,t+n−1

τθ,t+n−1+α2
t+nτε,t+n

, the change in period t+n benefit in response to a change in

the mean of the belief at the end of period t+ n− 1. The total future marginal
benefit of effort is

MBfutt =
αtτεt

τθ,t−1 + α2
t τεt

T∑
n=1

bt+n

n∏
k=1

τθ,t+k−1
τθ,t+k−1 + α2

t+kτε,t+k
.

The new γT−t is (c′t)
−1
(
mt +MBfutt

)
.

The optimal strategy is

e∗t (θt−1) = (c′t)
−1

(
αtτεt

τθ,t−1 + α2
t τεt

T∑
n=0

bt+n

n∏
k=1

τθ,t+k−1
τθ,t+k−1 + α2

t+kτε,t+k

)
+ αtθt−1,

so the only difference from (5) is in τθ,n.
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In the value Vθ,t(µθ,t−1, τθ,t−1) at the start of period t, the expected future
type equals the current type, Etθt+n = θt−1. The cost at the equilibrium effort
is the same for all types. The formula for the value is

T∑
n=t

[
bn
τθ,n−1µθ,t−1 + α2

nτεnθt−1
τθ,n−1 + α2

nτεn
− cn (γT−t)

]
.

5.1.1 Stationary environment

Take T =∞, αt = α (constant over time), bt = δt (divide both cost and benefit
by b to normalize b = 1) and ct(·) = δtc(·), with δ ∈ (0, 1). W.l.o.g. take τε = 1
(divide τθ by τε). The relation

τθ,0 =
τν(τθ,0 + α2)

τν + τθ,0 + α2

between the initial precision τθ,0 of the type distribution and the precision τν
of the random type change ensures that τθ,t is constant over time at the level

τθ = −α
2

2 +
√

α4

4 + τνα2.

The future marginal benefit of effort is

MBfutt =
αδτθ

(τθ + α2)[(1− δ)τθ + α2]
.

The optimal effort in period t is

e∗(θt−1) = (c′)−1
(

α

(1− δ)τθ + α2

)
+ αθt−1.

Effort increases in θt−1 and δ, and decreases in marginal cost and τθ. Effort
increases in α iff the type is above a cutoff. The steady state precision τθ of the
type distribution rises in the precision τν of the type innovations. Due to this,
effort falls in τν .

The value from period t on is

τθµθ,t−1 + α2θt−1
(1− δ)(τθ + α2)

− 1

1− δ
c

(
(c′)−1

(
α

(1− δ)τθ + α2

))
.

The value rises in µθ,t−1 and θt−1. Adding a positive constant to the cost
function c reduces value. The effects of other parameters are less clear, because
they affect both cost and benefit. If θt−1 or µθ,t−1 is large enough, then ∂V

∂δ

is positive, otherwise negative. The derivatives ∂V
∂α , ∂V

∂τθ
and ∂V

∂τν
are positive

if θt−1 − µθ,t−1 is large enough and negative otherwise. Multiplying the cost
function by η > 1 may increase or decrease value. All these comparative statics
accord with those in the nonstationary environment.
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5.2 Human capital accumulation

Employers sometimes care about a combination of the employee’s intelligence
and qualifications. This summary measure of employee quality rises with higher
effort to acquire education. Investment in education thus has two purposes—to
signal one’s type to the employers and to improve that type.

Suppose that the type next period depends on current type and effort ac-
cording to θt = θt−1 +htet, with ht > 0 and

∑T
k=0 hk <∞. The fact that effort

can be negative neatly captures the depreciation of human capital if too little
effort is exerted to maintain it (type falls with negative effort).

Conjecture that equilibrium effort is affine in type: et(θt−1) = γT−t+αtθt−1.
Given that the prior on θt−1 is normal and that in equilibrium, type evolves
according to θt = (1 + αtht)θt−1 + htγT−t, the belief about θt before receiving
signal st is

θt|st−1 ∼ N
(

(1 + αtht)µθ,t−1 + htγT−t,
τθ,t−1

(1 + αtht)2

)
.

Expressing θt−1 = θt−htγT−t
1+αtht

, effort can be written as et = γT−t+ αt(θt−htγT−t)
1+αtht

,
so the signal distribution conditional on θt is normal with precision τεt and

mean γT−t + αt(θt−htγT−t)
1+αtht

= αtθt
1+αtht

+ γT−t
1+αtht

. Linearly transform the signal st

to zt = (1+αtht)st−γT−t
αt

, which has mean θt and precision
α2
tτεt

(1+αtht)2
. Then the

updated type at the end of period t is

θt|zt ∼ N
(
τθ,t−1 [(1 + αtht)µθ,t−1 + htγT−t] + α2

t τεtzt
τθ,t−1 + α2

t τεt
,
τθ,t−1 + α2

t τεt
(1 + αtht)2

)
.

The precision of the belief at the end of period t is τθ,t =
τθ,0∏t

n=1(1+αnhn)
2 +∑t

n=1
α2
nτεn∏t

k=n(1+αkhk)
2 , smaller than without human capital accumulation. Since

higher types accumulate human capital faster, the type distribution becomes
more dispersed over time. This counteracts learning by the market and may
even make the precision of the posterior belief decrease in time.

Given effort et, the expected benefit in period t is

bt
τθ,t−1 [(1 + αtht)µθ,t−1 + htγT−t] + αtτεt[(1 + αtht)et − γT−t]

τθ,t−1 + α2
t τεt

,

so the marginal flow benefit of effort is btαtτεt(1+αtht)
τθ,t−1+α2

tτεt
. The marginal benefit at

time t of shifting µt−1 is
btτθ,t−1(1+αtht)

τθ,t−1+α2
tτεt

. The response of µt+n−1 (n ≥ 2) to µt
is

∂µt+n−1
∂µt

=
τθ,t
τθ,t+n

n−1∏
k=0

1

1 + αt+k+1ht+k+1
.
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The effect of et on µt is αtτεt(1+αtht)
τθ,t−1+α2

tτεt
. The total marginal benefit of effort is

MBt = αtτεt

T−t∑
n=0

bt+n
τθ,0∏t−1

j=1(1+αjhj)
2
∏t+n
j=t (1+αjhj)

+
∑t+n
j=1

α2
jτεj∏t−1

k=j(1+αkhk)
2
∏t+n
k=t (1+αkhk)

.

This is constant in type and effort, verifying the conjecture that equilibrium
effort e∗t (θt−1) = (c′t)

−1 (MBt)+αtθt−1is affine in type. Effort at time t increases
in hj for all j, which is intuitive, because human capital accumulation provides
an extra benefit of effort.

The effect of faster human capital accumulation on the value is unclear,
because both cost and benefit increase in hj .

5.3 Exogenous information revelation

The skill of an employee may be revealed not just through education signalling,
but also by word of mouth. The profit prospects of a firm can be published
in a report by a rating agency or stock analyst, not just signalled via taking
on debt or repurchasing shares. The quality of a product can be inferred from
independent reviews as well as from ads or warranties used as signalling devices.
To describe these situations, an exogenous signal xt = θ + ξt is added to the
baseline model, with ξt ∼ N(0, τξ) independent of all other variables. Assume
the benefit is obtained at the end of each period after both st, xt have been
observed. Without loss of generality, assume xt occurs after the endogenous
signal st in each period t.

Denote by µsθ,t and τsθ,t the mean and precision of the belief after observing st,
but before xt. The mean and precision after observing xt are written µθ,t, τθ,t.
Belief is updated based on st by (4), so the belief at the end of period t is

N

(
µsθ,tτ

s
θ,t + xtτξ

τsθ,t + τξ
, τsθ,t + τξ

)

= N

(
τθ,t−1µθ,t−1 + αtτεt(st − γT−t) + xtτξ

τθ,t−1 + α2
t τεt + τξ

, τθ,t−1 + α2
t τεt + τξ

)
.

The calculations for the optimal effort are the same as in the baseline model. The
only difference is that τθ,t = τθ + tτξ +

∑t
k=1 τεkα

2
k. The comparative statics of

effort are thus similar to the baseline, with the departure that in all expressions,
τθ,t is larger for each t. A higher precision τξ of the exogenous signal reduces
effort, because it increases the precision of the belief in all periods. Intuitively,
free information revelation reduces the incentive to convey the information via
costly signalling.
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The value from period t on is

T−t∑
k=0

bt+k
τθ,t−1µθ,t−1 +

[
(k + 1)τξ +

∑t+k
i=t τεiα

2
i

]
θ

τθ,t−1 + (k + 1)τξ +
∑t+k
i=t τεiα

2
i

−
T−t∑
k=0

ct+k

(
(c′t+k)−1

(
αt+kτε,t+k

T∑
n=t+k

bn
τθ,n

))
.

This expression is similar to (8)—the only changes reflect the faster learning
using the exogenous signal. The comparative statics w.r.t. the variables previ-
ously present are thus similar. The only new effect is that of τξ. Value increases
in τξ iff θ−µθ,t−1 is above a cutoff. The cutoff is always positive, so a sufficient
condition for value to rise in τξ is θ > µθ,t−1. If the type is above the belief,
then faster information revelation raises the benefit quicker. In addition, more
exogenous type revelation reduces signalling effort, which decreases cost.

5.3.1 One signal depending on both type and effort

Grades may depend on both intelligence and effort, and these two components
may not be distinguishable based on the diploma or transcript. To model this,
suppose the signal depends on type according to st = rθ+ et + εt, with r ∈ R+.
If an affine strategy e∗t (θ) = k1t + k2tθ is expected, with k2t > 0 ∀t, then the
updating formula is

θ|st ∼ N
(
τθ,t−1µθ,t−1 + (r + k2t)τεt(st − k1t)

τθ,t−1 + (r + k2t)2τεt
, τθ,t−1 + (r + k2t)

2τεt

)
.

The marginal benefit calculation is similar to the basic model, with τθ,t =

τθ +
∑t
i=1 τεi(r + αi)

2. Equilibrium effort is

e∗t (θ) = (c′t)
−1

(
(r + αt)τεt

T∑
n=t

bn
τθ,t−1 +

∑n
k=t τεk(r + αk)2

)
+ αtθ.

Effort may increase or decrease in r. On the one hand, a higher r makes future
beliefs more precise (less responsive to effort), but on the other hand, makes
belief at the end of the current period change more in effort.

The value from period t on is similar to (8), with the exception of αn being
replaced by r + αn. The comparative statics in r are the same as changing all
αt-s simultaneously in (8). As r rises, both cost and benefit may increase or
decrease. The cost effect operates via effort. On the benefit side, a higher r
raises the speed of learning, which increases payoff iff θ > µθ,t−1.

5.4 Productive effort

The effort that workers use to signal their talent can be directly productive to the
employer. For example, effort at work could have a signalling component, with
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the employer using it to learn about the quality of the worker. This situation
is similar to that examined in the career concerns literature, e.g. Holmström
(1999), who assumes type is unknown to both worker and employer, signal
depends on both type and effort and the employer values both type and effort.
In this section, it is assumed that type is known to the worker and the signal
depends only on effort.

Competition between risk-neutral employers will drive the wage of the worker
to w = E [qtθ + (1− qt)e∗t (θ)] in any period t, where qt ∈ (0, 1) is the relative
weight of type in productivity. The worker is risk-neutral and gets utility btw
from w.

Conjecture an affine strategy e∗t (θ) = k1t + k2tθ, with k2t > 0 ∀t. Updating
based on the signal st = et + εt yields

θ|st ∼ N
(
τθ,t−1µθ,t−1 + k2tτεt(st − k1t)

τθ,t−1 + k22tτεt
, τθ,t−1 + k22tτεt

)
.

The expected wage given effort e is then

(1− qt)k1t + (qt + (1− qt)k2t)
τθ,t−1µθ,t−1 + k2tτεt(e− k1t)

τθ,t−1 + k22tτεt
,

because the expected signal equals the effort. The marginal flow benefit of effort

is bt(qt+(1−qt)k2t)k2tτεt
τθ,t−1+k22tτεt

. Current effort shifts subsequent beliefs as well and this

provides the marginal future benefit k2tτεt
τθ,t−1+k22tτεt

∑T
n=t+1

bn(qn+(1−qn)k2n)τθ,t
τθ,n

.

The total marginal benefit is constant, so the equilibrium effort is

e∗t (θ) = (c′t)
−1

(
αtτεt

T∑
n=t

bn(qn + (1− qn)αn)

τθ,t−1 +
∑n
k=t τεkα

2
k

)
+ αtθ,

affine in type as required, with k2t = αt ∀t as in the basic model. The difference
from (5) is only the constants qn + (1− qn)αn.

Raising any qn, n ≥ t raises e∗t (θ) iff αn < 1. In words, increasing the weight
of type in the wage raises effort if the difference between the equilibrium efforts
of the types is less than the type difference. Based on the wage expression,
type is productive directly and via effort. If αt < 1, then in period t, the
difference in the direct productivity of the types is greater than the gap in their
efforts. Increasing the weight qt of this direct effect in wage then increases the
responsiveness of wage to type and thereby the incentive to exert effort.

Value increases in qt iff a convex combination of µθ,t and θ is above a cutoff.
The cost component of value responds to qt via equilibrium effort. Thus if
αt < 1, then a higher qt tends to raise cost and reduce value. The benefit
component contains a type-dependent and a type-independent part. The type-
dependent part increases in qt iff αt < 1, because then the direct effect of type
on productivity is greater than the indirect effect through effort. Raising qt
increases the relative weight of the direct effect. The type-independent part of
benefit relies on effort. Increasing qt reduces the relative size of this part, but
also changes effort. The latter effect raises the type-independent part iff αt < 1.
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5.5 Multiple signallers

Researchers signal their talent by publishing papers or obtaining patents, both
of which are stochastically increasing in effort. If other researchers produce
more results in the same field, then it becomes more difficult to publish work of
a given quality. High signals of others thus increase one’s cost of signalling.

Work in a complementary field may make research effort less costly in a given
discipline. New microscopes, DNA sequencing machines or statistical techniques
all facilitate discovery. This can be modelled as high signals of others reducing
the cost of signalling.

There are two senders A and B, with cost c
(
eit − αθi −

∑t−1
k=1 κiktsjk

)
for

sender i influenced by the past signals sjk of sender j 6= i. For simplicity, b, c
and α are constant over time and across senders. The influence κikt of the other
sender’s success in period k on i’s cost in t may be positive or negative.

The solution procedure is the same as in the previous sections. The equilib-
rium effort is

e∗it(θi) = (c′)−1

(
T∑
n=t

ατεb

τiθ,t−1 + τε(n− t+ 1)α2

)
+ αθi +

t−1∑
k=1

κiktsjk.

It would seem a priori that each player wants to manipulate the effort of the
other to obtain lower cost for himself in the future. This is not true for the
particular form of cost interaction considered here. Modifying the cost function
of a player from c(·) to c(·+k), k ∈ R, changes the equilibrium effort of all types
by −k. The cost paid in equilibrium is unchanged: c(e∗(θ)− k + k) = c(e∗(θ)).
The altered effort shifts the signal distribution, which would be expected to
change the benefit. However, the signal distributions of all types shift by the
same constant and retain their original shape, so Bayes’ rule leads to the same
belief distribution as before. The benefit (which depends on the belief, not the
signal directly) is therefore unchanged. Overall, neither value nor incentives
respond to a cost change from c(·) to c(·+k), so each player is indifferent about
influencing the cost of the other player or their own future self this way.

If a player’s effort or signal in some period affects the other player’s same-
period cost, then the model is not tractable. This is because an expectation of
the (nonlinear) cost appears in the FOC, making the best response nonlinear in
type. Bayesian updating then yields a complicated integral equation.

If the benefit for player i in period t is bµiθt + fi(µjθt) for some function
fi : R→ R, then the optimal strategy is given by (5) as in the basic model. The
additive effect of the belief about the other player disappears when taking the
FOC and thus does not affect incentives.

5.6 Observed effort and two-dimensional private informa-
tion

The central bank’s choice of interest rate et is perfectly observed by the market
in each period t. The central bank privately knows its ‘ideal interest rate’ θ
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and tries to signal that this is high by setting a high interest rate.4 The second
dimension of private information that the central bank has is an i.i.d. signal
εt ∼ N (0, τε) about the state of the economy. The better the state of the
economy, the higher the interest rate the central bank would like to set.

There is a cost to setting a higher interest rate—this dampens economic
activity in the current period. The benefit from raising et comes from the
higher mean of the belief of the market about the type of the central bank,
because higher belief reduces inflation expectations. The stage game payoff of
the central bank is bµθt−c(et−αθ−εt), where c(·) satisfies the same assumptions
as in the baseline model.

If the marginal benefit MBt in period t is constant in type and effort, then a
central bank of type θ with the private signal ε has the best response et(θ, ε) =
(c′)−1 (MBt)+αθ+εt. If the market expects strategy e∗t (θ, ε) = k1t+k2tθ+k3tεt,
then the updated type after interest rate e is

θ|et ∼ N
(
τθ,t−1µθ,t−1k

2
3t + k2tτε(et − k1t)

τθ,t−1k23t + k22tτε
, τθ,t−1 +

k22t
k23t

τε

)
.

The marginal flow benefit of effort is then b k2tτε
τθ,t−1k23t+k

2
2tτε

. The marginal benefit

from shifting future belief is k2tτε
k23t

∑T
n=t+1

b
τθn

, constant in type and effort as

required. The equilibrium strategy is

e∗t (θ, ε) = (c′)−1

(
ατε

T∑
n=t

b

τθn

)
+ αθ + εt.

If the learning process starts anew every time the governor of the central bank
changes, then the model predicts interest rates to be highest at the start of a
governor’s tenure, because τθn rises over time.

A firm that signals by observably taking on debt as in Leland and Pyle (1977)
also has private information with some dimensions persistent (soundness of the
core business) and some changeable (current day’s demand). Extending Leland
and Pyle (1977) to multiple periods using the current paper’s framework, the
capital structure is predicted to be furthest from optimal for the first equity
issue. The debt level converges to optimal as the market learns the type of the
firm.

Applying the model to limit pricing as in Milgrom and Roberts (1982), the
sender’s observable choice is the price, the persistent private information is the
marginal cost and the time-varying private signal is the cash-flow (the need of
the firm for immediate revenue). A newly established monopoly is predicted to
set the lowest price to deter entry. The price will rise towards the monopoly
level over time as the potential entrants learn of the cost of the incumbent.

With observed effort, a continuum of equilibria appears, as is common in
noiseless signalling games. Belief threats attached to actions off the equilibrium
path prevent any type from taking these actions. An arbitrarily small amount
of noise in the action destroys these new equilibria.

4This story is based on Vickers (1986).
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6 Literature

A large literature on signalling started from the seminal paper of Spence (1973).
The relevance of repetition in signalling was discussed in Weiss (1983) and Ad-
mati and Perry (1987) already. The importance of noise was made clear in
Matthews and Mirman (1983). The present paper is a natural combination of
these ideas, as are several previous publications.

The works of Kaya (2009) and Roddie (2012) examine discrete time repeated
signalling without noise. These papers are distinguished from the present paper
by the perfect observability of the sender’s action. The focus in Kaya (2009)
is on least-cost separating equilibria. The paper of Roddie (2012) shows when
reputation effects arise in general. In the noiseless models of Kaya (2009) and
Roddie (2012), the existence and payoffs of separating equilibria are independent
of the prior, and pooling on positive effort is possible. These results differ from
the noisy models discussed below, as well as the present paper.

Discrete time noisy signalling is discussed in Dilme and Li (2014). In that
work, the decision is when to irreversibly stop signalling. Noise is one-sided: a
choice to continue can randomly result in stopping, but not vice versa. In the
present paper, noise is two-sided: a given effort level can result in a higher or
lower signal. The decision is how much effort to exert each period, not when to
stop.

In the discrete time model of Dilme (2014a), the high type prefers high
effort even in the absence of signalling considerations. The low type chooses
when to stop imitating the high. The focus is on characterizing the set of
equilibrium payoffs. In the current paper, both types prefer lower effort if there
is no signalling motive. Effort is chosen from a continuum and the game never
stops. The goal is to describe behaviour in a particular equilibrium.

Continuous time signalling with Brownian noise is the subject of Daley and
Green (2012), Gryglewicz (2009), Dilme (2014b) and Heinsalu (2014). In the
paper of Dilme (2014b), the sender continuously chooses the effort level and the
probability of stopping the game. The benefit is obtained only upon stopping.
In the present paper, the benefit may be obtained in multiple periods or in
one, and the benefit timing is known in advance. In Daley and Green (2012),
information is exogenously revealed over time and the informed player decides
when to stop the game. Again, the benefit is received upon stopping. Limit
pricing in a dynamic environment is studied in Gryglewicz (2009). The low-cost
type is nonstrategic and the high-cost type chooses the time at which it ceases
its costly imitation of the low-cost type. Heinsalu (2014) has a model with
two types and either a Poisson or a Brownian signal process. Effort is chosen
continuously and determines the distribution of signals. In the current paper,
all types are strategic, there is a continuum of types and the signal distribution
depends on effort.

Repeated noiseless signalling is also studied in Nöldeke and van Damme
(1990) and Swinkels (1999). The framework is similar to Dilme and Li (2014)—
the signalling cost is paid first and the benefit is received at the end of the game.
This feature differentiates them from the current paper, where benefit may be
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received in all periods. A unique informative equilibrium obtains in Nöldeke and
van Damme (1990). The different information structure in Swinkels (1999) leads
to a unique pooling equilibrium. The current paper has one affine equilibrium,
but the existence of nonlinear equilibria is an open question.

Signalling by delaying trade is the subject of Kremer and Skrzypacz (2007)
and Hörner and Vieille (2009). The benefit is obtained when trade occurs, i.e.
when the game stops. In the present paper, there is no irreversible trading
choice. Instead, there is a choice of effort every period.

Signalling in one-shot interactions is studied in Matthews and Mirman (1983),
Carlsson and Dasgupta (1997), Alós-Ferrer and Prat (2012) and Daley and
Green (2014). The present paper focusses on long-term relationships. Matthews
and Mirman (1983) and Daley and Green (2014) add noise to make the model
closer to real-life signalling situations, which is also the motivation in the present
paper. Carlsson and Dasgupta (1997) eliminate unintuitive equilibria in the
noiseless model by using noise and passing to the noiseless limit.

The experimental papers of Jeitschko and Normann (2012) and de Haan
et al. (2011) use noisy one-shot signalling models with normally distributed
noise. Their focus is on one-shot interactions and whether signalling is observed
experimentally. The present paper studies repeated signalling theoretically.

Noisy effort exerted over time is also found in the career concerns litera-
ture that started from Holmström (1999). The difference of most of the career
concerns models from the present paper is that the incomplete information is
symmetric—the sender does not know his own type. The baseline signalling
model also differs from Holmström (1999) in that effort is unproductive and
the signal does not depend on type, but these assumptions are relaxed in the
extensions.

The reputation models following Kreps and Wilson (1982) and Milgrom and
Roberts (1982) are also related to the dynamic signalling literature. There are
players choosing costly actions to influence the beliefs of other players. The
change in beliefs leads to some benefit in the future. Most of the reputation
literature features private values—players do not care about the types of other
players, only their actions. This is the polar opposite of signalling. In sig-
nalling, it is the type of a player that is payoff-relevant to other players, not the
action. Furthermore, in the present paper all types are strategic, unlike in most
reputation models.

7 Conclusion

A tractable repeated noisy signalling model is proposed and the unique affine
equilibrium is found. An advantage over the previous literature is the ease
of describing nonstationary environments such as election campaigns, mating
seasons, critical learning periods during development. Private instead of public
monitoring of the signal by the market does not affect the results. Neither do
some forms of competition between multiple signallers.

Closed form comparative statics are obtained, some of which are standard,
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some surprising. Among the latter, the most unexpected result is that when the
cost difference between types changes, then generically there are types whose
effort and payoff increase in their marginal cost.

Many extensions to the basic pure signalling model are possible, retaining
tractability. Examples solved in this paper pertain to time-varying type, human
capital accumulation, exogenous information revelation, productive effort and
competition between signallers. Any subset of these can be combined without
complications.

Future research will focus on incomplete information of the sender as well as
the market. A seller may be uncertain about how much the buyers value qual-
ity. A monopolist may only imperfectly observe the demand. The anticipated
consequence is that the sender experiments by choosing various (myopically
suboptimal) signalling efforts over time and observing the resulting benefit.
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